201
|
Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: therapeutic interventions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3839-47. [PMID: 23564578 PMCID: PMC3623010 DOI: 10.4049/jimmunol.1203200] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the awareness that immune-inflammatory cross-talk is at the heart of many disorders, the desire for novel immunomodulatory strategies in the therapy of such diseases has grown dramatically. As a prime initiator and important modulator of immunological and inflammatory processes, the complement system has emerged as an attractive target for early and upstream intervention in inflammatory diseases and has moved into the spotlight of drug discovery. Although prevalent conditions such as age-related macular degeneration have attracted the most attention, the diverse array of complement-mediated pathologies, with distinct underlying mechanisms, demands a multifaceted arsenal of therapeutic strategies. Fortunately, efforts in recent years have not only introduced the first complement inhibitors to the clinic but also filled the pipelines with promising candidates. With a focus on immunomodulatory strategies, in this review we discuss complement-directed therapeutic concepts and highlight promising candidate molecules.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
202
|
Denny KJ, Coulthard LG, Finnell RH, Callaway LK, Taylor SM, Woodruff TM. Elevated complement factor C5a in maternal and umbilical cord plasma in preeclampsia. J Reprod Immunol 2013; 97:211-6. [DOI: 10.1016/j.jri.2012.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/15/2012] [Accepted: 11/27/2012] [Indexed: 12/17/2022]
|
203
|
Targeting complement component 5a promotes vascular integrity and limits airway remodeling. Proc Natl Acad Sci U S A 2013; 110:6061-6. [PMID: 23530212 DOI: 10.1073/pnas.1217991110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased microvascular dilatation and permeability is observed during allograft rejection. Because vascular integrity is an important indicator of transplant health, we have sought to limit injury to blood vessels by blocking complement activation. Although complement component 3 (C3) inhibition is known to be vasculoprotective in transplantation studies, we recently demonstrated the paradoxical finding that, early in rejection, C3(-/-) transplant recipients actually exhibit worse microvascular injury than controls. In the genetic absence of C3, thrombin-mediated complement component 5 (C5) convertase activity leads to the generation of C5a (anaphylatoxin), a promoter of vasodilatation and permeability. In the current study, we demonstrated that microvessel thrombin deposition is significantly increased in C3(-/-) recipients during acute rejection. Thrombin colocalization with microvessels is closely associated with remarkably elevated plasma levels of C5a, vasodilatation, and increased vascular permeability. Administration of NOX-D19, a specific C5a inhibitor, to C3(-/-) recipients of airway transplants significantly improved tissue oxygenation, limited microvascular leakiness, and prevented airway ischemia, even in the absence of conventional T-cell-directed immunosuppression. As C3 inhibitors enter the clinics, the simultaneous targeting of this thrombin-mediated complement activation pathway and/or C5a itself may confer significant clinical benefit.
Collapse
|
204
|
Happonen KE, Heinegård D, Saxne T, Blom AM. Interactions of the complement system with molecules of extracellular matrix: relevance for joint diseases. Immunobiology 2013; 217:1088-96. [PMID: 22964234 DOI: 10.1016/j.imbio.2012.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a highly disabling disease affecting all structures of the joint. Understanding the pathology behind the development of RA is essential for developing targeted therapeutic strategies as well as for developing novel markers to predict disease onset. Several molecules normally hidden within the cartilage tissue are exposed to complement components in the synovial fluid upon cartilage breakdown. Some of these have been shown to activate complement and toll-like receptors, which may enhance an already existing inflammatory response, thereby worsening the course of disease. Other cartilage-resident molecules have in contrast shown to possess complement-inhibitory properties. Knowledge about mechanisms behind pathological complement activation in the joints will hopefully lead to methods which allow us to distinguish patients with pathological complement activation from those where other inflammatory pathways are predominant. This will help to elucidate which patients will benefit from complement inhibitory therapies, which are thought to aid a specific subset of patients or patients at a certain stage of disease. Future challenges are to target the complement inhibition specifically to the joints to minimize systemic complement blockade.
Collapse
Affiliation(s)
- Kaisa E Happonen
- Department of Laboratory Medicine, Division of Medical Protein Chemistry, Wallenberg Laboratory, Skåne University Hospital, Lund University, Sweden
| | | | | | | |
Collapse
|
205
|
Martí-Carvajal AJ, Anand V, Cardona AF, Solà I. Eculizumab for treating patients with paroxysmal nocturnal hemoglobinuria. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2013. [DOI: 10.1002/14651858.cd010340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
206
|
Denny KJ, Coulthard LG, Jeanes A, Lisgo S, Simmons DG, Callaway LK, Wlodarczyk B, Finnell RH, Woodruff TM, Taylor SM. C5a receptor signaling prevents folate deficiency-induced neural tube defects in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:3493-9. [PMID: 23420882 DOI: 10.4049/jimmunol.1203072] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complement system is involved in a range of diverse developmental processes, including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. In this study, we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wild-type mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid-deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development.
Collapse
Affiliation(s)
- Kerina J Denny
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Nakaya HI, Gardner J, Poo YS, Major L, Pulendran B, Suhrbier A. Gene profiling of Chikungunya virus arthritis in a mouse model reveals significant overlap with rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 64:3553-63. [PMID: 22833339 DOI: 10.1002/art.34631] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes a chronic debilitating polyarthralgia/polyarthritis, for which current treatments are often inadequate. To assess whether new drugs being developed for rheumatoid arthritis (RA) might find utility in the treatment of alphaviral arthritides, we sought to determine whether the inflammatory gene expression signature of CHIKV arthritis shows any similarities with RA or collagen-induced arthritis (CIA), a mouse model of RA. METHODS Using a recently developed animal model of CHIKV arthritis in adult wild-type mice, we generated a consensus CHIKV arthritis gene expression signature, which was used to interrogate publicly available microarray studies of RA and CIA. Pathway analyses were then performed using the overlapping gene signatures. RESULTS Gene set enrichment analysis showed that there was a highly significant overlap in the differentially expressed genes in the CHIKV arthritis model and in RA. This concordance also increased with the severity of RA, as measured by the inflammation score. A highly significant overlap was also seen between CHIKV arthritis and CIA. Pathway analysis revealed that the overlap between these arthritides was spread over a range of different inflammatory processes. Involvement of T cells and interferon-γ (IFNγ) in CHIKV arthritis was confirmed in studies of MHCII-deficient mice and IFNγ-deficient mice, respectively. CONCLUSION These results suggest that RA, a chronic autoimmune arthritis, and CHIKV disease, usually a self-limiting viral arthropathy, share multiple inflammatory processes. New drugs and biologic therapies being developed for RA may thus find application in the treatment of alphaviral arthritides.
