201
|
Sang S, Yan Y, Shen Z, Cao Y, Duan Q, He M, Zhang Q. Photo-crosslinked hydrogels for tissue engineering of corneal epithelium. Exp Eye Res 2022; 218:109027. [PMID: 35276182 DOI: 10.1016/j.exer.2022.109027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
Abstract
The vast majority of patients with corneal blindness cannot recover their vision due to the serious shortage of donor cornea. However, the technology to construct a feasible corneal substitute is a promising treatment method for corneal blindness. In this paper, methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA) double network (GHDN) hydrogels were prepared by modifying gelatin and hyaluronic acid with methacrylate anhydride (MA). GHDN hydrogel was compared with GelMA single network and HAMA single network hydrogels through characterization experiments of mechanical properties, optical properties, hydrophilicity and in-situ degradation in vitro. At the same time, the biocompatibility of hydrogel was tested by inoculating rabbit corneal epithelial cells (CEpCs) epidermal cells on hydrogels using CCK-8 test, live/dead staining, immunofluorescence staining and qRT-PCR. It was found that the GHDN hydrogel has optical transparency in the visible region, and its mechanical properties are better than those of GelMA and HAMA hydrogels, and its hydrophilicity is similar to that of normal human corneas. The results of in vitro hydrogel culture of CEpCs showed that the proliferation of CEpCs on GHDN hydrogel was two times higher than that of HAMA hydrogel, and the expression of specific marker Cytokeratin 3 (CK3) and Cytokeratin 12 (CK12) could be better maintained on GHDN hydrogel. All the experimental results proved that GHDN hydrogel has good physical properties and biocompatibility and is a potential candidate for corneal tissue engineering scaffolds.
Collapse
Affiliation(s)
- Shengbo Sang
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yayun Yan
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhizhong Shen
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanyan Cao
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China; College of Information Science and Engineering, Hebei North University, Zhangjiakou, 075000, China
| | - Qianqian Duan
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Min He
- Department of Ophthalmology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Qiang Zhang
- Micro Nano System Research Center, College of Information and Computer & Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
202
|
Li H, Dong M, Zhou Q, Zhao L, Wang F, Wang X, Liu T, Xie L, Shi W. Corneal calcification of acellular porcine corneal stroma following lamellar keratoplasty. Acta Ophthalmol 2022; 100:164-174. [PMID: 33258298 DOI: 10.1111/aos.14665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To describe the corneal calcification of acellular porcine corneal stroma (APCS) following lamellar keratoplasty (LKP) and identify risk factors. METHODS Two cases of APCS calcification were evaluated by slit-lamp photography and anterior segment optical coherence tomography (AS-OCT). von Kossa staining and scanning electron microscope/energy-dispersive spectrometry (SEM/EDS) were performed on pathologic tissue. Associated graft and postoperative risk factors were analysed. Acellular porcine corneal stroma (APCS) cleanliness and element content after rinsing with sterilized water were observed by SEM/EDS and inductively coupled plasma mass spectrometry. Calcium metabolism-related proteins were analysed by protein mass spectrometry. Corneal epithelial defects and postoperative medications were reviewed. RESULTS Two cases of APCS calcification occurred at 23 and 22 days postoperatively. Anterior segment optical coherence tomography (AS-OCT) and von Kossa staining demonstrated calcium deposition in the superficial stroma composed of calcium, phosphorus and oxygen conforming to the Ca/P ratio of hydroxyapatite. Phosphate crystals were present on the APCS surface and decreased with number of rinsing times. The phosphorus content of APCS was minimal after rinsing 10 times and avoiding excessive corneal swelling. Calcium metabolism-related proteins were downregulated in APCS. Patients with corneal calcification had 1-week postoperative corneal epithelial defects and were treated with three types of phosphorous eyedrops. CONCLUSIONS Acellular porcine corneal stroma (APCS) calcification occurs in the superficial corneal stroma about 1 month after LKP. The application of AS-OCT, von Kossa staining and SEM/EDS provides a basis for the clinical and pathological diagnosis of corneal calcification. The associated risk factors were mainly high phosphorus content and downregulated calcium metabolism-related proteins in APCS. Postoperative epithelial defects, inflammation and use of phosphorous eyedrops may promote corneal calcification.
Collapse
Affiliation(s)
- Hua Li
- Department of Ophthalmology Clinical Medical College of Shandong University Jinan China
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Muchen Dong
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Eye Hospital of Shandong First Medical University Jinan China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Long Zhao
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Fuyan Wang
- Department of Ophthalmology Clinical Medical College of Shandong University Jinan China
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
| | - Xin Wang
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Eye Hospital of Shandong First Medical University Jinan China
| | - Ting Liu
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Lixin Xie
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Qingdao Eye Hospital of Shandong First Medical University Qingdao China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base Shandong Provincial Key Laboratory of Ophthalmology Shandong Eye Institute Shandong First Medical University & Shandong Academy of Medical Sciences Qingdao China
- Eye Hospital of Shandong First Medical University Jinan China
| |
Collapse
|
203
|
Gupta S, Buyank F, Sinha NR, Grant DG, Sinha PR, Iozzo RV, Chaurasia SS, Mohan RR. Decorin regulates collagen fibrillogenesis during corneal wound healing in mouse in vivo. Exp Eye Res 2022; 216:108933. [PMID: 35031282 PMCID: PMC8885890 DOI: 10.1016/j.exer.2022.108933] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
Abstract
A characteristic rigid spatial arrangement of collagen fibrils in the stroma is critical for corneal transparency. This unique organization of collagen fibrils in corneal stroma can be impacted by the presence and interactions of proteoglycans and extracellular matrix (ECM) proteins in a corneal microenvironment. Earlier studies revealed that decorin, a leucine-rich proteoglycan in stroma, regulates keratocyte-collagen matrix assembly and wound healing in the cornea. This study investigated the role of decorin in the regulation of stromal fibrillogenesis and corneal transparency in vivo employing a loss-of-function genetic approach using decorin null (dcn-/-) and wild type (dcn+/+) mice and a standard alkali-injury model. A time-dependent ocular examinations with Slit lamp microscope in live animals assessed corneal clarity, haze, and neovascularization levels in normal and injured eyes. Morphometric changes in normal and injured dcn+/+ and dcn-/- corneas, post-euthanasia, were analyzed with Masson's Trichrome and Periodic Acid-Schiff (PAS) histology evaluations. The ultrastructure changes in all corneas were investigated with transmission electron microscopy (TEM). Injury to eye produced clinically relevant corneal haze and neovascularization in dcn-/- and dcn+/+ mice while corneas of uninjured eyes remained clear and avascular. A clinically significant haze and neovascularization appeared in injured dcn-/- corneas compared to the dcn+/+ corneas at day 21 post-injury and not at early tested times. Histological examinations revealed noticeably abnormal morphology and compromised collagen levels in injured dcn-/- corneas compared to the injured/normal dcn+/+ and uninjured dcn-/- corneas. TEM analysis exhibited remarkably uneven collagen fibrils size and distribution in the stroma with asymmetrical organization and loose packing in injured dcn-/- corneas than injured/normal dcn+/+ and uninjured dcn-/- corneas. The minimum and maximum inter-fibril distances were markedly irregular in injured dcn-/- corneas compared to all other corneas. Together, results of clinical, histological, and ultrastructural investigations in a genetic knockout model suggested that decorin influenced stromal fibrillogenesis and transparency in healing cornea.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Filiz Buyank
- Department of Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Nihant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - DeAna G. Grant
- Electron Microscopy Core, University of Missouri, Columbia, Missouri, USA
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and Translational Cellular Oncology Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shyam S. Chaurasia
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA.,Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, USA.,Corresponding author: Rajiv R. Mohan, MS, PhD, FARVO, Professor of Ophthalmology & Molecular Medicine, University of Missouri, 1600 E. Rollins Rd, Columbia, MO 65211,
| |
Collapse
|
204
|
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87:101011. [PMID: 34530154 PMCID: PMC8918435 DOI: 10.1016/j.preteyeres.2021.101011] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The cornea is the outmost layer of the eye, unique in its transparency and strength. The cornea not only transmits the light essential for vision, also refracts light, giving focus to images. Each of the three layers of the cornea has properties essential for the function of vision. Although the epithelium can often recover from injury quickly by cell division, loss of limbal stem cells can cause severe corneal surface abnormalities leading to corneal blindness. Disruption of the stromal extracellular matrix and loss of cells determining this structure, the keratocytes, leads to corneal opacity. Corneal endothelium is the inner part of the cornea without self-renewal capacity. It is very important to maintain corneal dehydration and transparency. Permanent damage to the corneal stroma or endothelium can be effectively treated by corneal transplantation; however, there are drawbacks to this procedure, including a shortage of donors, the need for continuing treatment to prevent rejection, and limits to the survival of the graft, averaging 10-20 years. There exists a need for new strategies to promote regeneration of the stromal structure and restore vision. This review highlights critical contributions in regenerative medicine with the aim of corneal reconstruction after injury or disease. These approaches include corneal stromal stem cells, corneal limbal stem cells, embryonic stem cells, and other adult stem cells, as well as induced pluripotent stem cells. Stem cell-derived trophic factors in the forms of secretomes or exosomes for corneal regeneration are also discussed. Corneal sensory nerve regeneration promoting corneal transparency is discussed. This article provides description of the up-to-date options for corneal regeneration and presents exciting possible avenues for future studies toward clinical applications for corneal regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
205
|
Tseng SH, Yang CY, Li JH, Jeng YM, Ranasinghesagara JC, Venugopalan V. Corneal transparency and scleral opacity arises from the nanoarchitecture of the constituent collagen fibrils. BIOMEDICAL OPTICS EXPRESS 2022; 13:1485-1496. [PMID: 35414992 PMCID: PMC8973168 DOI: 10.1364/boe.444832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
While human scleral and corneal tissues possess similar structural morphology of long parallel cylindrical collagen fibrils, their optical characteristics are markedly different. Using pseudospectral time-domain (PSTD) simulations of Maxwell's equations, we model light propagation through realistic representations of scleral and corneal nanoarchitecture and analyze the transmittance and spatial correlation in the near field. Our simulation results provide differing predictions for scleral opacity and corneal transparency across the vacuum ultraviolet to the mid-infrared spectral region in agreement with experimental data. The simulations reveal that the differences in optical transparency between these tissues arise through differences in light scattering emanating from the specific nanoscale arrangement and polydispersity of the constituent collagen fibrils.
