201
|
Doxazosin reduces cell proliferation and increases collagen fibers in rat prostatic lobes. Cell Tissue Res 2008; 332:171-83. [DOI: 10.1007/s00441-007-0559-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
|
202
|
Wang R, Xu J, Mabjeesh N, Zhu G, Zhou J, Amin M, He D, Marshall FF, Zhau HE, Chung LWK. PrLZ is expressed in normal prostate development and in human prostate cancer progression. Clin Cancer Res 2007; 13:6040-8. [PMID: 17947466 DOI: 10.1158/1078-0432.ccr-07-0640] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously reported the isolation and characterization of PrLZ, a novel prostate-specific and androgen-responsive gene of the tumor protein D52 family at chromosome 8q21.1. PrLZ is the only known gene in this locus with prostate specificity. Expression level of PrLZ was elevated specifically in cancer cells, suggesting its association with malignancy. EXPERIMENTAL DESIGN To define its biological function in the morphogenesis, development, and functional maturation of the prostate gland and to gain further insight into its role in prostate cancer, we examined PrLZ expression in prostate specimens during early embryonic development and in adult tissue. RESULTS PrLZ first appears in the nuclei of the prostate epithelia at 16 weeks of gestation before its distribution in the cytoplasm at later ages. Its expression peaks at 24 years of age, declines at 31 years of age, and maintains a minimal level in later age. On prostate cancer development, PrLZ expression is reactivated, and its expression increases from primary localized tumor to bone metastasis. Overexpression of PrLZ in prostate cancer cells accelerates their growth in vitro and tumor formation in vivo. CONCLUSION This work identifies PrLZ as a marker for prostate cancer progression and metastasis, and its pattern of expression is suggestive of a proto-oncogene.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Department of Urology and Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Tang J, Yang JC, Zhang Y, Liu X, Zhang L, Wang Z, Li J, Luo Y, Xu J, Shi H. Does benign prostatic hyperplasia originate from the peripheral zone of the prostate? A preliminary study. BJU Int 2007; 100:1091-6. [PMID: 17922787 DOI: 10.1111/j.1464-410x.2007.07081.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare the histological characteristics, cell proliferation, apoptosis and biological features in benign prostatic hyperplasia (BPH) in the peripheral (PZ) and transition zone (TZ) of the prostate. PATIENTS AND METHODS Tissue from BPH in TZ and PZ was obtained from 68 patients undergoing transrectal ultrasonography-guided biopsy and used for both morphometric analysis and immunohistochemical studies. The epithelial, stromal and luminal composition of the tissue was determined using a computer-assisted method for quantitative morphometric analysis. Apoptosis was detected as the apoptotic index (AI) using the TdT dUTP nick-end labelling assay. Cell proliferation was determined as the proliferation index (PI) using Ki-67 immunostaining. The expression of epidermal growth factor receptor (EGFR), transforming growth factor beta1 (TGFbeta1), androgen receptor (AR) and bcl-2 were assessed immunohistochemically. RESULTS There was no difference in the stroma/epithelium ratio between PZ and TZ hyperplastic nodules (P > 0.05). The mean AI in epithelium was almost identical to the corresponding PI. In stroma, no apoptotic cells were detectable. There was a significantly higher PI and AI in the glandular epithelial cells in PZ hyperplastic than in TZ hyperplastic nodules, but no difference in PI of the stromal cells between PZ and TZ hyperplastic nodules. There was significantly higher expression of TGFbeta1 and lower expression of EGFR and bcl-2 in PZ than TZ hyperplastic nodules (P < 0.05). There was no difference in AR expression between PZ and TZ hyperplastic nodules (P > 0.05). CONCLUSIONS These results indicate that some hyperplastic nodules in PZ might originate from the PZ, and the formation of these nodules might be modulated in a different way from that in the TZ.
