201
|
Skuse DH, Gallagher L. Dopaminergic-neuropeptide interactions in the social brain. Trends Cogn Sci 2008; 13:27-35. [PMID: 19084465 DOI: 10.1016/j.tics.2008.09.007] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 12/22/2022]
Abstract
A well-mapped set of brain regions is dedicated to social cognition. It is responsive to social cues, engaged in moral decision-making and makes predictions about the likely behaviour of other people. Recent studies of affiliation, using animal models, have revealed that specific neurotransmitters and hormones influence the neural circuits of 'the social brain'. There is converging evidence that the interface between the neuropeptides oxytocin and vasopressin and dopaminergic reward circuits is of particular importance. In the context of recent research, we discuss emerging evidence for the impact of these neuropeptides on the regulation of the social brain. We also examine the putative role of allelic variation in candidate genes on individual differences in social cognitive processing and associated social behaviour.
Collapse
Affiliation(s)
- David H Skuse
- Behavioural and Brain Sciences Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | | |
Collapse
|
202
|
Donaldson ZR, Young LJ. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 2008; 322:900-4. [PMID: 18988842 DOI: 10.1126/science.1158668] [Citation(s) in RCA: 1079] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is growing evidence that the neuropeptides oxytocin and vasopressin modulate complex social behavior and social cognition. These ancient neuropeptides display a marked conservation in gene structure and expression, yet diversity in the genetic regulation of their receptors seems to underlie natural variation in social behavior, both between and within species. Human studies are beginning to explore the roles of these neuropeptides in social cognition and behavior and suggest that variation in the genes encoding their receptors may contribute to variation in human social behavior by altering brain function. Understanding the neurobiology and neurogenetics of social cognition and behavior has important implications, both clinically and for society.
Collapse
Affiliation(s)
- Zoe R Donaldson
- Center for Behavioral Neuroscience, Yerkes Regional Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
203
|
Greenwood AK, Wark AR, Fernald RD, Hofmann HA. Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. Proc Biol Sci 2008; 275:2393-402. [PMID: 18628117 DOI: 10.1098/rspb.2008.0622] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides have widespread modulatory effects on behaviour and physiology and are associated with phenotypic transitions in a variety of animals. Arginine vasotocin (AVT) is implicated in mediating alternative male phenotypes in teleost fish, but the direction of the association differs among species, with either higher or lower AVT related to more territorial behaviour in different fishes. To clarify the complex relationship between AVT and alternative phenotype, we evaluated AVT expression in an African cichlid in which social status is associated with divergent behaviour and physiology. We compared AVT mRNA expression between territorial and non-territorial (NT) males in both whole brains and microdissected anterior preoptic areas using transcription profiling, and in individual preoptic nuclei using in situ hybridization. These complementary methods revealed that in the posterior preoptic area (gigantocellular nucleus), territorial males exhibit higher levels of AVT expression than NT males. Conversely, in the anterior preoptic area (parvocellular nucleus), AVT expression is lower in territorial males than NT males. We further correlated AVT expression with behavioural and physiological characteristics of social status to gain insight into the divergent functions of individual AVT nuclei. Overall, our findings highlight a complex association between AVT and social behaviour.
Collapse
Affiliation(s)
- Anna K Greenwood
- Program in Neurosciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
204
|
Williamson M, Viau V. Selective contributions of the medial preoptic nucleus to testosterone-dependant regulation of the paraventricular nucleus of the hypothalamus and the HPA axis. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1020-30. [DOI: 10.1152/ajpregu.90389.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous data have consistently demonstrated an inhibitory effect of androgens on stress-induced hypothalamic-pituitary-adrenal (HPA) responses. Several brain regions may influence androgen-mediated inhibition of the HPA axis, including the medial preoptic area. To test the role of the medial preoptic nucleus (MPN) specifically, we examined in high- and low-testosterone-replaced gonadectomized rats bearing discrete bilateral lesions of the MPN basal and stress-induced indexes of HPA function, and the relative levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA in the amygdala. High testosterone replacement decreased plasma adrenocorticotropin hormone (ACTH) and paraventricular nucleus (PVN) Fos responses to restraint exposure in sham- but not in MPN-lesioned animals. AVP-, but not CRH-immunoreactivity staining in the external zone of the median eminence was increased by testosterone in sham animals, and MPN lesions blocked this increment in AVP. A similar interaction between MPN lesions and testosterone occurred on AVP mRNA levels in the medial nucleus of the amygdala. These findings support an involvement of MPN projections in mediating the AVP response to testosterone in both the medial parvocellular PVN and medial amygdala. We conclude that the MPN forms part of an integral circuit that mediates the central effects of gonadal status on neuroendocrine and central stress responses.
Collapse
|
205
|
de Vries GJ, Jardon M, Reza M, Rosen GJ, Immerman E, Forger NG. Sexual differentiation of vasopressin innervation of the brain: cell death versus phenotypic differentiation. Endocrinology 2008; 149:4632-7. [PMID: 18499746 PMCID: PMC2553370 DOI: 10.1210/en.2008-0448] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In most vertebrates studied, males have more vasopressin (VP) cells in the bed nucleus of the stria terminalis, or homologous vasotocin cells in nonmammalian species, than females. Previous research excluded differential cell birth and migration as likely mechanisms underlying this difference, leaving just differential cell death and phenotypic differentiation of existing cells. To differentiate between these remaining possibilities, we compared VP cell number in wild-type mice vs. mice overexpressing the anti-cell death factor, Bcl-2. All animals were gonadectomized in adulthood and given testosterone capsules. Three weeks later, brains were processed for in situ hybridization to identify VP cells. Bcl-2 overexpression increased VP cell number in both sexes but did not reduce the sex difference. We repeated this experiment in mice with a null mutation of the pro-cell death gene, Bax, and obtained similar results; cell number was increased in Bax(-/-) mice of both sexes, but males had about 40% more VP cells, regardless of Bax gene status. Taken together, cell death is unlikely to account for the sex difference in VP cell number, leaving differentiation of cell phenotype as the most likely underlying mechanism. We also used immunocytochemistry to examine VP projections in Bcl-2-overexpressing mice. As expected, males showed denser VP-immunoreactive fibers than females in the lateral septum, a projection area of the bed nucleus of the stria terminalis. However, even though Bcl-2 overexpression increased VP cell number, it did not affect fiber density. Thus, a compensatory mechanism may control total septal innervation regardless of the number of contributing cells.
