201
|
Moreira NM, dos Santos JRN, Correa A. Greener Synthesis of Pyrroloquinazoline Derivatives: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natália Menezes Moreira
- Federal University of Sao Carlos: Universidade Federal de Sao Carlos Chemistry Rodovia Washington Luis km 235 13565-905 São Carlos BRAZIL
| | - Jhonathan Renner Nunes dos Santos
- Federal University of Sao Carlos Sciences and Technology Centre: Universidade Federal de Sao Carlos Centro de Ciencias Exatas e de Tecnologia Chemistry Rodovia Washington Luis km 235 13565-905 São Carlos BRAZIL
| | - Arlene Correa
- Federal University of São Carlos Chemistry Via Washington Luis km 235 13565-905 São Carlos BRAZIL
| |
Collapse
|
202
|
Liu X, Yu D, Luo H, Li C. Green Solvents for Lipid Extraction From Microalgae to Produce Biodiesel. Front Chem 2022; 10:884274. [PMID: 35665069 PMCID: PMC9157537 DOI: 10.3389/fchem.2022.884274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Microalgae are considered as the third-generation feedstock for biodiesel production, and lipid extraction plays a significant role in efficient production of biofuels. Numerous technologies including chemical, mechanical, and biological have been achieved but high efficiency and potential application on an industrial scale are still needed. This review discusses the factors that influence biodiesel quality and the relative green and sustainable solvents for lipid extraction.
Collapse
|
203
|
Rode NR, Tantray AA, Shelar AV, Patil RH, Terdale SS. Synthesis, anti-leishmanial screening, molecular docking, and ADME study of 1-amidoalkyl 2-naphthol derivatives catalyzed by amino acid ionic liquid. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
204
|
Novel Pyridinium Based Ionic Liquid Promoter for Aqueous Knoevenagel Condensation: Green and Efficient Synthesis of New Derivatives with Their Anticancer Evaluation. Molecules 2022; 27:molecules27092940. [PMID: 35566291 PMCID: PMC9105511 DOI: 10.3390/molecules27092940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Herein, a distinctive dihydroxy ionic liquid ([Py-2OH]OAc) was straightforwardly assembled from the sonication of pyridine with 2-chloropropane-1,3-diol by employing sodium acetate as an ion exchanger. The efficiency of the ([Py-2OH]OAc as a promoter for the sono-synthesis of a novel library of condensed products through DABCO-catalyzed Knoevenagel condensation process of adequate active cyclic methylenes and ninhydrin was next investigated using ultimate greener conditions. All of the reactions studied went cleanly and smoothly, and the resulting Knoevenagel condensation compounds were recovered in high yields without detecting the aldol intermediates in the end products. Compared to traditional strategies, the suggested approach has numerous advantages including mild reaction conditions with no by-products, eco-friendly solvent, outstanding performance in many green metrics, and usability in gram-scale synthesis. The reusability of the ionic liquid was also studied, with an overall retrieved yield of around 97% for seven consecutive runs without any substantial reduction in the performance. The novel obtained compounds were further assessed for their in vitro antitumor potential toward three human tumor cell lines: Colo-205 (colon cancer), MCF-7 (breast cancer), and A549 (lung cancer) by employing the MTT assay, and the findings were evaluated with the reference Doxorubicin. The results demonstrated that the majority of the developed products had potent activities at very low doses. Compounds comprising rhodanine (5) or chromane (12) moieties exhibited the most promising cytotoxic effects toward three cell lines, particularly rhodanine carboxylic acid derivative (5c), showing superior cytotoxic effects against the investigated cell lines compared to the reference drug. Furthermore, automated docking simulation studies were also performed to support the results obtained.
Collapse
|
205
|
Mero A, Guglielmero L, D'Andrea F, Pomelli CS, Guazzelli L, Koutsoumpos S, Tsonos G, Stavrakas I, Moutzouris K, Mezzetta A. Influence of the cation partner on levulinate ionic liquids properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
206
|
Zhang J, Cheng C, Lu C, Li W, Li B, Wang J, Wang J, Du Z, Zhu L. Comparison of the toxic effects of non-task-specific and task-specific ionic liquids on zebrafish. CHEMOSPHERE 2022; 294:133643. [PMID: 35051520 DOI: 10.1016/j.chemosphere.2022.133643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are composed of only anions and cations and are liquid solvents at room temperature. Different functional groups were introduced into the ILs, conferring them with specific functions or purposes and thus forming special ILs, namely task-specific ILs (TSILs). Imidazolium-based ILs are the most widely used ILs in industrial production. To date, there have been some studies on the toxic effects of ILs on different organisms. However, the effect of functionalized groups on the toxicity of ILs is still unclear. In the present study, zebrafish were used as model organisms to study the toxic effects of 1-ethyl-3-methylimidazolium nitrate ([C2mim]NO3) and 1-hydroxyethyl-3-methylimidazolium nitrate ([HOC2mim]NO3). The results showed that both promoted an increase in reactive oxygen species (ROS) contents, leading to lipid peroxidation and DNA damage. Furthermore, integrated biological response analysis showed that [HOC2mim]NO3 was less toxic to zebrafish than [C2mim]NO3, which indicated that adding functional groups decreased the toxicity of ILs to organisms. The influence of chemical structure on IL toxicity was also reported. These results could provide a scientific basis for better synthesis and utilization of ILs in the future.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Chao Cheng
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Chengbo Lu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Wenxiu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, China.
