201
|
Drenichev MS, Mikhailov SN. Poly(ADP-ribose): From chemical synthesis to drug design. Bioorg Med Chem Lett 2016; 26:3395-403. [PMID: 27318540 DOI: 10.1016/j.bmcl.2016.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/17/2022]
Abstract
Poly(ADP-ribose) (PAR) is an important biopolymer, which is involved in various life processes such as DNA repair and replication, modulation of chromatin structure, transcription, cell differentiation, and in pathogenesis of various diseases such as cancer, diabetes, ischemia and inflammations. PAR is the most electronegative biopolymer and this property is essential for its binding with a wide range of proteins. Understanding of PAR functions in cell on molecular level requires chemical synthesis of regular PAR oligomers. Recently developed methodologies for chemical synthesis of PAR oligomers, will facilitate the study of various cellular processes, involving PAR.
Collapse
Affiliation(s)
- Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russian Federation
| | - Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russian Federation.
| |
Collapse
|
202
|
Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H, Schwede F, Yu Y, Kraus WL. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 2016; 353:45-50. [PMID: 27256882 DOI: 10.1126/science.aaf7865] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
Abstract
Poly[adenosine diphosphate (ADP)-ribose] polymerases (PARPs) are a family of enzymes that modulate diverse biological processes through covalent transfer of ADP-ribose from the oxidized form of nicotinamide adenine dinucleotide (NAD(+)) onto substrate proteins. Here we report a robust NAD(+) analog-sensitive approach for PARPs, which allows PARP-specific ADP-ribosylation of substrates that is suitable for subsequent copper-catalyzed azide-alkyne cycloaddition reactions. Using this approach, we mapped hundreds of sites of ADP-ribosylation for PARPs 1, 2, and 3 across the proteome, as well as thousands of PARP-1-mediated ADP-ribosylation sites across the genome. We found that PARP-1 ADP-ribosylates and inhibits negative elongation factor (NELF), a protein complex that regulates promoter-proximal pausing by RNA polymerase II (Pol II). Depletion or inhibition of PARP-1 or mutation of the ADP-ribosylation sites on NELF-E promotes Pol II pausing, providing a clear functional link between PARP-1, ADP-ribosylation, and NELF. This analog-sensitive approach should be broadly applicable across the PARP family and has the potential to illuminate the ADP-ribosylated proteome and the molecular mechanisms used by individual PARPs to mediate their responses to cellular signals.
Collapse
Affiliation(s)
- Bryan A Gibson
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences and The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yajie Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hong Jiang
- Howard Hughes Medical Institute and Department of Chemistry, Cornell University, Ithaca, NY 14850, USA
| | | | - Jonathan H Shrimp
- Howard Hughes Medical Institute and Department of Chemistry, Cornell University, Ithaca, NY 14850, USA
| | - Hening Lin
- Howard Hughes Medical Institute and Department of Chemistry, Cornell University, Ithaca, NY 14850, USA
| | - Frank Schwede
- Biolog Life Science Institute, D-28199 Bremen, Germany
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences and The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
203
|
Kummar S, Wade JL, Oza AM, Sullivan D, Chen AP, Gandara DR, Ji J, Kinders RJ, Wang L, Allen D, Coyne GO, Steinberg SM, Doroshow JH. Randomized phase II trial of cyclophosphamide and the oral poly (ADP-ribose) polymerase inhibitor veliparib in patients with recurrent, advanced triple-negative breast cancer. Invest New Drugs 2016; 34:355-63. [PMID: 26996385 PMCID: PMC4860030 DOI: 10.1007/s10637-016-0335-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/26/2016] [Indexed: 12/22/2022]
Abstract
Background In tumors carrying BRCA mutations, DNA damage caused by standard cytotoxic chemotherapy can be potentiated by poly [ADP-ribose] polymerase (PARP) inhibitors, leading to increased cell death through synthetic lethality. Individuals carrying mutations in BRCA have an increased incidence of triple negative breast cancer (TNBC). In order to assess the role of PARP inhibition in the treatment of TNBC, we conducted a randomized phase II trial of the combination of veliparib, a small molecule PARP inhibitor, with the cytotoxic agent cyclophosphamide versus cyclophosphamide alone in patients with refractory TNBC. Methods Adult patients with TNBC were randomized to receive oral cyclophosphamide 50 mg once daily with or without oral veliparib at 60 mg daily in 21-day cycles. Patients on the cyclophosphamide arm could crossover to the combination arm at disease progression. Results Forty-five patients were enrolled; 18 received cyclophosphamide alone and 21 received the combination as their initial treatment regimen. Lymphopenia was the most common grade 3/4 toxicity noted in both arms. One patient in the cyclophosphamide alone arm, and 2 in the combination arm had objective responses. Response rates and median progression free survival did not significantly differ between both treatment arms. Conclusion The addition of veliparib to cyclophosphamide, at the dose and schedule evaluated, did not improve the response rate over cyclophosphamide treatment alone in patients with heavily pre-treated triple-negative breast cancer.
Collapse
Affiliation(s)
- Shivaani Kummar
- National Cancer Institute, National Institutes of Health, 31 Center Drive, Room 3A44, Bethesda, MD, 20814, USA
| | - James L Wade
- The University of Chicago Medical Center, Chicago, IL, USA
| | - Amit M Oza
- Princess Margaret Hospital, University of Toronto, Toronto, ON, Canada
| | - Daniel Sullivan
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alice P Chen
- National Cancer Institute, National Institutes of Health, 31 Center Drive, Room 3A44, Bethesda, MD, 20814, USA
| | - David R Gandara
- University of California Davis Cancer Center, Davis, CA, USA
| | - Jiuping Ji
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert J Kinders
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lihua Wang
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Allen
- National Cancer Institute, National Institutes of Health, 31 Center Drive, Room 3A44, Bethesda, MD, 20814, USA
| | - Geraldine O'Sullivan Coyne
- National Cancer Institute, National Institutes of Health, 31 Center Drive, Room 3A44, Bethesda, MD, 20814, USA
| | - Seth M Steinberg
- National Cancer Institute, National Institutes of Health, 31 Center Drive, Room 3A44, Bethesda, MD, 20814, USA
| | - James H Doroshow
- National Cancer Institute, National Institutes of Health, 31 Center Drive, Room 3A44, Bethesda, MD, 20814, USA.
| |
Collapse
|
204
|
Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2016; 15:348-66. [PMID: 26775689 PMCID: PMC6531857 DOI: 10.1038/nrd.2015.6] [Citation(s) in RCA: 452] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of regulated cell death presents tantalizing possibilities for gaining control over the life-death decisions made by cells in disease. Although apoptosis has been the focus of drug discovery for many years, recent research has identified regulatory mechanisms and signalling pathways for previously unrecognized, regulated necrotic cell death routines. Distinct critical nodes have been characterized for some of these alternative cell death routines, whereas other cell death routines are just beginning to be unravelled. In this Review, we describe forms of regulated necrotic cell death, including necroptosis, the emerging cell death modality of ferroptosis (and the related oxytosis) and the less well comprehended parthanatos and cyclophilin D-mediated necrosis. We focus on small molecules, proteins and pathways that can induce and inhibit these non-apoptotic forms of cell death, and discuss strategies for translating this understanding into new therapeutics for certain disease contexts.
Collapse
Affiliation(s)
- Marcus Conrad
- Helmholtz Zentrum München, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | | | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, USA
| |
Collapse
|
205
|
Induction of Poly(ADP-ribose) Polymerase in Mouse Bone Marrow Stromal Cells Exposed to 900 MHz Radiofrequency Fields: Preliminary Observations. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4918691. [PMID: 27190989 PMCID: PMC4848421 DOI: 10.1155/2016/4918691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 01/17/2023]
Abstract
Background. Several investigators have reported increased levels of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme which plays an important role in the repair of damaged DNA, in cells exposed to extremely low dose ionizing radiation which does not cause measurable DNA damage. Objective. To examine whether exposure of the cells to nonionizing radiofrequency fields (RF) is capable of increasing messenger RNA of PARP-1 and its protein levels in mouse bone marrow stromal cells (BMSCs). Methods. BMSCs were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 3 hours/day for 5 days. PARP-1 mRNA and its protein levels were examined at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours after exposure using RT-PCR and Western blot analyses. Sham-exposed (SH) cells and those exposed to ionizing radiation were used as unexposed and positive control cells. Results. BMSCs exposed to RF showed significantly increased expression of PARP-1 mRNA and its protein levels after exposure to RF while such changes were not observed in SH-exposed cells. Conclusion. Nonionizing RF exposure is capable of inducing PARP-1.