Collapse
Affiliation(s)
- Geert J de Vries
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | |
Collapse
|
206
|
Rood BD, Murray EK, Laroche J, Yang MK, Blaustein JD, De Vries GJ. Absence of progestin receptors alters distribution of vasopressin fibers but not sexual differentiation of vasopressin system in mice. Neuroscience 2008; 154:911-21. [PMID: 18514427 DOI: 10.1016/j.neuroscience.2008.03.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
Perinatal estrogens increase the number of vasopressin-expressing cells and the density of vasopressin-immunoreactive fibers observed in adult male rodents. The mechanism of action of estrogens on sexual differentiation of the extra-hypothalamic vasopressin system is unknown. We hypothesized that the sexually dimorphic expression of progestin receptors (PRs) during development would masculinize vasopressin expression in mice. We compared the number of vasopressin-expressing cells in the bed nucleus of the stria terminalis (BNST) and medial amygdala and the density of vasopressin-immunoreactive fibers in several brain regions of male and female wild type and PRKO mice using in situ hybridization and immunohistochemistry. As expected, sex differences in vasopressin cell number were observed in the BNST and medial amygdaloid nucleus. Vasopressin-immunoreactive fiber density was sexually dimorphic in the lateral septum, lateral habenular nucleus, medial amygdaloid nucleus, and mediodorsal thalamus. Sex differences were also observed in the principal nucleus of the BNST and medial preoptic area but not in the dorsomedial hypothalamus, which are thought to receive vasopressin innervation from the suprachiasmatic nucleus. Deletion of PRs did not alter the sex difference in vasopressin mRNA expression and vasopressin fiber immunoreactivity in any area examined. However, deletion of PRs increased the density of vasopressin fiber immunoreactivity in the lateral habenular nucleus. Our data suggest that PRs modulate vasopressin levels, but not sexual differentiation of vasopressin innervation in mice.
Collapse
Affiliation(s)
- B D Rood
- Center for Neuroendocrine Studies, Psychology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
207
|
Büdefeld T, Grgurevic N, Tobet SA, Majdic G. Sex differences in brain developing in the presence or absence of gonads. Dev Neurobiol 2008; 68:981-95. [PMID: 18418875 DOI: 10.1002/dneu.20638] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brain sexual differentiation results from the interaction of genetic and hormonal influences. This study used a unique agonadal mouse model to determine relative contributions of genetic and gonadal hormone influences in the differentiation of selected brain regions. SF-1 knockout (SF-1 KO) mice are born without gonads and adrenal glands and are not exposed to endogenous sex steroids during fetal/neonatal development. Consequently, male and female SF-1 KO mice are born with female external genitalia and if left on their own, die shortly after birth due to adrenal insufficiency. In this study, SF-1 KO mice were rescued by neonatal adrenal transplantation to examine their brain morphology in adult life. To determine potential brain loci that might mediate functional sex differences, we examined the area and distribution of immunoreactive calbindin and neuronal nitric oxide synthase in the preoptic area (POA) and ventromedial nucleus of the hypothalamus, two areas previously reported to be sexually dimorphic in the mammalian brain. A sex difference in the positioning of cells containing immunoreactive calbindin in a group within the POA was clearly gonad dependent based on the elimination of the sex difference in SF-1 KO mice. Several other differences in the area of ventromedial hypothalamus and in POA were maintained in male and female SF-1 KO mice, suggesting gonad-independent genetic influences on sexually dimorphic brain development.
Collapse
Affiliation(s)
- Tomaz Büdefeld
- Center for Animal Genomics, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
208
|
Pierman S, Sica M, Allieri F, Viglietti-Panzica C, Panzica GC, Bakker J. Activational effects of estradiol and dihydrotestosterone on social recognition and the arginine-vasopressin immunoreactive system in male mice lacking a functional aromatase gene. Horm Behav 2008; 54:98-106. [PMID: 18346740 PMCID: PMC2706693 DOI: 10.1016/j.yhbeh.2008.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/31/2008] [Accepted: 02/01/2008] [Indexed: 11/30/2022]
Abstract
In rodents, parts of the arginine-vasopressin (AVP) neuronal system are sexually dimorphic with males having more AVP-immunoreactive cells/fibers than females. This neuropeptide neuronal system is highly sensitive to steroids and has been proposed to play an important role in the processing of olfactory cues critical to the establishment of a social memory. We demonstrate here that gonadally intact male aromatase knockout (ArKO) mice, which cannot aromatize androgens into estrogens due to a targeted mutation in the aromatase gene, showed severe deficits in social recognition as well as a reduced AVP-immunoreactivity in several brain regions. To determine whether this reduction is due to a lack of organizational or activational effects of estrogens, we assessed social recognition abilities and AVP-immunoreactivity in male ArKO and wild-type (WT) mice when treated with estradiol benzoate (EB) in association with dihydrotestosterone propionate (DHTP) in adulthood. Adult treatment with EB and DHTP restored social recognition abilities in castrated ArKO males since they showed normal female-oriented ultrasonic vocalizations and were able to recognize an unfamiliar female using a habituation-dishabituation paradigm. Furthermore, adult treatment also restored AVP-immunoreactivity in the lateral septum of ArKO males to levels observed in intact WT males. These results suggest that social recognition in adulthood and stimulation of AVP expression in the adult mouse forebrain depend predominantly on the estrogenic metabolite of testosterone. Furthermore, our results are in line with the idea that the organization of the AVP system may depend on androgen or sex chromosomes rather than estrogens.