| |
Collapse
|
207
|
Wang H, Wang X, Jia J, Qin Y, Chen S, Wang S, Martyniuk CJ, Yan B. Comparative toxicity of [C 8mim]Br and [C 8py]Br in early developmental stages of zebrafish (Danio rerio) with focus on oxidative stress, apoptosis, and neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103864. [PMID: 35430362 DOI: 10.1016/j.etap.2022.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/19/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The increasing production and usage of ionic liquids (ILs) have raised global ecotoxicological concerns regarding their release into the environment. While the effects of side chains on the IL-induced toxicity in various aquatic organisms have been well-recognized, the role of cationic cores in determining their ecotoxicity remains to be elucidated. Herein, the comparative bioavailability and toxicity of two ILs with different cationic cores but the same anion and side chain in zebrafish embryos were determined. 1-octyl-3-methylimidazolium bromide ([C8mim]Br) has higher accumulation in zebrafish, and triggered developmental toxicity by inducing oxidative stress and apoptosis. Meanwhile, 1-octyl-1-methylpyridium bromide ([C8py]Br) enhanced SOD activity and upregulated anti-apoptotic bcl-2 gene expression, contributing to its much lower neurodevelopmental toxicity. Our study demonstrates the vital role of cationic core in determining the developmental toxicity of ILs and highlights the need for further investigations into the toxicity of imidazolium and pyridinium based ILs in aquatic ecosystems.
Collapse
Affiliation(s)
- Huangyingzi Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohong Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Yingju Qin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Siying Chen
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shenqing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, Florida 32611, USA
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
208
|
Anggraini Y, Yusuf A, Wonorahardjo S, Kurnia D, Viridi S, Magdalena Sutjahja I. Role of C2 Methylation and Anion Type on the Physicochemical and Thermal Properties of Imidazolium-Based Ionic Liquids. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
209
|
Synthesis, Physical Properties and Electrochemical Applications of Two Ionic Liquids Containing the Asymmetric (Fluoromethylsulfonyl)(Trifluoromethylsulfonyl)imide Anion. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Novel ionic liquid (IL) electrolytes based on the asymmetric (fluoromethylsulfonyl)(trifluoromethylsulfonyl)imide (FTFSI)− anion, combined with the N-trimethyl-N-butyl-ammonium (N1114)+ and N,N-diethyl-N-methyl-N(2-methoxyethyl)-ammonium (N122(2O1))+ cations, were successfully synthesized and investigated in terms of thermal, vibrational and electrochemical properties. Thermogravimetric measurements revealed that the ionic liquids are stable up to 300 °C (2% mass loss). Differential scanning calorimetry measurements evidenced no phase transition down to −90 °C, suggesting a transition towards a glass state at lower temperatures. Infrared spectroscopy measurements, for the first time performed on ILs containing FTFSI, could not detect any crystallization down to −140 °C. The frequency of the main absorption bands of the ILs are in good agreement with DFT calculations. The FTFSI ionic liquid electrolytes, containing 20% mol of LiTFSI, show no solid-liquid phase transition due to the asymmetry of the FTFSI− anion, increasing the −10 °C conductivity up to 10−4 S cm−1. These interesting ion transport properties remarkably extend the operative temperature range down to low temperatures. The FTFSI electrolytes exhibit remarkable electrochemical stability up to 4.8 V, this making them appealing for realizing safer and highly reliable lithium battery systems operating at high voltages.
Collapse
|
210
|
Babamale HF, Khor BK, Chear NJY, Yam WS. Safe and selective anticancer agents from tetrafluorinated azobenzene-imidazolium ionic liquids: Synthesis, characterization, and cytotoxic effects. Arch Pharm (Weinheim) 2022; 355:e2200085. [PMID: 35478416 DOI: 10.1002/ardp.202200085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/07/2022]
Abstract
A new series of tetrafluorinated azobenzene-imidazolium salts is reported. The azobenzene and imidazolium moieties were functionalized with long alkyl chains and connected via a methylene spacer of varying lengths (n = 3-12). They were characterized using FTIR and NMR spectroscopy, and elemental microanalysis. The cytotoxic potential of these ionic dimers against neuroblastoma (SHSY-5Y), estrogen-positive breast cancer cells (MCF-7), triple-negative breast cancer cells (MDA-MB-231), cervical cancer cells (HeLa), and human skin fibroblasts (Hs27) was evaluated using the MTT assay. The cytotoxicity of these ionic liquids (ILs) was dependent on the spacer length. A cut-off effect was observed, wherein the cytotoxicity of the ILs was enhanced by increasing the nonpolar, hydrophobic spacer length up to a threshold and the potency was leveled off upon chain elongation. All ILs exhibited selective and remarkable inhibition potentials against HeLa cells in a dose-dependent manner, which was 2-22 times stronger than that of etoposide, a clinical anticancer drug. These ILs were less toxic toward skin fibroblasts as implied by much higher IC50 values. The long-spacer ILs (n = 7-10) were very selective toward HeLa cells. They had a broad safety window with selectivity indices ranging between 5.6 and 11.0. The selectivity of these compounds toward HeLa cells may serve as a new strategy for the design and development of safe and effective chemotherapeutics.