Collapse
Affiliation(s)
- Snow H. Tseng
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Yao Yang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Jia-Hao Li
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, National Taiwan University, Taipei, 10617, Taiwan
| | - Janaka C. Ranasinghesagara
- Department of Chemical and Biomolecular Engineering, Univ. of California, Irvine, CA. 92697, USA
- Beckman Laser Institute and Medical Clinic, Univ. of California, Irvine, CA. 92697, USA
| | - Vasan Venugopalan
- Department of Chemical and Biomolecular Engineering, Univ. of California, Irvine, CA. 92697, USA
- Beckman Laser Institute and Medical Clinic, Univ. of California, Irvine, CA. 92697, USA
| |
Collapse
|
206
|
Wang Y, Wang J, Ji Z, Yan W, Zhao H, Huang W, Liu H. Application of Bioprinting in Ophthalmology. Int J Bioprint 2022; 8:552. [PMID: 35669325 PMCID: PMC9159480 DOI: 10.18063/ijb.v8i2.552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an emerging technology that is widely used in regenerative medicine. With the continuous development of the technology, it has attracted great attention and demonstrated promising prospects in ophthalmologic applications. In this paper, we review the three main types of 3D bioprinting technologies: Vat polymerization-based bioprinting, extrusion-based bioprinting, and jetting-based bioprinting. We also present in this review the analysis of the usage of both natural and synthesized hydrogels as well as the types of cells adopted for bioinks. Cornea and retina are the two main types of ocular tissues developed in bioprinting, while other device and implants were also developed for the ocular disease treatment. We also summarize the advantages and limitations as well as the future prospects of the current bioprinting technologies based on systematic reviews.
Collapse
Affiliation(s)
- Yanfang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400045, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Innovation Platform for Translation of 3D Printing Application, The third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jiejie Wang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziyu Ji
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Lu Zhou 646000, China
| | - Wei Yan
- Department of Anatomy, Hebei Medical University, Shijiazhuang 050011, China
| | - Hong Zhao
- School of Basic Medicine, Guangdong Medical University, Dongguan, Guangdong 523000, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Innovation Platform for Translation of 3D Printing Application, The third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huan Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
207
|
Sun M, Koudouna E, Cogswell D, Avila MY, Koch M, Espana EM. Collagen XII Regulates Corneal Stromal Structure by Modulating Transforming Growth Factor-β Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:308-319. [PMID: 34774848 PMCID: PMC8908044 DOI: 10.1016/j.ajpath.2021.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Collagen XII is a regulator of corneal stroma structure and function. The current study examined the role of collagen XII in regulating corneal stromal transforming growth factor (TGF)-β activation and latency. Specifically, with the use of conventional collagen XII null mouse model, the role of collagen XII in the regulation of TGF-β latency and activity in vivo was investigated. Functional quantification of latent TGF-β in stromal matrix was performed by using transformed mink lung reporter cells that produce luciferase as a function of active TGF-β. Col12a1 knockdown with shRNA was used to test the role of collagen XII in TGF-β activation. Col12a1-/- hypertrophic stromata were observed with keratocyte hyperplasia. Increased collagen fibril forward signal was found by second harmonic generation microscopy in the absence of collagen XII. Collagen XII regulated mRNA synthesis of Serpine1, Col1a1, and Col5a1 and deposition of collagens in the extracellular matrix. A functional plasminogen activator inhibitor luciferase assay showed that collagen XII is necessary for latent TGF-β storage in the extracellular matrix and that collagen XII down-regulates active TGF-β. Collagen XII dictates stromal structure and function by regulating TGF-β activity. A hypertrophic phenotype in Col12a1-/- corneal tissue can be explained by abnormal up-regulation of TGF-β activation and decreased latent storage.
Collapse
Affiliation(s)
- Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida
| | - Elena Koudouna
- Structural Biophysics, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Devon Cogswell
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida
| | - Marcel Y. Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida,Morsani College of Medicine, University of South Florida, Tampa, Florida,Address correspondence to Edgar M. Espana, M.D., Ophthalmology, University of South Florida, Morsani College of Medicine, 13330 USF Laurel Dr., 4th Floor, MDC11, Tampa, FL 33612.
| |
Collapse
|
208
|
Sun M, Cogswell D, Adams S, Ayoubi Y, Kumar A, Reljic T, Avila MY, Margo CE, Espana EM. Downregulation of collagen XI during late postnatal corneal development is followed by upregulation after injury. J Cell Sci 2022; 135:273967. [PMID: 34854919 PMCID: PMC8767274 DOI: 10.1242/jcs.258694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/18/2021] [Indexed: 01/14/2023] Open
Abstract
Collagen XI plays a role in nucleating collagen fibrils and in controlling fibril diameter. The aim of this research was to elucidate the role that collagen XI plays in corneal fibrillogenesis during development and following injury. The temporal and spatial expression of collagen XI was evaluated in C57BL/6 wild-type mice. For wound-healing studies in adult mice, stromal injuries were created using techniques that avoid caustic chemicals. The temporal expression and spatial localization of collagen XI was studied following injury in a Col11a1 inducible knockout mouse model. We found that collagen XI expression occurs during early maturation and is upregulated after stromal injury in areas of regeneration and remodeling. Abnormal fibrillogenesis with new fibrils of heterogeneous size and shape occurs after injury in a decreased collagen XI matrix. In conclusion, collagen XI is expressed in the stroma during development and following injury in adults, and is a regulator of collagen fibrillogenesis in regenerating corneal tissue.
Collapse
Affiliation(s)
- Mei Sun
- From the Cornea, External Disease Service, Department of Ophthalmology, University of South Florida, Tampa, FL 33612, USA
| | - Devon Cogswell
- From the Cornea, External Disease Service, Department of Ophthalmology, University of South Florida, Tampa, FL 33612, USA
| | - Sheila Adams
- From the Cornea, External Disease Service, Department of Ophthalmology, University of South Florida, Tampa, FL 33612, USA
| | - Yasmin Ayoubi
- From the Cornea, External Disease Service, Department of Ophthalmology, University of South Florida, Tampa, FL 33612, USA
| | - Ambuj Kumar
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Tea Reljic
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Marcel Y. Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota 111321, Colombia
| | - Curtis E. Margo
- From the Cornea, External Disease Service, Department of Ophthalmology, University of South Florida, Tampa, FL 33612, USA,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Edgar M. Espana
- From the Cornea, External Disease Service, Department of Ophthalmology, University of South Florida, Tampa, FL 33612, USA,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA,Author for correspondence ()
| |
Collapse
|
209
|
Suppression of lipopolysaccharide-induced corneal opacity by hepatocyte growth factor. Sci Rep 2022; 12:494. [PMID: 35017561 PMCID: PMC8752742 DOI: 10.1038/s41598-021-04418-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Keratitis induced by bacterial toxins, including lipopolysaccharide (LPS), is a major cause of corneal opacity and vision loss. Our previous study demonstrates hepatocyte growth factor (HGF) promotes epithelial wound healing following mechanical corneal injury. Here, we investigated whether HGF has the capacity to suppress infectious inflammatory corneal opacity using a new model of LPS-induced keratitis. Keratitis, induced by two intrastromal injections of LPS on day 1 and 4 in C57BL/6 mice, resulted in significant corneal opacity for up to day 10. Following keratitis induction, corneas were topically treated with 0.1% HGF or PBS thrice daily for 5 days. HGF-treated mice showed a significantly smaller area of corneal opacity compared to PBS-treated mice, thus improving corneal transparency. Moreover, HGF treatment resulted in suppression of α-SMA expression, compared to PBS treatment. HGF-treated corneas showed normalized corneal structure and reduced expression of pro-inflammatory cytokine, demonstrating that HGF restores corneal architecture and immune quiescence in corneas with LPS-induced keratitis. These findings offer novel insight into the potential application of HGF-based therapies for the prevention and treatment of infection-induced corneal opacity.
Collapse
|
210
|
Juarez A, Djallali M, Piché M, Thériault M, Groleau M, Beroual S, McTiernan CD, Lin G, Hélie P, Carrier M, Griffith M, Brunette I. A Liquid Hydrogel to Restore Long Term Corneal Integrity After Perforating and Non-Perforating Trauma in Feline Eyes. Front Bioeng Biotechnol 2022; 9:773294. [PMID: 34976970 PMCID: PMC8714956 DOI: 10.3389/fbioe.2021.773294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: To evaluate long-term in vivo functionality of corneas regenerated using a cell-free, liquid hydrogel filler (LiQD Cornea) after deep corneal trauma in the feline model. Methods: Two healthy cats underwent 4 mm diameter stepwise 250/450 µm deep surgical corneal ablation with and without needle perforation. The filler comprising 10% (w/w) collagen-like peptide conjugated to polyethylene glycol (CLP-PEG) and 1% fibrinogen and crosslinked with 2% (w/w) 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM), was applied to the wound bed previously coated with thrombin (250 U/ml). In situ gelation occurred within 5 min, and a temporary tarsorrhaphy was performed. Eyes were examined weekly for 1 month, then monthly over 12 months. Outcome parameters included slit-lamp, Scheimpflug tomography, optical coherence tomography, confocal and specular microscopy, and immunohistochemistry studies. Results: The gelled filler was seamlessly incorporated, supporting smooth corneal re-epithelialization. Progressive in-growth of keratocytes and nerves into the filler corresponding to the mild haze observed faded with time. The regenerated neo-cornea remained stably integrated throughout the 12 months, without swelling, inflammation, infection, neovascularization, or rejection. The surrounding host stroma and endothelium remained normal at all times. Tomography confirmed restoration of a smooth surface curvature. Conclusion: Biointegration of this hydrogel filler allowed stable restoration of corneal shape and transparency in the feline model, with less inflammation and no neovascularization compared to previous reports in the minipig and rabbit models. It offers a promising alternative to cyanoacrylate glue and corneal transplantation for ulcerated and traumatized corneas in human patients.