Collapse
|
206
|
Nilov DK, Tararov VI, Kulikov AV, Zakharenko AL, Gushchina IV, Mikhailov SN, Lavrik OI, Švedas VK. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine. Acta Naturae 2016; 8:108-15. [PMID: 27437145 PMCID: PMC4947994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 11/30/2022] Open
Abstract
The ability of 7-methylguanine, a nucleic acid metabolite, to inhibit poly(ADP-ribose)polymerase-1 (PARP-1) and poly(ADP-ribose)polymerase-2 (PARP-2) has been identified in silico and studied experimentally. The amino group at position 2 and the methyl group at position 7 were shown to be important substituents for the efficient binding of purine derivatives to PARPs. The activity of both tested enzymes, PARP-1 and PARP-2, was suppressed by 7-methylguanine with IC50 values of 150 and 50 μM, respectively. At the PARP inhibitory concentration, 7-methylguanine itself was not cytotoxic, but it was able to accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin, the widely used DNA-damaging chemotherapeutic agents. 7-Methylguanine possesses attractive predictable pharmacokinetics and an adverse-effect profile and may be considered as a new additive to chemotherapeutic treatment.
Collapse
Affiliation(s)
- D. K. Nilov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskie Gory 1, bldg. 40, Moscow, 119991, Russia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Leninskie Gory 1, bldg. 73, Moscow, 119991, Russia
| | - V. I. Tararov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991 , Russia
| | - A. V. Kulikov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Lomonosovsky avenue 31 -5, Moscow, 119192, Russia
| | - A. L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Lavrentiev avenue 8, Novosibirsk, 630090, Russia
| | - I. V. Gushchina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Leninskie Gory 1, bldg. 73, Moscow, 119991, Russia
| | - S. N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991 , Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, Lavrentiev avenue 8, Novosibirsk, 630090, Russia
| | - V. K. Švedas
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskie Gory 1, bldg. 40, Moscow, 119991, Russia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Leninskie Gory 1, bldg. 73, Moscow, 119991, Russia
| |
Collapse
|
207
|
Cass Y, Connor TH, Tabachnik A. Safe handling of oral antineoplastic medications: Focus on targeted therapeutics in the home setting. J Oncol Pharm Pract 2016; 23:350-378. [PMID: 27009803 DOI: 10.1177/1078155216637217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction With the growing number of oral targeted therapies being approved for use in cancer therapy, the potential for long-term administration of these drugs to cancer patients is expanding. The use of these drugs in the home setting has the potential to expose family members and caregivers to them either through direct contact with the drugs or indirectly by exposure to the parent compounds and/or their active metabolites in contaminated patients' waste. Methods A systematic literature review was performed and the known adverse health effect of 32 oral targeted therapeutics is summarized. In particular, the carcinogenicity, genotoxicity, and embryo-fetal toxicity, along with the route of excretion were evaluated. Results Carcinogenicity testing has not been performed on most of the oral targeted therapeutics and the genotoxicity data are mixed. However, the majority of these drugs exhibit adverse reproductive effects, some of which are severe. Currently, available data does not permit the possibility of a health hazard from inappropriate handling of drugs and contaminated patients waste to be ignored, especially in a long-term home setting. Further research is needed to understand these issues. Conclusions With the expanding use of targeted therapies in the home setting, family members and caregivers, especially those of reproductive risk age, are, potentially at risk. Overall basic education and related precautions should be taken to protect family members and caregivers from indirect or direct exposure from these drugs. Further investigations and discussion on this subject are warranted.
Collapse
Affiliation(s)
| | - Thomas H Connor
- 2 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | |
Collapse
|
208
|
Luo Q, Li Y, Lai Y, Zhang Z. The role of NF-κB in PARP-inhibitor-mediated sensitization and detoxification of arsenic trioxide in hepatocellular carcinoma cells. J Toxicol Sci 2016; 40:349-63. [PMID: 25972196 DOI: 10.2131/jts.40.349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The therapeutic efficacy of arsenic trioxide (ATO) for treatments of solid tumors is restricted by its drug resistance and chemotoxicity. In this study, we investigated ATO sensitization and detoxification effect of the Poly (ADP ribose) polymerase-1 (PARP-1) inhibitor 4-Amino-1,8-naphthalimide (4AN) in the hepatocellular carcinoma cell line HepG2. We firstly reported that ATO treatment induced the activation of Nuclear factor of κB (NF-κB) and its downstream anti-apoptosis and pro-inflammatory effectors in a PARP-1-dependent manner and thus conferred HepG2 cells with ATO resistance and toxicity. 4AN significantly suppressed the ATO-induced NF-κB activation, which promotes the apoptotic response and alleviates the inflammatory reaction induced by ATO, resulting in sensitization and detoxification against ATO. We also demonstrated that the ATO-induced activation of PARP-1 and NF-κB was closely associated with the oxidative DNA damage mediated by the generated reactive oxygen species (ROS). Furthermore, the attenuation of ATO-induced ROS and the resulting oxidative DNA damage by N-acetyl-L-cysteine (NAC), a potent antioxidant, significantly reduced the activation of PARP-1 and NF-κB in ATO-treated cells. Our study provides novel insights into the mechanism of the PARP-1-mediated NF-κB signaling pathway in ATO resistance and toxicity in anticancer treatments. This study also highlights the application potential of PARP-1 inhibitors in ATO-based anti-cancer treatments and in prevention of NF-κB-mediated therapeutic resistance and toxicity.
Collapse
Affiliation(s)
- Qingying Luo
- Department of Environmental Health, West China School of Public Health, Sichuan University
| | | | | | | |
Collapse
|
209
|
Hegde M, Mantelingu K, Swarup HA, Pavankumar CS, Qamar I, Raghavan SC, Rangappa KS. Novel PARP inhibitors sensitize human leukemic cells in an endogenous PARP activity dependent manner. RSC Adv 2016. [DOI: 10.1039/c5ra19150e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is a critical nuclear enzyme which helps in DNA repair. In this study we report, synthesis and biological studies of novel pyridazine derivatives as PARP inhibitors.
Collapse
Affiliation(s)
- Mahesh Hegde
- Department of Studies in Chemistry
- Manasagangotri
- University of Mysore
- Mysuru-570006
- India
| | - Kempegowda Mantelingu
- Department of Studies in Chemistry
- Manasagangotri
- University of Mysore
- Mysuru-570006
- India
| | - Hassan A. Swarup
- Department of Studies in Chemistry
- Manasagangotri
- University of Mysore
- Mysuru-570006
- India
| | | | - Imteyaz Qamar
- Department of Biochemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | | | | |
Collapse
|
210
|
Wang B, Chu D, Feng Y, Shen Y, Aoyagi-Scharber M, Post LE. Discovery and Characterization of (8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly(ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent. J Med Chem 2015; 59:335-57. [DOI: 10.1021/acs.jmedchem.5b01498] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bing Wang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, California 94949, United States
| | - Daniel Chu
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, California 94949, United States
| | - Ying Feng
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, California 94949, United States
| | - Yuqiao Shen
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, California 94949, United States
| | - Mika Aoyagi-Scharber
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, California 94949, United States
| | - Leonard E. Post
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, California 94949, United States
| |
Collapse
|
211
|
Kan C, Zhang J. BRCA1 Mutation: A Predictive Marker for Radiation Therapy? Int J Radiat Oncol Biol Phys 2015; 93:281-93. [PMID: 26383678 DOI: 10.1016/j.ijrobp.2015.05.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 02/01/2023]
Abstract
DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.
Collapse
Affiliation(s)
- Charlene Kan
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
212
|
Mericskay M. Nicotinamide adenine dinucleotide homeostasis and signalling in heart disease: Pathophysiological implications and therapeutic potential. Arch Cardiovasc Dis 2015; 109:207-15. [PMID: 26707577 DOI: 10.1016/j.acvd.2015.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 12/31/2022]
Abstract
Heart failure is a highly morbid syndrome generating enormous socio-economic costs. The failing heart is characterized by a state of deficient bioenergetics that is not currently addressed by classical clinical approaches. Nicotinamide adenine dinucleotide (NAD(+)/NADH) is a major coenzyme for oxidoreduction reactions in energy metabolism; it has recently emerged as a signalling molecule with a broad range of activities, ranging from calcium (Ca(2+)) signalling (CD38 ectoenzyme) to the epigenetic regulation of gene expression involved in the oxidative stress response, catabolic metabolism and mitochondrial biogenesis (sirtuins, poly[adenosine diphosphate-ribose] polymerases [PARPs]). Here, we review current knowledge regarding alterations to myocardial NAD homeostasis that have been observed in various models of heart failure, and their effect on mitochondrial functions, Ca(2+), sirtuin and PARP signalling. We highlight the therapeutic approaches that are currently in use or in development, which inhibit or stimulate NAD(+)-consuming enzymes, and emerging approaches aimed at stimulating NAD biosynthesis in the failing heart.