Collapse
Affiliation(s)
- Halimah F Babamale
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Department of Industrial Chemistry, University of Ilorin, Ilorin, Malaysia
| | - Boon-Keat Khor
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor, Malaysia.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | | | - Wan Sinn Yam
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
211
|
Lyubimov SE, Cherkasova PV, Chowdhury B. The use of triethanolamine ammonium salts as catalysts for the addition of carbon dioxide to epoxides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
212
|
Duong DV, Tran HV, Pathirannahalage SK, Brown SJ, Hassett M, Yalcin D, Meftahi N, Christofferson AJ, Greaves TL, Le TC. Machine learning investigation of viscosity and ionic conductivity of protic ionic liquids in water mixtures. J Chem Phys 2022; 156:154503. [PMID: 35459305 DOI: 10.1063/5.0085592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ionic liquids (ILs) are well classified as designer solvents based on the ease of tailoring their properties through modifying the chemical structure of the cation and anion. However, while many structure-property relationships have been developed, these generally only identify the most dominant trends. Here, we have used machine learning on existing experimental data to construct robust models to produce meaningful predictions across a broad range of cation and anion chemical structures. Specifically, we used previously collated experimental data for the viscosity and conductivity of protic ILs [T. L. Greaves and C. J. Drummond, Chem. Rev. 115, 11379-11448 (2015)] as the inputs for multiple linear regression and neural network models. These were then used to predict the properties of all 1827 possible cation-anion combinations (excluding the input combinations). These models included the effect of water content of up to 5 wt. %. A selection of ten new protic ILs was then prepared, which validated the usefulness of the models. Overall, this work shows that relatively sparse data can be used productively to predict physicochemical properties of vast arrays of ILs.
Collapse
Affiliation(s)
- Dung Viet Duong
- School of Engineering, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Hung-Vu Tran
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, USA
| | | | - Stuart J Brown
- School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Michael Hassett
- School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Dilek Yalcin
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Tu C Le
- School of Engineering, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia
| |
Collapse
|
213
|
Ossowicz-Rupniewska P, Klebeko J, Świątek E, Bilska K, Nowak A, Duchnik W, Kucharski Ł, Struk Ł, Wenelska K, Klimowicz A, Janus E. Influence of the Type of Amino Acid on the Permeability and Properties of Ibuprofenates of Isopropyl Amino Acid Esters. Int J Mol Sci 2022; 23:ijms23084158. [PMID: 35456976 PMCID: PMC9025941 DOI: 10.3390/ijms23084158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Modifications of (RS)-2-[4-(2-methylpropyl)phenyl] propanoic acid with amino acid isopropyl esters were synthesised using different methods via a common intermediate. The main reaction was the esterification of the carboxyl group of amino acids with isopropanol and chlorination of the amino group of the amino acid, followed by an exchange or neutralisation reaction and protonation. All of the proposed methods were very efficient, and the compounds obtained have great potential to be more effective drugs with increased skin permeability compared with ibuprofen. In addition, it was shown how the introduction of a modification in the form of an ion pair affects the properties of the obtained compound.
Collapse
Affiliation(s)
- Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, PL-71065 Szczecin, Poland; (J.K.); (E.Ś.); (K.B.); (E.J.)
- Correspondence: ; Tel.: +48-449-4801
| | - Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, PL-71065 Szczecin, Poland; (J.K.); (E.Ś.); (K.B.); (E.J.)
| | - Ewelina Świątek
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, PL-71065 Szczecin, Poland; (J.K.); (E.Ś.); (K.B.); (E.J.)
| | - Karolina Bilska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, PL-71065 Szczecin, Poland; (J.K.); (E.Ś.); (K.B.); (E.J.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, PL-70111 Szczecin, Poland; (A.N.); (Ł.K.); (A.K.)
| | - Wiktoria Duchnik
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, PL-70111 Szczecin, Poland;
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, PL-70111 Szczecin, Poland; (A.N.); (Ł.K.); (A.K.)
| | - Łukasz Struk
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Al. Piastów 42, PL-71065 Szczecin, Poland;
| | - Karolina Wenelska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, PL-70311 Szczecin, Poland;
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, PL-70111 Szczecin, Poland; (A.N.); (Ł.K.); (A.K.)
| | - Ewa Janus
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, PL-71065 Szczecin, Poland; (J.K.); (E.Ś.); (K.B.); (E.J.)
| |
Collapse
|
214
|
Ionic liquid-based magnetic nanoparticles for magnetic dispersive solid-phase extraction: A review. Anal Chim Acta 2022; 1201:339632. [PMID: 35300789 DOI: 10.1016/j.aca.2022.339632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
Abstract
Due to their highly tunable nature and outstanding physicochemical properties, ionic liquids (ILs) have been widely reported for use in the synthesis of multitudinous magnetic nanoparticles (MNPs). IL-based magnetic nanoparticles (IL-MNPs) have great potential in magnetic dispersive solid-phase extraction (MDSPE). At present, IL-MNPs have been successfully applied in the pretreatment of MDSPE samples from medicines, pesticides, veterinary drugs, heavy metals, dyes, additives, and proteins in agricultural products, foods and beverages, environmental water, and biological samples. In this review, the preparation of IL-MNPs and their application in MDSPE are comprehensively summarized. The structural characteristics of the introduced ILs used to prepare the IL-MNPs and the synthetic routes employed to obtain the IL-MNPs are described, including physical coating and chemical bonding methods. The IL-MNPs are then classified and described according to different modified materials, including silica-based materials, carbon-based materials, metal-organic frameworks, molecularly imprinted polymers and other interesting large/small molecules. Finally, the research prospects and development directions of IL-MNPs in the context of MDSPE are further identified.
Collapse
|
215
|
|
216
|
Abstract
Organic carbonates are considered the chemicals of the future. In particular, propylene carbonate is widely used as a non-reactive solvent, plasticizer, fuel additive, and reagent, especially in the production of environmentally friendly polymers that are not harmful to human health. This paper reviews recent literature findings regarding the development of propylene carbonate synthetic methods starting from propane-1,2-diol and urea. The ammonia formed during the synthesis is recycled to obtain urea from carbon dioxide.