Collapse
Affiliation(s)
- Alejandro Juarez
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Centre Universitaire d'Ophtalmologie de l'Université de Montréal à l'Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Mohamed Djallali
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Marilyse Piché
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Mathieu Thériault
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Marc Groleau
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Sharifa Beroual
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | | | - Grace Lin
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Pierre Hélie
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC, Canada
| | - Michel Carrier
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC, Canada
| | - May Griffith
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada.,Institute of Biomedical Engineering, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Brunette
- Department of Ophthalmology, Université de Montréal, Montreal, QC, Canada.,Centre Universitaire d'Ophtalmologie de l'Université de Montréal à l'Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.,Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| |
Collapse
|
211
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
212
|
Pakbin M, Khabazkhoob M, Pakravan M, Fotouhi A, Jafarzadehpur E, Aghamirsalim M, Hashemi H. Repeatability of Corneal Densitometry Measurements using a Scheimpflug Camera in Healthy Normal Corneas. J Curr Ophthalmol 2022; 34:50-55. [PMID: 35620364 PMCID: PMC9128441 DOI: 10.4103/joco.joco_173_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022] Open
Abstract
Purpose To determine the repeatability of corneal densitometry measured by the Scheimpflug imaging system. Methods This cross-sectional study was conducted on photorefractive keratectomy candidates. One eye of each participant underwent imaging using Pentacam HR three times, 10 min apart. The repeatability of densitometry measurements was evaluated in four concentric annuli around the corneal apex and in different corneal depths. The repeatability of the measurements was evaluated using the intraclass correlation coefficient (ICC), repeatability coefficient (RC), and coefficient of variation (CV). The difference of repeatability between layers and zones was tested by tolerance index (TI). Results Sixty eyes of sixty patients with a mean age of 27.76 ± 3.93 years were studied. Half of the participants were female (n = 30, 50%). ICC was above 0.9 in all corneal parts. The posterior layer and central zones showed the least variability of densitometry measurements considering the CV values. The RC was 2.06, 1.17, and 0.92 in anterior, central, and posterior layers, respectively. The RC was 0.88, 0.71, 1.51, and 4.56 in 0-2, 2-6, 6-10, and 10-12 mm circles, respectively. Only the reliability of densitometry in 10-12 mm annulus was statistically lower than the central zone (TI = 0.71). Conclusions Corneal densitometry measurements provided by the Pentacam had good repeatability. The repeatability of densitometry measurements decreased from the center to the periphery (with an exception for 0-2 mm and 2-6 mm) and from the posterior to the anterior of the cornea. The reliability of the 10-12 mm zone was markedly less than other zones.
Collapse
Affiliation(s)
- Mojgan Pakbin
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
- Translational Ophthalmology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khabazkhoob
- Department of Basic Sciences, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Pakravan
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohamadreza Aghamirsalim
- Translational Ophthalmology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Hashemi
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran, Iran
- Translational Ophthalmology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
213
|
Andreev AY, Osidak EO, Avetisov SE, Voronin GV, Andreeva NA, Agaeva LM, Yu Y, Domogatskiy SP. [Modern prerequisites for creating a collagen-based artificial analogue of the corneal stroma]. Vestn Oftalmol 2022; 138:253-259. [PMID: 36287164 DOI: 10.17116/oftalma2022138052253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite the fact that various collagen biomaterials have been actively used in ophthalmology for more than 30 years, the problem of creating a material that could replace the donor cornea have not been solved. Recent advances in the field of tissue engineering and regenerative medicine have shifted the focus of approaches to solving the problem of creating an artificial cornea towards laying conditions for the restoration of its specific layers through mechanisms of its own cellular regeneration. In this regard, extracellular matrices based on collagen are gaining popularity. This review discusses general limitations and advantages of collagen for creating an artificial cornea.
Collapse
Affiliation(s)
- A Yu Andreev
- Research Institute of Eye Diseases, Moscow, Russia
- Imtek Co. Ltd., Moscow, Russia
| | - E O Osidak
- Imtek Co. Ltd., Moscow, Russia
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Moscow, Russia
| | - S E Avetisov
- Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G V Voronin
- Research Institute of Eye Diseases, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - N A Andreeva
- Research Institute of Eye Diseases, Moscow, Russia
| | - L M Agaeva
- Research Institute of Eye Diseases, Moscow, Russia
| | - Y Yu
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - S P Domogatskiy
- Imtek Co. Ltd., Moscow, Russia
- National Medical Research Center of Cardiology named after academician E.I. Chazov, Moscow, Russia
| |
Collapse
|
214
|
Surnina ZV, Andreev AY, Sharnina DA, Yusef SN. [Nerve fiber structure after different types of corneal transplantation]. Vestn Oftalmol 2022; 138:260-265. [PMID: 36287165 DOI: 10.17116/oftalma2022138052260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This review presents basic information about the state of corneal nerve fibers and Langerhans cells before and after keratoplasty. Keratoplasty is a common corneal surgery that carries a risk of graft rejection. The state of corneal nerve fibers can vary after different types of keratoplasty. Corneal confocal microscopy allows in vivo evaluation of the cornea, which can help assess the condition of corneal nerve fibers, as well as reveal the presence of Langerhans cells. Further research in this direction would contribute to identifying the relationship between the state of corneal nerve fibers, the presence of Langerhans cells, and graft rejection.
Collapse
Affiliation(s)
- Z V Surnina
- Research Institute of Eye Disease, Moscow, Russia
| | - A Yu Andreev
- Research Institute of Eye Disease, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - D A Sharnina
- Research Institute of Eye Disease, Moscow, Russia
| | - S N Yusef
- Research Institute of Eye Disease, Moscow, Russia
| |
Collapse
|
215
|
|
216
|
Abstract
Functional status and biological properties of connective tissues significantly depend on the mineral elements involved in their metabolism. Connective tissue portion of the corneal stroma makes up most of its thickness; pathological changes in collagen fibers and the stroma can cause a range of corneal diseases, some of which are specifically associated with disorders of mineral metabolism. The article considers impairments of mineral metabolism as possible pathophysiological mechanisms in certain diseases and disorders of the cornea, and describes in detail the abnormalities associated with mineral dysmetabolism observed in patients with keratoconus.
Collapse
Affiliation(s)
- L S Pateyuk
- Research Institute of Eye Disease, Moscow, Russia
| | - A M Subbot
- Research Institute of Eye Disease, Moscow, Russia
| | - A V Kobzeva
- Research Institute of Eye Disease, Moscow, Russia
| |
Collapse
|
217
|
Ariesta Shinta Dewi P, Sitompul R, Adiwinata Pawitan J, Naroeni A, Dewayani Antarianto R. Improvement of Corneal Nerve Regeneration in Diabetic Rats Using Wharton's Jelly-Derived Mesenchymal Stem Cells and their Conditioned Medium. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:180-196. [PMID: 37605742 PMCID: PMC10440006 DOI: 10.22088/ijmcm.bums.11.3.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 08/23/2023]
Abstract
To investigate the efficacy of Wharton's jelly mesenchymal stem cells (WJSCs) and their conditioned medium (CM) for corneal nerve regeneration in rats with diabetic keratopathy. Streptozotocin (STZ)-induced male diabetic (DM) rats (250-300 g) were divided into four groups (n=7/group): Control, DM, DM with WJSCs (DM+WJ), and DM with CM treatment (DM+CM). DM+WJ and DM+CM group received WJSCs or CM, respectively, topically with eye drops. Corneal sensibility, corneal epithelial layer integrity, histology, expression of GAP-43 and TUBB3 on mRNA level and their immunohistochemical expression were examined after two weeks of treatment. There were changes in corneal sensibility and corneal integrity between normal control and diabetic groups with/without WJSC or CM injection. Total central corneal thickness was significantly higher in DM+CM (249.81 ± 43.85 μm) than in control (174.72 ± 44.12 μm, P=0.004) and DM groups (190.15 ± 9.63 μm, P=0.03). GAP-43 mRNA expression levels of DM+WJ and DM+CM groups were higher compared with DM and control groups. TUBB3 mRNA level was increased after CM (P=0.047), but not after WJSCs treatment (P=1.00). GAP-43 and TUBB3 immunohistochemical expression of nerve fibers along the epithelial layer significantly increased in DM+WJ and DM+CM compared with DM group. Our findings showed that WJSCs and their CM improved corneal nerve regeneration in rats with diabetic keratopathy.
Collapse
Affiliation(s)
- Pitra Ariesta Shinta Dewi
- Doctoral Programme Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| | - Ratna Sitompul
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
- Stem Cell and Tissue Engineering (SCTE) Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | - Aroem Naroeni
- Stem Cell Medical Technology Integrated Service Unit, Dr. Cipto Mangunkusumo General Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
- Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | | |
Collapse
|
218
|
Bosworth LA, Lanaro M, O'Loughlin DA, D'Sa RA, Woodruff MA, Williams RL. Melt electro-written scaffolds with box-architecture support orthogonally oriented collagen. Biofabrication 2021; 14. [PMID: 34883476 DOI: 10.1088/1758-5090/ac41a1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022]
Abstract
Melt electro-writing (MEW) is a state-of-the-art technique that supports fabrication of 3D, precisely controlled and reproducible fiber structures. A standard MEW scaffold design is a box-structure, where a repeat layer of 90° boxes is produced from a single fiber. In 3D form (i.e. multiple layers), this structure has the potential to mimic orthogonal arrangements of collagen, as observed in the corneal stroma. In this study, we determined the response of human primary corneal stromal cells and their deposited fibrillar collagen (detected using a CNA35 probe) following six weeksin vitroculture on these box-structures made from poly(ϵ-caprolactone) (PCL). Comparison was also made to glass substrates (topography-free) and electrospun PCL fibers (aligned topography). Cell orientation and collagen deposition were non-uniform on glass substrates. Electrospun scaffolds supported an excellent parallel arrangement of cells and deposited collagen to the underlying architecture of aligned fibers, but there was no evidence of bidirectional collagen. In contrast, MEW scaffolds encouraged the formation of a dense, interconnected cellular network and deposited fibrillar collagen layers with a distinct orthogonal-arrangement. Collagen fibrils were particularly dominant through the middle layers of the MEW scaffolds' total thickness and closer examination revealed these fibrils to be concentrated within the pores' central regions. With the demand for donor corneas far exceeding the supply-leaving many with visual impairment-the application of MEW as a potential technique to recreate the corneal stroma with spontaneous, bidirectional collagen organization warrants further study.
Collapse
Affiliation(s)
- Lucy A Bosworth
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Matthew Lanaro
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Danielle A O'Loughlin
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Raechelle A D'Sa
- Department of Mechanical, Materials and Aerospace Engineering, Faculty of Science and Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Maria A Woodruff
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| |
Collapse
|
219
|
On the Relationship between Corneal Biomechanics, Macrostructure, and Optical Properties. J Imaging 2021; 7:jimaging7120280. [PMID: 34940747 PMCID: PMC8706034 DOI: 10.3390/jimaging7120280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Optical properties of the cornea are responsible for correct vision; the ultrastructure allows optical transparency, and the biomechanical properties govern the shape, elasticity, or stiffness of the cornea, affecting ocular integrity and intraocular pressure. Therefore, the optical aberrations, corneal transparency, structure, and biomechanics play a fundamental role in the optical quality of human vision, ocular health, and refractive surgery outcomes. However, the inter-relationships of those properties are not yet reported at a macroscopic scale within the hierarchical structure of the cornea. This work explores the relationships between the biomechanics, structure, and optical properties (corneal aberrations and optical density) at a macro-structural level of the cornea through dual Placido–Scheimpflug imaging and air-puff tonometry systems in a healthy young adult population. Results showed correlation between optical transparency, corneal macrostructure, and biomechanics, whereas corneal aberrations and in particular spherical terms remained independent. A compensation mechanism for the spherical aberration is proposed through corneal shape and biomechanics.