Collapse
Affiliation(s)
- Mathias Mericskay
- CNRS UMR8256-Inserm U1164, Biology of Adaptation and Ageing, Institute of Biology Paris-Seine, University Pierre-and-Marie-Curie Paris 6, 7, quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
213
|
Daniels CM, Thirawatananond P, Ong SE, Gabelli SB, Leung AKL. Nudix hydrolases degrade protein-conjugated ADP-ribose. Sci Rep 2015; 5:18271. [PMID: 26669448 PMCID: PMC4680915 DOI: 10.1038/srep18271] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022] Open
Abstract
ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD(+) to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP-the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR.
Collapse
Affiliation(s)
- Casey M. Daniels
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Puchong Thirawatananond
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
214
|
Teloni F, Altmeyer M. Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 2015; 44:993-1006. [PMID: 26673700 PMCID: PMC4756826 DOI: 10.1093/nar/gkv1383] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/26/2015] [Indexed: 01/14/2023] Open
Abstract
Post-translational modifications (PTMs) regulate many aspects of protein function and are indispensable for the spatio-temporal regulation of cellular processes. The proteome-wide identification of PTM targets has made significant progress in recent years, as has the characterization of their writers, readers, modifiers and erasers. One of the most elusive PTMs is poly(ADP-ribosyl)ation (PARylation), a nucleic acid-like PTM involved in chromatin dynamics, genome stability maintenance, transcription, cell metabolism and development. In this article, we provide an overview on our current understanding of the writers of this modification and their targets, as well as the enzymes that degrade and thereby modify and erase poly(ADP-ribose) (PAR). Since many cellular functions of PARylation are exerted through dynamic interactions of PAR-binding proteins with PAR, we discuss the readers of this modification and provide a synthesis of recent findings, which suggest that multiple structurally highly diverse reader modules, ranging from completely folded PAR-binding domains to intrinsically disordered sequence stretches, evolved as PAR effectors to carry out specific cellular functions.
Collapse
Affiliation(s)
- Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
215
|
Drenichev MS, Mikhailov SN. Poly(ADP-ribose)--a unique natural polymer structural features, biological role and approaches to the chemical synthesis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:258-76. [PMID: 25774719 DOI: 10.1080/15257770.2014.984073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Poly(ADP-ribose) (PAR) is a natural polymer, taking part in numerous important cellular processes. Several enzymes are involved in biosynthesis and degradation of PAR. One of them, poly(ADP-ribose)polymerase-1 (PARP-1) is considered to be a perspective target for the design of new drugs, affecting PAR metabolism. The structure of PAR was established by enzymatic hydrolysis and further analysis of the products, but total chemical synthesis of PAR hasn't been described yet. Several approaches have been developed on the way to chemical synthesis of this unique biopolymer.
Collapse
Affiliation(s)
- Mikhail S Drenichev
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russian Federation
| | | |
Collapse
|
216
|
A phase I trial of pegylated liposomal doxorubicin (PLD), carboplatin, bevacizumab and veliparib in recurrent, platinum-sensitive ovarian, primary peritoneal, and fallopian tube cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 2015; 140:204-9. [PMID: 26616225 DOI: 10.1016/j.ygyno.2015.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/14/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of veliparib combined with PLD and carboplatin (CD) in patients with recurrent, platinum-sensitive epithelial ovarian cancer. To determine the tolerability at the MTD combined with bevacizumab. METHODS Patients received PLD (30mg/m(2), IV) and carboplatin (AUC 5, IV) on day 1 with veliparib on days 1-7 (intermittent) or days 1-28 (continuous). Standard 3+3 design was used in the dose escalation phase with DLTs based on the first cycle. Once the MTDs were determined, cohorts of 6 patients were enrolled to each regimen with bevacizumab (10mg/kg on days 1 and 15) to assess feasibility. DLTs were based on the first 4cycles of treatment in the bevacizumab cohorts. RESULTS In the dose-escalation phase, 27 patients were treated at 3 dose levels with DLTs noted in 6 patients including grade 4 thrombocytopenia (n=4), and prolonged neutropenia >7days (n=3). At the MTD of veliparib (80mg p.o. b.i.d. for both dosing arms), myelosuppression was the DLT. At MTD, 12 additional patients were treated with bevacizumab with 9 patients experiencing DLTs including grade 4 thrombocytopenia (n=4), prolonged neutropenia >7days (n=1), grade 3 hypertension (n=5), and grade 5 sepsis (n=1). CONCLUSIONS The MTD of veliparib combined with CD is 80mg p.o. b.i.d. in women with recurrent, platinum-sensitive ovarian cancer. With bevacizumab, DLTs were noted in 9 out of 12 patients. Lower doses of veliparib will need to be considered when given in combination with platinum-based therapies.
Collapse
|
217
|
DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer. Biomolecules 2015; 5:3204-59. [PMID: 26610585 PMCID: PMC4693276 DOI: 10.3390/biom5043204] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use.
Collapse
|
218
|
Ricks TK, Chiu HJ, Ison G, Kim G, McKee AE, Kluetz P, Pazdur R. Successes and Challenges of PARP Inhibitors in Cancer Therapy. Front Oncol 2015; 5:222. [PMID: 26528434 PMCID: PMC4604313 DOI: 10.3389/fonc.2015.00222] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 01/06/2023] Open
Affiliation(s)
- Tiffany K Ricks
- Office of Hematology and Oncology Products (OHOP), Office of New Drugs (OND), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration , Silver Spring, MD , USA
| | - Haw-Jyh Chiu
- Office of Hematology and Oncology Products (OHOP), Office of New Drugs (OND), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration , Silver Spring, MD , USA
| | - Gwynn Ison
- Office of Hematology and Oncology Products (OHOP), Office of New Drugs (OND), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration , Silver Spring, MD , USA
| | - Geoffrey Kim
- Office of Hematology and Oncology Products (OHOP), Office of New Drugs (OND), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration , Silver Spring, MD , USA
| | - Amy E McKee
- Office of Hematology and Oncology Products (OHOP), Office of New Drugs (OND), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration , Silver Spring, MD , USA
| | - Paul Kluetz
- Office of Hematology and Oncology Products (OHOP), Office of New Drugs (OND), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration , Silver Spring, MD , USA
| | - Richard Pazdur
- Office of Hematology and Oncology Products (OHOP), Office of New Drugs (OND), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration , Silver Spring, MD , USA
| |
Collapse
|
219
|
Parrish KE, Cen L, Murray J, Calligaris D, Kizilbash S, Mittapalli RK, Carlson BL, Schroeder MA, Sludden J, Boddy AV, Agar NYR, Curtin NJ, Elmquist WF, Sarkaria JN. Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System. Mol Cancer Ther 2015; 14:2735-43. [PMID: 26438157 DOI: 10.1158/1535-7163.mct-15-0553] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022]
Abstract
PARP inhibition can enhance the efficacy of temozolomide and prolong survival in orthotopic glioblastoma (GBM) xenografts. The aim of this study was to evaluate the combination of the PARP inhibitor rucaparib with temozolomide and to correlate pharmacokinetic and pharmacodynamic studies with efficacy in patient-derived GBM xenograft models. The combination of rucaparib with temozolomide was highly effective in vitro in short-term explant cultures derived from GBM12, and, similarly, the combination of rucaparib and temozolomide (dosed for 5 days every 28 days for 3 cycles) significantly prolonged the time to tumor regrowth by 40% in heterotopic xenografts. In contrast, the addition of rucaparib had no impact on the efficacy of temozolomide in GBM12 or GBM39 orthotopic models. Using Madin-Darby canine kidney (MDCK) II cells stably expressing murine BCRP1 or human MDR1, cell accumulation studies demonstrated that rucaparib is transported by both transporters. Consistent with the influence of these efflux pumps on central nervous system drug distribution, Mdr1a/b(-/-)Bcrp1(-/-) knockout mice had a significantly higher brain to plasma ratio for rucaparib (1.61 ± 0.25) than wild-type mice (0.11 ± 0.08). A pharmacokinetic and pharmacodynamic evaluation after a single dose confirmed limited accumulation of rucaparib in the brain is associated with substantial residual PARP enzymatic activity. Similarly, matrix-assisted laser desorption/ionization mass spectrometric imaging demonstrated significantly enhanced accumulation of drug in flank tumor compared with normal brain or orthotopic tumors. Collectively, these results suggest that limited drug delivery into brain tumors may significantly limit the efficacy of rucaparib combined with temozolomide in GBM.