Collapse
Affiliation(s)
- Jie Tang
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
McIntyre MH, Kantoff PW, Stampfer MJ, Mucci LA, Parslow D, Li H, Gaziano JM, Abe M, Ma J. Prostate Cancer Risk and ESR1 TA, ESR2 CA Repeat Polymorphisms. Cancer Epidemiol Biomarkers Prev 2007; 16:2233-6. [DOI: 10.1158/1055-9965.epi-07-0481] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
205
|
Ricke WA, Wang Y, Cunha GR. Steroid hormones and carcinogenesis of the prostate: the role of estrogens. Differentiation 2007; 75:871-82. [PMID: 17924963 DOI: 10.1111/j.1432-0436.2007.00224.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgens have long been known to be the major sex hormones that target the prostate during development, maturation, and carcinogenesis. It is now apparent that estrogens, both those synthesized by the body as well as those from our environment, also target the prostate during all stages of development. Little is known about the mechanisms involved in estrogen stimulation of carcinogenesis and less is known about how to prevent or treat prostate cancer through estrogenic pathways. To better understand how estrogens mediate their carcinogenic effects, the respective roles of estrogen receptor (ER)-alpha and ER-beta must be elucidated in the epithelial and stromal cells that constitute the prostate. Lastly, the significance of ER signaling during various ontogenic periods must be determined. Answers to these questions will further our understanding of the mechanisms of estrogen/ER signaling and will serve as a basis for chemopreventive and/or chemotherapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- William A Ricke
- Department of Urology, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
206
|
He Y, Franco OE, Jiang M, Williams K, Love HD, Coleman IM, Nelson PS, Hayward SW. Tissue-Specific Consequences of Cyclin D1 Overexpression in Prostate Cancer Progression. Cancer Res 2007; 67:8188-97. [PMID: 17804732 DOI: 10.1158/0008-5472.can-07-0418] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclin D1 oncogene encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the Rb protein and promotes progression through G(1) to S phase of the cell cycle. Several prostate cancer cell lines and a subset of primary prostate cancer samples have increased cyclin D1 protein expression. However, the relationship between cyclin D1 expression and prostate tumor progression has yet to be clearly characterized. This study examined the effects of manipulating cyclin D1 expression in either human prostatic epithelial or stromal cells using a tissue recombination model. The data showed that overexpression of cyclin D1 in the initiated BPH-1 cell line increased cell proliferation rate but did not elicit tumorigenicity in vivo. However, overexpression of cyclin D1 in normal prostate fibroblasts (NPF) that were subsequently recombined with BPH-1 did induce malignant transformation of the epithelial cells. The present study also showed that recombination of BPH-1 + cyclin D1-overexpressing fibroblasts (NPF(cyclin D1)) resulted in permanent malignant transformation of epithelial cells (BPH-1(NPF-cyclin D1) cells) similar to that seen with carcinoma-associated fibroblasts (CAF). Microarray analysis showed that the expression profiles between CAFs and NPF(cyclin D1) cells were highly concordant including cyclin D1 up-regulation. These data indicated that the tumor-promoting activity of cyclin D1 may be tissue specific.
Collapse
Affiliation(s)
- Yue He
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Wu CT, Altuwaijri S, Ricke WA, Huang SP, Yeh S, Zhang C, Niu Y, Tsai MY, Chang C. Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor. Proc Natl Acad Sci U S A 2007; 104:12679-84. [PMID: 17652515 PMCID: PMC1937526 DOI: 10.1073/pnas.0704940104] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Developmental studies of the prostate have established that ductal morphogenesis, epithelial cytodifferentiation, and proliferation/apoptosis are regulated by androgens acting through stromal androgen receptor (AR). Here, we found mice lacking epithelial AR within the mature prostate (pes-ARKO) developed prostate tissue that was less differentiated and hyperproliferative relative to WT littermates. Epithelial AR protein was significantly decreased in 6-week-old mice and was nearly absent by >/=24 weeks of age. Circulating levels of testosterone, external genitalia, or fertility were not altered in pes-ARKO mice. A significant (P < 0.05) increase in bromo-deoxyuridine-positive epithelia was observed in ventral and dorsal-lateral prostates of pes-ARKO mice at 24 weeks of age. Less differentiation was observed as indicated by decreased epithelial height and glandular infolding through 24 weeks of age, differentiation markers probasin, PSP-94, and Nkx3.1 were sig nificantly decreased, and epithelial sloughing and luminal cell apoptosis increased from 6 to 32 weeks of age in pes-ARKO mice. Gain of function occurred by crossing pes-ARKO to the T857A transgenic mice containing constitutively activated AR. In T857A-pes-ARKO mice prostates were of normal size, contained glandular infoldings, and maintained high secretory epithelium, and the appropriate prostatic epithelial proliferation was restored. Collectively, these results suggest that prostatic epithelial AR plays an important role in the homeostasis of the prostate gland. These data support the hypothesis that epithelial AR controls prostate growth by suppressing epithelial proliferation in the mature gland.