Collapse
Affiliation(s)
- S Pierman
- Centre for Cellular and Molecular Neurobiology, University of Liège, Avenue de l'Hopital 1 (B36), 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
209
|
Jahagirdar V, Quadros PS, Wagner CK. Endogenous oestradiol regulates progesterone receptor expression in the brain of female rat fetuses: what is the source of oestradiol? J Neuroendocrinol 2008; 20:359-65. [PMID: 18208546 DOI: 10.1111/j.1365-2826.2008.01647.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Testosterone secreted by male testes during fetal development is aromatized to oestradiol (E(2)) or reduced to the androgen, dihydrotestosteorne (DHT), within specific tissues. The female brain is assumed to develop in the relative absence of gonadal steroid hormones, as the ovary is steroidogenically quiescent until later in postnatal life. However, the proximity of a female fetus to male littermates in utero can increase her exposure to testosterone, and thereby its metabolites. To date, it is has been difficult to dissociate the effects of male-derived E(2) from those of DHT on the developing female brain. In the present study, anogential distance (AGD) in females was used as an androgen-dependent bioassay, whereas progesterone receptor (PR) expression within the medial preoptic nucleus (MPN) was used as an E-dependent measure. Pregnant dams received the aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), or vehicle from embryonic day 16 (ED16) to ED21. On ED22, AGD and PR-immunoreactivity (-ir) were measured in females that had zero, one, or two males (0-2M) or females that had three, four, or five males (3-5M) in the uterine horn. AGD was significantly greater in 3-5M females compared to 0-2M females, suggesting that male littermates are the source of androgenic exposure in the female fetus. ATD treatment significantly decreased PR-ir in the MPN, demonstrating E(2) regulation of PR. However, the total number of males in the uterine horn did not effect PR expression. There was no correlation between PR-ir and AGD, suggesting that these measures are influenced independently. Together, these results suggest that although male littermates provide a significant source of androgens to female fetuses, the amount of E(2) aromatized from male-derived testosterone may not be the only biologically relevant source of androgens or E(2). Alternative sources of E(2) may be essential in ensuring the normal development of the female brain.
Collapse
Affiliation(s)
- V Jahagirdar
- Department of Psychology and Centre for Neuroscience Research, University at Albany, SUNY, Albany, NY 12222, USA
| | | | | |
Collapse
|
210
|
Bass AH. Steroid-dependent plasticity of vocal motor systems: Novel insights from teleost fish. ACTA ACUST UNITED AC 2008; 57:299-308. [PMID: 17524490 DOI: 10.1016/j.brainresrev.2007.04.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 11/28/2022]
Abstract
Vocal communication is a trait shared by most vertebrates. Non-mammalian model systems have provided exquisite examples of how motor and sensory systems, respectively, produce and encode the physical attributes of acoustic communication signals that play essential roles in mediating the dynamics of social behavior. These same models, mainly developed for a few species of fish, amphibians and birds, have proven to be equally important for demonstrating how steroids and other hormones shape the neural mechanisms of vocal communication. This review mainly considers recent studies in teleost fish demonstrating the role of steroids in the rapid modulation of the firing properties of a central pattern generator for vocalization. Thus, steroids, like other classes of neurochemicals, can play an instrumental role in reshaping the neurophysiological coding of motor patterning, in this case for social signaling behavior.
Collapse
Affiliation(s)
- A H Bass
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
211
|
The role of androgen receptors in the masculinization of brain and behavior: what we've learned from the testicular feminization mutation. Horm Behav 2008; 53:613-26. [PMID: 18374335 DOI: 10.1016/j.yhbeh.2008.01.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/24/2008] [Accepted: 01/28/2008] [Indexed: 11/26/2022]
Abstract
Many studies demonstrate that exposure to testicular steroids such as testosterone early in life masculinizes the developing brain, leading to permanent changes in behavior. Traditionally, masculinization of the rodent brain is believed to depend on estrogen receptors (ERs) and not androgen receptors (ARs). According to the aromatization hypothesis, circulating testosterone from the testes is converted locally in the brain by aromatase to estrogens, which then activate ERs to masculinize the brain. However, an emerging body of evidence indicates that the aromatization hypothesis cannot fully account for sex differences in brain morphology and behavior, and that androgens acting on ARs also play a role. The testicular feminization mutation (Tfm) in rodents, which produces a nonfunctional AR protein, provides an excellent model to probe the role of ARs in the development of brain and behavior. Tfm rodent models indicate that ARs are normally involved in the masculinization of many sexually dimorphic brain regions and a variety of behaviors, including sexual behaviors, stress response and cognitive processing. We review the role of ARs in the development of the brain and behavior, with an emphasis on what has been learned from Tfm rodents as well as from related mutations in humans causing complete androgen insensitivity.
Collapse
|
212
|
Frank E, Landgraf R. The vasopressin system--from antidiuresis to psychopathology. Eur J Pharmacol 2008; 583:226-42. [PMID: 18275951 DOI: 10.1016/j.ejphar.2007.11.063] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 01/04/2023]
Abstract
Vasopressin is a neuropeptide with multiple functions. In addition to its predominantly antidiuretic action after peripheral secretion from the posterior pituitary, it seems to fulfill--together with its receptor subtype--all requirements for a neuropeptide system critically involved in higher brain functions, including cognitive abilities and emotionality. Following somatodendritic and axonal release in distinct brain areas, vasopressin acts as a neuromodulator and neurotransmitter in multiple and varying modes of interneuronal communication. Accordingly, changes in vasopressin expression and release patterns may have wide-spread consequences. As shown in mice, rats, voles, and humans, central vasopressin release along a continuum may be beneficial to the individual, serving to adjust physiology and behavior in stressful scenarios, possibly at the potential expense of increasing susceptibility to disease. Indeed, if over-expressed and over-released, it may contribute to hyper-anxiety and depression-like behaviors. A vasopressin deficit, in turn, may cause signs of both diabetes insipidus and total hypo-anxiety. The identification of genetic polymorphisms underlying these phenomena does not only explain individual variation in social memory and emotionality, but also help to characterize potential targets for therapeutic interventions. The capability of both responding to stressful stimuli and mediating genetic polymorphisms makes the vasopressin system a key mediator for converging (i.e., environmentally and genetically driven) behavioral regulation.