Collapse
|
217
|
In Situ XANES Studies on Extracted Copper from Scrap Cu/ITO Thin Film in an Ionic Liquid Containing Iodine/Iodide. Molecules 2022; 27:molecules27061771. [PMID: 35335133 PMCID: PMC8954183 DOI: 10.3390/molecules27061771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Copper is coated on indium-tin-oxide (ITO) thin film to improve its electrical resistivity. In order to recycle the scrap Cu/ITO thin film, an ionic liquid (1-butyl-3-methyl imidazolium hexafluorophosphate ([C4mim][PF6])) containing iodine/iodide (IL-I) was used to extract copper at 303, 343, 413, 374, and 543 K. The extraction efficiency of copper from the scrap Cu/ITO thin film was >99% with IL-I. Using XRD, crystal In2O3 was found on the regenerated ITO thin film which had a resistivity similar to that of unused ITO thin film. Using X-ray absorption near edge structural (XANES) spectroscopy, at least two paths for the extraction of copper from the Cu/ITO thin film into IL-I were identified. Path I: Copper is stripped from the scrap Cu/ITO thin film and then interacts with I3− in the IL-I to form nano CuI. The nano CuI further interacts with I−. Path II: Copper interacts with I3− on the surface of the Cu/ITO thin film to form nano CuI. The nano CuI is further stripped into the IL-I to interact with I−. During extraction, the nanoparticle size could be increased in the IL-I by conglomeration due to fewer coordinating anions and decrease in the viscosity of IL-I at high temperatures. Furthermore, nanoparticle growth was affected by [PF6]− of the IL-I determined via 31P NMR.
Collapse
|
218
|
Karami Z, Khodaei MM. Post‐synthetic modification of IR-MOF‐3 as acidic-basic heterogeneous catalyst for one-pot synthesis of pyrimido[4,5-b]quinolones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
219
|
Bernardo SC, Carapito R, Neves MC, Freire MG, Sousa F. Supported Ionic Liquids Used as Chromatographic Matrices in Bioseparation-An Overview. Molecules 2022; 27:1618. [PMID: 35268719 PMCID: PMC8911583 DOI: 10.3390/molecules27051618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022] Open
Abstract
Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.
Collapse
Affiliation(s)
- Sandra C. Bernardo
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Rita Carapito
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| | - Márcia C. Neves
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (S.C.B.); (R.C.)
| |
Collapse
|
220
|
Ijardar SP, Singh V, Gardas RL. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules 2022; 27:1368. [PMID: 35209161 PMCID: PMC8877072 DOI: 10.3390/molecules27041368] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 01/31/2023] Open
Abstract
Recently, deep eutectic solvent (DES) or ionic liquid (IL) analogues have been considered as the newest green solvent, demonstrating the potential to replace harsh volatile organic solvents. DESs are mainly a combination of two compounds: hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), which have the ability to interact through extensive hydrogen bonds. A thorough understanding of their physicochemical properties is essential, given their successful applications on an industrial scale. The appropriate blend of HBA to HBD can easily fine-tune DES properties for desired applications. In this context, we have reviewed the basic information related to DESs, the two most studied physicochemical properties (density and viscosity), and their performance as a solvent in (i) drug delivery and (ii) extraction of biomolecules. A broader approach of various factors affecting their performance has been considered, giving a detailed picture of the current status of DESs in research and development.
Collapse
Affiliation(s)
- Sushma P. Ijardar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Vickramjeet Singh
- Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India;
| | - Ramesh L. Gardas
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
221
|
Monsalve-Atencio R, Montaño DF, Contreras-Calderón J. Molecular imprinting technology and poly (ionic liquid)s: Promising tools with industrial application for the removal of acrylamide and furanic compounds from coffee and other foods. Crit Rev Food Sci Nutr 2022; 63:6820-6839. [PMID: 35170386 DOI: 10.1080/10408398.2022.2038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coffee is one of the most consumed beverages in the world. Coffee provides to the consumer special sensorial characteristics, can help to prevent diseases, improves physical performance and increases focus. In contrast, coffee consumption supplies a significant source of substances with carcinogenic and genotoxic potential such as furan, hydroxymethylfurfural (HMF), furfural (F), and acrylamide (AA). The present review addresses the issues around the presence of such toxic substances formed in Maillard reaction (MR) during thermal treatments in food processing, from chemical and, toxicological perspectives, occurrences in coffee and other foods processed by heating. In addition, current strategies advantages and disadvantages are presented along with application of molecular imprinting technology (MIT) and poly (ionic liquid) s (PIL) as an alternative to reduce the furan, HMF, F and AA content in coffee and other foods.