Collapse
Affiliation(s)
- Chun-Te Wu
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
- Graduate Institute of Clinical Medical Science, Departments of Urology, Obstetrics, and Gynecology, Chang Gung University and Chang Gung Memorial Hospital, Taipei 333, Taiwan
| | - Saleh Altuwaijri
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
- Clinical Research Laboratory, Saad Specialist Hospital, Al-Khobar, Saudi Arabia 31952; and
| | - William A. Ricke
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
| | - Shu-Pin Huang
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
- Department of Urology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shuyuan Yeh
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
| | - Caixia Zhang
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
| | - Yuanjie Niu
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
| | - Meng-Ying Tsai
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
- Graduate Institute of Clinical Medical Science, Departments of Urology, Obstetrics, and Gynecology, Chang Gung University and Chang Gung Memorial Hospital, Taipei 333, Taiwan
| | - Chawnshang Chang
- *George Whipple Laboratory for Cancer Research, Departments of Pathology and Urology, and the James P. Wilmot Cancer Center, University of Rochester, Rochester, NY 14620
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
208
|
Lunacek A, Schwentner C, Oswald J, Fritsch H, Sergi C, Thomas LN, Rittmaster RS, Klocker H, Neuwirt H, Bartsch G, Radmayr C. Fetal distribution of 5alpha-reductase 1 and 5alpha-reductase 2, and their input on human prostate development. J Urol 2007; 178:716-21. [PMID: 17574609 DOI: 10.1016/j.juro.2007.03.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE Human prostate development starts in the tenth week of gestation. Initial interactions between the epithelium and mesenchyma are stimulated by androgens. The transformation of circulating testosterone to 5alpha-dihydrotestosterone by tissue linked 5alpha-reductase is a key event in androgen metabolism. The 5alpha-dihydrotestosterone mediates androgen effects in the urogenital sinus and external genitalia, leading to the formation of a male phenotype and androgen mediated prostate growth. Supposedly 5alpha-reductase 2 is the predominant isoenzyme in human accessory sex tissue, whereas the function of 5alpha-reductase 1 remains unclear. We focused on the detection, distribution and effects of the 2 isoenzymes during gestation and infancy. MATERIALS AND METHODS Serial sections from fetuses and infants were immunostained using antibodies directed against 5alpha-reductase 1 and 2. Additionally, to detect the downstream products of androgen synthesis reverse transcriptase-polymerase chain reaction analyses were done for 17 beta-hydroxysteroid dehydrogenase types 2, 3 and 7. RESULTS Immunohistochemistry revealed positive staining for each isoenzyme throughout fetal development. Moreover, reverse transcriptase-polymerase chain reaction for 5alpha-reductase 1 and 2 confirmed these findings on the transcription level. Additionally, the most relevant enzymatic downstream products of cellular androgen synthesis (17 beta-hydroxysteroid dehydrogenase 2, 3 and 7) were also detected by reverse transcriptase-polymerase chain reaction. CONCLUSIONS To our knowledge this is the first study revealing the expression and distribution of each 5alpha-reductase isoenzyme as well as the potential contribution of 5alpha-reductase 1 during fetal human prostate development.
Collapse
Affiliation(s)
- A Lunacek
- Department of Urology, Hanuschkrankenhaus, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 2007; 67:4807-15. [PMID: 17510410 DOI: 10.1158/0008-5472.can-06-4608] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer may arise from a cancer stem/progenitor cell that shares characteristics with its normal counterpart. We report the reconstitution of the original human prostate cancer specimen from epithelial cell lines (termed HPET for human prostate epithelial/hTERT) derived from this sample. These tumors can be described in terms of Gleason score, a classification not applied to any of the transgenic mouse models currently developed to mimic human disease. Immunohistochemical and Western blot analyses indicate that they do not express androgen receptor or p63, similar to that reported for prostate stem cells. These cell lines also express embryonic stem markers (Oct4, Nanog, and Sox2) as well as early progenitor cell markers (CD44 and Nestin) in vitro. Clonally derived HPET cells reconstitute the original human tumor in vivo and differentiate into the three prostate epithelial cell lineages, indicating that they arise from a common stem/progenitor cell. Serial transplantation experiments reconstitute the tumors, suggesting that a fraction of parental or clonally derived HPET cells have self-renewal potential. Thus, this model may enhance our understanding of human tumor development and provide a mechanism for studying cancer stem/progenitor cells in differentiation, tumorigenesis, preclinical testing, and the development of drug resistance.