Collapse
Affiliation(s)
- Karen E Parrish
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Ling Cen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - James Murray
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Calligaris
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sani Kizilbash
- Department of Medical Oncology Mayo Clinic, Rochester, Minnesota
| | | | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Alan V Boddy
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Jann N Sarkaria
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
220
|
Xie Z, Zhou Y, Zhao W, Jiao H, Chen Y, Yang Y, Li Z. Identification of novel PARP-1 inhibitors: Drug design, synthesis and biological evaluation. Bioorg Med Chem Lett 2015; 25:4557-61. [DOI: 10.1016/j.bmcl.2015.08.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/26/2015] [Accepted: 08/22/2015] [Indexed: 11/29/2022]
|
221
|
Schreiber V, Illuzzi G, Héberlé E, Dantzer F. De la découverte du poly(ADP-ribose) aux inhibiteurs PARP en thérapie du cancer. Bull Cancer 2015; 102:863-73. [DOI: 10.1016/j.bulcan.2015.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 02/05/2023]
|
222
|
Abstract
ADP-ribosylation is a post-translational modification where single units (mono-ADP-ribosylation) or polymeric chains (poly-ADP-ribosylation) of ADP-ribose are conjugated to proteins by ADP-ribosyltransferases. This post-translational modification and the ADP-ribosyltransferases (also known as PARPs) responsible for its synthesis have been found to play a role in nearly all major cellular processes, including DNA repair, transcription, translation, cell signaling, and cell death. Furthermore, dysregulation of ADP-ribosylation has been linked to diseases including cancers, diabetes, neurodegenerative disorders, and heart failure, leading to the development of therapeutic PARP inhibitors, many of which are currently in clinical trials. The study of this therapeutically important modification has recently been bolstered by the application of mass spectrometry-based proteomics, arguably the most powerful tool for the unbiased analysis of protein modifications. Unfortunately, progress has been hampered by the inherent challenges that stem from the physicochemical properties of ADP-ribose, which as a post-translational modification is highly charged, heterogeneous (linear or branched polymers, as well as monomers), labile, and found on a wide range of amino acid acceptors. In this Perspective, we discuss the progress that has been made in addressing these challenges, including the recent breakthroughs in proteomics techniques to identify ADP-ribosylation sites, and future developments to provide a proteome-wide view of the many cellular processes regulated by ADP-ribosylation.
Collapse
Affiliation(s)
- Casey M Daniels
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
223
|
Feng FY, de Bono JS, Rubin MA, Knudsen KE. Chromatin to Clinic: The Molecular Rationale for PARP1 Inhibitor Function. Mol Cell 2015; 58:925-34. [PMID: 26091341 DOI: 10.1016/j.molcel.2015.04.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors were recently shown to have potential clinical impact in a number of disease settings, particularly as related to cancer therapy, treatment for cardiovascular dysfunction, and suppression of inflammation. The molecular basis for PARP1 inhibitor function is complex, and appears to depend on the dual roles of PARP1 in DNA damage repair and transcriptional regulation. Here, the mechanisms by which PARP-1 inhibitors elicit clinical response are discussed, and strategies for translating the preclinical elucidation of PARP-1 function into advances in disease management are reviewed.
Collapse
Affiliation(s)
- Felix Y Feng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Johann S de Bono
- Prostate Cancer Targeted Therapy Group, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, UK
| | - Mark A Rubin
- Institute for Precision Medicine of Weill Cornell Medical College and NewYork-Presbyterian Hospital; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College; Department of Urology, Weill Cornell Medical College; Meyer Cancer Center of Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
224
|
Mangerich A, Debiak M, Birtel M, Ponath V, Balszuweit F, Lex K, Martello R, Burckhardt-Boer W, Strobelt R, Siegert M, Thiermann H, Steinritz D, Schmidt A, Bürkle A. Sulfur and nitrogen mustards induce characteristic poly(ADP-ribosyl)ation responses in HaCaT keratinocytes with distinctive cellular consequences. Toxicol Lett 2015; 244:56-71. [PMID: 26383629 DOI: 10.1016/j.toxlet.2015.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/18/2022]
Abstract
Mustard agents are potent DNA alkylating agents with mutagenic, cytotoxic and vesicant properties. They include bi-functional agents, such as sulfur mustard (SM) or nitrogen mustard (mustine, HN2), as well as mono-functional agents, such as "half mustard" (CEES). Whereas SM has been used as a chemical warfare agent, several nitrogen mustard derivatives, such as chlorambucil and cyclophosphamide, are being used as established chemotherapeutics. Upon induction of specific forms of genotoxic stimuli, several poly(ADP-ribose) polymerases (PARPs) synthesize the nucleic acid-like biopolymer poly(ADP-ribose) (PAR) by using NAD(+) as a substrate. Previously, it was shown that SM triggers cellular poly(ADP-ribosyl) ation (PARylation), but so far this phenomenon is poorly characterized. In view of the protective effects of PARP inhibitors, the latter have been proposed as a treatment option of SM-exposed victims. In an accompanying article (Debiak et al., 2016), we have provided an optimized protocol for the analysis of the CEES-induced PARylation response in HaCaT keratinocytes, which forms an experimental basis to further analyze mustard-induced PARylation and its functional consequences, in general. Thus, in the present study, we performed a comprehensive characterization of the PARylation response in HaCaT cells after treatment with four different mustard agents, i.e., SM, CEES, HN2, and chlorambucil, on a qualitative, quantitative and functional level. In particular, we recorded substance-specific as well as dose- and time-dependent PARylation responses using independent bioanalytical methods based on single-cell immuno-fluorescence microscopy and quantitative isotope dilution mass spectrometry. Furthermore, we analyzed if and how PARylation contributes to mustard-induced toxicity by treating HaCaT cells with CEES, SM, and HN2 in combination with the clinically relevant PARP inhibitor ABT888. As evaluated by a novel immunofluorescence-based protocol for the detection of N7-ETE-guanine DNA adducts, the excision rate of CEES-induced DNA adducts was not affected by PARP inhibition. Furthermore, while CEES induced moderate changes in cellular NAD(+) levels, annexin V/PI flow cytometry analysis revealed that these changes did not affect CEES-induced short-term cytotoxicity 24h after treatment. In contrast, PARP inhibition impaired cell proliferation and clonogenic survival, and potentiated micronuclei formation of HaCaT cells upon CEES treatment. Similarly, PARP inhibition affected clonogenic survival of cells treated with bi-functional mustards such as SM and HN2. In conclusion, we demonstrate that PARylation plays a functional role in mustard-induced cellular stress response with substance-specific differences. Since PARP inhibitors exhibit therapeutic potential to treat SM-related pathologies and to sensitize cancer cells for mustard-based chemotherapy, potential long-term effects of PARP inhibition on genomic stability and carcinogenesis should be carefully considered when pursuing such a strategy.
Collapse
Affiliation(s)
- Aswin Mangerich
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Malgorzata Debiak
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Matthias Birtel
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Viviane Ponath
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Frank Balszuweit
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Kirsten Lex
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Rita Martello
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Waltraud Burckhardt-Boer
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany
| | - Romano Strobelt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, 80336 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Alexander Bürkle
- University of Konstanz, Molecular Toxicology Group, Department of Biology, 78457 Konstanz, Germany.
| |
Collapse
|
225
|
Complex role of nicotinamide adenine dinucleotide in the regulation of programmed cell death pathways. Biochem Pharmacol 2015; 101:13-26. [PMID: 26343585 DOI: 10.1016/j.bcp.2015.08.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Over the past few years, a growing body of experimental observations has led to the identification of novel and alternative programs of regulated cell death. Recently, autophagic cell death and controlled forms of necrosis have emerged as major alternatives to apoptosis, the best characterized form of regulated cell demise. These recently identified, caspase-independent, forms of cell death appear to play a role in the response to several forms of stress, and their importance in different pathological conditions such as ischemia, infection and inflammation has been recognized. The functional link between cell metabolism and survival has also been the matter of recent studies. Nicotinamide adenine dinucleotide (NAD(+)) has gained particular interest due to its role in cell energetics, and as a substrate for several families of enzymes, comprising poly ADP-ribose polymerases (PARPs) and sirtuins, involved in numerous biological functions including cell survival and death. The recently uncovered diversity of cell death programs has led us to reevaluate the role of this important metabolite as a universal pro-survival factor, and to discuss the potential benefits and limitations of pharmacological approaches targeting NAD(+) metabolism.
Collapse
|
226
|
Papeo G, Posteri H, Borghi D, Busel AA, Caprera F, Casale E, Ciomei M, Cirla A, Corti E, D'Anello M, Fasolini M, Forte B, Galvani A, Isacchi A, Khvat A, Krasavin MY, Lupi R, Orsini P, Perego R, Pesenti E, Pezzetta D, Rainoldi S, Riccardi-Sirtori F, Scolaro A, Sola F, Zuccotto F, Felder ER, Donati D, Montagnoli A. Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy. J Med Chem 2015. [PMID: 26222319 DOI: 10.1021/acs.jmedchem.5b00680] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nuclear protein poly(ADP-ribose) polymerase-1 (PARP-1) has a well-established role in the signaling and repair of DNA and is a prominent target in oncology, as testified by the number of candidates in clinical testing that unselectively target both PARP-1 and its closest isoform PARP-2. The goal of our program was to find a PARP-1 selective inhibitor that would potentially mitigate toxicities arising from cross-inhibition of PARP-2. Thus, an HTS campaign on the proprietary Nerviano Medical Sciences (NMS) chemical collection, followed by SAR optimization, allowed us to discover 2-[1-(4,4-difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118, 20by). NMS-P118 proved to be a potent, orally available, and highly selective PARP-1 inhibitor endowed with excellent ADME and pharmacokinetic profiles and high efficacy in vivo both as a single agent and in combination with Temozolomide in MDA-MB-436 and Capan-1 xenograft models, respectively. Cocrystal structures of 20by with both PARP-1 and PARP-2 catalytic domain proteins allowed rationalization of the observed selectivity.