Collapse
Affiliation(s)
- Helder I Nakaya
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
208
|
Nishiura H. The alternative C5a receptor function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:111-21. [PMID: 23402022 DOI: 10.1007/978-1-4614-4118-2_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
When acute inflammatory states are induced by treatment with chemical mediators in C5-deficient mice, neutrophil influxes are commonly decreased. Therefore, the neutrophil C5a receptor (C5aR) is believed to be a member of the pro-inflammatory receptors. However, C5aR deficiency endows mouse neutrophils with increased sensitivity to Pseudomonas aeruginosa. We have demonstrated that C5aR accepts not only C5a but also ribosomal protein S19 (RP S19) oligomers. RP S19 oligomers released from apoptotic cells promote apoptosis or induce dual agonistic and antagonistic effects on the chemotaxis of macrophages and neutrophils in an autocrine or paracrine manner, respectively. We assumed that the function of C5aR in apoptotic cells is almost the same as that in neutrophils infiltrating acute inflammatory lesions. Therefore, we believe that RP S19 oligomers can explain the opposite response of neutrophils in C5aR-deficient mice. In the present study, we found that antihuman RP S19 rabbit IgG cross-reacted with mouse RP S19 monomers and oligomers in plasma and serum, respectively, whereas anti-human C5a rabbit IgG only cross-reacted with mouse RP S19 oligomers in serum. To examine a role of RP S19 oligomers in vivo, we injected carrageenan (50 microg/100 microL) into the thoracic cavities of mice in the simultaneous presence of rabbit IgG and antihuman C5a rabbit IgG (100 microg/100 microL). Before 4 h and after 24 h, we did not observe any inflammatory cues in pleural exudates and lung substances from control mice. However, infiltrating neutrophils were detected in pleural exudates and lung tissues at 4 h after the addition of anti-human RP S19 rabbit IgG. Moreover, anti-human C5a rabbit IgG retards the initiation phase of carrageenan-induced mouse plurality. Many of the neutrophils infiltrating the thoracic cavities of the mice remained annexin V-negative. Neutrophil infiltration into pneumonic lesions became more severe, as alveolar septal destruction and haemorrhage concomitant with increased numbers of neutrophils in the pleural exudates were observed. These in vivo data demonstrate that the neutrophil C5aR acts as a dual pro-inflammatory and pro-apoptosis receptor during the initiation and the resolution phases of acute inflammation, respectively.
Collapse
Affiliation(s)
- Hiroshi Nishiura
- Department of Molecular Pathology, Kumamoto University Graduate School, Honjyo 1-1-1, Kumamoto 860-8556, Japan.
| |
Collapse
|
209
|
Progress and Trends in Complement Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:1-22. [PMID: 22990692 DOI: 10.1007/978-1-4614-4118-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
Collapse
|
210
|
Cazander G, Jukema GN, Nibbering PH. Complement activation and inhibition in wound healing. Clin Dev Immunol 2012; 2012:534291. [PMID: 23346185 PMCID: PMC3546472 DOI: 10.1155/2012/534291] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required.
Collapse
Affiliation(s)
- Gwendolyn Cazander
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | |
Collapse
|
211
|
Auger JL, Haasken S, Binstadt BA. Autoantibody-mediated arthritis in the absence of C3 and activating Fcγ receptors: C5 is activated by the coagulation cascade. Arthritis Res Ther 2012; 14:R269. [PMID: 23237573 PMCID: PMC3674630 DOI: 10.1186/ar4117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/11/2012] [Indexed: 01/14/2023] Open
Abstract
Introduction The effector functions of immunoglobulin G (IgG) are mediated by interaction of its Fc region with Fc receptors (FcγRs) and/or the complement system. The three main pathways of complement activation converge at C3. However, C3-independent pathways can activate C5 and other downstream complement components during IgG-initiated inflammatory responses. These C3-independent pathways of C5 activation are triggered by activating FcγRs in some systems or can be activated by factors of the coagulation cascade such as thrombin. Here we studied the interplay of C3, C5, and activating FcγRs in a model of spontaneous autoantibody-driven arthritis. Methods We utilized the K/BxN TCR transgenic mouse model of arthritis. We bred K/BxN mice bearing targeted or naturally-occurring mutations in one or more of the genes encoding complement components C3, C5, and FcRγ, the cytoplasmic signaling chain shared by the activating FcγRs. We measured arthritis development, the production of arthritogenic autoantibodies, T cell activation status and cytokine synthesis. In addition, we treated mice with anti-C5 monoclonal antibodies or with the thrombin inhibitor argatroban. Results We have previously shown that genetic deficiency of C5 protects K/BxN mice from the development of arthritis. We found here that C3-deficient K/BxN mice developed arthritis equivalent in severity to C3-sufficient animals. Arthritis also developed normally in K/BxN mice lacking both C3 and FcRγ, but could be ameliorated in these animals by treatment with anti-C5 monoclonal antibody or by treatment with argatroban. Production of arthritogenic autoantibodies, T cell activation, and T cell cytokine production were not affected by the absence of C3, C5, and/or FcRγ. Conclusions In K/BxN mice, C5-dependent autoantibody-driven arthritis can occur in the genetic absence of both complement C3 and activating FcγRs. Our findings suggest that in this setting, thrombin activates C5 to provoke arthritis.