Collapse
Affiliation(s)
- Guangyu Gu
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | | | | | |
Collapse
|
210
|
Letellier G, Perez MJ, Yacoub M, Levillain P, Cussenot O, Fromont G. Epithelial Phenotypes in the Developing Human Prostate. J Histochem Cytochem 2007; 55:885-90. [PMID: 17478449 DOI: 10.1369/jhc.7a7192.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An intermediate population has been identified among prostate glands called transiently amplifying (TA) cells, which are characterized by coexpression of basal and luminal cytokeratins (CKs), high proliferation, and lack of p27 expression. These cells are rare in the normal adult prostate and increase in pretumoral conditions, but their importance in the developing gland remains unknown. We analyzed fetal prostates for the expression of CKs (5/6, 18, 19) and factors involved in proliferation and apoptosis: p63, Ki67, p27, epidermal growth factor (EGFR), Bcl2, androgen receptor (AR). Immunostaining was performed on a tissue microarray, including 40 prostates from fetuses aged 13-42 weeks and normal prostate tissue from 10 adults. In both solid buds and the basal compartment of canalized glands, cells expressed p63, CK5/6, CK19, CK18, BCL2, EGFR and were p27 negative. Luminal cells of fetal canalized glands continue to express CK19, EGFR, and BCL2, without p27 expression. In contrast, adult epithelial luminal cells showed diffuse AR and p27 expression, without CK19, BCL2, and EGFR staining. Proliferation was high and diffuse in fetal glands and rare and restricted to basal cells in adult glands. These results indicate that most fetal epithelial prostatic cells exhibit the phenotype of TA cells, suggesting their regulatory function in prostate development.
Collapse
Affiliation(s)
- Guy Letellier
- Service de Pédiatrie, Centre Hospitalier Universitaire-Université de Poitiers, Poitiers, France
| | | | | | | | | | | |
Collapse
|
211
|
Kenny PA, Lee GY, Bissell MJ. Targeting the tumor microenvironment. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2007; 12:3468-74. [PMID: 17485314 PMCID: PMC2841020 DOI: 10.2741/2327] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the "druggable" targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.
Collapse
Affiliation(s)
- Paraic A Kenny
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
212
|
Simanainen U, Allan CM, Lim P, McPherson S, Jimenez M, Zajac JD, Davey RA, Handelsman DJ. Disruption of prostate epithelial androgen receptor impedes prostate lobe-specific growth and function. Endocrinology 2007; 148:2264-72. [PMID: 17317769 DOI: 10.1210/en.2006-1223] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prostate development and maturation requires stromal-epithelial interactions and androgen action via the androgen receptor (AR) within these compartments. However, the specific roles of epithelial and stromal AR in postnatal prostate differentiation are unclear. We used Cre-LoxP technology to determine the prostate phenotype in mice with epithelial-selective genetic inactivation of the AR leaving the stromal AR functionally intact. We find that prostate development abolished in mice globally lacking a functional AR can be rescued by restricting the AR knockout to the postnatal prostate epithelium. We show that, at 8 wk of age, prostate epithelial AR knockout (PEARKO) mice exhibit prostate development with normal branching morphogenesis but lobe-specific decrease in prostate weight and hindered structural and functional differentiation of the mature prostate epithelium. No change was observed in PEARKO testis weight or serum testosterone compared with littermate controls. The most striking change was increased proliferation and abnormal lesions of epithelial cells predominantly in the anterior lobe of PEARKO mice. These findings highlight the vital role of stromal AR in postnatal prostate growth and structural differentiation and emphasize the requirement of epithelial AR in maintaining functional differentiation and restraining proliferation of epithelial cells in a lobe-specific manner. This unique PEARKO mouse provides a new paradigm with which to define the molecular mechanisms of the androgen signaling in mature prostate lobes in vivo and provides insight into the identification of better targets for treatment of prostate cancer and hyperplasia.