Collapse
Affiliation(s)
- Robinson Monsalve-Atencio
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| | - Diego F Montaño
- Department of Chemistry, Faculty of Basic Sciences, University of Pamplona, Pamplona, Norte de Santander, Colombia
| | - José Contreras-Calderón
- Bioali Research Group, Food Department, Faculty of Pharmaceutical and Food Sciences, University of Antioquia, Medellín, Colombia
| |
Collapse
|
222
|
Han Q, Brown SJ, Drummond CJ, Greaves TL. Protein aggregation and crystallization with ionic liquids: Insights into the influence of solvent properties. J Colloid Interface Sci 2022; 608:1173-1190. [PMID: 34735853 DOI: 10.1016/j.jcis.2021.10.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
Ionic liquids (ILs) have been used in solvents for proteins in many applications, including biotechnology, pharmaceutics, and medicine due to their tunable physicochemical and biological properties. Protein aggregation is often undesirable, and predominantly occurs during bioprocesses, while the aggregation process can be reversible or irreversible and the aggregates formed can be native/non-native and soluble/insoluble. Recent studies have clearly identified key properties of ILs and IL-water mixtures related to protein performance, suggesting the use of the tailorable properties of ILs to inhibit protein aggregation, to promote protein crystallization, and to control protein aggregation pathways. This review discusses the critical properties of IL and IL-water mixtures and presents the latest understanding of the protein aggregation pathways and the development of IL systems that affect or control the protein aggregation process. Through this feature article, we hope to inspire further advances in understanding and new approaches to controlling protein behavior to optimize bioprocesses.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Stuart J Brown
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
223
|
Bumagin NA. Chitosan-Based Magnetic Polymetallic Pd-Catalysts for Heck Reaction in Aqueous Media. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
224
|
Magana JR, Pérez-Calm A, Rodriguez-Abreu C. Chromonic nematic liquid crystals in a room-temperature ionic liquid. Chem Commun (Camb) 2022; 58:1724-1727. [PMID: 35024700 DOI: 10.1039/d1cc05800b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Planar multiaromatic molecules hierarchically and selectively arrange into nematic chromonic liquid crystals in the room temperature ionic liquid 2-hydroxyethylammonium formate. In a proof of concept, these liquid crystals were used as reaction media to produce mesostructured silica materials under mild biomimetic conditions. Several other applications are envisaged.
Collapse
Affiliation(s)
- Jose Rodrigo Magana
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26 08034, Barcelona, Spain.
| | - Adria Pérez-Calm
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26 08034, Barcelona, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26 08034, Barcelona, Spain
| | - Carlos Rodriguez-Abreu
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Jordi Girona 18-26 08034, Barcelona, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26 08034, Barcelona, Spain
| |
Collapse
|
225
|
Phakoukaki YV, O'Shaughnessy P, Angeli P. Intensified liquid-liquid extraction of biomolecules using ionic liquids in small channels. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
226
|
Ghazipour H, Gutiérrez A, Alavianmehr M, Hosseini S, Aparicio S. Tuning the properties of ionic liquids by mixing with organic solvents: The case of 1-butyl-3-methylimidazolium glutamate with alkanols. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
227
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
228
|
Highly sensitive and disposable screen-printed ionic liquid/graphene based electrochemical sensors. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
229
|
Gholinejad M, Esmailoghli H, Khosravi F, Sansano JM. Ionic Liquid Modified Carbon Nanotube Supported Palladium Nanoparticles for Efficient Sonogashira-Hagihara Reaction. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
230
|
Garcia-Quintana L, Ortiz-Vitoriano N, Zhu H, Nolis GM, Herrero-Martín J, Echeverría M, López Del Amo JM, Forsyth M, Bond AM, Howlett PC, Pozo-Gonzalo C. Unveiling the Impact of the Cations and Anions in Ionic Liquid/Glyme Hybrid Electrolytes for Na-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4022-4034. [PMID: 35019264 DOI: 10.1021/acsami.1c20257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A series of hybrid electrolytes composed of diglyme and ionic liquids (ILs) have been investigated for Na-O2 batteries, as a strategy to control the growth and purity of the discharge products during battery operation. The dependence of chemical composition of the ILs on the size, purity, and distribution of the discharge products has been evaluated using a wide range of experimental and spectroscopic techniques. The morphology and composition of the discharge products found in the Na-O2 cells have a complex dependence on the physicochemical properties of the electrolyte as well as the speciation of the Na+ and superoxide radical anion. All of these factors control the nucleation and growth phenomena as well as electrolyte stability. Smaller discharge particle sizes and largely homogeneous (2.7 ± 0.5 μm) sodium superoxide (NaO2) crystals with only 9% of side products were found in the hybrid electrolyte containing the pyrrolidinium IL with a linear alkyl chain. The long-term cyclability of Na-O2 batteries with high Coulombic efficiency (>90%) was obtained for this electrolyte with fewer side products (20 cycles at 0.5 mA h cm-2). In contrast, rapid failure was observed with the use of the phosphonium-based electrolyte, which strongly stabilizes the superoxide anion. A high discharge capacity (4.46 mA h cm-2) was obtained for the hybrid electrolyte containing the pyrrolidinium-based IL bearing a linear alkyl chain with a slightly lower value (3.11 mA h cm-2) being obtained when the hybrid electrolyte contained similar pyrrolidinium-based IL bearing an alkoxy chain.