Collapse
|
212
|
Li R, Coulthard LG, Wu MCL, Taylor SM, Woodruff TM. C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J 2012; 27:855-64. [PMID: 23239822 DOI: 10.1096/fj.12-220509] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
C5a is the paramount proinflammatory mediator of the complement cascade, and has been previously thought to act only through a single, G-protein-coupled, C5a receptor (C5aR; also termed CD88). In 2000, a second C5a receptor, C5L2 (previously known as GPR77), was discovered; yet, despite 12 yr of intensive research, its biological, or pathophysiological, function is both enigmatic and controversial. Unlike C5aR, this receptor does not couple to G proteins, and early studies promoted the hypothesis that C5L2 functions as a decoy receptor. However, recent data have provided other evidence for more complicated and conflicting interactions between C5L2 and other inflammatory mediators. C5L2 has been recently demonstrated to physically interact with both C5aR and β-arrestin to negatively regulate C5aR signaling toward an anti-inflammatory manner, and to reduce pathology, in several disease models in vivo. In direct contrast, other groups have demonstrated that C5L2 stimulation caused release of HMGB1 both in vitro and in vivo, and enhanced pathology in sepsis models, suggesting a clear proinflammatory signaling role. These astoundingly contradictory data challenge our precepts and complicate the foundational bases for the possible targeting of C5L2 as a therapeutic option in inflammatory disease. C5L2 may be the great masquerader in complement biology; its function dependent on the cell type, species, and disease context. Because of these unusual and unforeseen complexities, we present the current state of knowledge on C5L2 structure, expression and, most controversially, its putative functions.-Li, R., Coulthard, L.G., Wu, M. C. L., Taylor, S. M., Woodruff, T. M. C5L2: a controversial receptor of complement anaphylatoxin, C5a.
Collapse
Affiliation(s)
- Rui Li
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | | | | | | | | |
Collapse
|
213
|
Aomatsu T, Imaeda H, Takahashi K, Fujimoto T, Kasumi E, Ban H, Bamba S, Yoden A, Tamai H, Fujiyama Y, Andoh A. Neutralization of complement component C5 ameliorates the development of dextran sulfate sodium (DSS)-colitis in mice. J Clin Biochem Nutr 2012; 52:72-5. [PMID: 23341701 PMCID: PMC3541422 DOI: 10.3164/jcbn.12-63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/23/2012] [Indexed: 01/08/2023] Open
Abstract
The complement system is a potent effector of innate immunity. To elucidate the pathophysiological role of the complement system in inflammatory bowel disease, we evaluated the effects of anti-C5 antibodies on the development of dextran sulfate sodium-induced colitis in mice. Dextran sulfate sodium-colitis was induced in BALB/c mice with intraperitoneal administrations of anti-C5 antibodies (1 mg/body [DOSAGE ERROR CORRECTED]) every 48 h. Tissue samples were evaluated by standard histological procedures. The mucosal mRNA expression of the inflammatory cytokines was analyzed by real-time PCR. Body weight loss in the mice was completely blocked by the administration of anti-C5 antibody. The disease activity index was significantly lower in the anti-C5 antibody-treated mice than the dextran sulfate sodium mice. The colonic weight/length ratio, histological colitis score and mucosal myeloperoxidase activity were significantly lower in the anti-C5 antibody-treated mice than the dextran sodium sulfate mice. The administration of the anti-C5 antibody significantly reduced the mucosal expression of mRNAs for tumor necrosis factor-α, interleukin-1β and interleukin-6. In conclusion, the complement system plays a role in the development of dextran sodium sulfate-induced experimental colitis.
Collapse
Affiliation(s)
- Tomoki Aomatsu
- Department of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu 520-2192, Japan ; Department of Pediatrics, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki 569-0801, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Gorsuch WB, Chrysanthou E, Schwaeble WJ, Stahl GL. The complement system in ischemia-reperfusion injuries. Immunobiology 2012; 217:1026-33. [PMID: 22964228 PMCID: PMC3439809 DOI: 10.1016/j.imbio.2012.07.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/19/2023]
Abstract
Tissue injury and inflammation following ischemia and reperfusion of various organs have been recognized for many years. Many reviews have been written over the last several decades outlining the role of complement in ischemia/reperfusion injury. This short review provides a current state of the art knowledge on the complement pathways activated, complement components involved and a review of the clinical biologics/inhibitors used in the clinical setting of ischemia/reperfusion. This is not a complete review of the complement system in ischemia and reperfusion injury but will give the reader an updated view point of the field, potential clinical use of complement inhibitors, and the future studies needed to advance the field.