Collapse
Affiliation(s)
- Ulla Simanainen
- ANZAC Research Institute, University of Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Zhu G, Zhau HE, He H, Zhang L, Shehata B, Wang X, Cerwinka WH, Elmore J, He D. Sonic and desert hedgehog signaling in human fetal prostate development. Prostate 2007; 67:674-84. [PMID: 17342747 DOI: 10.1002/pros.20563] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hedgehog signaling is thought to play an important role in rodent prostate organogenesis and morphogenesis. However, the role of this signaling pathway in human fetal prostate development has not been investigated. METHODS Twenty-five human fetal prostates at various developmental stages (10-39 weeks) were included. Fifteen specimens were processed for H&E and immunohistochemical staining of the Hedgehog signaling components: Sonic Hedgehog (SHH), Desert Hedgehog (DHH), Patched-1(PTC1), Patched-2 (PTC2), Smoothened (SMO), GLI1, and proliferating cell nuclear antigen (PCNA). SHH, DHH, and GLI1 expression was also analyzed in ten snap-frozen specimens by Western blot. RESULTS SHH, DHH, SMO, PTC1, GLI1, and PCNA expression, assessed by a semi-quantitative immunohistochemical method, was found mainly in the developing prostatic epithelial ducts, beginning at 10 weeks and peaking at 16 and 28 weeks with a dip occurring at 20 weeks, with the exception of PTC2. CONCLUSION Both SHH and DHH signaling components were detected during human fetal prostate development. Despite the high expression of PTC2 in the epithelium as well as the stroma in the early time of development, the expression of SHH, DHH, SMO, PTC1, and a SHH/DHH target transcription factor, GLI-1, were all largely restricted to epithelium in the developing prostate, suggesting that SHH/DHH signaling is primarily through an autocrine mechanism in human fetal prostate organogenesis.
Collapse
Affiliation(s)
- Guodong Zhu
- Department of Urology, the First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Marrari A, Iero M, Pilla L, Villa S, Salvioni R, Valdagni R, Parmiani G, Rivoltini L. Vaccination therapy in prostate cancer. Cancer Immunol Immunother 2007; 56:429-45. [PMID: 17031640 PMCID: PMC11030671 DOI: 10.1007/s00262-006-0233-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/07/2006] [Indexed: 01/05/2023]
Abstract
Radical prostatectomy and radiation therapy provide excellent localized prostate cancer (PC) control. Although the majority of prostate carcinoma is nowadays diagnosed at early stages with favourable risk features, in patients up to 30-40% it recurs within 10 years. Furthermore, the lack of effective therapies, once prostate carcinoma becomes refractory to androgen deprivation, mandates the development of alternative therapeutic options. There is a growing interest in harnessing the potency and specificity of anti-tumour immunity through the generation of fully competent dendritic cells and tumour reactive effector lymphocytes. Several strategies to treat or prevent the development of metastatic PC have been explored in clinical trials and are summarized in this review, considering also the feasibility and safety of these approaches. In some cases clinical responses were achieved showing that vaccine-primed T cells induced anti-tumour activity in vivo. The present findings and perspectives of the immunologic interventions in PC patients will be discussed.
Collapse
Affiliation(s)
- Andrea Marrari
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
215
|
Hidalgo AA, Paredes R, Garcia VM, Flynn G, Johnson CS, Trump DL, Onate SA. Altered VDR-mediated transcriptional activity in prostate cancer stroma. J Steroid Biochem Mol Biol 2007; 103:731-6. [PMID: 17368189 DOI: 10.1016/j.jsbmb.2006.12.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The 1alpha,25-dihydroxy-vitamin D(3) (1alpha,25(OH)(2)D(3)) mediated gene transcription in primary cultures of human prostate cells was analyzed using an adenoviral luciferase expression reporter under the control of the 25-hydroxy-vitamin D(3)-24-hydroxylase (CYP24) gene promoter. Stromal cells isolated from benign and malignant associated stroma (BAS and CAS) of a human clinical sample have been determined to contain similar levels of functional 1alpha,25(OH)(2)D(3) receptor (VDR). However, VDR-mediated reporter activity of the luciferase reporter has been found to be limited 7-9-fold in CAS compared to 14-16-fold in BAS. Chromatin immunoprecipitation (ChIP) assays indicate that in the absence of added ligand VDR interact with the silencing mediator for retinoid and thyroid hormone (SMRT) corepressor in both cell types, with higher recruitment in CAS as compared to BAS cells. In the presence of added ligand, VDR in CAS cells exhibited decreased ligand-inducible DNA binding activity, altered recruitment of coregulators SRC-1 and CBP, and increased recruitment of SMRT corepressor, as compared to BAS. Additionally, overexpression of wild-type VDR recovered VDR-mediated transaction of CYP24 luciferase reporter. These results indicate that VDR structure/function and coregulator recruitment to 1alpha,25(OH)(2)D(3) regulated genes is altered in the CaP stroma microenvironment.