Collapse
Affiliation(s)
- Gianluca Papeo
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Helena Posteri
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Daniela Borghi
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Alina A Busel
- Chemical Diversity Research Institute , Rabochaya St. 2 Khimki, Moscow Region 114401, Russia
| | - Francesco Caprera
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Elena Casale
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Marina Ciomei
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Alessandra Cirla
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Emiliana Corti
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Matteo D'Anello
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Marina Fasolini
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Barbara Forte
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Arturo Galvani
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Antonella Isacchi
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Alexander Khvat
- Chemical Diversity Research Institute , Rabochaya St. 2 Khimki, Moscow Region 114401, Russia
| | - Mikhail Y Krasavin
- Chemical Diversity Research Institute , Rabochaya St. 2 Khimki, Moscow Region 114401, Russia
| | - Rosita Lupi
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Paolo Orsini
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Rita Perego
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Enrico Pesenti
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | | | - Sonia Rainoldi
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | | | - Alessandra Scolaro
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Francesco Sola
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Fabio Zuccotto
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Eduard R Felder
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Daniele Donati
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| | - Alessia Montagnoli
- Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy
| |
Collapse
|
227
|
Allison RR. Radiobiological modifiers in clinical radiation oncology: current reality and future potential. Future Oncol 2015; 10:2359-79. [PMID: 25525845 DOI: 10.2217/fon.14.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy can successfully ablate tumors. However, the same ionization process that destroys a cancer can also permanently damage surrounding organs resulting in unwanted clinical morbidity. Therefore, modern radiation therapy attempts to minimize dose to normal tissue to prevent side effects. Still, as tumors and normal tissues intercalate, the risk of normal tissue injury often may prevent tumoricidal doses of radiation therapy to be delivered. This paper will review current outcomes and limitations of radiobiological modifiers that may selectively enhance the radiosensitivity of tumors as well as parallel techniques that may protect normal tissues from radiation injury. Future endeavors based in part upon newly elucidated genetic pathways will be highlighted.
Collapse
|
228
|
Oláh G, Szczesny B, Brunyánszki A, López-García IA, Gerö D, Radák Z, Szabo C. Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS One 2015. [PMID: 26218895 PMCID: PMC4517814 DOI: 10.1371/journal.pone.0134227] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1), the major isoform of the poly (ADP-ribose) polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose) (PAR) groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12) and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor) exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6). Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant-induced injury. Taken together, our data indicate that the reduction of PARP-1 expression during the process of the skeletal muscle differentiation serves as a protective mechanism to maintain the cellular functions of skeletal muscle during oxidative stress.
Collapse
Affiliation(s)
- Gábor Oláh
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
- Shriners Hospital for Children, Galveston, TX, United States of America
| | - Attila Brunyánszki
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Isabel A. López-García
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Domokos Gerö
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Zsolt Radák
- Faculty of Physical Education and Sport Sciences, Semmelweis University, Alkotás Str. 44, Budapest, Hungary
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
- Shriners Hospital for Children, Galveston, TX, United States of America
- * E-mail:
| |
Collapse
|
229
|
Abstract
INTRODUCTION The significant challenge posed by cancer to human healthcare has led to the exploration of new approaches to combat it. Synthetic lethality (SL) is one such emerging area in the development of novel anticancer therapies. SL can be described as lethality (cell death) resulting from the combination of the two mutations, wherein the mutation in either of the two codependent genes in normal or cancer cells is viable. This concept is specifically being exploited in cancer research for selectively targeting specific tumor cells. AREAS COVERED In this review, the authors summarize studies of SL-based novel anticancer therapies. The review highlights some of the selected advances in DNA damage response pathway-related SL pairs, particularly poly (ADP-ribose) polymerase (PARP) and SL pairs involved in mitochondrial death signaling pathways published in the last 3 years. EXPERT OPINION Most of the currently used chemotherapeutic agents will destroy cells irrespective of whether they are cancer cells or fast growing normal cells; but SL is one of the approaches being developed with potential as a selective cancer therapy. PARP inhibitors, such as olaparib, are useful in BRCA mutated cancer cells and are also used in combination with other drug to enhance their efficacy. Research on PARP inhibitors is progressing at a good pace but there are still some significant challenges that must be addressed.
Collapse
Affiliation(s)
- Ahmed Kamal
- a 1 CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry and Pharmacology , Hyderabad 500007, India +91 40 2719 3157 ; +91 40 2719 3189 ; .,b 2 National Institute of Pharmaceutical Education and Research , Balanagar, Hyderabad, 500037, India.,c 3 King Saud University, College of Science, Catalytic Chemistry Chair, Chemistry Department , Riyadh 11451, Saudi Arabia
| | - Thokhir Basha Shaik
- a 1 CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry and Pharmacology , Hyderabad 500007, India +91 40 2719 3157 ; +91 40 2719 3189 ; .,d 4 Acharya Nagarjuna University , Nagarjuna Nagar, Guntur 522510, India
| | - Mohammed Shaheer Malik
- a 1 CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry and Pharmacology , Hyderabad 500007, India +91 40 2719 3157 ; +91 40 2719 3189 ;
| |
Collapse
|
230
|
Hopkins TA, Shi Y, Rodriguez LE, Solomon LR, Donawho CK, DiGiammarino EL, Panchal SC, Wilsbacher JL, Gao W, Olson AM, Stolarik DF, Osterling DJ, Johnson EF, Maag D. Mechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors. Mol Cancer Res 2015. [PMID: 26217019 DOI: 10.1158/1541-7786.mcr-15-0191-t] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Poly(ADP-ribose) polymerases (PARP1, -2, and -3) play important roles in DNA damage repair. As such, a number of PARP inhibitors are undergoing clinical development as anticancer therapies, particularly in tumors with DNA repair deficits and in combination with DNA-damaging agents. Preclinical evidence indicates that PARP inhibitors potentiate the cytotoxicity of DNA alkylating agents. It has been proposed that a major mechanism underlying this activity is the allosteric trapping of PARP1 at DNA single-strand breaks during base excision repair; however, direct evidence of allostery has not been reported. Here the data reveal that veliparib, olaparib, niraparib, and talazoparib (BMN-673) potentiate the cytotoxicity of alkylating agents. Consistent with this, all four drugs possess PARP1 trapping activity. Using biochemical and cellular approaches, we directly probe the trapping mechanism for an allosteric component. These studies indicate that trapping is due to catalytic inhibition and not allostery. The potency of PARP inhibitors with respect to trapping and catalytic inhibition is linearly correlated in biochemical systems but is nonlinear in cells. High-content imaging of γH2Ax levels suggests that this is attributable to differential potentiation of DNA damage in cells. Trapping potency is inversely correlated with tolerability when PARP inhibitors are combined with temozolomide in mouse xenograft studies. As a result, PARP inhibitors with dramatically different trapping potencies elicit comparable in vivo efficacy at maximum tolerated doses. Finally, the impact of trapping on tolerability and efficacy is likely to be context specific. IMPLICATIONS Understanding the context-specific relationships of trapping and catalytic inhibition with both tolerability and efficacy will aid in determining the suitability of a PARP inhibitor for inclusion in a particular clinical regimen.
Collapse
Affiliation(s)
| | - Yan Shi
- AbbVie, Inc., North Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Impaired mitochondrial structure and function are common features of neurodegenerative disorders, ultimately characterized by the death of neural cells promoted by still unknown signals. Among the possible modulators of neurodegeneration, the activation of poly(ADP-ribosylation), a post-translational modification of proteins, has been considered, being the product of the reaction, poly(ADP-ribose), a signaling molecule for different cell death paradigms. The basic properties of poly(ADP-ribosylation) are here described, focusing on the mitochondrial events; cell death paradigms such as apoptosis, parthanatos, necroptosis and mitophagy are illustrated. Finally, the promising use of poly(ADP-ribosylation) inhibitors to rescue neurodegeneration is addressed.