Collapse
Affiliation(s)
- Elisabeth Frank
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Kraepelinstr. 2, 80804 Munich, Germany
| | | |
Collapse
|
213
|
Goodson JL. Nonapeptides and the evolutionary patterning of sociality. PROGRESS IN BRAIN RESEARCH 2008; 170:3-15. [PMID: 18655867 DOI: 10.1016/s0079-6123(08)00401-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neuropeptides of the arginine vastocin (AVT) family, including the mammalian peptides arginine vasopressin (AVP) and oxytocin (OXT), comprise neuroendocrine circuits that range from being evolutionarily conserved to evolutionarily diverse. For instance, the functions and anatomy of the AVT/AVP projections to the pituitary (which arise in the preoptic area and hypothalamus) are strongly conserved, whereas the functions and anatomy of AVT/AVP circuits arising in the medial bed nucleus of the stria terminalis (BSTm) are species-specific and change rapidly over evolutionary time. Circuits arising in the BSTm mediate various affiliative behaviors and exhibit species-specific evolution in relation to mating system in mammals (monogamous vs. non-monogamous) and sociality in songbirds (gregarious vs. relatively asocial). In estrildid songbirds AVT neurons in the BSTm increase their Fos expression only in response to "positively-valenced" social stimuli (stimuli that normally elicit affiliation), whereas "negative" stimuli (which elicit aggression or aversion) produce no response or even suppress Fos expression. Relative to territorial species, gregarious species show: (1) greater social induction of Fos within AVT neurons, (2) a higher baseline of Fos expression in AVT neurons, (3) more AVT neurons in the BSTm and (4) a higher density of V(1a)-like binding sites in the lateral septum. Furthermore, septal AVT infusions inhibit resident-intruder aggression, but facilitate aggression that is motivated by mate competition (an affiliative context). This functional profile of the BSTm AVT neurons is quite distinct from that of hypothalamic AVT/AVP neurons, particularly those of the paraventricular nucleus (PVN), which are classically stress-responsive. This is paradoxical, given that AVT/AVP projections from the PVN and BSTm likely overlap. However, despite this overlap, each AVT/AVP cell group should produce a distinct pattern of modulation across brain regions. Relative weighting of hypothalamic and BSTm nonapeptide circuitries may therefore be an important determinant of approach-avoidance behaviour, and may be a prime target of natural selection related to sociality.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
214
|
Knoll JG, Wolfe CA, Tobet SA. Estrogen modulates neuronal movements within the developing preoptic area-anterior hypothalamus. Eur J Neurosci 2007; 26:1091-9. [PMID: 17767488 PMCID: PMC2295210 DOI: 10.1111/j.1460-9568.2007.05751.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The preoptic area-anterior hypothalamus (POA-AH) is characterized by sexually dimorphic features in a number of vertebrates and is a key region of the forebrain for regulating physiological responses and sexual behaviours. Using live-cell fluorescence video microscopy with organotypic brain slices, the current study examined sex differences in the movement characteristics of neurons expressing yellow fluorescent protein (YFP) driven by the Thy-1 promoter. Cells in slices from embryonic day 14 (E14), but not E13, mice displayed significant sex differences in their basal neuronal movement characteristics. Exposure to 10 nm estradiol-17beta (E2), but not 100 nm dihydrotestosterone, significantly altered cell movement characteristics within minutes of exposure, in a location-specific manner. E2 treatment decreased the rate of motion of cells located in the dorsal POA-AH but increased the frequency of movement in cells located more ventrally. These effects were consistent across age and sex. To further determine whether early-developing sex differences in the POA-AH depend upon gonadal steroids, we examined cell positions in mice with a disruption of the steroidogenic factor-1 gene, in which gonads do not form. An early-born cohort of cells were labelled with the mitotic indicator bromodeoxyuridine (BrdU) on E11. More cells were found in the POA-AH of females than males on the day of birth (P0) regardless of gonadal status. These results support the hypothesis that estrogen partially contributes to brain sexual dimorphism through its influence on cell movements during development. Estrogen's influence may be superimposed upon a pre-existing genetic bias.
Collapse
Affiliation(s)
- John Gabriel Knoll
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
215
|
Edelmann M, Wolfe C, Scordalakes EM, Rissman EF, Tobet S. Neuronal nitric oxide synthase and calbindin delineate sex differences in the developing hypothalamus and preoptic area. Dev Neurobiol 2007; 67:1371-81. [PMID: 17638388 PMCID: PMC3622702 DOI: 10.1002/dneu.20507] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Throughout the hypothalamus there are several regions known to contain sex differences in specific cellular, neurochemical, or cell grouping characteristics. The current study examined the potential origin of sex differences in calbindin expression in the preoptic area and hypothalamus as related to sources of nitric oxide. Specific cell populations were defined by immunoreactive (ir) calbindin and neuronal nitric oxide synthase (nNOS) in the preoptic area/anterior hypothalamus (POA/AH), anteroventral periventricular nucleus (AVPv), and ventromedial nucleus of the hypothalamus (VMN). The POA/AH of adult mice was characterized by a striking sex difference in the distribution of cells with ir-calbindin. Examination of the POA/AH of androgen receptor deficient Tfm mice suggests that this pattern was in part androgen receptor dependent, since Tfm males had reduced ir-calbindin compared with wild-type males and more similar to wild-type females. At P0 ir-calbindin was more prevalent than in adulthood, with males having significantly more ir-calbindin and nNOS than have females. Cells that contained either ir-calbindin or ir-nNOS in the POA/AH were in adjacent cell groups, suggesting that NO derived from the enzymatic activity of nNOS may influence the development of ir-calbindin cells. In the region of AVPv, at P0, there was a sex difference with males having more ir-nNOS fibers than have females while ir-calbindin was not detected. In the VMN, at P0, ir-nNOS was greater in females than in males, with no significant difference in ir-calbindin. We suggest that NO as an effector molecule and calbindin as a molecular biomarker illuminate key aspects of sexual differentiation in the developing mouse brain.