Collapse
Affiliation(s)
- Alejandro A Hidalgo
- Department of Urologic Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Cano P, Godoy A, Escamilla R, Dhir R, Onate SA. Stromal-epithelial cell interactions and androgen receptor-coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Res 2007; 67:511-9. [PMID: 17234758 DOI: 10.1158/0008-5472.can-06-1478] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tissue recombination experiments show that prostate mesenchyma directs prostate epithelial cell growth and development in an androgen-dependent manner, and that functional differentiation of prostate epithelium requires androgen-driven processes in both epithelia and stroma. The androgen induction of target genes in primary cultures of prostate stromal and epithelial cells was determined using an adenoviral expression system, which employed the MMTV-enhancer driven luciferase reporter as an androgen receptor (AR)-mediated transcription assay. These studies indicate that both cell types contain functional AR. Androgen induction of luciferase reporter activity is 3-fold in stromal cells compared with 10-fold in epithelial cells. AR-mediated transcription activity in stroma cells was enhanced by coculture with epithelial cells or epithelial cell-conditioned media. The elevated AR-mediated transcription activity in stromal cells that were exposed to epithelial factors correlated with increased recruitment of coactivators to the AR transcriptional complex. Epithelial cells facilitated interactions of AR with SRC-1 in an androgen-dependent manner. However, AR-mediated transcriptional activity in stromal cells isolated from prostate cancer was reduced compared with stromal cells isolated from benign prostate and continued to be reduced when cocultured with tumor-derived prostate epithelial cells. The occupancy of AR and coregulators on target genes showed that androgen-bound AR in prostate cancer stromal cells was associated with the corepressor silencing mediator for retinoid and thyroid hormone receptor. Thus, the ability of epithelial cells to modulate coregulator recruitment to the AR transcriptional complex on androgen-responsive genes seems altered in the stromal microenvironment of prostate cancer.
Collapse
Affiliation(s)
- Patricia Cano
- Department of Urologic Oncology, Roswell Park Cancer Institute, Buffalo, New York 14213, and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
217
|
Benbrahim-Tallaa L, Liu J, Webber MM, Waalkes MP. Estrogen signaling and disruption of androgen metabolism in acquired androgen-independence during cadmium carcinogenesis in human prostate epithelial cells. Prostate 2007; 67:135-45. [PMID: 17075824 DOI: 10.1002/pros.20479] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Lethal prostate cancers often become androgen-independent due to androgen receptor (AR) overexpression. The role of cadmium in prostate tumor progression was determined. METHODS Control and cadmium-transformed prostate epithelial cells (CTPE) were compared for steroid-induced proliferation, steroid receptor expression, and androgen metabolism. RESULTS CTPE cells showed rapid proliferation in complete medium and sustained proliferation in steroid-reduced medium. Androgens stimulated significantly less cell proliferation and AR-related genes expression in CTPE cells. 5alpha-Dihydrotestosterone increased PSA expression more effectively in control cells. Flutamide reduced 5alpha-dihydrotestosterone-stimulated growth less effectively in CTPE cells compared to control. CTPE cells showed decreased p27 expression. Estrogen receptors were overexpressed and estradiol markedly stimulated proliferation in CTPE cells. In CTPE cells 5alpha-aromatase was markedly increased, while 5alpha-reductase was decreased. CONCLUSIONS Cadmium-induced malignant transformation stimulates androgen independence, unrelated to AR expression or activity. Increased estrogen receptor and 5alpha-aromatase expression suggest estrogen signaling may be critical to this process.