Collapse
Affiliation(s)
- William B Gorsuch
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
215
|
Fensterer TF, Keeling WB, Patibandla PK, Pushpakumar S, Perez-Abadia G, Bauer P, Soni CV, Anderson GL, Maldonado C. Stabilizing endothelium of donor hearts with fusogenic liposomes reduces myocardial injury and dysfunction. J Surg Res 2012; 182:331-8. [PMID: 23140789 DOI: 10.1016/j.jss.2012.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/27/2012] [Accepted: 10/12/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Myocardial injury after heart transplantation is a consequence of pathophysiologic events initiated by local ischemia/reperfusion injury that is further aggravated by the inflammatory response due to blood exposure to the pump's artificial surfaces during cardiopulmonary bypass. The purpose of the present study was to determine the effectiveness of fusogenic lipid vesicles (FLVs) in enhancing the cardioprotective effect of St. Thomas organ preservation solution (ST). We hypothesized that donor hearts preserved with ST+FLVs will stabilize the endothelium during reperfusion, which, in turn, will reduce both endothelial barrier dysfunction and myocardial damage. METHODS To examine the effect of ST+FLVs therapy in vitro, C3b deposition and adhesion molecule expression studies were performed on human umbilical vein endothelial cells challenged with plastic contact-activated plasma. To assess the therapy in vivo, a cervical heterotopic working heart transplantation model in rats was used. Donor hearts were preserved for 1 h at 27°C (15 min) and 4°C (45 min) and, after transplantation, were followed up for 2 h. Left ventricular function and the blood cardiac troponin I levels were quantified. RESULTS Human umbilical vein endothelial cells treated with ST+FLVs had reduced C3b deposition and expression of adhesion molecules compared with ST alone (P < 0.05). Donor hearts receiving ST+FLVs therapy had reduced left ventricular dysfunction and cardiac troponin I compared with ST alone. CONCLUSIONS We concluded that FLVs enhanced the cardioprotective effect of ST and reduced postischemic left ventricular dysfunction and myocardial damage. The mechanism of protection appears to be associated with the stabilization of endothelial cell membranes owing to incorporation of FLV-derived lipids.
Collapse
Affiliation(s)
- Tathyana F Fensterer
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Abe T, Hosur KB, Hajishengallis E, Reis ES, Ricklin D, Lambris JD, Hajishengallis G. Local complement-targeted intervention in periodontitis: proof-of-concept using a C5a receptor (CD88) antagonist. THE JOURNAL OF IMMUNOLOGY 2012; 189:5442-8. [PMID: 23089394 DOI: 10.4049/jimmunol.1202339] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
When excessively activated or deregulated, complement becomes a major link between infection and inflammatory pathology including periodontitis. This oral inflammatory disease is associated with a dysbiotic microbiota, leads to the destruction of bone and other tooth-supporting structures, and exerts an adverse impact on systemic health. We have previously shown that mice deficient either in complement C5a receptor (C5aR; CD88) or TLR2 are highly and similarly resistant to periodontitis, suggesting that a cross-talk between the two receptors may be involved in the disease process. In this paper, we show that C5aR and TLR2 indeed synergize for maximal inflammatory responses in the periodontal tissue and uncover a novel pharmacological target to abrogate periodontitis. Using two different mouse models of periodontitis, we show that local treatments with a C5aR antagonist inhibited periodontal inflammation through downregulation of TNF, IL-1β, IL-6, and IL-17 and further protected against bone loss, regardless of the presence of TLR2. These findings not only reveal a crucial cooperation between C5aR and TLR2 in periodontal inflammation but also provide proof-of-concept for local targeting of C5aR as a powerful candidate for the treatment of human periodontitis.
Collapse
Affiliation(s)
- Toshiharu Abe
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
Haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopaenic purpura (TTP) are diseases characterized by microvascular thrombosis, with consequent thrombocytopaenia, haemolytic anaemia and dysfunction of affected organs. Advances in our understanding of the molecular pathology led to the recognition of three different diseases: typical HUS caused by Shiga toxin-producing Escherichia coli (STEC-HUS); atypical HUS (aHUS), associated with genetic or acquired disorders of regulatory components of the complement system; and TTP that results from a deficiency of ADAMTS13, a plasma metalloprotease that cleaves von Willebrand factor. In this Review, we discuss data indicating that complement hyperactivation is a common pathogenetic effector that leads to endothelial damage and microvascular thrombosis in all three diseases. In STEC-HUS, the toxin triggers endothelial complement deposition through the upregulation of P-selectin and possibly interferes with the activity of complement regulatory molecules. In aHUS, mutations in the genes coding for complement components predispose to hyperactivation of the alternative pathway of complement. In TTP, severe ADAMTS13 deficiency leads to generation of massive platelet thrombi, which might contribute to complement activation. More importantly, evidence is emerging that pharmacological targeting of complement with the anti-C5 monoclonal antibody eculizumab can effectively treat not only aHUS for which it is indicated, but also STEC-HUS and TTP in some circumstances.
Collapse
|
218
|
Sokolov A, Hellerud BC, Tønnessen TI, Johannessen EA, Mollnes TE. Activation of coagulation and platelets by candidate membranes of implantable devices in a whole blood model without soluble anticoagulant. J Biomed Mater Res A 2012; 101:575-81. [PMID: 22949225 DOI: 10.1002/jbm.a.34348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 02/01/2023]
Abstract
Implantable devices are challenged with thrombus formation at their biomaterial interface. Thus the importance of identifying compatible biomaterials that will help to improve the performance of these devices are becoming increasingly paramount. The aim of this study was to evaluate the activation of coagulation and platelets by candidate membranes considered for use in implantable devices on the basis of an adapted whole blood model without soluble anticoagulants. Evaluated materials were incubated with whole blood without soluble anticoagulant in wells coated with heparin. Prothrombin fragment 1+2 (PTF 1+2), thrombin-antithrombin complex (TAT), and β-thromboglobulin (BTG) were analyzed in plasma samples using enzyme immunoassays. The C5 inhibitor eculizumab was used to evaluate the role of complement. Incubation of two of the polyamide membranes PAR and PATF led to an increase in concentration of PTF 1+2 and TAT (p < 0.01 for PAR, ns for PATF). The BTG concentration was significantly increased for five materials [PAR, PATF, polycarbonate (PC), and two polyarylethersulphone membranes PAES-1 and PAES-2]. Complement inhibition had no effect on coagulation or platelet activation induced by PAR and PATF. In conclusion, PAR and PATF were not compatible with blood and should be avoided for use in implantable devices.