Collapse
Affiliation(s)
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, 27100 Pavia, Italy.
| |
Collapse
|
232
|
Kim H, Tarhuni A, Abd Elmageed ZY, Boulares AH. Poly(ADP-ribose) polymerase as a novel regulator of 17β-estradiol-induced cell growth through a control of the estrogen receptor/IGF-1 receptor/PDZK1 axis. J Transl Med 2015; 13:233. [PMID: 26183824 PMCID: PMC4504350 DOI: 10.1186/s12967-015-0589-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023] Open
Abstract
Background We and others have extensively investigated the role of PARP-1 in cell growth and demise in response to pathophysiological cues. Most of the clinical trials on PARP inhibitors are targeting primarily estrogen receptor (ER) negative cancers with BRCA-deficiency. It is surprising that the role of the enzyme has yet to be investigated in ER-mediated cell growth. It is noteworthy that ER is expressed in the majority of breast cancers. We recently showed that the scaffolding protein PDZK1 is critical for 17β-estradiol (E2)-induced growth of breast cancer cells. We demonstrated that E2-induced PDZK1 expression is indirectly regulated by ER and requires IGF-1 receptor (IGF-1R). Methods The breast cancer cell lines MCF-7 and BT474 were used as ER(+) cell culture models. Thieno[2,3-c]isoquinolin-5-one (TIQ-A) and olaparib (AZD2281) were used as potent inhibitors of PARP. PARP-1 knockdown by shRNA was used to show specificity of the effects to PARP-1. Results In this study, we aimed to determine the effect of PARP inhibition on estrogen-induced growth of breast cancer cells and examine whether the potential effect is linked to PDZK1 and IGF-1R expression. Our results show that PARP inhibition pharmacologically by TIQ-A or olaparib or by PARP-1 knockdown blocked E2-dependent growth of MCF-7 cells. Such inhibitory effect was also observed in olaparib-treated BT474 cells. The effect of PARP inhibition on cell growth coincided with an efficient reduction in E2-induced PDZK1 expression. This effect was accompanied by a similar decrease in the cell cycle protein cyclin D1. PARP appeared to regulate E2-induced PDZK1 at the mRNA level. Such regulation may be linked to a modulation of IGF-1R as PARP inhibition pharmacologically or by PARP-1 knockdown efficiently reduced E2-induced expression of the receptor at the protein and mRNA levels. Conclusions Overall, our results show for the first time that PARP regulates E2-mediated cell growth by controlling the ER/IGF-1R/PDZK1 axis. These findings suggest that the relationship between ER, PDZK1, and IGF-1R may be perturbed by blocking PARP function and that PARP inhibitors may be considered in clinical trials on ER(+) cancers.
Collapse
Affiliation(s)
- Hogyoung Kim
- The Stanley Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Abdelmetalab Tarhuni
- The Stanley Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | | | - A Hamid Boulares
- The Stanley Scott Cancer Center, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
233
|
Ghonim MA, Pyakurel K, Ibba SV, Al-Khami AA, Wang J, Rodriguez P, Rady HF, El-Bahrawy AH, Lammi MR, Mansy MS, Al-Ghareeb K, Ramsay A, Ochoa A, Naura AS, Boulares AH. PARP inhibition by olaparib or gene knockout blocks asthma-like manifestation in mice by modulating CD4(+) T cell function. J Transl Med 2015; 13:225. [PMID: 26169874 PMCID: PMC4501284 DOI: 10.1186/s12967-015-0583-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Background An important portion of asthmatics do not respond to current therapies. Thus, the need for new therapeutic drugs is urgent. We have demonstrated a critical role for PARP in experimental asthma. Olaparib, a PARP inhibitor, was recently introduced in clinical trials against cancer. The objective of the present study was to examine the efficacy of olaparib in blocking established allergic airway inflammation and hyperresponsiveness similar to those observed in human asthma in animal models of the disease. Methods We used ovalbumin (OVA)-based mouse models of asthma and primary CD4+ T cells. C57BL/6J WT or PARP-1−/− mice were subjected to OVA sensitization followed by a single or multiple challenges to aerosolized OVA or left unchallenged. WT mice were administered, i.p., 1 mg/kg, 5 or 10 mg/kg of olaparib or saline 30 min after each OVA challenge. Results Administration of olaparib in mice 30 min post-challenge promoted a robust reduction in airway eosinophilia, mucus production and hyperresponsiveness even after repeated challenges with ovalbumin. The protective effects of olaparib were linked to a suppression of Th2 cytokines eotaxin, IL-4, IL-5, IL-6, IL-13, and M-CSF, and ovalbumin-specific IgE with an increase in the Th1 cytokine IFN-γ. These traits were associated with a decrease in splenic CD4+ T cells and concomitant increase in T-regulatory cells. The aforementioned traits conferred by olaparib administration were consistent with those observed in OVA-challenged PARP-1−/− mice. Adoptive transfer of Th2-skewed OT-II-WT CD4+ T cells reversed the Th2 cytokines IL-4, IL-5, and IL-10, the chemokine GM-CSF, the Th1 cytokines IL-2 and IFN-γ, and ovalbumin-specific IgE production in ovalbumin-challenged PARP-1−/−mice suggesting a role for PARP-1 in CD4+ T but not B cells. In ex vivo studies, PARP inhibition by olaparib or PARP-1 gene knockout markedly reduced CD3/CD28-stimulated gata-3 and il4 expression in Th2-skewed CD4+ T cells while causing a moderate elevation in t-bet and ifn-γ expression in Th1-skewed CD4+ T cells. Conclusions Our findings show the potential of PARP inhibition as a viable therapeutic strategy and olaparib as a likely candidate to be tested in human asthma clinical trials.
Collapse
Affiliation(s)
- Mohamed A Ghonim
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Kusma Pyakurel
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Salome V Ibba
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Amir A Al-Khami
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Jeffrey Wang
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Paulo Rodriguez
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Hamada F Rady
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Ali H El-Bahrawy
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Matthew R Lammi
- Pulmonary and Critical Care Section, School of Medicine, Louisiana State University, New Orleans, LA, USA.
| | - Moselhy S Mansy
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Kamel Al-Ghareeb
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Alistair Ramsay
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Augusto Ochoa
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Amarjit S Naura
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA. .,Department of Biochemistry, Panjab University, Chandigarh, India.
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, 1700 Tulane Ave, New Orleans, LA, 70112, USA.
| |
Collapse
|
234
|
Cantó C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab 2015; 22:31-53. [PMID: 26118927 PMCID: PMC4487780 DOI: 10.1016/j.cmet.2015.05.023] [Citation(s) in RCA: 1080] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD(+) has emerged as a vital cofactor that can rewire metabolism, activate sirtuins, and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD(+) metabolism revived interest in NAD(+)-boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD(+) metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited.
Collapse
Affiliation(s)
- Carles Cantó
- Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Keir J Menzies
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
235
|
Malyuchenko NV, Kotova EY, Kulaeva OI, Kirpichnikov MP, Studitskiy VM. PARP1 Inhibitors: antitumor drug design. Acta Naturae 2015; 7:27-37. [PMID: 26483957 PMCID: PMC4610162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1-2 million molecules per cell) serving as a "sensor" for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a prognostic indicator and is associated with a poor survival prognosis. There is evidence that high PARP1 expression and treatment-resistance of tumors are correlated. PARP1 inhibitors are promising antitumor agents, since they act as chemo- and radiosensitizers in the conventional therapy of malignant tumors. Furthermore, PARP1 inhibitors can be used as independent, effective drugs against tumors with broken DNA repair mechanisms. Currently, third-generation PARP1 inhibitors are being developed, many of which are undergoing Phase II clinical trials. In this review, we focus on the properties and features of the PARP1 inhibitors identified in preclinical and clinical trials. We also describe some problems associated with the application of PARP1 inhibitors. The possibility of developing new PARP1 inhibitors aimed at DNA binding and transcriptional activity rather than the catalytic domain of the protein is discussed.
Collapse
Affiliation(s)
- N. V. Malyuchenko
- Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, 119991, Russia
| | - E. Yu. Kotova
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497, USA
| | - O. I. Kulaeva
- Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, 119991, Russia
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497, USA
| | - M. P. Kirpichnikov
- Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, 119991, Russia
| | - V. M. Studitskiy
- Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, 119991, Russia
- Fox Chase Cancer Center, Philadelphia, PA, 19111-2497, USA
| |
Collapse
|
236
|
Chen SM, Chou WC, Hu LY, Hsiung CN, Chu HW, Huang YL, Hsu HM, Yu JC, Shen CY. The Effect of MicroRNA-124 Overexpression on Anti-Tumor Drug Sensitivity. PLoS One 2015; 10:e0128472. [PMID: 26115122 PMCID: PMC4482746 DOI: 10.1371/journal.pone.0128472] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs play critical roles in regulating various physiological processes, including growth and development. Previous studies have shown that microRNA-124 (miR-124) participates not only in regulation of early neurogenesis but also in suppression of tumorigenesis. In the present study, we found that overexpression of miR-124 was associated with reduced DNA repair capacity in cultured cancer cells and increased sensitivity of cells to DNA-damaging anti-tumor drugs, specifically those that cause the formation of DNA strand-breaks (SBs). We then examined which DNA repair–related genes, particularly the genes of SB repair, were regulated by miR-124. Two SB repair–related genes, encoding ATM interactor (ATMIN) and poly (ADP-ribose) polymerase 1 (PARP1), were strongly affected by miR-124 overexpression, by binding of miR-124 to the 3¢-untranslated region of their mRNAs. As a result, the capacity of cells to repair DNA SBs, such as those resulting from homologous recombination, was significantly reduced upon miR-124 overexpression. A particularly important therapeutic implication of this finding is that overexpression of miR-124 enhanced cell sensitivity to multiple DNA-damaging agents via ATMIN- and PARP1-mediated mechanisms. The translational relevance of this role of miR-124 in anti-tumor drug sensitivity is suggested by the finding that increased miR-124 expression correlates with better breast cancer prognosis, specifically in patients receiving chemotherapy. These findings suggest that miR-124 could potentially be used as a therapeutic agent to improve the efficacy of chemotherapy with DNA-damaging agents.