Collapse
|
220
|
Spiru B, Torres-Netto EA, Kling S, Hafezi F, Sekundo W. Hyperopic SMILE Versus FS-LASIK: A Biomechanical Comparison in Human Fellow Corneas. J Refract Surg 2021; 37:810-815. [PMID: 34914557 DOI: 10.3928/1081597x-20210830-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To investigate the biomechanical properties of ex vivo human paired corneas after hyperopic correction via cap-based versus flap-based laser-assisted refractive surgery. METHODS In this prospective experimental study, 13 pairs of human corneas unsuitable for transplantation were equally divided into two groups. The pachymetry was performed in each eye just before the laser procedure. Corneas from the right eye were treated with small incision lenticule extraction (SMILE), whereas corneas from the left eye of the same donor were treated with femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). All corneas were subjected to a refractive correction of +6.00 diopters (D) sphere with a 6.5-mm zone under a 120-µm cap (SMILE) or a 7-mm zone under a 110-µm flap (FS-LASIK). For two-dimensional biomechanical measurements, the corneoscleral buttons underwent two testing cycles (preconditioning stress-strain curve from 0.03 to 9.0 N and stress-relaxation at 9.0 N during 120 seconds) to analyze the elastic and viscoelastic material properties. The effective elastic modulus was calculated. Statistical analysis was performed with a confidence interval of 95%. RESULTS In stress-strain measurements, the effective elastic modulus was not significantly different (P > .311) between SMILE (13.5 ± 12.8 MPa) and FS-LASIK (7.56 ± 17.9 MPa). In stress-relaxation measurements, the remaining stress was not significantly different (P = .841) between SMILE (124 ± 20 kPa) and FS-LASIK (126 ± 21 kPa). CONCLUSIONS Unlike myopic correction, after hyperopic correction the cap-based procedure (SMILE) and the flap-based technique (FS-LASIK) may be considered equivalent in terms of biomechanical stability when measured experimentally in ex vivo human fellow eye corneas. [J Refract Surg. 2021;37(12):810-815.].
Collapse
|
221
|
Ye Y, Li Y, Zhu Z, Abu Said AZM, Nguelemo Mayopa K, Akiti S, Huang C, Lopes BT, Eliasy A, Miao Y, Wang J, Zheng X, Chen S, Bao F, Elsheikh A. Effect of Mydriasis-Caused Intraocular Pressure Changes on Corneal Biomechanical Metrics. Front Bioeng Biotechnol 2021; 9:751628. [PMID: 34900957 PMCID: PMC8664602 DOI: 10.3389/fbioe.2021.751628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023] Open
Abstract
Purpose: To evaluate the dependence of biomechanical metrics on intraocular pressure (IOP). Methods: 233 refractive surgery patients were included in this study—all were examined 3 times with the Corvis ST before and after dilation, and the differences (∆) in the main device parameters were assessed. The data collected included the biomechanically corrected IOP (bIOP), the central corneal thickness (CCT), and six dynamic corneal response (DCR) parameters, namely DA, DARatio2mm, IIR, SP-A1, CBI, and SSI. Participants were divided into three groups according to the changes in patients’ bIOP after mydriasis. Results: Intra-operator repeatability was generally high in most of the DCR parameters obtained before and after dilation. The mean changes in bIOP and CCT after dilation were −0.12 ± 1.36 mmHg and 1.95 ± 5.23 μm, respectively. Only ∆DARatio2mm, ∆IIR, and ∆CBI exhibited a statistically significant correlation with ∆CCT (p < 0.05). The changes in all DCR parameters, especially ∆DA and ∆SP-A1 were also correlated with ∆bIOP (p < 0.01)—a 1-mmHg change in bIOP was associated, on average, with 5.612 and −0.037 units of change in SP-A1 and DA, respectively. In contrast, the weakest correlation with ∆bIOP was exhibited by ∆SSI. Conclusion: Most corneal DCR parameters, provided by the Corvis ST, were correlated with IOP, and more weakly with CCT. Changes experienced in CCT and IOP should therefore be considered in studies on corneal biomechanics and how it is affected by disease progression and surgical or medical procedures.
Collapse
Affiliation(s)
- Yufeng Ye
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi Li
- North Huashan Hospital, Fudan University, Shanghai, China
| | - Zehui Zhu
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | - Stephen Akiti
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chengyi Huang
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bernardo T Lopes
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Ashkan Eliasy
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Yuanyuan Miao
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junjie Wang
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Xiaobo Zheng
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Shihao Chen
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Fangjun Bao
- Eye Hospital, Wenzhou Medical University, Wenzhou, China.,The Institute of Ocular Biomechanics, Wenzhou Medical University, Wenzhou, China
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, United Kingdom.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
222
|
In vivo biocompatibility evaluation of in situ-forming polyethylene glycol-collagen hydrogels in corneal defects. Sci Rep 2021; 11:23913. [PMID: 34903788 PMCID: PMC8668970 DOI: 10.1038/s41598-021-03270-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
The available treatment options include corneal transplantation for significant corneal defects and opacity. However, shortage of donor corneas and safety issues in performing corneal transplantation are the main limitations. Accordingly, we adopted the injectable in situ-forming hydrogels of collagen type I crosslinked via multifunctional polyethylene glycol (PEG)-N-hydroxysuccinimide (NHS) for treatment and evaluated in vivo biocompatibility. The New Zealand White rabbits (N = 20) were randomly grouped into the keratectomy-only and keratectomy with PEG-collagen hydrogel-treated groups. Samples were processed for immunohistochemical evaluation. In both clinical and histologic observations, epithelial cells were able to migrate and form multilayers over the PEG-collagen hydrogels at the site of the corneal stromal defect. There was no evidence of inflammatory or immunological reactions or increased IOP for PEG-collagen hydrogel-treated corneas during the four weeks of observation. Immunohistochemistry revealed the presence of α-smooth muscle actin (α-SMA) in the superior corneal stroma of the keratectomy-only group (indicative of fibrotic healing), whereas low stromal α-SMA expression was detected in the keratectomy with PEG-collagen hydrogel-treated group. Taken together, we suggest that PEG-collagen may be used as a safe and effective alternative in treating corneal defect in clinical setting.
Collapse
|
223
|
Sinha NR, Balne PK, Bunyak F, Hofmann AC, Lim RR, Mohan RR, Chaurasia SS. Collagen matrix perturbations in corneal stroma of Ossabaw mini pigs with type 2 diabetes. Mol Vis 2021; 27:666-678. [PMID: 35002212 PMCID: PMC8684810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose Diabetes mellitus (DM) is a metabolic disorder that affects over 450 million people worldwide. DM is characterized by hyperglycemia, causing severe systemic damage to the heart, kidneys, skin, vasculature, nerves, and eye. Type 2 diabetes (T2DM) constitutes 90% of clinical cases and is the most common cause of blindness in working adults. Also, about 70% of T2DM patients show corneal complications including delayed wound healing, often described as diabetic keratopathy (DK). Despite the increasing severity of DM, the research on DK is bleak. This study investigated cellular morphology and collagen matrix alterations of the diabetic and non-diabetic corneas collected from Ossabaw mini pigs, a T2DM animal model with a "thrifty genotype." Methods Pig corneas were collected from six-month-old Ossabaw miniature pigs fed on a western diet (WD) for ten weeks. The tissues were processed for immunohistochemistry and analyzed using hematoxylin and eosin staining, Mason Trichrome staining, Picrosirus Red staining, Collage I staining, and TUNEL assay. mRNA was prepared to quantify fibrotic gene expression using quantitative reverse-transcriptase PCR (qRT-PCR). Transmission electron microscopy (TEM) was performed to evaluate stromal fibril arrangements to compare collagen dynamics in WD vs. standard diet (SD) fed Ossabaw pig corneas. Results Ossabaw mini pigs fed on a WD for 10 weeks exhibit classic symptoms of metabolic syndrome and hyperglycemia seen in T2DM patients. We observed significant disarray in cornea stromal collagen matrix in Ossabaw mini pigs fed on WD compared to the age-matched mini pigs fed on a standard chow diet using Masson Trichome and Picrosirius Red staining. Furthermore, ultrastructure evaluation using TEM showed alterations in stromal collagen fibril size and organization in diabetic corneas compared to healthy age-matched corneas. These changes were accompanied by significantly decreased levels of Collagen IV and increased expression of matrix metallopeptidase 9 in WD-fed pigs. Conclusions This pilot study indicates that Ossabaw mini pigs fed on WD showed collagen disarray and altered gene expression involved in wound healing, suggesting that corneal stromal collagens are vulnerable to diabetic conditions.
Collapse
Affiliation(s)
- Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Praveen K. Balne
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Filiz Bunyak
- Department of Computer Science, University of Missouri, Columbia, MO
| | - Alexandria C. Hofmann
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
| | - Rayne R. Lim
- Department of Ophthalmology, University of Washington, Seattle, WA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO
| | - Shyam S. Chaurasia
- One-Health Vision Research Program, Departments of Ophthalmology and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Department of Ophthalmology and Visual Sciences, The Eye Institute, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
224
|
Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
225
|
Rohfritsch A, Conoir JM, Valier-Brasier T, Pierrat R, Marchiano R. Propagation of scalar waves in dense disordered media exhibiting short- and long-range correlations. Phys Rev E 2021; 104:064138. [PMID: 35030877 DOI: 10.1103/physreve.104.064138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Correlated disorder is at the heart of numerous challenging problematics in physics. In this work we focus on the propagation of acoustic coherent waves in two-dimensional dense disordered media exhibiting long- and short-range structural correlations. The media are obtained by inserting elastic cylinders randomly in a stealth hyperuniform medium itself made up of cylinders. The properties of the coherent wave is studied using an original numerical software. In order to understand and discuss the complex physical phenomena occurring in the different media, we also make use of effective media models derived from the quasicrystalline approximation and the theory of Fikioris and Waterman that provides an explicit expression of the effective wave numbers. Our study shows a very good agreement between numerical and homogenization models up to very high concentrations of scatterers. This study shows that media with both short- and long-range correlations are of strong interest to design materials with original properties.