Collapse
Affiliation(s)
- Laura Garcia-Quintana
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| | - Nagore Ortiz-Vitoriano
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, Bilbao 48013, Spain
| | - Haijin Zhu
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Gene M Nolis
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain
- ALBA Synchrotron, CELLS, Cerdanyola de Vallès 08290, Spain
| | | | - María Echeverría
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain
| | - Juan Miguel López Del Amo
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain
| | - Maria Forsyth
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, Bilbao 48013, Spain
| | - Alan M Bond
- ARC Centre of Excellence for Electromaterials Science and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Patrick C Howlett
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| | - Cristina Pozo-Gonzalo
- ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia
| |
Collapse
|
231
|
Li Q, Hamamoto Y, Kwek G, Xing B, Li Y, Ito S. Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang‐Qiang Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Germain Kwek
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
232
|
Vereycken W, Riaño S, Van Gerven T, Binnemans K. Continuous Counter-Current Ionic Liquid Metathesis in Mixer-Settlers: Efficiency Analysis and Comparison with Batch Operation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:946-955. [PMID: 35070519 PMCID: PMC8767539 DOI: 10.1021/acssuschemeng.1c06873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Following the initial cation formation, the synthesis of ionic liquids (ILs) often involves an anion-exchange or metathesis reaction. For hydrophobic ILs, this is generally performed through several cross-current contacts of the IL with a fresh salt solution of the desired anion. However, if a large number of contacts is required to attain an adequate conversion, this procedure is not economical because of the large excess of the reagent that is consumed. In this study, the metathesis of an IL, Aliquat 336 or [A336][Cl], to ILs with other anions ([A336][X] with X = HSO4 -, Br-, NO3 -, I-, and SCN-) was studied in a continuous counter-current mixer-settler setup. McCabe-Thiele diagrams were constructed to estimate the required number of stages for quantitative conversion. Significantly higher IL conversions were achieved, combined with reduced reagent consumption and waste production. This improvement in efficiency was most pronounced for anions placed low in the Hofmeister series, for example, HSO4 -, Br-, and NO3 -, which are difficult to exchange. The performance of the counter-current experiments was compared with the conventional multistep cross-current batch process by calculating the reaction mass efficiency (RME) and the environmental factor (E-factor). The RMEs of the cross-current experiments were notably smaller, that is, 38-78% of the values observed for the counter-current experiments. The E-factors of the counter-current experiments were a factor of 2.0-6.8 smaller than those of the cross-current experiments. These sustainability metrics indicate a highly efficient reagent use and a considerable, simultaneous decrease in waste production for the counter-current IL metathesis reactions.
Collapse
Affiliation(s)
- Willem Vereycken
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, B-3001 Leuven, Belgium
| | - Sofía Riaño
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, B-3001 Leuven, Belgium
| | - Tom Van Gerven
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, P.O. box 2424, B-3001 Leuven, Belgium
| | - Koen Binnemans
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, B-3001 Leuven, Belgium
| |
Collapse
|
233
|
Desai K, Dharaskar S, Khalid M, Gedam V. Effectiveness of ionic liquids in extractive–oxidative desulfurization of liquid fuels: a review. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02038-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
234
|
Abstract
This review addresses research and development on the use of ionic liquids as extractants and diluents in the solvent extraction of metals. Primary attention is given to the efficiency and selectivity of metal extraction from industrial wastewater with ionic liquids composed of various cations and anions. The review covers literature sources published in the period of 2010–2021. The bibliography includes 98 references dedicated to research on the extraction and separation of lanthanides (17 sources), actinides (5 sources), heavy metals (35 sources), noble metals, including the platinum group (16 sources), and some other metals.
Collapse
|
235
|
Ge W, Shuai J, Wang Y, Zhou Y, Wang X. Progress on chemical modification of cellulose in “green” solvents. Polym Chem 2022. [DOI: 10.1039/d1py00879j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemical modification of cellulose in "green" solvents.
Collapse
Affiliation(s)
- Wenjiao Ge
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianbo Shuai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuyuan Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuxi Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
236
|
Jalali-Mola S, Torabi M, Yarie M, Zolfigol MA. Acidic tributyl phosphonium-based ionic liquid: an efficient catalyst for preparation of diverse pyridine systems via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2022; 12:34730-34739. [DOI: 10.1039/d2ra04631h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Experimental procedure for the synthesis of triaryl pyridines, indolyl pyridines and nicotinonitriles.
Collapse
Affiliation(s)
- Sepideh Jalali-Mola
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
237
|
Johari S, Johan MR, Khaligh NG. An Overview of Metal-free Sustainable Nitrogen-based Catalytic Knoevenagel Condensation Reaction . Org Biomol Chem 2022; 20:2164-2186. [DOI: 10.1039/d2ob00135g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knoevenagel condensation reaction counts as a vital condensation in organic chemistry due to the synthesis of valuable intermediates, heterocycles, and fine chemicals from commercially available reactants through forming new C=C...
Collapse
|
238
|
Prykhodko Y, Martin A, Oulyadi H, Kobzar YL, Marais S, Fatyeyeva K. Imidazolium-based protic ionic liquids with perfluorinated anions: Influence of chemical structure on thermal properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
239
|
Characterization and applications of a trioctyl(3/4-vinylbenzyl)phosphonium stationary phase for use in capillary liquid chromatography. J Chromatogr A 2022; 1666:462866. [DOI: 10.1016/j.chroma.2022.462866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022]
|
240
|
Measurement of evaporation entropy, evaporation enthalpy, and Gibbs free energy for the [C4Dmim]Gly and [C4Dmim]Ala. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
241
|
Zhao X, Guo L, Xu T, Wang H, Zheng R, Jiang Z. Preparation of biacidic tin-based ionic liquid catalysts and their application in catalyzing coupling reaction between ethylene carbonate and dimethyl succinate to synthesize poly(ethylene succinate). NEW J CHEM 2022. [DOI: 10.1039/d2nj03225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new low-carbon and environmentally friendly process method for the catalytic synthesis of biodegradable polyester by utilizing ionic liquid catalysts.