Collapse
Affiliation(s)
- A Sokolov
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, P.O. 4950, Nydalen 0424 Oslo, Norway.
| | | | | | | | | |
Collapse
|
219
|
Noone D, Al-Matrafi J, Tinckam K, Zipfel PF, Herzenberg AM, Thorner PS, Pluthero FG, Kahr WHA, Filler G, Hebert D, Harvey E, Licht C. Antibody mediated rejection associated with complement factor h-related protein 3/1 deficiency successfully treated with eculizumab. Am J Transplant 2012; 12:2546-53. [PMID: 22681773 DOI: 10.1111/j.1600-6143.2012.04124.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA.
Collapse
Affiliation(s)
- D Noone
- Division of Nephrology, The Hospital for Sick Children, University of Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Denny KJ, Woodruff TM, Taylor SM, Callaway LK. Complement in pregnancy: a delicate balance. Am J Reprod Immunol 2012; 69:3-11. [PMID: 22925193 DOI: 10.1111/aji.12000] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023] Open
Abstract
The complement system is a key component of innate host defence that, under normal conditions, is responsible for the opsonization and destruction of potential pathogens. However, inappropriate or excessive activation of complement can have a detrimental effect on the host and has been implicated in the pathophysiology of numerous disease states. Recently, there has been increasing evidence for a role of the complement system and, in particular, the potent pro-inflammatory anaphylatoxin complement component 5a (C5a) in both normal and complicated pregnancy. The following review describes the results of in vitro, animal, and human clinical studies investigating the role of the complement system in healthy pregnancy, recurrent miscarriage, preterm birth, and preeclampsia.
Collapse
Affiliation(s)
- Kerina J Denny
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | | | | | | |
Collapse
|
221
|
Fakhouri F, Vercel C, Frémeaux-Bacchi V. Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin J Am Soc Nephrol 2012; 7:2100-6. [PMID: 22879435 DOI: 10.2215/cjn.13121211] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AKI in pregnancy remains a cause of significant fetomaternal mortality and morbidity, particularly in developing countries. Hypertensive complications of pregnancy (preeclampsia/eclampsia or hemolysis, elevated liver enzymes, and low platelets count syndrome) are the leading cause of AKI in pregnancy worldwide. Thrombotic microangiopathy is another peculiar and devastating cause of AKI in pregnancy. During the last decade, our understanding, and in some cases, our management, of these causes of AKI in pregnancy has dramatically improved. For instance, convincing data have linked pre-eclampsia/eclampsia to an increase in circulating antiangiogenic factors soluble Flt 1 and endoglin, which induce endothelial cell dysfunction, hypertension, and proteinuria. Several distinct pathogenic mechanisms underlying thrombotic microangiopathy, including thrombotic microangiopathy occurring during pregnancy, have been established. Thrombotic microangiopathy, which can present as hemolytic uremic syndrome or thrombotic thrombocytopenic purpura, can be reclassified in four potentially overlapping subtypes: disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 deficiency-related thrombotic microangiopathy, complement alternative pathway dysregulation-related thrombotic microangiopathy, secondary thrombotic microangiopathy (verotoxin and antiangiogenic drugs), and thrombotic microangiopathy of undetermined mechanism. In most cases, pregnancy is only a precipitating factor for thrombotic microangiopathy. Treatment of thrombotic microangiopathy occurring during pregnancy should be tailored to the underlying pathogenic mechanism: (1) restoration of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 serum activity in the setting of thrombotic thrombocytopenic purpura through plasma exchanges and in some cases, B cell-depleting therapy and (2) inhibition of complement alternative pathway activation in atypical hemolytic uremic syndrome using antiC5 blocking antibody (eculizumab).
Collapse
Affiliation(s)
- Fadi Fakhouri
- Institut de Transplantation, Urologie et Néphrologie, Department of Nephrology and Immunology, Institut National de la Santé et de la Recherche Médicale UMR S-1064, Centre Hospitalo-Universitaire de Nantes, Nantes, France.
| | | | | |
Collapse
|
222
|
Abstract
Complement activation usually results in the formation of complement fragment 5a (C5a) that interacts with its two receptors, C5aR and C5L2. These receptors belong to the rhodopsin family of G protein-coupled seven transmembrane-containing receptors. C5aR and C5L2 are expressed on/in a wide variety of cells and tissues. Interaction of C5a with C5aR leads to many pleiotropic effects, including the release of cytokines and chemokines and recruitment of inflammatory cells. In certain circumstances, C5a-C5aR interactions can also result in pathophysiological changes as seen in sepsis, rheumatoid arthritis, asthma, acute lung injury and ischemia-reperfusion injury. This overview of the C5a-C5aR interactions describes how such interactions facilitate the pivotal role the complement system plays in the host's innate and adaptive responses.
Collapse
Affiliation(s)
- J Vidya Sarma
- University of Michigan Medical School, Department of Pathology, Ann Arbor, MI, USA
| | | |
Collapse
|
223
|
Stevens MGH, De Spiegeleer B, Peelman L, Boulougouris XJA, Capuco AV, Burvenich C. Compromised neutrophil function and bovine E. coli mastitis: is C5a the missing link? Vet Immunol Immunopathol 2012; 149:151-6. [PMID: 22858435 DOI: 10.1016/j.vetimm.2012.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/14/2012] [Accepted: 07/09/2012] [Indexed: 12/17/2022]
Abstract
During early lactation, dairy cow are prone to developing severe mastitis in responses to intramammary Escherichia coli infections. These severe inflammatory responses have been correlated with reduced neutrophil function during the periparturient period. However, the causative mechanism of neutrophil dysfunction has not been elucidated. Studies in murine sepsis models have shown that during sepsis neutrophils are functionally paralysed due to the presence of high concentrations of complement factor 5a (C5a). In this review, we hypothesize that C5a as a critical early mediator in the development of severe E. coli mastitis. Furthermore, preliminary data suggest that crosstalk between C5a and TLR4 signalling in neutrophils may provide a positive feedback mechanism that may be involved in the pathogenesis of a severe mastitis response. Finally, we focus on the therapeutic potential of disrupting the C5a signalling pathway as an important strategy for treatment of severe E. coli mastitis in dairy cattle.