Collapse
Affiliation(s)
- Adrien Rohfritsch
- Sorbonne Université, CNRS, Institut Jean Le Rond ∂'Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France
| | - Jean-Marc Conoir
- Sorbonne Université, CNRS, Institut Jean Le Rond ∂'Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France
| | - Tony Valier-Brasier
- Sorbonne Université, CNRS, Institut Jean Le Rond ∂'Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France
| | - Romain Pierrat
- ESPCI Paris, PSL University, CNRS, Institut Langevin, 1 rue Jussieu, F-75005 Paris, France
| | - Régis Marchiano
- Sorbonne Université, CNRS, Institut Jean Le Rond ∂'Alembert, UMR 7190, 4 Place Jussieu, Paris, F-75005, France
| |
Collapse
|
226
|
Sobczak M, Asejczyk M. Birefringent properties of the cornea measured by a Mueller type polarimeter in healthy adults and children. BIOMEDICAL OPTICS EXPRESS 2021; 12:7872-7885. [PMID: 35003872 PMCID: PMC8713654 DOI: 10.1364/boe.440274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
Mueller type polarimeter was used for in vivo measurements of the anisotropic parameters (retardation and azimuth angle) of corneas. To determine birefringence, corneal thickness was measured with a Scheimpflug camera (Corvist ST). The retardation distributions in the nasal-temporal cross-section in both children (N=7) and adults (N=38) groups occurred asymmetrical. The asymmetry in birefringence distributions was observed only in adults group. The geometrical analysis of the first order isochromes in both age groups showed the asymmetry of its shapes. The changes of symmetry in birefringent properties with age may have potential relationship with changing corneal biometry.
Collapse
|
227
|
Chen Y, Dong L, Kong B, Huang Y, Zhong S, Connon C, Tan J, Yang S, Sun W, Mi S. Effects of Gelatin Methacrylate Hydrogel on Corneal Repair and Regeneration in Rats. Transl Vis Sci Technol 2021; 10:25. [PMID: 34935910 PMCID: PMC8711000 DOI: 10.1167/tvst.10.14.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose This study investigates the repairing process of rat cornea after surgery of lamellar keratoplasty (LKP) and evaluates the effects of gelatin methacrylate (GelMA) hydrogel. Methods In the LKP group, the lamellar stroma matrixes of Sprague-Dawley rats were transplanted to enhanced green fluorescent protein rats, whereas those in the GelMA group were also embedded with a GelMA hydrogel during the corneal transplantation. Grafted eyes were harvested on days seven, 30, and 90. Hematoxylin and eosin staining, immunofluorescence staining, scanning electron microscopy, optical coherence tomography, and a slit-lamp microscope were used to study the process of corneal restoration and regeneration. Results A total of 42 rats were analyzed, including 18 rats in each of the experimental group and six rats in the control group. After three months, the infiltration degree of inflammatory cells differed between the LKP group and the GelMA group (P < 0.001). Moreover, in multiple comparisons in corneal thickness, significant difference was observed between the LKP group and the GelMA group. There was also divergence in the results between the LKP group and the control group (P < 0.001, P < 0.001). At the same time, the expression of α-smooth muscle actin (α-SMA) and transforming growth factor (TGF)-β1 varied distinctly between the LKP group and the GelMA group (P < 0.05, P < 0.001). Conclusions Significant differences were demonstrated between the LKP group and the GelMA group in inflammatory cell infiltration, corneal thickness, as well as the expression of α-SMA and TGF-β1. Those differences indicate the ability of GelMA hydrogel to support alleviation in corneal stroma fibrosis and show the influences of fibrosis in the dysfunction of corneal refractive power. Translational Relevance Our research provides new ideas for the future development of LKP and tissue-engineered corneas.
Collapse
Affiliation(s)
- Yun Chen
- Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China.,Open FIESTA Center, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, P.R. China
| | - Lina Dong
- Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China
| | - Bin Kong
- Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China
| | - Yu Huang
- Biomanufacturing Engineering Laboratory, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, P.R. China
| | - Suyi Zhong
- Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen, P.R. China
| | - Che Connon
- Biosciences Institute, Newcastle University
| | - Jiaqi Tan
- Open FIESTA Center, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, P.R. China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing, P.R. China
| | - Wei Sun
- Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China.,Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, P.R. China.,Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
| | - Shengli Mi
- Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China.,Open FIESTA Center, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, P.R. China.,Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, P.R. China
| |
Collapse
|
228
|
The Communication between Ocular Surface and Nasal Epithelia in 3D Cell Culture Technology for Translational Research: A Narrative Review. Int J Mol Sci 2021; 22:ijms222312994. [PMID: 34884799 PMCID: PMC8657734 DOI: 10.3390/ijms222312994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
There is a lack of knowledge regarding the connection between the ocular and nasal epithelia. This narrative review focuses on conjunctival, corneal, ultrastructural corneal stroma, and nasal epithelia as well as an introduction into their interconnections. We describe in detail the morphology and physiology of the ocular surface, the nasolacrimal ducts, and the nasal cavity. This knowledge provides a basis for functional studies and the development of relevant cell culture models that can be used to investigate the pathogenesis of diseases related to these complex structures. Moreover, we also provide a state-of-the-art overview regarding the development of 3D culture models, which allow for addressing research questions in models resembling the in vivo situation. In particular, we give an overview of the current developments of corneal 3D and organoid models, as well as 3D cell culture models of epithelia with goblet cells (conjunctiva and nasal cavity). The benefits and shortcomings of these cell culture models are discussed. As examples for pathogens related to ocular and nasal epithelia, we discuss infections caused by adenovirus and measles virus. In addition to pathogens, also external triggers such as allergens can cause rhinoconjunctivitis. These diseases exemplify the interconnections between the ocular surface and nasal epithelia in a molecular and clinical context. With a final translational section on optical coherence tomography (OCT), we provide an overview about the applicability of this technique in basic research and clinical ophthalmology. The techniques presented herein will be instrumental in further elucidating the functional interrelations and crosstalk between ocular and nasal epithelia.
Collapse
|
229
|
Yang X, Sun X, Liu J, Huang Y, Peng Y, Xu Y, Ren L. Photo-crosslinked GelMA/collagen membrane loaded with lysozyme as an antibacterial corneal implant. Int J Biol Macromol 2021; 191:1006-1016. [PMID: 34592226 DOI: 10.1016/j.ijbiomac.2021.09.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
Corneal transplantation is an effective treatment for corneal blindness. However, it brings risk factors for the occurrence of bacterial keratitis, which can affect the repair effect and even lead to transplantation failure. The difficulty in re-epithelialization is also a main problem faced by corneal transplantation. Herein, a collagen-GelMA composite membrane containing lysozyme (CGL) was developed as an antibacterial corneal implant to fill stromal defect and support re-epithelialization. Characterizations of physicochemical properties and in vitro biocompatibility revealed that the composite membranes have proper water content, light transmittance and mechanical strength as well as good biocompatibility. Particularly, the cell adhesion force and adhesion-related genes expression were evaluated and exhibited an improvement after the addition of GelMA. Furthermore, the formed CGL membrane could continuously release lysozyme and exhibited a bactericidal rate of 96% and 64% after 2 h and 72 h, respectively. The results demonstrated that this CGL membrane has promising application in corneal repair.
Collapse
Affiliation(s)
- Xiangjing Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaomin Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yongrui Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yuehai Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yingni Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, PR China.
| |
Collapse
|
230
|
Ismail EH, Paravina RD. Color adjustment potential of resin composites: Optical illusion or physical reality, a comprehensive overview. J ESTHET RESTOR DENT 2021; 34:42-54. [PMID: 34843636 DOI: 10.1111/jerd.12843] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/16/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objective was to provide a comprehensive overview of color interactions between resin composite (RC) and its surroundings, analyze the design and results of respective research studies, and provide clinical and research recommendations. OVERVIEW Resin composite (RC) materials can adjust their color to that of surrounding enamel and dentin to a different extent. This phenomenon has been referred to as the "chameleon effect" in dental jargon, while color blending/adjustment/shifting/assimilation is more scientific terms. Studies that evaluated the color adjustment potential of RCs have employed different methods. This article discusses the (a) terminology used to describe color adjustment potential, (b) color science theories associated with color adjustment, (c) design of respective studies, including methods, specimens, and calculations, and (d) their outcome and reported results. Clinical implications and future directions related to the color adjustment potential of RCs are also provided. CONCLUSIONS Factors that influence the color adjustment potential of RCs are classified into three categories: (1) material type, (2) cavity design, and (3) the substrate surrounding the restoration. Each factor can be optimized to enhance color matching and the restorative outcome. CLINICAL SIGNIFICANCE A material that blends well and exhibits pronounced color adjustment potential would likely improve the color match and therefore the esthetic outcome. These materials "work" for dental professionals by compensating for their suboptimal shade matching and/or lack of an excellent match in the used material. This review aims to further the understanding of the inherent properties of RCs and allow clinicians to fully utilize them to place RC restorations and minimize the time spent on modifying or replacing existing ones. Hence, the outcomes would encompass the increased chairside efficiency, enhanced esthetic outcome, and patient satisfaction.
Collapse
Affiliation(s)
- Eman H Ismail
- Department of Clinical Dental Science, College of Dentistry, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rade D Paravina
- Department of Restorative Dentistry and Prosthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| |
Collapse
|
231
|
Sharifi S, Sharifi H, Akbari A, Dohlman CH, Paschalis EI, Gonzalez-Andrades M, Kong J, Chodosh J. Graphene-Lined Porous Gelatin Glycidyl Methacrylate Hydrogels: Implications for Tissue Engineering. ACS APPLIED NANO MATERIALS 2021; 4:12650-12662. [PMID: 35252778 PMCID: PMC8897984 DOI: 10.1021/acsanm.1c03201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite rigorous research, inferior mechanical properties and structural homogeneity are the main challenges constraining hydrogel's suturability to host tissue and limiting its clinical applications. To tackle those, we developed a reverse solvent interface trapping method, in which organized, graphene-coated microspherical cavities were introduced into a hydrogel to create heterogeneity and make it suturable. To generate those cavities, (i) graphite exfoliates to graphene sheets, which spread at the water/ heptane interfaces of the microemulsion, (ii) heptane fills the microspheres coated by graphene, and (iii) a cross-linkable hydrogel dissolved in water fills the voids. Cross-linking solidifies such microemulsion to a strong, suturable, permanent hybrid architecture, which has better mechanical properties, yet it is biocompatible and supports cell adhesion and proliferation. These properties along with the ease and biosafety of fabrication suggest the potential of this strategy to enhance tissue engineering outcomes by generating various suturable scaffolds for biomedical applications, such as donor cornea carriers for Boston keratoprosthesis (BK).