Collapse
Affiliation(s)
- Shiau-Mei Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ling-Yueh Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Ling Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Ming Hsu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- College of Public Health, China Medical University, Taichong, Taiwan
- * E-mail:
| |
Collapse
|
237
|
Haikarainen T, Krauss S, Lehtio L. Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des 2015; 20:6472-88. [PMID: 24975604 PMCID: PMC4262938 DOI: 10.2174/1381612820666140630101525] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Several cellular signaling pathways are regulated by ADP-ribosylation, a posttranslational modification catalyzed by members of the ARTD superfamily. Tankyrases are distinguishable from the rest of this family by their unique domain organization, notably the sterile alpha motif responsible for oligomerization and ankyrin repeats mediating protein-protein interactions. Tankyrases are involved in various cellular functions, such as telomere homeostasis, Wnt/β-catenin signaling, glucose metabolism, and cell cycle progression. In these processes, Tankyrases regulate the interactions and stability of target proteins by poly (ADP-ribosyl)ation. Modified proteins are subsequently recognized by the E3 ubiquitin ligase RNF146, poly-ubiquitinated and predominantly guided to 26S proteasomal degradation. Several small molecule inhibitors have been described for Tankyrases; they compete with the co-substrate NAD+ for binding to the ARTD catalytic domain. The recent, highly potent and selective inhibitors possess several properties of lead compounds and can be used for proof-of-concept studies in cancer and other Tankyrase linked diseases.
Collapse
Affiliation(s)
| | | | - Lari Lehtio
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleen 21, 0349, Oslo, Norway.
| |
Collapse
|
238
|
Murai J, Pommier Y. Classification of PARP Inhibitors Based on PARP Trapping and Catalytic Inhibition, and Rationale for Combinations with Topoisomerase I Inhibitors and Alkylating Agents. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-14151-0_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
239
|
Sistigu A, Manic G, Obrist F, Vitale I. Trial watch - inhibiting PARP enzymes for anticancer therapy. Mol Cell Oncol 2015; 3:e1053594. [PMID: 27308587 DOI: 10.1080/23723556.2015.1053594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients.
Collapse
Affiliation(s)
| | - Gwenola Manic
- Regina Elena National Cancer Institute , Rome, Italy
| | - Florine Obrist
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France; INSERM, UMRS1138, Paris, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "TorVergata", Rome, Italy
| |
Collapse
|
240
|
|
241
|
Towards small molecule inhibitors of mono-ADP-ribosyltransferases. Eur J Med Chem 2015; 95:546-51. [DOI: 10.1016/j.ejmech.2015.03.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 12/27/2022]
|
242
|
Abstract
Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.
Collapse
|
243
|
Hegedűs C, Robaszkiewicz A, Lakatos P, Szabó É, Virág L. Poly(ADP-ribose) in the bone: from oxidative stress signal to structural element. Free Radic Biol Med 2015; 82:179-86. [PMID: 25660995 DOI: 10.1016/j.freeradbiomed.2015.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/20/2015] [Accepted: 01/26/2015] [Indexed: 01/16/2023]
Abstract
Contrary to common perception bone is a dynamic organ flexibly adapting to changes in mechanical loading by shifting the delicate balance between bone formation and bone resorption carried out by osteoblasts and osteoclasts, respectively. In the past decades numerous studies demonstrating production of reactive oxygen or nitrogen intermediates, effects of different antioxidants, and involvement of prototypical redox control mechanisms (Nrf2-Keap1, Steap4, FoxO, PAMM, caspase-2) have proven the central role of redox regulation in the bone. Poly(ADP-ribosyl)ation (PARylation), a NAD-dependent protein modification carried out by poly(ADP-ribose) polymerase (PARP) enzymes recently emerged as a new regulatory mechanism fine-tuning osteoblast differentiation and mineralization. Interestingly PARylation does not simply serve as a signaling mechanism during osteoblast differentiation but also couples it to osteoblast death. Even more strikingly, the poly(ADP-ribose) polymer likely released from succumbed cells at the terminal stage of differentiation is incorporated into the bone matrix representing the first structural role of this versatile biopolymer. Moreover, this new paradigm explains why and how osteodifferentiation and death of cells entering this pathway are closely coupled to each other. Here we review the role of reactive oxygen and nitrogen intermediates as well as PARylation in osteoblast and osteoclast differentiation, function, and cell death.
Collapse
Affiliation(s)
- Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnieszka Robaszkiewicz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Petra Lakatos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Division of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary.
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
244
|
Muñoz-Gámez JA, López Viota J, Barrientos A, Carazo Á, Sanjuán-Nuñez L, Quiles-Perez R, Muñoz-de-Rueda P, Delgado Á, Ruiz-Extremera Á, Salmerón J. Synergistic cytotoxicity of the poly (ADP-ribose) polymerase inhibitor ABT-888 and temozolomide in dual-drug targeted magnetic nanoparticles. Liver Int 2015; 35:1430-41. [PMID: 24821649 DOI: 10.1111/liv.12586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is associated with a poor prognosis because of a lack of effective treatment options. The objective of this study was to examine a new strategy for HCC treatment, namely the use of poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor (ABT-888) together with Temozolomide (TMZ) incorporated onto magnetic nanoparticles. METHODS Magnetic Fe3 O4 /Fe cores were encapsulated within a silica shell to facilitate the simultaneous incorporation of ABT-888 and TMZ. In vitro tests were performed with HepG2, Hep3B and PLC-PRF-5 liver tumoural cell lines and with WRL-68 liver non-tumoural cells. RESULTS The magnetic nanocarriers were loaded simultaneously with ABT-888 and TMZ. High stability and extended release were achieved in culture medium. Confocal microscopy images showed that drug-loaded particles were uptaken and accumulated into the cytoplasm of liver tumoural cells, inducing the following effects: G2/M cell cycle arrest (P < 0.05), accumulation of DNA damage (P < 0.05), mitochondrial depolarization (P < 0.01), reduction in BCL-xL, FOS, JUND gene expression (P < 0.05), PARP-1 fragmentation, Caspase-3 activation and apoptotic cell death (P < 0.05). Interestingly, drugs loaded onto nanoparticles exhibited better efficiency than free drugs (cell death triggered by drug delivery nanosystem: 53.5% vs. 34.5% by free drugs, P = 0.01). CONCLUSIONS These magnetic nanocompounds are able to incorporate both drugs simultaneously, enter the tumour cells and release them. ABT-888/TMZ/NPs decrease the transcription of key genes involved in tumour survival and induce apoptotic cell death in a more effective manner than is achieved by free drugs.
Collapse
Affiliation(s)
- José A Muñoz-Gámez
- Clinical Management Unit of Digestive Disease and UNAI, San Cecilio University Hospital, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Kummar S, Oza AM, Fleming GF, Sullivan DM, Gandara DR, Naughton MJ, Villalona-Calero MA, Morgan RJ, Szabo PM, Youn A, Chen AP, Ji J, Allen DE, Lih CJ, Mehaffey MG, Walsh WD, McGregor PM, Steinberg SM, Williams PM, Kinders RJ, Conley BA, Simon RM, Doroshow JH. Randomized Trial of Oral Cyclophosphamide and Veliparib in High-Grade Serous Ovarian, Primary Peritoneal, or Fallopian Tube Cancers, or BRCA-Mutant Ovarian Cancer. Clin Cancer Res 2015; 21:1574-82. [PMID: 25589624 PMCID: PMC4383665 DOI: 10.1158/1078-0432.ccr-14-2565] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Veliparib, a PARP inhibitor, demonstrated clinical activity in combination with oral cyclophosphamide in patients with BRCA-mutant solid tumors in a phase I trial. To define the relative contribution of PARP inhibition to the observed clinical activity, we conducted a randomized phase II trial to determine the response rate of veliparib in combination with cyclophosphamide compared with cyclophosphamide alone in patients with pretreated BRCA-mutant ovarian cancer or in patients with pretreated primary peritoneal, fallopian tube, or high-grade serous ovarian cancers (HGSOC). EXPERIMENTAL DESIGN Adult patients were randomized to receive cyclophosphamide alone (50 mg orally once daily) or with veliparib (60 mg orally once daily) in 21-day cycles. Crossover to the combination was allowed at disease progression. RESULTS Seventy-five patients were enrolled and 72 were evaluable for response; 38 received cyclophosphamide alone and 37 the combination as their initial treatment regimen. Treatment was well tolerated. One complete response was observed in each arm, with three partial responses (PR) in the combination arm and six PRs in the cyclophosphamide alone arm. Genetic sequence and expression analyses were performed for 211 genes involved in DNA repair; none of the detected genetic alterations were significantly associated with treatment benefit. CONCLUSION This is the first trial that evaluated single-agent, low-dose cyclophosphamide in HGSOC, peritoneal, fallopian tube, and BRCA-mutant ovarian cancers. It was well tolerated and clinical activity was observed; the addition of veliparib at 60 mg daily did not improve either the response rate or the median progression-free survival.