Collapse
Affiliation(s)
- Mieke G H Stevens
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | | | | | | |
Collapse
|
224
|
Lappas M, Woodruff TM, Taylor SM, Permezel M. Complement C5A regulates prolabor mediators in human placenta. Biol Reprod 2012; 86:190. [PMID: 22441801 DOI: 10.1095/biolreprod.111.098475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human preterm and term parturition is associated with inflammatory cascades in the uteroplacental unit. Activation of the complement cascade releases potent proinflammatory mediators, including the anaphylatoxin C5a, which exerts its biological effects through its receptors, C5AR (also known as CD88) and C5L2, official symbol GPR77. To date, there are few data available on the role of C5a and CD88 in human pregnancy, so the aim of this study was to determine the effect of C5a and CD88 on some key inflammatory pathways involved in human parturition. Placental tissue samples were obtained from normal pregnancies at the time of Cesarean section. Human placental and fetal membranes were incubated in the absence (basal control) or presence of 0.5 μg/ml (~60 nM) human recombinant C5a for 24 h. Concentrations of proinflammatory cytokines, prostaglandins, and 8-isoprostane (a marker of oxidative stress) were quantified by ELISA and secretory matrix metalloproteinases (MMPs) activity by zymography. NFKB DNA binding activity and NFKBIA (IkappaB-alpha; inhibitor of NFKB) protein degradation were analyzed by ELISA and Western blotting, respectively. In the presence of C5a, proinflammatory cytokines (IL6 and IL8), cyclooxygenase (COX)-2; official symbol PTGS2) expression, and subsequent prostaglandin (PGE(2) and PGF(2alpha)), MMP9 enzyme production, and NFKB DNA activation were all significantly increased. The C5a-induced prolabor responses were significantly reduced by treatment with the selective CD88 antagonist PMX53 and the NFKB inhibitor BAY 11-7082. We conclude that C5a upregulates prolabor mediators in human gestational tissues via CD88-mediated NFKB activation.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | | | | | | |
Collapse
|
225
|
Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ. Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation 2012; 9:137. [PMID: 22721265 PMCID: PMC3464784 DOI: 10.1186/1742-2094-9-137] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/21/2012] [Indexed: 11/28/2022] Open
Abstract
The complement system, a major component of the innate immune system, is becoming increasingly recognised as a key participant in physiology and disease. The awareness that immunological mediators support various aspects of both normal central nervous system (CNS) function and pathology has led to a renaissance of complement research in neuroscience. Various studies have revealed particularly novel findings on the wide-ranging involvement of complement in neural development, synapse elimination and maturation of neural networks, as well as the progression of pathology in a range of chronic neurodegenerative disorders, and more recently, neurotraumatic events, where rapid disruption of neuronal homeostasis potently triggers complement activation. The purpose of this review is to summarise recent findings on complement activation and acquired brain or spinal cord injury, i.e. ischaemic-reperfusion injury or stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), highlighting the potential for complement-targeted therapeutics to alleviate the devastating consequences of these neurological conditions.
Collapse
Affiliation(s)
- Faith H Brennan
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
226
|
Liu Z, Davidson A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med 2012; 18:871-82. [PMID: 22674006 DOI: 10.1038/nm.2752] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the loss of tolerance to nuclear self antigens, the production of pathogenic autoantibodies and damage to multiple organ systems. Over the years, patients with SLE have been managed largely with empiric immunosuppressive therapies, which are associated with substantial toxicities and do not always provide adequate control of the disease. The development of targeted therapies that specifically address disease pathogenesis or progression has lagged, largely because of the complex and heterogeneous nature of the disease, as well as difficulties in designing uniform outcome measures for clinical trials. Recent advances that could improve the treatment of SLE include the identification of genetic variations that influence the risk of developing the disease, an enhanced understanding of innate and adaptive immune activation and regulation of tolerance, dissection of immune cell activation and inflammatory pathways and elucidation of mechanisms and markers of tissue damage. These discoveries, together with improvements in clinical trial design, form a platform from which to launch the development of a new generation of lupus therapies.
Collapse
Affiliation(s)
- Zheng Liu
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | |
Collapse
|
227
|
Ma Q, Li D, Nurieva R, Patenia R, Bassett R, Cao W, Alekseev AM, He H, Molldrem JJ, Kroll MH, Champlin RE, Sale GE, Afshar-Kharghan V. Reduced graft-versus-host disease in C3-deficient mice is associated with decreased donor Th1/Th17 differentiation. Biol Blood Marrow Transplant 2012; 18:1174-81. [PMID: 22664751 DOI: 10.1016/j.bbmt.2012.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/24/2012] [Indexed: 12/11/2022]
Abstract
Graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation is mediated by the activation of recipient dendritic cells and subsequent proliferation of donor T cells. The complement system was recently shown to modulate adaptive immunity through an interaction of the complement system and lymphocytes. Complement proteins participate in the activation of dendritic cells, antigen presentation to T cells, and proliferation of T cells. Our studies with a murine model of bone marrow transplantation demonstrate that complement system regulates alloimmune responses in GVHD. Mice deficient in the central component of the complement system (C3(-/-)) had significantly lower GVHD-related mortality and morbidity compared with wild-type recipient mice. The numbers of donor-derived T cells, including IFN-γ(+), IL-17(+), and IL-17(+)IFN-γ(+) subsets, were decreased in secondary lymphoid organs of C3(-/-) recipients. Furthermore, the number of recipient CD8α(+)CD11c(+) cells in lymphoid organs was reduced. We conclude that C3 regulates Th1/17 differentiation in bone marrow transplantation, and define a novel function of the complement system in GVHD.