Collapse
|
216
|
Ottinger MA, Lavoie E, Thompson N, Barton A, Whitehouse K, Barton M, Abdelnabi M, Quinn M, Panzica G, Viglietti-Panzica C. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds. ACTA ACUST UNITED AC 2007; 57:376-85. [PMID: 18006066 DOI: 10.1016/j.brainresrev.2007.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/26/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Endocrine disrupting chemicals (EDCs) exert hormone-like activity in vertebrates and exposure to these compounds may induce both short- and long-term deleterious effects including functional alterations that contribute to decreased reproduction and fitness. An overview of the effects of a number of EDCs, including androgenic and estrogenic compounds, will be considered. Many studies have been conducted in the precocial Japanese quail, which provides an excellent avian model for testing these compounds. Long-term impacts have also been studied by raising a subset of animals through maturation. The EDCs examined included estradiol, androgen active compounds, soy phytoestrogens, and atrazine. Effects on behavior and hypothalamic neuroendocrine systems were examined. All EDCs impaired reproduction, regardless of potential mechanism of action. Male sexual behavior proved to be a sensitive index of EDC exposure and embryonic exposure to a variety of EDCs consistently resulted in impaired male sexual behavior. Several hypothalamic neural systems proved to be EDC responsive, including arginine vasotocin (VT), catecholamines, and gonadotropin releasing hormone system (GnRH-I). Finally, EDCs are known to impact both the immune and thyroid systems; these effects are significant for assessing the overall impact of EDCs on the fitness of avian populations. Therefore, exposure to EDCs during embryonic development has consequences beyond impaired function of the reproductive axis. In conclusion, behavioral alterations have the advantage of revealing both direct and indirect effects of exposure to an EDC and in some cases can provide a valuable clue into functional deficits at different physiological levels.
Collapse
Affiliation(s)
- Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland College Park, MD 20742, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Grippo AJ, Gerena D, Huang J, Kumar N, Shah M, Ughreja R, Carter CS. Social isolation induces behavioral and neuroendocrine disturbances relevant to depression in female and male prairie voles. Psychoneuroendocrinology 2007; 32:966-80. [PMID: 17825994 PMCID: PMC2174914 DOI: 10.1016/j.psyneuen.2007.07.004] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 06/06/2007] [Accepted: 07/09/2007] [Indexed: 10/22/2022]
Abstract
Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks of social isolation versus paired housing. In Experiment 1, oxytocin-immunoreactive cell density was higher in the hypothalamic paraventricular nucleus (PVN) and plasma oxytocin was elevated in isolated females, but not in males. In Experiment 2, sucrose intake, used as an operational definition of hedonia, was reduced in both sexes following 4 weeks of isolation. Animals then received a resident-intruder test, and were sacrificed either 10 min later for the analysis of circulating hormones and peptides, or 2h later to examine neural activation, indexed by c-Fos expression in PVN cells immunoreactive for oxytocin or corticotropin-releasing factor (CRF). Compared to paired animals, plasma oxytocin, ACTH and corticosterone were elevated in isolated females and plasma oxytocin was elevated in isolated males, following the resident-intruder test. The proportion of cells double-labeled for c-Fos and oxytocin or c-Fos and CRF was elevated in isolated females, and the proportion of cells double-labeled for c-Fos and oxytocin was elevated in isolated males following this test. These findings suggest that social isolation induces behavioral and neuroendocrine responses relevant to depression in male and female prairie voles, although neuroendocrine responses in females may be especially sensitive to isolation.
Collapse
Affiliation(s)
- Angela J Grippo
- Department of Psychiatry, Brain-Body Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Recent studies in both animals and humans indicate that gonadal hormones have profound control over emotional states, and certainly contribute to the increased occurrence of psychiatric illness in women. Reports, as reviewed here, suggest that two important regions of the limbic system, the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), control different aspects of emotional behaviour. Short-term cue-specific emotional responses, like Pavlovian fear conditioning, require activation of the CeA, while long-duration and contextual emotional responses, are dependant on the BNST. There is accumulating experimental evidence that gender and sex hormones specifically modulate BNST-mediated anxiety behaviours. Moreover, the functional separation between the CeA and the BNST may be exaggerated during lactation in the rat, a time of profound hormonal and behavioural change. In this study, the effects of sex hormones on fear and anxiety are reviewed with an emphasis on the differential effects of these hormones on functions subserved by the BNST as opposed to the CeA. Studies, as highlighted here, looking at sex hormone and gender effects on the ability of corticotrophin-releasing factor and bright ambient light to enhance startle, emphasise the importance of understanding both the effect of, and brain region where, gonadal hormones exert their control over emotional behaviour.
Collapse
Affiliation(s)
- D Toufexis
- Emory University, Department of Psychiatry, Yerkes National Primate Centre, Atlanta, GA 30329, USA.
| |
Collapse
|
219
|
Debiec J. From affiliative behaviors to romantic feelings: A role of nanopeptides. FEBS Lett 2007; 581:2580-6. [PMID: 17507012 DOI: 10.1016/j.febslet.2007.03.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/13/2007] [Indexed: 11/18/2022]
Abstract
Love is one of the most desired experiences. The quest for understanding human bonds, especially love, was traditionally a domain of the humanities. Recent developments in biological sciences yield new insights into the mechanisms underlying the formation and maintenance of human relationships. Animal models of reproductive behaviors, mother-infant attachment and pair bonding complemented by human studies reveal neuroendocrine foundations of prosocial behaviors and emotions. Amongst various identified neurotransmitters and modulators, which control affiliative behaviors, the particular role of nanopeptides has been indicated. New studies suggest that these chemicals are not only involved in regulating bonding processes in animals but also contribute to generating positive social attitudes and feelings in humans.
Collapse
Affiliation(s)
- Jacek Debiec
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
220
|
Ciofi P, Lapirot OC, Tramu G. An androgen-dependent sexual dimorphism visible at puberty in the rat hypothalamus. Neuroscience 2007; 146:630-42. [PMID: 17395386 DOI: 10.1016/j.neuroscience.2007.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/24/2007] [Accepted: 02/06/2007] [Indexed: 11/18/2022]
Abstract
Morphological studies in rodents have well documented the masculinization of the perinatal brain by estradiol derived from aromatized testosterone, and the resulting irreversible quantitative sex-differences generated in cell numbers or expression of chemical phenotypes. Here, using immunohistochemistry, we explored how this applies to the postnatal development and masculinization of the neurokinin B (NKB)-containing system of the arcuate nucleus/median eminence complex (ARC/ME). In adult rats, NKB-immunoreactive neurons exhibit an unusual, qualitative sexual dimorphism of their ventral axonal projections: to the neuropil in females, to capillary vessels in males. In adults, there was no sex-difference in the numbers of NKB-immunoreactive perikarya or capillary vessels in the ARC/ME, suggesting that this sexual dimorphism cannot be explained by the existence of supernumerary structures. At birth (day 0) the NKB system was immature in both sexes, and while its adult features emerged progressively until puberty in females, they did not develop before puberty (day 40) in males, revealing a sexual dimorphism only late postnatally. When males were orchidectomized at day 30, the masculine distribution of NKB-immunoreactive axons expected at day 40 was not seen, while it was apparent after chronic treatment with testosterone or dihydrotestosterone, suggesting a testicular masculinizing action via androgen receptors at puberty. Moreover in these prepubertal-orchidectomized males, the distribution of NKB-immunoreactive axons was surprisingly feminized by chronic estradiol alone, suggesting that NKB neurons are not irreversibly programmed before puberty. Last, in adult females, the distribution of NKB-immunoreactive axons was feminine 30 days after ovariectomy, and it was masculinized after concurrent chronic dihydrotestosterone, suggesting that NKB neurons remain responsive to androgens late in reproductive life. Thus, the sexual differentiation of the hypothalamus proceeds well beyond the perinatal period and includes the epigenetic action of non-aromatizable androgens upon subsets of neurons that have retained bipotent features.