Collapse
Affiliation(s)
- Lamia Benbrahim-Tallaa
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, NCI at NIEHS, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
218
|
Lin Y, Liu G, Zhang Y, Hu YP, Yu K, Lin C, McKeehan K, Xuan JW, Ornitz DM, Shen MM, Greenberg N, McKeehan WL, Wang F. Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis. Development 2007; 134:723-34. [PMID: 17215304 DOI: 10.1242/dev.02765] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fibroblast growth factor (FGF) family consists of 22 members and regulates a broad spectrum of biological activities by activating diverse isotypes of FGF receptor tyrosine kinases (FGFRs). Among the FGFs, FGF7 and FGF10 have been implicated in the regulation of prostate development and prostate tissue homeostasis by signaling through the FGFR2 isoform. Using conditional gene ablation with the Cre-LoxP system in mice, we demonstrate a tissue-specific requirement for FGFR2 in urogenital epithelial cells--the precursors of prostatic epithelial cells--for prostatic branching morphogenesis and prostatic growth. Most Fgfr2 conditional null (Fgfr2(cn)) embryos developed only two dorsal prostatic (dp) and two lateral prostatic (lp) lobes. This contrasts to wild-type prostate, which has two anterior prostatic (ap), two dp, two lp and two ventral prostatic (vp) lobes. Unlike wild-type prostates, which are composed of well developed epithelial ductal networks, the Fgfr2(cn) prostates, despite retaining a compartmented tissue structure, exhibited a primitive epithelial architecture. Moreover, although Fgfr2(cn) prostates continued to produce secretory proteins in an androgen-dependent manner, they responded poorly to androgen with respect to tissue homeostasis. The results demonstrate that FGFR2 is important for prostate organogenesis and for the prostate to develop into a strictly androgen-dependent organ with respect to tissue homeostasis but not to the secretory function, implying that androgens may regulate tissue homeostasis and tissue function differently. Therefore, Fgfr2(cn) prostates provide a useful animal model for scrutinizing molecular mechanisms by which androgens regulate prostate growth, homeostasis and function, and may yield clues as to how advanced-tumor prostate cells escape strict androgen regulations.
Collapse
Affiliation(s)
- Yongshun Lin
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A and M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
|
220
|
Abstract
The prostate gland is not often the target of imaging in children but may be imaged during investigation of symptoms related to the lower genitourinary tract such as hematuria, urinary retention, dysuria, and incontinence or during an evaluation for suspected congenital anomalies. Ultrasound and voiding cystourethrography are useful for initial evaluation of congenital and neoplastic disorders of the prostate. MR imaging and CT are useful in delineating more detailed anatomy before surgical planning and in determining the organ of origin in a patient who has a large pelvic mass.
Collapse
Affiliation(s)
- Andrew Mong
- Department of Radiology, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 34th and Civic Center Blvd, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
221
|
Heitzer MD, DeFranco DB. Hic-5/ARA55, a LIM Domain–Containing Nuclear Receptor Coactivator Expressed in Prostate Stromal Cells. Cancer Res 2006; 66:7326-33. [PMID: 16849583 DOI: 10.1158/0008-5472.can-05-2379] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate gland development and growth requires both androgen action and epithelial-stromal communications. In fact, androgen signaling through the androgen receptor (AR) may be important in both stromal and epithelial cells of the prostate. Because interaction of AR with the coactivator, Hic-5/ARA55, results in enhanced androgen-induced transcription, we analyzed Hic-5/ARA55 expression in prostate tissue sections from normal human donors and prostate cancer patients. In each sample, Hic-5/ARA55 expression was confined to the stromal compartment of the prostate. Furthermore, a prostate stromal cell line, WPMY-1 cells, expresses Hic-5/ARA55, which is localized both at focal adhesion complexes and within the soluble cytoplasmic compartment. The ability of Hic-5/ARA55 to shuttle between the nuclear and cytoplasmic compartments was revealed on inhibition of nuclear export with leptomycin B. Small interfering RNA ablation experiments established endogenous Hic-5/ARA55 as a coactivator for both viral and endogenous cellular AR-regulated genes. Finally, the mechanism of Hic-5/ARA55 coactivator activity in WPMY-1 cells was revealed by chromatin immunoprecipitation analysis that showed its androgen-dependent recruitment to the promoter of the stromal androgen-responsive keratinocyte growth factor gene. These data provide the first demonstration of a stromal-specific AR coactivator that has an effect on an androgen-regulated growth factor that is essential for stromal/epithelial cell communication in the prostate.