Collapse
Affiliation(s)
- Xiudan Zhao
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Liying Guo
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Tiejun Xu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Haiyue Wang
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Rongrong Zheng
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| | - Zezhong Jiang
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, People's Republic of China
| |
Collapse
|
242
|
Zhao X, Guo L, Xu T, Zheng R, Wang H. Preparation of Keggin-type monosubstituted polyoxometalate ionic liquid catalysts and their application in catalyzing the coupling reaction of ethylene carbonate and dimethyl succinate to synthesize poly(ethylene succinate). NEW J CHEM 2022. [DOI: 10.1039/d2nj03094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Keggin-type monosubstituted polyoxometalate-ionic liquids catalysts (POM-ILs) were synthesized. The chemical structure, crystal structure, catalyst morphology, elemental and thermal stability properties of POM-ILs were characterized and analyzed. And...
Collapse
|
243
|
Ouyang P, Zhang R, Zhou J, Liu H, Liu Z, Xu C, Zeng S, Su Q, Zhang X, Meng X. Effects of Cu(I) contents on voltammetric behavior and electrodeposition mechanism of bimetallic composite ionic liquids. NEW J CHEM 2022. [DOI: 10.1039/d2nj02556f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective electrochemical recovery of metal for bimetallic composite ionic liquid (IL) is related to ion species and even the reaction mechanism under different Cu(I) content, thus bimetallic composite ILs (Et3NHCl-1.54AlCl3-xCuCl,...
Collapse
|
244
|
Li QQ, Hamamoto Y, Tan CCH, Sato H, Ito S. 1,3-Dipolar cycloaddition of azomethine ylides and imidoyl halides for synthesis of π-extended imidazolium salts. Org Chem Front 2022. [DOI: 10.1039/d2qo00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic approach to π-extended imidazolium salts is developed based on 1,3-dipolar cycloaddition of polycyclic aromatic azomethine ylides with imidoyl chlorides in the presence of cesium fluoride as a key additive.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cheryl Cai Hui Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-Cho, Akishima, Tokyo 196-8666, Japan
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
245
|
Understanding the physicochemical and transport properties of pyrazolium based ionic liquids bearing iodide and triiodide anions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
246
|
Kumar S, Fischer M, Kaur N, Scheidt HA, Mithu VS. Impact of Lipid Ratio on the Permeability of Mixed Phosphatidylcholine/Phosphatidylglycerol Membranes in the Presence of 1-Dodecyl-3-methylimidazolium Bromide Ionic Liquid. J Phys Chem B 2021; 126:174-183. [PMID: 34965130 DOI: 10.1021/acs.jpcb.1c06796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied the impact of the lipid ratio on the membrane permeability of mixed phosphatidylcholine (POPC)/phosphatidylglycerol (POPG) membranes induced by 1-dodecyl-3-methylimidazolium bromide ([C12MIM]+Br-) ionic liquid by evaluating the role of affinity and architecture of the phospholipid bilayer. Nine different model membranes composed of negatively charged POPG and zwitterionic POPC lipids mixed in molar ratios of 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9 have been studied. The membrane permeability of each composition has been evaluated using fluorescence-based dye leakage assays. Despite having the highest membrane affinity, POPG-rich membranes doped with 10 and 20 mol % POPC are found to be the least permeable. 31P- and 2H-based solid-state NMR investigations reveal that the minor POPC component is homogeneously dispersed in the PG/PC (8:2) membrane. In contrast, the lipids seem to be segregated into POPG- and POPC-rich domains in the complementary PG/PC (2:8) composition. Although [C12MIM]+ cations have a stronger interaction with the POPG component in the mixed membranes, their insertion has a limited impact on the overall structure and dynamics of the PG/PC (8:2) composition.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Markus Fischer
- Institut für Medizinische Physik und Biophysik, Leipzig University, Leipzig 04109, Germany
| | - Navleen Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Holger A Scheidt
- Institut für Medizinische Physik und Biophysik, Leipzig University, Leipzig 04109, Germany
| | - Venus Singh Mithu
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
247
|
Li S, Li Y, Wang Y, Li R, Niu H, Liu C, Zhang Y. Ionic-liquid-based ultrasound-assisted extraction combined with counter-current chromatography and semi-preparative-LC for the preparation of monoamine oxidase B inhibitors from Pueraria thomsonii. J Sep Sci 2021; 45:1116-1127. [PMID: 34967131 DOI: 10.1002/jssc.202100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/01/2021] [Accepted: 12/26/2021] [Indexed: 11/10/2022]
Abstract
A simple and efficient method was developed for the rapid screening and identification of ligands for monoamine oxidase B. A new ionic-liquid-based ultrasound-assisted extraction method for medicinal herbs was also developed and validated. In addition, the hyphenated technique of counter-current chromatography and semi-preparative-LC was developed and applied to the isolation of the chemical constituents for Pueraria thomsonii Benth. Three potent monoamine oxidase B inhibitors, viz. daidzein-4',7-diglucoside (42.2 mg), puerarin 6''-O-xyloside (88.3 mg), and 3'-hydroxypuerarin (48.5 mg) with purities of 98.2%, 96.3%, and 97.1%, respectively, were obtained from 500 g of P. thomsonii raw material using semi-HPLC, whereas 3'-methoxypuerarin (76.2 mg), daidzein-8-C-apiosyl (1→6) glucoside (84.2 mg), and tectorigenin (75.1 mg) with purities of 98.5%, 96.4%, and 96.8%, respectively, were obtained from 500 g raw material via counter-current chromatography using a two-phase solvent system comprising n-hexane-ethyl acetate-methanol-water at a volume ratio of 1.85:1.00:0.86:3.69 (v/v). Then, the anti-Alzheimer activity of the phytochemicals was assessed using a PC12 cell model. Treatment with tectorigenin, daidzein-4',7-diglucoside, puerarin 6''-O-xyloside, 3'-hydroxypuerarin, 3'-methoxypuerarin, and daidzein-8-C-apiosyl (1→6) glucoside (100 μg/mL), resulted in cell viabilities of 69.00%, 65.81%, 59.69%, 57.90%, 55.61%, and 54.59%, respectively (P < 0.001). The protocol was proved to be very accurate and efficient. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, P. R. China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, P. R. China