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia 57147, Iran
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Miguel Gonzalez-Andrades
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Department of Ophthalmology, Reina Sofia University Hospital and University of Cordoba, Cordoba 14004, Spain
| | - Jing Kong
- Department of Electrical Engineering andComputer Science, Massachusetts Institute of Technology,Cambridge, Massachusetts 02139, United States
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
232
|
Yeung V, Sriram S, Tran JA, Guo X, Hutcheon AEK, Zieske JD, Karamichos D, Ciolino JB. FAK Inhibition Attenuates Corneal Fibroblast Differentiation In Vitro. Biomolecules 2021; 11:1682. [PMID: 34827680 PMCID: PMC8616004 DOI: 10.3390/biom11111682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Corneal fibrosis (or scarring) occurs in response to ocular trauma or infection, and by reducing corneal transparency, it can lead to visual impairment and blindness. Studies highlight important roles for transforming growth factor (TGF)-β1 and -β3 as modulators in corneal wound healing and fibrosis, leading to increased extracellular matrix (ECM) components and expression of α-smooth muscle actin (αSMA), a myofibroblast marker. In this study, human corneal fibroblasts (hCF) were cultured as a monolayer culture (2D) or on poly-transwell membranes to generate corneal stromal constructs (3D) that were treated with TGF-β1, TGF-β3, or TGF-β1 + FAK inhibitor (FAKi). Results show that hCF 3D constructs treated with TGF-β1 or TGF-β3 impart distinct effects on genes involved in wound healing and fibrosis-ITGAV, ITGB1, SRC and ACTA2. Notably, in the 3D construct model, TGF-β1 enhanced αSMA and focal adhesion kinase (FAK) protein expression, whereas TGF-β3 did not. In addition, in both the hCF 2D cell and 3D construct models, we found that TGF-β1 + FAKi attenuated TGF-β1-mediated myofibroblast differentiation, as shown by abrogated αSMA expression. This study concludes that FAK signaling is important for the onset of TGF-β1-mediated myofibroblast differentiation, and FAK inhibition may provide a novel beneficial therapeutic avenue to reduce corneal scarring.
Collapse
Affiliation(s)
- Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Sriniwas Sriram
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Jennifer A. Tran
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Audrey E. K. Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - James D. Zieske
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA;
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| |
Collapse
|
233
|
Busin M, Bovone C, Scorcia V, Rimondi E, Nahum Y, Myerscough J, Yu AC. Ultrastructural Alterations of Grafted Corneal Buttons: The Anatomic Basis for Stromal Peeling Along a Natural Plane of Separation. Am J Ophthalmol 2021; 231:144-153. [PMID: 34118211 DOI: 10.1016/j.ajo.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To examine the ultrastructure of the natural plane of separation in grafted corneas and evaluate the outcomes of stromal peeling. DESIGN Interventional case series. METHODS In this multicenter study, stromal peeling was attempted in 96 consecutive eyes with unsatisfactory vision following penetrating keratoplasty (PK) for keratoconus (n = 79), herpetic keratitis (n = 11), and granular dystrophy (n = 6). Stromal exchange was performed by (1) 9 mm partial-thickness trephination; (2) creation of a corneal flap across the PK wound; (3) opening of the stromal component of the PK wound until a smooth, translucent natural plane was identified; (4) severing the attachment of the PK scar; (5) stromal peeling along the identified plane; and (6) suturing of donor lamella. Grafted corneas from cases that mandated conversion to PK were processed for transmission electron microscopy. RESULTS The natural plane of separation was identified in all cases. Stromal exchange was successfully completed in 84 cases (87.5%). Snellen visual acuity ≥20/40 and ≥20/25 was reached in 93% and 72% of cases at 3 years (n = 49) and 86% and 62% at 4 years (n = 21) postoperatively. Mean endothelial cell loss at 1 year was 6.6% ± 9.5%. Stromal peeling occurred along a plane lined with a continuous layer of keratocytes separating pre-Descemet membrane (DM) stroma, DM, and endothelium from the anterior stroma. Pre-DM stroma was made of poorly organized lamellae containing widely spaced, randomly arranged collagen fibrils. CONCLUSIONS Ultrastructural alterations in the stromal microarchitecture of grafted corneas provide evidence of a natural plane of separation identified intraoperatively. Stromal peeling can be successfully performed in post-PK eyes with various stromal pathology.
Collapse
|
234
|
Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering (Basel) 2021; 8:161. [PMID: 34821727 PMCID: PMC8615221 DOI: 10.3390/bioengineering8110161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Given the incidence of corneal dysfunctions and diseases worldwide and the limited availability of healthy, human donors, investigators are working to generate engineered cellular and acellular therapeutic approaches as alternatives to corneal transplants from human cadavers. These engineered strategies aim to address existing complications with human corneal transplants, including graft rejection, infection, and complications resulting from surgical methodologies. The main goals of these research endeavors are to (1) determine ideal mechanical properties, (2) devise methodologies to improve the efficacy of engineered corneal grafts and cell-based therapies, and (3) optimize transplantation of engineered tissue structures in the eye. Thus, recent innovations have sought to address these challenges through both in vitro and in vivo studies. This review covers recent work aimed at evaluating engineered materials, potential therapeutic cells, and the resulting cell-material interactions that lead to optimal corneal graft properties. Furthermore, we discuss promising strategies in corneal tissue engineering techniques and in vivo studies in animal models.
Collapse
Affiliation(s)
- Julie F. Jameson
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Marisa O. Pacheco
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| | - Henry H. Nguyen
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Whitney L. Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.F.J.); (M.O.P.)
| |
Collapse
|
235
|
Feng L, Liu R, Zhang X, Li J, Zhu L, Li Z, Li W, Zhang A. Thermo-Gelling Dendronized Chitosans as Biomimetic Scaffolds for Corneal Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49369-49379. [PMID: 34636236 DOI: 10.1021/acsami.1c16087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomimetic scaffolds with transparent, biocompatible, and in situ-forming properties are highly desirable for corneal tissue engineering, which can deeply fill corneal stromal defects with irregular shapes and support tissue regeneration. We here engineer a novel class of corneal scaffolds from oligoethylene glycol (OEG)-based dendronized chitosans (DCs), whose aqueous solutions show intriguing sol-gel transitions triggered by physiological temperature, resulting in highly transparent hydrogels. Gelling points of these hydrogels can be easily tuned, and furthermore, their mechanical strengths can be significantly enhanced when injected into PBS at 37 °C instead of pure water. In vitro tests indicate that these DC hydrogels exhibit excellent biocompatibility and can promote proliferation and migration of keratocyte. When applied in the rabbit eyes with corneal stromal defects, in situ formed DC hydrogels play a positive effect for new tissue regeneration. Overall, this thermo-gelling DCs possess appealing features as corneal tissue substitutes with their excellent biocompatibility and unprecedented thermoresponsiveness.
Collapse
Affiliation(s)
- Letian Feng
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
236
|
Preparation and In Vitro Characterization of Gelatin Methacrylate for Corneal Tissue Engineering. Tissue Eng Regen Med 2021; 19:59-72. [PMID: 34665455 DOI: 10.1007/s13770-021-00393-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Corneal disease is second only to cataract considered as the leading cause of blindness in the world, with high morbidity. Construction of corneal substitutes in vitro by tissue engineering technology to achieve corneal regeneration has become a research hotspot in recent years. We conducted in-depth research on the biocompatibility, physicochemical and mechanical properties of rat bone marrow mesenchymal stem cells (rBM-MSCs)-seeded gelatin methacrylate (GelMA) as a bioengineered cornea. METHODS Four kinds of GelMA with different concentrations (7, 10, 15 and 30%) were prepared, and their physic-chemical, optical properties, and biocompatibility with rBM-MSCs were characterized. MTT, live/dead staining, cell morphology, immunofluorescence staining and gene expression of keratocyte markers were performed. RESULTS 7%GelMA hydrogel had higher equilibrium water content and porosity, better optical properties and hydrophilicity. In addition, it is more beneficial to the growth and proliferation of rBM-MSCs. However, the 30%GelMA hydrogel had the best mechanical properties, and could be more conducive to promote the differentiation of rBM-MSCs into keratocyte-like cells. CONCLUSION As a natural biological scaffold, GelMA hydrogel has good biocompatibility. And it has the ability to promote the differentiation of rBM-MSCs into keratocyte-like cells, which laid a theoretical and experimental foundation for further tissue-engineered corneal stromal transplantation, and provided a new idea for the source of seeded cells in corneal tissue engineering.
Collapse
|
237
|
Abdelftah Z, Gaber AR, Abo-Eleneen RE, EL-Bakry AM. Microstructure characteristics of cornea of some birds: a comparative study. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00155-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Light is the critical factor that affects the eye's morphology and auxiliary plans. The ecomorphological engineering of the cornea aids the physiological activities of the cornea during connections between photoreceptor neurons and light photons. Cornea was dissected free from the orbit from three avian species as ibis (Eudocium albus), duck (Anas platyrhynchus domesticus) and hawk (Buteo Buteo) and prepared for light and scanning electron microscopy and special stain for structural comparison related to function.
Results
The three investigated avian species are composed of three identical layers; epithelium, stroma, and endothelium, and two basement membranes; bowman's and Descemet’s membrane, separating two cellular layers, except for B. buteo which only has a Descemet’s membrane. The corneal layers in the investigated species display different affinity to stain with Periodic Acid Schiff stain. The external corneal surface secured by different normal epithelial cells ran from hexagonal to regular polygonal cells. Those epithelial cells are punctured by different diameter microholes and microplicae and microvilli of various length. Blebs are scarcely distributed over their surface. The present investigation utilized histological, histochemical and SEM examination.
Conclusions
The study presents a brief image/account of certain structures of cornea for three of Avian’s species. Data distinguish the anatomic structures of the owl's eye. The discussion explains the role of some functional anatomical structures all through the vision.