Collapse
Affiliation(s)
- Marjet D Heitzer
- Department of Cell Biology and Physiology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
222
|
Tang W, Norlin M. Regulation of steroid hydroxylase CYP7B1 by androgens and estrogens in prostate cancer LNCaP cells. Biochem Biophys Res Commun 2006; 344:540-6. [PMID: 16630558 DOI: 10.1016/j.bbrc.2006.03.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/26/2006] [Indexed: 11/29/2022]
Abstract
The present study reports effects of androgens and estrogens on human CYP7B1 transcription in prostate cancer LNCaP cells. Studies with rodents have suggested a role for the CYP7B1 enzyme in balancing cellular hormone levels important for prostate growth. Little is, however, known about the regulation of human CYP7B1. The current study showed strong suppression of a human CYP7B1 luciferase reporter gene by dihydrotestosterone (DHT) in prostate cancer LNCaP cells. Also, DHT and overexpression of androgen receptor (AR) suppressed CYP7B1 promoter activity and CYP7B1-mediated catalysis in kidney-derived HEK293 cells. Effects on CYP7B1 transcription were observed also by estrogen receptors (ER). The effects appeared different for different estrogens. CYP7B1 was stimulated by synthetic ER agonists but suppressed by 17beta-estradiol and 5alpha-androstane-3beta,17beta-diol in LNCaP cells. Our data indicate an important role for CYP7B1 in balancing prostate hormone levels in human cells. In particular, the data suggest that androgens may control intraprostatic levels of estrogen via regulation of CYP7B1-mediated metabolism.
Collapse
Affiliation(s)
- Wanjin Tang
- Department of Pharmaceutical Biosciences, Division of Biochemistry, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden
| | | |
Collapse
|
223
|
Doles JD, Vezina CM, Lipinski RJ, Peterson RE, Bushman W. Growth, morphogenesis, and differentiation during mouse prostate development in situ, in renal grafts, and in vitro. Prostate 2005; 65:390-9. [PMID: 16114054 DOI: 10.1002/pros.20321] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND In vitro organ culture and renal grafting of the urogenital sinus (UGS) have both been used as models of prostate development. However, neither has been rigorously examined for its fidelity to replicate the canonical process of prostate differentiation in situ. METHODS We assessed size, morphology, histology, and the mRNA expression of differentiation marker genes of the E14 male mouse UGS grown for 0-28 days as sub-renal capsule allografts in nude mice or in culture containing androgen and compared these to UGS development in situ. RESULTS Development of grafted tissues was morphologically and histologically similar to development in situ but differentiation occurred more rapidly. UGS growth in organ culture resulted in bud formation, but did not trigger cellular differentiation. However, the potential for differentiation was maintained and could be rescued by grafting tissues into nude mice. CONCLUSIONS In vitro organ culture and renal grafting of UGS tissues may be appropriate models for studying prostatic bud formation, but only grafting is an appropriate model for prostatic differentiation.
Collapse
Affiliation(s)
- J D Doles
- University of Wisconsin-Madison, Department of Surgery, Madison, Wisconsin 53792, USA
| | | | | | | | | |
Collapse
|
224
|
Bissell MJ, Kenny PA, Radisky DC. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:343-56. [PMID: 16869771 PMCID: PMC3004779 DOI: 10.1101/sqb.2005.70.013] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now widely accepted that elements of the cellular and tissue microenvironment are crucial regulators of cell behavior in culture and homeostasis in vivo, and that many of the same factors influence the course of tumor progression. Less well established is the extent to which extracellular factors actually cause cancer, and the circumstances under which this may occur. Using physiologically relevant three-dimensional culture assays and transgenic animals, we have explored how the environmental and architectural context of cells, tissues, and organs controls mammary-specific gene expression, growth regulation, apoptosis, and drug resistance and have found that loss of tissue structure is a prerequisite for cancer progression. Here we summarize this evidence and highlight two of our recent studies. Using mouse mammary epithelial cells, we show that exposure to matrix metalloproteinase-3 (MMP-3) stimulates production of reactive oxygen species (ROS) that destabilize the genome and induce epithelial-mesenchymal transition, causing malignant transformation. Using a human breast cancer progression series, we find that ADAM-dependent growth factor shedding plays a crucial role in acquisition of the malignant phenotype. These findings illustrate how normal tissue structure controls the response to extracellular signals so as to preserve tissue specificity and growth status.
Collapse
Affiliation(s)
- M J Bissell
- Cancer Biology Department, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, 94720, USA
| | | | | |
Collapse
|