Collapse
Affiliation(s)
- Qing Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Complement C5a: Impact on the field of veterinary medicine. Vet J 2012; 192:264-71. [DOI: 10.1016/j.tvjl.2011.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 11/30/2011] [Accepted: 12/14/2011] [Indexed: 01/03/2023]
|
229
|
Farkas I, Sárvári M, Aller M, Okada N, Okada H, Likó I, Liposits Z. Estrogen receptor alpha and beta differentially mediate C5aR agonist evoked Ca2+-influx in neurons through L-type voltage-gated Ca2+ channels. Neurochem Int 2012; 60:631-9. [DOI: 10.1016/j.neuint.2012.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 02/21/2012] [Indexed: 01/19/2023]
|
230
|
Radhakrishnan S, Lunn A, Kirschfink M, Thorner P, Hebert D, Langlois V, Pluthero F, Licht C. Eculizumab and refractory membranoproliferative glomerulonephritis. N Engl J Med 2012; 366:1165-6. [PMID: 22435384 DOI: 10.1056/nejmc1106619] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
231
|
Kanse SM, Gallenmueller A, Zeerleder S, Stephan F, Rannou O, Denk S, Etscheid M, Lochnit G, Krueger M, Huber-Lang M. Factor VII-activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. THE JOURNAL OF IMMUNOLOGY 2012; 188:2858-65. [PMID: 22308306 DOI: 10.4049/jimmunol.1103029] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe tissue injury results in early activation of serine protease systems including the coagulation and complement cascade. In this context, little is known about factor VII-activating protease (FSAP), which is activated by substances released from damaged cells such as histones and nucleosomes. Therefore, we have measured FSAP activation in trauma patients and have identified novel FSAP substrates in human plasma. Mass spectrometry-based methods were used to identify FSAP binding proteins in plasma. Anaphylatoxin generation was measured by ELISA, Western blotting, protein sequencing, and chemotaxis assays. Plasma samples from trauma patients were analyzed for FSAP Ag and activity, nucleosomes, C5a, and C3a. Among others, we found complement components C3 and C5 in FSAP coimmunoprecipitates. C3 and C5 were cleaved by FSAP in a dose- and time-dependent manner generating functional C3a and C5a anaphylatoxins. Activation of endogenous FSAP in plasma led to increased C5a generation, but this was not the case in plasma of a homozygous carrier of Marburg I single nucleotide polymorphism with lower FSAP activity. In multiple trauma patients there was a large increase in circulating FSAP activity and nucleosomes immediately after the injury. A high correlation between FSAP activity and C5a was found. These data suggest that activation of FSAP by tissue injury triggers anaphylatoxin generation and thereby modulates the posttraumatic inflammatory response in vivo. A strong link between C5a, nucleosomes, and FSAP activity indicates that this new principle might be important in the regulation of inflammation.
Collapse
Affiliation(s)
- Sandip M Kanse
- Department of Medicine, Institute for Biochemistry, Justus Liebig University, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Flores-Suárez LF. [The complement system in the pathogenesis of antineutrophil cytoplasm antibodies-associated vasculitis]. ACTA ACUST UNITED AC 2011; 7 Suppl 3:S18-21. [PMID: 22152286 DOI: 10.1016/j.reuma.2011.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/16/2022]
Abstract
One of the main characteristics of the vasculitis associated with antineutrophil cytoplasm autoantibodies (AASV) is the absence of immune complex deposition in biopsies of affected tissues as well as a lack of complement depletion. However, in early stages of disease induced in animal models, it has been observed that the complement system may be involved in the generation of these diseases. There are various animal models which have been developed with the aim of knowing which are the pathogenic mechanisms in granulomatosis with polyangiitis (Wegener) (GPA) and microscopic polyangiitis (MPA), the latter being explained using these approaches in a more satisfactory manner, as there is lack of a model which reproduces the changes leading to a granulomatous vasculitis associated with antibodies against proteinase-3, as in GPA. This short review presents recent evidence of the presence of complement in biopsies of patients with AASV and the most recent animal models, which show the participation of complement in their etiology.
Collapse
Affiliation(s)
- Luis F Flores-Suárez
- Clínica de Vasculitis Sistémicas Primarias, Instituto Nacional de Enfermedades Respiratorias, México DF, México.
| |
Collapse
|
233
|
Neher MD, Weckbach S, Flierl MA, Huber-Lang MS, Stahel PF. Molecular mechanisms of inflammation and tissue injury after major trauma--is complement the "bad guy"? J Biomed Sci 2011; 18:90. [PMID: 22129197 PMCID: PMC3247859 DOI: 10.1186/1423-0127-18-90] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023] Open
Abstract
Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and experimental studies have brought increasing evidence for activation of the innate immune system in contributing to the pathogenesis of trauma-induced sequelae and adverse outcome. As the "first line of defense", the complement system represents a potent effector arm of innate immunity, and has been implicated in mediating the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen elimination and immediate response to danger signals, complement activation may exert detrimental effects after trauma, in terms of mounting an "innocent bystander" attack on host tissue. Posttraumatic ischemia/reperfusion injuries represent the classic entity of complement-mediated tissue damage, adding to the "antigenic load" by exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately contribute to remote organ injury and death. Numerous experimental models have been designed in recent years with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present review provides an overview on the current understanding of the cellular and molecular mechanisms of complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may provide the rationale for a "bench-to-bedside" approach in the design of future pharmacological strategies.