Collapse
|
238
|
Sharifi S, Sharifi H, Akbari A, Koza D, Dohlman CH, Paschalis EI, Chodosh J. Photo-cross-linked Gelatin Glycidyl Methacrylate/N-Vinylpyrrolidone Copolymeric Hydrogel with Tunable Mechanical Properties for Ocular Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2021; 4:7682-7691. [PMID: 35006715 DOI: 10.1021/acsabm.1c00905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corneal transplantation is currently the primary treatment for corneal blindness. However, severe global scarcity of donor corneas is driving the scientific community to find novel solutions. One potential solution is to replace the damaged tissue with a biocompatible artificial cornea. Here, gelatin glycidyl methacrylate (GM) and N-vinylpyrrolidone (VP) were cocrosslinked to afford a hybrid bicomponent copolymeric hydrogel with excellent mechanical, structural, and biological properties. Our studies showed that the GM/VP ratio can be adjusted to generate a construct with high tensile modulus and strength of 1.6 and 1.0 MPa, respectively, compared to 14 and 7.5 MPa for human cornea. The construct can tolerate up to 22.4 kPa pressure before retention sutures can tear through it. Due to the presence of a synthetic component, it has a significantly higher stability against collagenase induced degradation, yet it is biocompatible and promotes cellular adhesion, proliferation, and migration under in vitro settings.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hannah Sharifi
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, 57147, Urmia, Iran
| | - Darrell Koza
- Department of Physical Sciences, Eastern Connecticut State University, Willimantic, Connecticut 06226, United States
| | - Claes H Dohlman
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - James Chodosh
- Disruptive Technology Laboratory, Massachusetts Eye and Ear and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
239
|
Olsson P, Lind O, Mitkus M, Delhey K, Kelber A. Lens and cornea limit UV vision of birds - a phylogenetic perspective. J Exp Biol 2021; 224:jeb243129. [PMID: 34581400 PMCID: PMC8601714 DOI: 10.1242/jeb.243129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 12/03/2022]
Abstract
Most vertebrates have UV-sensitive vision, but the UV sensitivity of their eyes is limited by the transmittance of the ocular media, and the specific contribution of the different media (cornea, lens) has remained unclear. Here, we describe the transmittance of all ocular media (OMT), as well as that of lenses and corneas of birds. For 66 species belonging to 18 orders, the wavelength at which 50% of light is transmitted through the ocular media to the retina (λT0.5) ranges from 310 to 398 nm. Low λT0.5 corresponds to more UV light transmitted. Corneal λT0.5 varies only between 300 and 345 nm, whereas lens λT0.5 values are more variable (between 315 and 400 nm) and tend to be the limiting factor, determining OMT in the majority of species. OMT λT0.5 is positively correlated with eye size, but λT0.5 of corneas and lenses are not correlated with their thickness when controlled for phylogeny. Corneal and lens transmittances do not differ between birds with UV- and violet-sensitive SWS1 opsin when controlling for eye size and phylogeny. Phylogenetic relatedness is a strong predictor of OMT, and ancestral state reconstructions suggest that from ancestral intermediate OMT, highly UV-transparent ocular media (low λT0.5) evolved at least five times in our sample of birds. Some birds have evolved in the opposite direction towards a more UV-opaque lens, possibly owing to pigmentation, likely to mitigate UV damage or reduce chromatic aberration.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Biology, Lund University, 22362 Lund, Sweden
| | - Olle Lind
- Department of Biology, Lund University, 22362 Lund, Sweden
- Department of Philosophy, Lund University, 22100 Lund, Sweden
| | | | - Kaspar Delhey
- Max Planck Institute for Ornithology, 78315 Seewiesen, Germany
- School of Biological Sciences, Monash University, 3800 Clayton, Victoria, Australia
| | - Almut Kelber
- Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
240
|
Hidalgo-Alvarez V, Dhowre HS, Kingston OA, Sheridan CM, Levis HJ. Biofabrication of Artificial Stem Cell Niches in the Anterior Ocular Segment. Bioengineering (Basel) 2021; 8:135. [PMID: 34677208 PMCID: PMC8533470 DOI: 10.3390/bioengineering8100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The anterior segment of the eye is a complex set of structures that collectively act to maintain the integrity of the globe and direct light towards the posteriorly located retina. The eye is exposed to numerous physical and environmental insults such as infection, UV radiation, physical or chemical injuries. Loss of transparency to the cornea or lens (cataract) and dysfunctional regulation of intra ocular pressure (glaucoma) are leading causes of worldwide blindness. Whilst traditional therapeutic approaches can improve vision, their effect often fails to control the multiple pathological events that lead to long-term vision loss. Regenerative medicine approaches in the eye have already had success with ocular stem cell therapy and ex vivo production of cornea and conjunctival tissue for transplant recovering patients' vision. However, advancements are required to increase the efficacy of these as well as develop other ocular cell therapies. One of the most important challenges that determines the success of regenerative approaches is the preservation of the stem cell properties during expansion culture in vitro. To achieve this, the environment must provide the physical, chemical and biological factors that ensure the maintenance of their undifferentiated state, as well as their proliferative capacity. This is likely to be accomplished by replicating the natural stem cell niche in vitro. Due to the complex nature of the cell microenvironment, the creation of such artificial niches requires the use of bioengineering techniques which can replicate the physico-chemical properties and the dynamic cell-extracellular matrix interactions that maintain the stem cell phenotype. This review discusses the progress made in the replication of stem cell niches from the anterior ocular segment by using bioengineering approaches and their therapeutic implications.
Collapse
Affiliation(s)
- Veronica Hidalgo-Alvarez
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hala S. Dhowre
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Olivia A. Kingston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| |
Collapse
|
241
|
Liu H, Han X, Li H, Tao Q, Hu J, Liu S, Liu H, Zhou J, Li W, Yang F, Ping Q, Wei S, Liu H, Lin H, Hou D. Wettability and contact angle affect precorneal retention and pharmacodynamic behavior of microspheres. Drug Deliv 2021; 28:2011-2023. [PMID: 34569888 PMCID: PMC8480260 DOI: 10.1080/10717544.2021.1981493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In the present study, we describe the development of betaxolol hydrochloride and montmorillonite with ion exchange in a single formulation to create a novel micro-interactive dual-functioning sustained-release delivery system (MIDFDS) for the treatment of glaucoma. Betaxolol hydrochloride molecule was loaded onto the montmorillonite by ion exchange and MIDFDS formation was confirmed by XPS data. MIDFDS showed similar physicochemical properties to those of Betoptic, such as particle size, pH, osmotic pressure, and rheological properties. Nevertheless, the microdialysis and intraocular pressure test revealed better in vivo performance of MIDFDS, such as pharmacokinetics and pharmacodynamics. With regards to wettability, MIDFDS had a larger contact angle (54.66 ± 5.35°) than Betoptic (36.68 ± 1.77°), enabling the MIDFDS (2.93 s) to spread slower on the cornea than Betoptic (2.50 s). Moderate spreading behavior and oppositely charged electrostatic micro-interactions had a comprehensive influence on micro-interactions with the tear film residue, resulting in a longer precorneal retention time. Furthermore, MIDFDS had a significant sustained-release effect, with complete release near the cornea. The dual-functioning sustained-release carrier together with prolonged pre-corneal retention time (80 min) provided sufficiently high drug concentrations in the aqueous humor to achieve a more stable and long-term IOP reduction for 10 h. In addition, cytotoxicity and hemolysis tests showed that MIDFDS had better biocompatibility than Betoptic. The dual-functioning microspheres presented in this study provide the possibility for improved compliance due to low cytotoxicity and hemolysis, which suggests promising clinical implications.
Collapse
Affiliation(s)
- Hanyu Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyue Han
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huamei Li
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi Tao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Jie Hu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuo Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaixin Liu
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Zhou
- Department of English Language and Literature, University College London, London, UK
| | - Wei Li
- Guangzhou Institute For Drug Control, Guangzhou, China
| | - Fan Yang
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qineng Ping
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shijie Wei
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongmei Liu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Huaqing Lin
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dongzhi Hou
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
242
|
Kirby MA, Pitre JJ, Liou HC, Li DS, Wang RK, Pelivanov I, O’Donnell M, Shen TT. Delineating Corneal Elastic Anisotropy in a Porcine Model Using Noncontact OCT Elastography and Ex Vivo Mechanical Tests. OPHTHALMOLOGY SCIENCE 2021; 1:100058. [PMID: 36246948 PMCID: PMC9560544 DOI: 10.1016/j.xops.2021.100058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
Purpose To compare noncontact acoustic microtapping (AμT) OCT elastography (OCE) with destructive mechanical tests to confirm corneal elastic anisotropy. Design Ex vivo laboratory study with noncontact AμT-OCE followed by mechanical rheometry and extensometry. Participants Inflated cornea of whole-globe porcine eyes (n = 9). Methods A noncontact AμT transducer was used to launch propagating mechanical waves in the cornea that were imaged with phase-sensitive OCT at physiologically relevant controlled pressures. Reconstruction of both Young's modulus (E) and out-of-plane shear modulus (G) in the cornea from experimental data was performed using a nearly incompressible transversely isotropic (NITI) medium material model assuming spatial isotropy of corneal tensile properties. Corneal samples were excised and parallel plate rheometry was performed to measure shear modulus, G. Corneal samples were then subjected to strip extensometry to measure the Young's modulus, E. Main Outcome Measures Strong corneal anisotropy was confirmed with both AμT-OCE and mechanical tests, with the Young's (E) and shear (G) moduli differing by more than an order of magnitude. These results show that AμT-OCE can quantify both moduli simultaneously with a noncontact, noninvasive, clinically translatable technique. Results Mean of the OCE measured moduli were E = 12 ± 5 MPa and G = 31 ± 11 kPa at 5 mmHg and E = 20 ± 9 MPa and G = 61 ± 29 kPa at 20 mmHg. Tensile testing yielded a mean Young's modulus of 1 MPa - 20 MPa over a strain range of 1% to 7%. Shear storage and loss modulus (G'/G'') measured with rheometry was approximately 82/13 ± 12/4 kPa at 0.2 Hz and 133/29 ± 16/3 kPa at 16 Hz (0.1% strain). Conclusions The cornea is confirmed to be a strongly anisotropic elastic material that cannot be characterized with a single elastic modulus. The NITI model is the simplest one that accounts for the cornea's incompressibility and in-plane distribution of lamellae. AμT-OCE has been shown to be the only reported noncontact, noninvasive method to measure both elastic moduli. Submillimeter spatial resolution and near real-time operation can be achieved. Quantifying corneal elasticity in vivo will enable significant innovation in ophthalmology, helping to develop personalized biomechanical models of the eye that can predict response to ophthalmic interventions.