Collapse
Affiliation(s)
- P Ciofi
- Inserm U862, F-33077 Bordeaux, France; Université Victor Ségalen Bordeaux 2, F-33077 Bordeaux, France.
| | | | | |
Collapse
|
221
|
Cooke BM, Stokas MR, Woolley CS. Morphological sex differences and laterality in the prepubertal medial amygdala. J Comp Neurol 2007; 501:904-15. [PMID: 17311322 DOI: 10.1002/cne.21281] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The medial amygdala (MeA) is crucial in the expression of sex-specific social behaviors. In adult rats the regional volume of the MeA posterodorsal subnucleus (MeApd) is approximately 50% larger in males than in females. The MeApd is also sexually dimorphic in prepubertal rats. We have recently shown that the left MeApd is significantly larger in prepubertal males than females. In contrast with volumetric sex differences elsewhere in the brain, however, we found no sex difference in the number of left MeApd neurons. In the present study we investigated the cellular bases of the sex difference in MeApd regional volume by quantifying the volume occupied by dendrites, axons, synapses, or glia, and by measuring MeApd dendritic morphology in 26-29-day-old male and female rats. We find that the volume occupied by dendritic shafts and glia completely accounts for the sex difference in left MeApd regional volume. Dendritic length measurements in the left hemisphere confirm that males have greater overall dendritic length, which is due to greater branching rather than to longer dendrite segments. In the right hemisphere the pattern of sex differences was different: Males have more MeApd neurons than females, whereas the dendritic morphology of individual neurons is not sexually dimorphic. These results highlight the importance of evaluating laterality in the MeA and suggest that the left and right MeA could play different roles in neuroendocrine regulation and sexually dimorphic social behaviors.
Collapse
Affiliation(s)
- Bradley M Cooke
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
222
|
Rosen GJ, De Vries GJ, Goldman SL, Goldman BD, Forger NG. Distribution of vasopressin in the brain of the eusocial naked mole-rat. J Comp Neurol 2007; 500:1093-105. [PMID: 17183541 DOI: 10.1002/cne.21215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naked mole-rats are eusocial rodents that live in large subterranean colonies in which one queen breeds with one to three males. All other animals are nonbreeding subordinates. The external features of male and female subordinates, including their genitalia, are remarkably monomorphic, as is their behavior. Because vasopressin (VP) is associated with social behaviors and sex differences in other species, its distribution in naked mole-rats was of interest. We used immunohistochemistry to examine VP in the brains of subordinate and breeding naked mole-rats of both sexes. As in other mammals, VP-immunoreactive (-ir) somata were found in the paraventricular (PVN) and supraoptic nuclei (SON) and VP-ir projections from these nuclei ran through the internal and external zone of the median eminence. However, naked mole-rats had very few VP-ir cells in the bed nucleus of the stria terminalis (BST) and none in the suprachiasmatic nucleus (SCN); the extensive network of fine-caliber VP-ir fibers usually seen in projection sites of the BST and SCN were also absent. Equally unexpected was the abundance of large-caliber VP-ir fibers in the dorsomedial septum. VP immunoreactivity was generally similar in all groups, with the exception of VP-ir cell number in the dorsomedial hypothalamus (DMH). Breeders had a population of labeled cells in the DMH that was absent, or nearly absent, in subordinates. Future studies on the function of VP in these areas are needed to determine how the atypical distribution of VP immunoreactivity relates to eusociality and the unusual physiology of naked mole-rats.
Collapse
Affiliation(s)
- Greta J Rosen
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | | | |
Collapse
|
223
|
Hammock EAD. Gene Regulation as a Modulator of Social Preference in Voles. GENETICS OF SEXUAL DIFFERENTIATION AND SEXUALLY DIMORPHIC BEHAVIORS 2007; 59:107-27. [PMID: 17888796 DOI: 10.1016/s0065-2660(07)59004-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most mammalian species are nonmonogamous: the female alone cares for the young and males and females do not share nest sites. Within the genus Microtus, there exists ample diversity in social structure for neuroethological and neurobiological investigation. Prairie voles (Microtus ochrogaster) are socially monogamous: both the males and females contribute to care of the young within a shared nest site as a breeding pair through multiple breeding seasons. Closely related species such as the montane (M. montanus) and meadow (M. pennsylvanicus) voles do not typically show these behaviors. Over a decade of research has demonstrated that species differences in neuropeptide systems play significant roles in the behavioral divergence of these species. In particular, species differences in regional gene expression patterns of neuropeptide receptors in the brain mediate some of the behavioral traits associated with the divergence in social structure. Differences in gene expression patterns of a key gene in mediating social behavior, the arginine vasopressin 1a receptor (avpr1a), appear to be due to species divergence in a repeat locus in the 5' regulatory region of avpr1a. This highly repetitive locus is prone to expansion and contraction over relatively short evolutionary timescales and may give rise to the rapid evolution of sociobehavioral traits.