| | - Ying Wang
- Teacher development center, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, P. R. China
| | - Ruizhe Li
- Jiujiu Biotechnology Company, No.126 Xinfa Road, Nanguan District, Changchun, P. R. China
| | - Huazhou Niu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, P. R. China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, P. R. China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Erdao District, Changchun, 130032, P. R. China
| |
Collapse
|
248
|
Maglia de Souza R, Karttunen M, Ribeiro MCC. Fine-Tuning the Polarizable CL&Pol Force Field for the Deep Eutectic Solvent Ethaline. J Chem Inf Model 2021; 61:5938-5947. [PMID: 34797679 DOI: 10.1021/acs.jcim.1c01181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polarizable force fields are gradually becoming a common choice for ionic soft matter, in particular, for molecular dynamics (MD) simulations of ionic liquids (ILs) and deep eutectic solvents (DESs). The CL&Pol force field introduced in 2019 is the first general, transferable, and polarizable force field for MD simulations of different types of DESs. The original formulation contains, however, some problems that appear in simulations of ethaline and may also have a broader impact. First, the originally proposed atomic diameter parameters are unbalanced, resulting in too weak interactions between the chlorides and the hydroxyl groups of the ethylene glycol molecules. This, in turn, causes an artificial phase separation in long simulations. Second, there is an overpolarization of chlorides due to strong induced dipoles that give rise to the presence of peaks and antipeaks at very low q-vector values (2.4 nm-1) in the partial components of the structure factors. In physical terms, this is equivalent to overestimated spatial nanoscale heterogeneity. To correct these problems, we adjusted the chloride-hydroxyl radial distribution functions against ab initio data and then extended the use of the Tang-Toennis damping function for the chlorides' induced dipoles. These adjustments correct the problems without losing the robustness of the CL&Pol force field. The results were also compared with the nonpolarizable version, the CL&P force field. We expect that the corrections will facilitate reliable use of the CL&Pol force field for other types of DESs.
Collapse
Affiliation(s)
- Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.,Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.,Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil
| |
Collapse
|
249
|
Liu XT, Nie XL, Chen SS, Wu SQ, Xiong WM. Crystal structure of 1,1′-(methane-1,1-diyl)bis(3-propyl-1 H-imidazol-3-ium) bis(hexafluoridophosphate), C 13H 22F 12N 4P 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C13H22F12N4P2, monoclinic, P21/c (no. 14), a = 25.252(3) Å, b = 8.3297(9) Å, c = 23.268(2) Å, β = 116.271(1)°, V = 4388.7(8) Å3, Z = 8, R
gt
(F) = 0.0661, wR
ref(F
2) = 0.2191, T = 296(2) K.
Collapse
Affiliation(s)
- Xin-Ting Liu
- Department of Chemistry , Jiangxi Agricultural University , Nanchang 330031 , People's Republic of China
| | - Xu-Liang Nie
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, Department of Chemistry , Jiangxi Agricultural University , Nanchang 330031 , People's Republic of China
| | - Shi-Shun Chen
- Department of Chemistry , Jiangxi Agricultural University , Nanchang 330031 , People's Republic of China
| | - Su-Qin Wu
- Department of Chemistry , Jiangxi Agricultural University , Nanchang 330031 , People's Republic of China
| | - Wan-Ming Xiong
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang , College of Sciences, Jiangxi Agricultural University , Nanchang 330045 , People’s Republic of China
| |
Collapse
|
250
|
Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Gad EM. Fine-tuning of the pharmacological potential of novel thiazolium ionic liquids by anion alteration. RSC Adv 2021; 12:458-469. [PMID: 35424514 PMCID: PMC8978639 DOI: 10.1039/d1ra07128a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
A novel series of thiazolium ionic liquids (TILs) bound to chloride (2a-c), tetrafluoroborate (BF4) (3a-c), and bis-(trifluoromethanesulfonimide) (Tf2N) anions (4a-c) was synthesized and their physicochemical characteristics were investigated using various microanalytical techniques. The pharmacological potential of the new TILs was assessed as chemotherapeutic agents for bacterial infections and ovarian cancer (SKOV-3). Notably, ILs with the same cations become more bactericidal upon their binding with the strongest chaotropic anion (TN2f). The in vitro toxicity of the TILs toward ovarian carcinoma cell lines (SKOV-3) and normal human skin fibroblast cells (HSF) revealed that all tested TILs have the capacity to induce a dose- and time-dependent decline in SKOV-3 cell viability, with Tf2N-linked TILs (4a-c) having a preferable efficacy. In addition, the new compounds showed excellent selectivity for cancer cells (SKOV-3) over healthy cells (HSF). [iPBzTh][Tf2N] (4b) is the most cytotoxic and specific one and may act as a promising anti-ovarian cancer agent.
Collapse
Affiliation(s)
- Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University 9004 Abha Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company) Giza 12311 Egypt
| | - Reda F M Elshaarawy
- Chemistry Department, Faculty of Science, Suez University 43533 Suez Egypt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf Düsseldorf Germany
| | - Emad M Gad
- Chemistry Department, Faculty of Science, Suez Canal University Ismalia Egypt
| |
Collapse
|