Collapse
Affiliation(s)
- Shivaani Kummar
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amit M Oza
- Princess Margaret Hospital, University of Toronto, Ontario, Canada
| | - Gini F Fleming
- The University of Chicago Medical Center, Chicago, Illinois
| | | | - David R Gandara
- University of California Davis Cancer Center, Davis, California
| | | | - Miguel A Villalona-Calero
- The Ohio State University Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, Columbus, Ohio
| | - Robert J Morgan
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Peter M Szabo
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ahrim Youn
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alice P Chen
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jiuping Ji
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Deborah E Allen
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chih-Jian Lih
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Michele G Mehaffey
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - William D Walsh
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Paul M McGregor
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Seth M Steinberg
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - P Mickey Williams
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert J Kinders
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Barbara A Conley
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Richard M Simon
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James H Doroshow
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
246
|
Jones P, Wilcoxen K, Rowley M, Toniatti C. Niraparib: A Poly(ADP-ribose) Polymerase (PARP) Inhibitor for the Treatment of Tumors with Defective Homologous Recombination. J Med Chem 2015; 58:3302-14. [PMID: 25761096 DOI: 10.1021/jm5018237] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are involved in DNA repair following damage by endogenous or exogenous processes. It has become clear over the past decade that inhibition of PARP in the context of defects in other DNA repair mechanisms provide a tumor specific way to kill cancer cells. We describe the rationale for this approach and the design and discovery of niraparib, a potent PARP-1/2 inhibitor with good cell based activity, selectivity for cancer over normal cells, and oral bioavailability. Niraparib was characterized in a number of preclinical models before moving to phase I clinical trials, where it showed excellent human pharmacokinetics suitable for once a day oral dosing, achieved its pharmacodynamic target for PARP inhibition, and had promising activity in cancer patients. It is currently being tested in phase 3 clinical trials as maintenance therapy in ovarian cancer and as a treatment for breast cancer.
Collapse
Affiliation(s)
- Philip Jones
- †Istituto di Ricerche di Biologia Molecolare, Via Pontina km 30600, 00040 Pomezia, Italy
| | - Keith Wilcoxen
- ‡TESARO, Inc., 1000 Winter Street, Waltham, Massachusetts 02451, United States
| | - Michael Rowley
- †Istituto di Ricerche di Biologia Molecolare, Via Pontina km 30600, 00040 Pomezia, Italy
| | - Carlo Toniatti
- †Istituto di Ricerche di Biologia Molecolare, Via Pontina km 30600, 00040 Pomezia, Italy
| |
Collapse
|
247
|
Shen Y, Aoyagi-Scharber M, Wang B. Trapping Poly(ADP-Ribose) Polymerase. J Pharmacol Exp Ther 2015; 353:446-57. [DOI: 10.1124/jpet.114.222448] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
|
248
|
Abstract
The development of poly (adenosine diphosphate [ADP]) ribose polymerase (PARP) inhibitors (PARPi) has progressed greatly over the last few years and has shown encouraging results in the BRCA1/2 mutation–related cancers. This article attempts to summarize the rationale and theory behind PARPi, the clinical trials already reported, as well as ongoing studies designed to determine the role of PARPi in patients with and without germline mutations of BRCA genes. Future plans for PARPi both as monotherapy and in combination with standard cytotoxics, other biological agents, and as radiosensitizers are also covered. The widening scope of PARPi adds another important targeted agent to the growing list of molecular inhibitors; future and ongoing trials will identify the most effective role for PARPi, including for patients other than BRCA germline mutation carriers.
Collapse
Affiliation(s)
- Sarah Benafif
- Mount Vernon Cancer Centre, Northwood, Middlesex, UK
| | - Marcia Hall
- Mount Vernon Cancer Centre, Northwood, Middlesex, UK
| |
Collapse
|
249
|
Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin. Oncotarget 2015; 5:2778-91. [PMID: 24784564 PMCID: PMC4058044 DOI: 10.18632/oncotarget.1916] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Indoleamine 2,3-dioxygenase-1 (IDO) is an immunosuppressive molecule expressed by most human tumors. IDO levels correlate with poor prognosis in cancer patients and IDO inhibitors are under investigation to enhance endogenous anticancer immunosurveillance. Little is known of immune-independent functions of IDO relevant to cancer therapy. We show, for the first time, that IDO mediates human tumor cell resistance to a PARP inhibitor (olaparib), gamma radiation, cisplatin, and combined treatment with olaparib and radiation, in the absence of immune cells. Antisense-mediated reduction of IDO, alone and (in a synthetic lethal approach) in combination with antisense to the DNA repair protein BRCA2 sensitizes human lung cancer cells to olaparib and cisplatin. Antisense reduction of IDO decreased NAD+ in human tumor cells. NAD+ is essential for PARP activity and these data suggest that IDO mediates treatment resistance independent of immunity and at least partially due to a previously unrecognized role for IDO in DNA repair. Furthermore, IDO levels correlated with accumulation of tumor cells in G1 and depletion of cells in G2/M of the cell cycle, suggesting that IDO effects on cell cycle may also modulate sensitivity to radiation and chemotherapeutic agents. IDO is a potentially valuable therapeutic target in cancer treatment, independent of immune function and in combination with other therapies.
Collapse
|
250
|
McCrudden CM, O’Rourke MG, Cherry KE, Yuen HF, O’Rourke D, Babur M, Telfer BA, Thomas HD, Keane P, Nambirajan T, Hagan C, O’Sullivan JM, Shaw C, Williams KJ, Curtin NJ, Hirst DG, Robson T. Vasoactivity of rucaparib, a PARP-1 inhibitor, is a complex process that involves myosin light chain kinase, P2 receptors, and PARP itself. PLoS One 2015; 10:e0118187. [PMID: 25689628 PMCID: PMC4331495 DOI: 10.1371/journal.pone.0118187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023] Open
Abstract
Therapeutic inhibition of poly(ADP-ribose) polymerase (PARP), as monotherapy or to supplement the potencies of other agents, is a promising strategy in cancer treatment. We previously reported that the first PARP inhibitor to enter clinical trial, rucaparib (AG014699), induced vasodilation in vivo in xenografts, potentiating response to temozolomide. We now report that rucaparib inhibits the activity of the muscle contraction mediator myosin light chain kinase (MLCK) 10-fold more potently than its commercially available inhibitor ML-9. Moreover, rucaparib produces additive relaxation above the maximal degree achievable with ML-9, suggesting that MLCK inhibition is not solely responsible for dilation. Inhibition of nitric oxide synthesis using L-NMMA also failed to impact rucaparib’s activity. Rucaparib contains the nicotinamide pharmacophore, suggesting it may inhibit other NAD+-dependent processes. NAD+ exerts P2 purinergic receptor-dependent inhibition of smooth muscle contraction. Indiscriminate blockade of the P2 purinergic receptors with suramin abrogated rucaparib-induced vasodilation in rat arterial tissue without affecting ML-9-evoked dilation, although the specific receptor subtypes responsible have not been unequivocally identified. Furthermore, dorsal window chamber and real time tumor vessel perfusion analyses in PARP-1-/- mice indicate a potential role for PARP in dilation of tumor-recruited vessels. Finally, rucaparib provoked relaxation in 70% of patient-derived tumor-associated vessels. These data provide tantalising evidence of the complexity of the mechanism underlying rucaparib-mediated vasodilation.
Collapse
Affiliation(s)
- Cian M. McCrudden
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail:
| | | | - Kim E. Cherry
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Hiu-Fung Yuen
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Declan O’Rourke
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Muhammad Babur
- Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom
| | - Brian A. Telfer
- Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom
| | - Huw D. Thomas
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Patrick Keane
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | | | - Chris Hagan
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Joe M. O’Sullivan
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Kaye J. Williams
- Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom
| | - Nicola J. Curtin
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David G. Hirst
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Tracy Robson
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|