Collapse
Affiliation(s)
- Elizabeth A D Hammock
- Department of Pharmacology, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
224
|
Maruska KP, Mizobe MH, Tricas TC. Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. Comp Biochem Physiol A Mol Integr Physiol 2006; 147:129-44. [PMID: 17276115 DOI: 10.1016/j.cbpa.2006.12.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) and arginine vasotocin (AVT) are critical regulators of reproductive behaviors that exhibit tremendous plasticity, but co-variation in discrete GnRH and AVT neuron populations among sex and season are only partially described in fishes. We used immunocytochemistry to examine sexual and temporal variations in neuron number and size in three GnRH and AVT cell groups in relation to reproductive activities in the halfspotted goby (Asterropteryx semipunctata). GnRH-immunoreactive (-ir) somata occur in the terminal nerve, preoptic area, and midbrain tegmentum, and AVT-ir somata within parvocellular, magnocellular, and gigantocellular regions of the preoptic area. Sex differences were found among all GnRH and AVT cell groups, but were time-period dependent. Seasonal variations also occurred in all GnRH and AVT cell groups, with coincident elevations most prominent in females during the peak- and non-spawning periods. Sex and temporal variability in neuropeptide-containing neurons are correlated with the goby's seasonally-transient reproductive physiology, social interactions, territoriality and parental care. Morphological examination of GnRH and AVT neuron subgroups within a single time period provides detailed information on their activities among sexes, whereas seasonal comparisons provide a fine temporal sequence to interpret the proximate control of reproduction and the evolution of social behavior.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology, University of Hawai'i at Manoa, 2538 The Mall, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
225
|
Goodson JL, Wang Y. Valence-sensitive neurons exhibit divergent functional profiles in gregarious and asocial species. Proc Natl Acad Sci U S A 2006; 103:17013-7. [PMID: 17071744 PMCID: PMC1636570 DOI: 10.1073/pnas.0606278103] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Indexed: 11/18/2022] Open
Abstract
The medial bed nucleus of the stria terminalis (BSTm) influences both social approach and social aversion, suggesting that this structure may play an important role in generating motivational and behavioral differences between gregarious and asocial species. However, no specific neurons have been identified within the BSTm that influence species-typical levels of sociality or that mediate approach and avoidance. Using five songbird species that differ selectively in their species-typical group sizes, we now demonstrate that vasotocin-immunoreactive (VT-ir) neurons of the BSTm exhibit very different immediate early gene responses to same-sex stimuli in gregarious and asocial species. Exposure to a same-sex conspecific increases VT-Fos colocalization in gregarious species while decreasing colocalization in relatively asocial species. We additionally demonstrate that these neurons are selectively activated by social stimuli that normally elicit affiliation (positively valenced social stimuli) but not by stimuli that elicit aversion (negatively valenced social stimuli). Constitutive Fos activity of the VT-ir neurons is also significantly greater in the gregarious species, and the two most social species express significantly more VT-ir neurons. These findings demonstrate that the properties of valence-sensitive neurons evolve in relation to sociality and indicate that gregarious species accentuate positive stimulus properties during social interactions.
Collapse
Affiliation(s)
- James L Goodson
- Department of Psychology, University of California at San Diego, La Jolla, CA 92093-0109, USA.
| | | |
Collapse
|
226
|
Rubin RT, Rhodes ME, Miller TH, Jakab RL, Czambel RK. Sequence of pituitary–adrenal cortical hormone responses to low-dose physostigmine administration in young adult women and men. Life Sci 2006; 79:2260-8. [PMID: 16935309 DOI: 10.1016/j.lfs.2006.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/19/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
We previously demonstrated greater HPA axis activation in adult men compared to adult women following low-dose administration of the anticholinesterase inhibitor, physostigmine (PHYSO). Because blood sampling was done infrequently following PHYSO, the rise times of AVP, ACTH1-39, and cortisol could not be determined. In the present study, we determined the sequence of hormone increases by frequent blood sampling following PHYSO. Twelve adult women and 12 adult men underwent three test sessions 5-7 days apart: PHYSO, saline control, and repeat PHYSO. As in the earlier study, PHYSO produced no side effects in half the subjects and mild side effects in the other half, with no significant female-male differences. None of the hormone responses was significantly correlated with the presence or absence of side effects. In both women and men, the AVP increase preceded the ACTH1-39 increase, which in turn preceded the cortisol increase. The AVP and ACTH AUCs were significantly positively correlated in both women and men, supporting AVP as an acute stimulus to ACTH secretion. Also as in the earlier study, the AVP response to PHYSO was more than twice as great in men as in women, but the difference was not statistically significant. We therefore analyzed the results of both studies combined (N=26 women and 26 men). The men had a significantly greater AVP response and a trend toward a greater ACTH1-39 response compared to the women. These findings further support the concept of sexual diergism (functional sex difference) in the influence of CNS cholinergic systems on HPA hormone secretion.
Collapse
Affiliation(s)
- Robert T Rubin
- Department of Psychiatry and Mental Health (116A), VA Greater LA Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | | | | | | | | |
Collapse
|
227
|
Bartz JA, Hollander E. The neuroscience of affiliation: forging links between basic and clinical research on neuropeptides and social behavior. Horm Behav 2006; 50:518-28. [PMID: 16884725 DOI: 10.1016/j.yhbeh.2006.06.018] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/15/2006] [Accepted: 06/21/2006] [Indexed: 11/16/2022]
Abstract
Animal studies point to the role of two neuropeptides-oxytocin and vasopressin-in the regulation of affiliative behaviors including mating, pair-bond formation, maternal/parenting behavior, and attachment. These findings may have important implications for understanding and treating clinical disorders marked by social deficits and/or disrupted attachment. This review focuses on advances made to date in the effort to forge links between basic and clinical research in the area of neuropeptides and social behavior. The literature on oxytocin and its involvement in stress response, affiliation, and prosocial behavior is reviewed, and the implications of these findings for such disorders as autism as well as other social and stress-related disorders including social phobia, post-traumatic stress disorder, and some personality disorders are considered. Finally, unresolved issues and directions for future research are discussed.