Collapse
Affiliation(s)
- Miriam D Neher
- Department of Orthopaedic Surgery, University of Colorado Denver, School of Medicine, Denver Health Medical Center, 777 Bannock Street, Denver, CO 80204, USA
| | | | | | | | | |
Collapse
|
234
|
Francescut L, Steiner T, Byrne S, Cianflone K, Francis S, Stover C. The role of complement in the development and manifestation of murine atherogenic inflammation: novel avenues. J Innate Immun 2011; 4:260-72. [PMID: 22116497 DOI: 10.1159/000332435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease which manifests in the arterial vascular tree. It is a major cause of cardiovascular morbidity and contributes significantly to mortality in the developed world. Triggers for this inflammatory process are elevated levels of cholesterol, bacterial infection and obesity. The immune response in atherosclerosis is essentially pro-atherogenic, leading to lipid accumulation and cellular changes within the arterial wall. Small-animal models of atherosclerosis are used to study the relevance of candidate factors (cells, genes, diets) in the development and progression of lesions. From a multidisciplinary viewpoint, there are challenges and limitations to this approach. Activation of complement determines or modifies the outcome of acute and chronic inflammation. This review dissects the role of complement in the early development as well as the progressive manifestation of murine atherosclerosis and the advances in knowledge provided by the use of specific mouse models. It gives a critical overview of existing models, analyses seemingly conflicting results obtained with complement-deficient mouse models, highlights the importance of interrelationships between pro-coagulpant activity, adipose tissue, macrophages and complement, and uncovers exciting avenues of topical research.
Collapse
Affiliation(s)
- Lorenza Francescut
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
235
|
Focosi D, Maggi F, Pistello M, Boggi U, Scatena F. Immunosuppressive monoclonal antibodies: current and next generation. Clin Microbiol Infect 2011; 17:1759-68. [PMID: 21995285 DOI: 10.1111/j.1469-0691.2011.03677.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Monoclonal antibodies (mAbs) are well-established therapeutics, as evidenced by the large number of Food and Drug Administration-approved mAbs for the treatment of cancers, and inflammatory or autoimmune diseases, and for the prevention and treatment of solid organ transplant rejection. Although, in many cases, mAbs have improved patient survival, they are also associated with an increased incidence of opportunistic infections. We review here the current and next generation of mAbs and the risks that infectious disease specialists should be aware of.
Collapse
Affiliation(s)
- D Focosi
- U.O. Immuoematologia SSN, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | | | | | | | | |
Collapse
|
236
|
Carroll MV, Sim RB. Complement in health and disease. Adv Drug Deliv Rev 2011; 63:965-75. [PMID: 21704094 DOI: 10.1016/j.addr.2011.06.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 12/16/2022]
Abstract
The complement system consists of about 35-40 proteins and glycoproteins present in blood plasma or on cell surfaces. Its main biological function is to recognise "foreign" particles and macromolecules, and to promote their elimination either by opsonisation or lysis. Although historically complement has been studied as a system for immune defence against bacteria, it has an important homeostatic role in which it recognises damaged or altered "self" components. Thus complement has major roles in both immune defence against microorganisms, and in clearance of damaged or "used" host components. Since complement proteins opsonise or lyse cells, complement can damage healthy host cells and tissues. The system is regulated by many endogenous regulatory proteins. Regulation is sometimes imperfect and both too much and too little complement activation is associated with many diseases. Excessive or inappropriate activation can cause tissue damage in diseases such as rheumatoid arthritis, age-related macular degeneration (AMD), multiple sclerosis, ischemia-reperfusion injury (e.g. ischemic stroke). Insufficient complement activity is associated with susceptibility to infection (mainly bacterial) and development of autoimmune disease, like SLE (systemic lupus erythematosus).
Collapse
|
237
|
Liu B, Wei L, Meyerle C, Tuo J, Sen HN, Li Z, Chakrabarty S, Agron E, Chan CC, Klein ML, Chew E, Ferris F, Nussenblatt RB. Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. J Transl Med 2011; 9:1-12. [PMID: 21762495 PMCID: PMC3154861 DOI: 10.1186/1479-5876-9-111] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/15/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Age related macular degeneration (AMD) is the leading cause of irreversible blindness in elderly populations worldwide. Inflammation, among many factors, has been suggested to play an important role in AMD pathogenesis. Recent studies have demonstrated a strong genetic association between AMD and complement factor H (CFH), the down-regulatory factor of complement activation. Elevated levels of complement activating molecules including complement component 5a (C5a) have been found in the serum of AMD patients. Our aim is to study whether C5a can impact human T cells and its implication in AMD. METHODS Human peripheral blood mononuclear cells (PBMCs) were isolated from the blood of exudative form of AMD patients using a Ficoll gradient centrifugation protocol. Intracellular staining and enzyme-linked immunosorbent assays were used to measure protein expression. Apoptotic cells were detected by staining of cells with the annexin-V and TUNEL technology and analyzed by a FACS Caliber flow cytometer. SNP genotyping was analyzed by TaqMan genotyping assay using the Real-time PCR system 7500. RESULTS We show that C5a promotes interleukin (IL)-22 and IL-17 expression by human CD4+ T cells. This effect is dependent on B7, IL-1β and IL-6 expression from monocytes. We have also found that C5a could protect human CD4+ cells from undergoing apoptosis. Importantly, consistent with a role of C5a in promoting IL-22 and IL-17 expression, significant elevation in IL-22 and IL-17 levels was found in AMD patients as compared to non-AMD controls. CONCLUSIONS Our results support the notion that C5a may be one of the factors contributing to the elevated serum IL-22 and IL-17 levels in AMD patients. The possible involvement of IL-22 and IL-17 in the inflammation that contributes to AMD may herald a new approach to treat AMD.
Collapse
Affiliation(s)
- Baoying Liu
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lai Wei
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine Meyerle
- Division of Epidemiology and Clinical Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingsheng Tuo
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Nida Sen
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiyu Li
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sagarika Chakrabarty
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elvira Agron
- Division of Epidemiology and Clinical Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael L Klein
- Macular Degeneration Center and Leonard Christensen Eye Pathology Laboratory, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Emily Chew
- Division of Epidemiology and Clinical Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frederick Ferris
- Division of Epidemiology and Clinical Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert B Nussenblatt
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|