Collapse
Affiliation(s)
- Mitchell A. Kirby
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - John J. Pitre
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Hong-Cin Liou
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - David S. Li
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, Washington,Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Ivan Pelivanov
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Matthew O’Donnell
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Tueng T. Shen
- Department of Bioengineering, University of Washington, Seattle, Washington,Department of Ophthalmology, University of Washington, Seattle, Washington,Correspondence: Tueng T. Shen, MD, PhD, Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA 98105.
| |
Collapse
|
243
|
Amin S, Jalilian E, Katz E, Frank C, Yazdanpanah G, Guaiquil VH, Rosenblatt MI, Djalilian AR. The Limbal Niche and Regenerative Strategies. Vision (Basel) 2021; 5:vision5040043. [PMID: 34698278 PMCID: PMC8544688 DOI: 10.3390/vision5040043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Charlie Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Correspondence:
| |
Collapse
|
244
|
Lopes BT, Bao F, Wang J, Liu X, Wang L, Abass A, Eliasy A, Elsheikh A. Review of in-vivo characterisation of corneal biomechanics. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
245
|
Gibney R, Patterson J, Ferraris E. High-Resolution Bioprinting of Recombinant Human Collagen Type III. Polymers (Basel) 2021; 13:2973. [PMID: 34503013 PMCID: PMC8434404 DOI: 10.3390/polym13172973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
The development of commercial collagen inks for extrusion-based bioprinting has increased the amount of research on pure collagen bioprinting, i.e., collagen inks not mixed with gelatin, alginate, or other more common biomaterial inks. New printing techniques have also improved the resolution achievable with pure collagen bioprinting. However, the resultant collagen constructs still appear too weak to replicate dense collagenous tissues, such as the cornea. This work aims to demonstrate the first reported case of bioprinted recombinant collagen films with suitable optical and mechanical properties for corneal tissue engineering. The printing technology used, aerosol jet® printing (AJP), is a high-resolution printing method normally used to deposit conductive inks for electronic printing. In this work, AJP was employed to deposit recombinant human collagen type III (RHCIII) in overlapping continuous lines of 60 µm to form thin layers. Layers were repeated up to 764 times to result in a construct that was considered a few hundred microns thick when swollen. Samples were subsequently neutralised and crosslinked using EDC:NHS crosslinking. Nanoindentation and absorbance measurements were conducted, and the results show that the AJP-deposited RHCIII samples possess suitable mechanical and optical properties for corneal tissue engineering: an average effective elastic modulus of 506 ± 173 kPa and transparency ≥87% at all visible wavelengths. Circular dichroism showed that there was some loss of helicity of the collagen due to aerosolisation. SDS-PAGE and pepsin digestion were used to show that while some collagen is degraded due to aerosolisation, it remains an inaccessible substrate for pepsin cleavage.
Collapse
Affiliation(s)
- Rory Gibney
- Department of Mechanical Engineering, KU Leuven, Campus De Nayer, 2860 Sint-Katelijne-Waver, Belgium
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, Getafe, 28906 Madrid, Spain
| | - Eleonora Ferraris
- Department of Mechanical Engineering, KU Leuven, Campus De Nayer, 2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
246
|
Age-Related Corneal Transparency Changes Evaluated With an Alternative Method to Corneal Densitometry. Cornea 2021; 40:215-222. [PMID: 32947415 DOI: 10.1097/ico.0000000000002511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE To compare densitometry distribution analysis (DDA), a platform-independent method to assess corneal transparency, with traditional corneal densitometry. METHODS A total of 196 healthy participants aged 43.3 ± 18.0 years (range 18-79 years) were recruited for assessment. All participants were assessed using the corneal densitometry analysis add-on to the standard software of the Oculus Pentacam HR. In addition, the Scheimpflug image corresponding to the horizontal meridian of each participant was exported for further analysis. For each image, corneal pixel intensities were statistically modeled. The estimated output parameters, α and β, were compared with the corresponding densitometry values. The analysis was performed considering 3 concentric areas and 3 layers defined at fixed corneal depths. To demonstrate the platform independence of the DDA method, a randomly selected subset of 80 participants also had their eye measured with Oculus Corvis ST. RESULTS α and β were found to be well correlated with densitometry, especially α (overall cornea; r = 0.89, P < 0.001), independent of the corneal region investigated. Changes in α, β, and corneal densitometry were correlated with age. CONCLUSIONS In this work, we presented the relationship of DDA with age and traditional corneal densitometry. The α and β parameters, the output of DDA, are platform independent and can be used to investigate corneal clarity objectively.
Collapse
|
247
|
Song Y, Overmass M, Fan J, Hodge C, Sutton G, Lovicu FJ, You J. Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues. Front Surg 2021; 8:639500. [PMID: 34513910 PMCID: PMC8427501 DOI: 10.3389/fsurg.2021.639500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Collagens represent a major group of structural proteins expressed in different tissues and display distinct and variable properties. Whilst collagens are non-transparent in the skin, they confer transparency in the cornea and crystalline lens of the eye. There are 28 types of collagen that all share a common triple helix structure yet differ in the composition of their α-chains leading to their different properties. The different organization of collagen fibers also contributes to the variable tissue morphology. The important ability of collagen to form different tissues has led to the exploration and application of collagen as a biomaterial. Collagen type I (Col-I) and collagen type IV (Col-IV) are the two primary collagens found in corneal and lens tissues. Both collagens provide structure and transparency, essential for a clear vision. This review explores the application of these two collagen types as novel biomaterials in bioengineering unique tissue that could be used to treat a variety of ocular diseases leading to blindness.
Collapse
Affiliation(s)
- Yihui Song
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Morgan Overmass
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jiawen Fan
- Key Laboratory of Myopia of State Health Ministry, Department of Ophthalmology and Vision Sciences, Eye and Ear, Nose, and Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chris Hodge
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- New South Wales (NSW) Tissue Bank, Sydney, NSW, Australia
- Vision Eye Institute, Chatswood, NSW, Australia
| | - Gerard Sutton
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- New South Wales (NSW) Tissue Bank, Sydney, NSW, Australia
- Vision Eye Institute, Chatswood, NSW, Australia
| | - Frank J. Lovicu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jingjing You
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
248
|
Kwok S, Hazen N, Clayson K, Pan X, Liu J. Regional variation of corneal stromal deformation measured by high-frequency ultrasound elastography. Exp Biol Med (Maywood) 2021; 246:2184-2191. [PMID: 34315279 DOI: 10.1177/15353702211029283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cornea's mechanical response to intraocular pressure elevations may alter in ectatic diseases such as keratoconus. Regional variations of mechanical deformation in normal and keratoconus eyes during intraocular pressure elevation have not been well-characterized. We applied a high-frequency ultrasound elastography technique to characterize the regional deformation of normal and keratoconus human corneas through the full thickness of corneal stroma. A cross-section centered at the corneal apex in 11 normal and 2 keratoconus human donor eyes was imaged with high-frequency ultrasound during whole globe inflation from 5 to 30 mmHg. An ultrasound speckle tracking algorithm was used to compute local tissue displacements. Radial, tangential, and shear strains were mapped across the imaged cross-section. Strains in the central (1 mm surrounding apex) and paracentral (1 to 4 mm from apex) regions were analyzed in both normal and keratoconus eyes. Additional regional analysis was performed in the eye with severe keratoconus presenting significant thinning and scarring. Our results showed that in normal corneas, the central region had significantly smaller tangential stretch than the paracentral region, and that within the central region, the magnitudes of radial and shear strains were significantly larger than that of tangential strain. The eye with mild keratoconus had similar shear strain but substantially larger radial strains than normal corneas, while the eye with severe keratoconus had similar overall strains as in normal eyes but marked regional heterogeneity and large strains in the cone region. These findings suggested regional variation of mechanical responses to intraocular pressure elevation in both normal and keratoconus corneas, and keratoconus appeared to be associated with mechanical weakening in the cone region, especially in resisting radial compression. Comprehensive characterization of radial, tangential, and shear strains through corneal stroma may provide new insights to understand the biomechanical alterations in keratoconus.
Collapse
Affiliation(s)
- Sunny Kwok
- Department of Biomedical Engineering, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| | - Nicholas Hazen
- Department of Biomedical Engineering, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA.,Biophysics Interdisciplinary Group, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| | - Keyton Clayson
- Department of Biomedical Engineering, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA.,Biophysics Interdisciplinary Group, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| | - Xueliang Pan
- Department of Biomedical Informatics, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| | - Jun Liu
- Department of Biomedical Engineering, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA.,Biophysics Interdisciplinary Group, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA.,Department of Ophthalmology and Visual Sciences, 2647The Ohio State University, The Ohio State University, Columbus, OH 43210-1110, USA
| |
Collapse
|
249
|
Aldrovani M, Pereira AG, Tinasi ALSN, Brito VJDSC, Raposo ACS, Honsho CDS, Oriá AP. Birefringence Analyses Reveal Differences in Supramolecular Characteristics of Corneal Stromal Collagen Fibrils Between Falconiformes and Strigiformes. Integr Comp Biol 2021; 62:124-138. [PMID: 34313760 DOI: 10.1093/icb/icab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to assess the birefringent properties of corneal stromal collagen fibrils in birds of the orders Falconiformes (diurnal) and Strigiformes (predominantly nocturnal) to compare their supramolecular organizations. Twenty-two corneas of Falconiformes (Caracara plancus, n = 8; Rupornis magnirostris, n = 10; and Falco sparverius, n = 4) and 28 of Strigiformes (Tyto furcata, n = 16; Pseudoscops clamator, n = 6; and Athene cunicularia, n = 6) were processed histotechnically into 8 μm thick sections. Corneal optical retardation values related to the form and intrinsic fractions of the total birefringence of collagen fibrils were measured using a polarized light microscope equipped with phase compensators. In addition, the coherence coefficients that inform the local orientation of the fibrils were calculated through video image analysis. All assessments were conducted both in the anterior and posterior stroma of the cornea. Differences were significant when p < 0.05. The results showed supraorganizational differences between fibrils in the anterior stroma of Falconiformes and Strigiformes. The optical retardation values were greater (p < 0.0001) for Falconiformes, indicating that the corneas of these birds contain more collagen fibrils or more aggregated collagen fibrils. In contrast, the coherence coefficients were higher (p = 0.016) for Strigiformes, indicating that the collagen fibers in these birds are highly aligned and have few undulations. A multivariate data matrix constructed for Euclidean distance calculations showed that the dissimilarity between Falconiformes and Strigiformes corneas, in terms of the supraorganization of stromal collagen fibrils, was 4.56%. In conclusion, it is possible that the supraorganizational differences reported in this study may be sources of variation in the visual quality of Falconiformes and Strigiformes. This study provides the necessary evidence to encourage further research associating corneal optical performance to supramolecular characteristics of corneal stromal collagen.
Collapse
Affiliation(s)
- Marcela Aldrovani
- Post-Graduation Program in Animal Science, Franca University, Franca, Brazil
| | | | | | | | | | | | - Arianne Pontes Oriá
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
250
|
McGrath O, Au L, Ashworth J. Management of Corneal Clouding in Patients with Mucopolysaccharidosis. J Clin Med 2021; 10:jcm10153263. [PMID: 34362047 PMCID: PMC8348690 DOI: 10.3390/jcm10153263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are a rare group of lysosomal storage disorders characterized by the accumulation of incompletely degraded glycosaminoglycans (GAGs) in multiple organ systems including the eye. Visual loss occurs in MPS predominantly due to corneal clouding and retinopathy, but the sclera, trabecular meshwork and optic nerve may all be affected. Despite the success of therapies such as enzyme replacement therapy (ERT) and hematopoietic stem-cell transplantation (HSCT) in improving many of the systemic manifestations of MPS, their effect on corneal clouding is minimal. The only current definitive treatment for corneal clouding is corneal transplantation, usually in the form of a penetrating keratoplasty or a deep anterior lamellar keratoplasty. This article aims to provide an overview of corneal clouding, its current clinical and surgical management, and significant research progress.
Collapse
|