Collapse
Affiliation(s)
- Jennifer A Bartz
- Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA.
| | | |
Collapse
|
228
|
Toufexis DJ, Myers KM, Davis M. The effect of gonadal hormones and gender on anxiety and emotional learning. Horm Behav 2006; 50:539-49. [PMID: 16904674 DOI: 10.1016/j.yhbeh.2006.06.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
Disorders of anxiety and fear dysregulation are highly prevalent. These disorders affect women approximately 2 times more than they affect men, occur predominately during a woman's reproductive years, and are especially prevalent at times of hormonal flux. This implies that gender differences and sex steroids play a key role in the regulation of anxiety and fear. However, the underlying mechanism by which these factors regulate emotional states in either sex is still largely unknown. This review discusses animal studies describing sex-differences in and gonadal steroid effects on affect and emotional learning. The effects of gonadal hormones on the modulation of anxiety, with particular emphasis on progesterone's ability to reduce the responsiveness of female rats to corticotropin releasing factor and the sex-specific effect of testosterone in the reduction of anxiety in male rats, is discussed. In addition, gonadal hormone and gender modulation of emotional learning is considered and preliminary data are presented showing that estrogen (E2) disrupts fear learning in female rats, probably through the antagonistic effect of ERalpha and ERbeta activation.
Collapse
Affiliation(s)
- Donna J Toufexis
- Emory University, Department of Psychiatry, Yerkes National Primate Center, 954 Gatewood Drive NE, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
229
|
Lim MM, Young LJ. Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm Behav 2006; 50:506-17. [PMID: 16890230 DOI: 10.1016/j.yhbeh.2006.06.028] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/26/2006] [Accepted: 06/27/2006] [Indexed: 11/21/2022]
Abstract
Social relationships are essential for maintaining human mental health, yet little is known about the brain mechanisms involved in the development and maintenance of social bonds. Animal models are powerful tools for investigating the neurobiological mechanisms regulating the cognitive processes leading to the development of social relationships and for potentially extending our understanding of the human condition. In this review, we discuss the roles of the neuropeptides oxytocin and vasopressin in the regulation of social bonding as well as related social behaviors which culminate in the formation of social relationships in animal models. The formation of social bonds is a hierarchical process involving social motivation and approach, the processing of social stimuli and formation of social memories, and the social attachment itself. Oxytocin and vasopressin have been implicated in each of these processes. Specifically, these peptides facilitate social affiliation and parental nurturing behavior, are essential for social recognition in rodents, and are involved in the formation of selective mother-infant bonds in sheep and pair bonds in monogamous voles. The convergence of evidence from these animal studies makes oxytocin and vasopressin attractive candidates for the neural modulation of human social relationships as well as potential therapeutic targets for the treatment of psychiatric disorders associated with disruptions in social behavior, including autism.
Collapse
Affiliation(s)
- Miranda M Lim
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, and 954 Gatewood Road Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
230
|
Rosen GJ, De Vries GJ, Villalba C, Weldele ML, Place NJ, Coscia EM, Glickman SE, Forger NG. Distribution of vasopressin in the forebrain of spotted hyenas. J Comp Neurol 2006; 498:80-92. [PMID: 16856162 DOI: 10.1002/cne.21032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The extreme virilization of the female spotted hyena raises interesting questions with respect to sexual differentiation of the brain and behavior. Females are larger and more aggressive than adult, non-natal males and dominate them in social encounters; their external genitalia also are highly masculinized. In many vertebrates, the arginine vasopressin (VP) innervation of the forebrain, particularly that of the lateral septum, is associated with social behaviors such as aggression and dominance. Here, we used immunohistochemistry to examine the distribution of VP cells and fibers in the forebrains of adult spotted hyenas. We find the expected densely staining VP immunoreactive (VP-ir) neurons in the paraventricular and supraoptic nuclei, as well as an unusually extensive distribution of magnocelluar VP-ir neurons in accessory regions. A small number of VP-ir cell bodies are present in the suprachiasmatic nucleus and bed nucleus of the stria terminalis; however, there are extensive VP-ir fiber networks in presumed projection areas of these nuclei, for example, the subparaventricular zone and lateral septum, respectively. No significant sex differences were detected in the density of VP-ir fibers in any area examined. In the lateral septum, however, marked variability was observed. Intact females exhibited a dense fiber network, as did two of the four males examined; the two other males had almost no VP-ir septal fibers. This contrasts with findings in many other vertebrate species, in which VP innervation of the lateral septum is consistently greater in males than in females.
Collapse
Affiliation(s)
- Greta J Rosen
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Goodson JL, Evans AK, Wang Y. Neuropeptide binding reflects convergent and divergent evolution in species-typical group sizes. Horm Behav 2006; 50:223-36. [PMID: 16643915 PMCID: PMC2570780 DOI: 10.1016/j.yhbeh.2006.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 11/19/2022]
Abstract
Neuroendocrine factors that produce species differences in aggregation behavior ("sociality") are largely unknown, although relevant studies should yield important insights into mechanisms of affiliation and social evolution. We here focused on five species in the avian family Estrildidae that differ selectively in their species-typical group sizes (all species are monogamous and occupy similar habitats). These include two highly gregarious species that independently evolved coloniality; two territorial species that independently evolved territoriality; and an intermediate, modestly gregarious species that is a sympatric congener of one of the territorial species. Using males and females of each species, we examined binding sites for (125)I-vasoactive intestinal polypeptide (VIP), (125)I-sauvagine (SG; a ligand for corticotropin releasing factor, CRF, receptors) and a linear (125)I-V(1a) vasopressin antagonist (to localize receptors for vasotocin, VT). VIP, CRF and VT are neuropeptides that influence stress, anxiety and/or various social behaviors. For numerous areas (particularly within the septal complex), binding densities in the territorial species differed significantly from binding in the more gregarious species, and in most of these cases, binding densities for the moderately gregarious species were either comparable to the two colonial species or were intermediate to the territorial and colonial species. Such patterns were observed for (125)I-VIP binding in the medial bed nucleus of the stria terminalis, medial septum, septohippocampal septum, and subpallial zones of the lateral septum; for (125)I-SG binding in the infundibular hypothalamus, and lateral and medial divisions of the ventromedial hypothalamus; and for the linear (125)I-V(1a) antagonist in the medial septum, and the pallial and subpallial zones of the caudal lateral septum. With the exception of (125)I-SG binding in the infundibular hypothalamus, binding densitites are positively related to sociality.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, University of California-San Diego, La Jolla, CA 92093-0109, USA.
| | | | | |
Collapse
|