201
|
Dinoff A, Herrmann N, Swardfager W, Lanctôt KL. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci 2017; 46:1635-1646. [PMID: 28493624 DOI: 10.1111/ejn.13603] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
It has been hypothesized that one mechanism through which physical activity provides benefits to cognition and mood is via increasing brain-derived neurotrophic factor (BDNF) concentrations. Some studies have reported immediate benefits to mood and various cognitive domains after a single session of exercise. This meta-analysis sought to determine the effect of a single exercise session on concentrations of BDNF in peripheral blood, in order to evaluate the potential role of BDNF in mediating the beneficial effects of exercise on brain health. MEDLINE, Embase, PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine Source, and CINAHL databases were searched for original, peer-reviewed reports of peripheral blood BDNF concentrations before and after acute exercise interventions. Risk of bias within studies was assessed using standardized criteria. Standardized mean differences (SMDs) were generated from random effects models. Risk of publication bias was assessed using a funnel plot and Egger's test. Potential sources of heterogeneity were explored in subgroup analyses. In 55 studies that met inclusion criteria, concentrations of peripheral blood BDNF were higher after exercise (SMD = 0.59, 95% CI: 0.46-0.72, P < 0.001). In meta-regression analysis, greater duration of exercise was associated with greater increases in BDNF. Subgroup analyses revealed an effect in males but not in females, and a greater BDNF increase in plasma than serum. Acute exercise increased BDNF concentrations in the peripheral blood of healthy adults. This effect was influenced by exercise duration and may be different across genders.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Walter Swardfager
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
202
|
Peruyero F, Zapata J, Pastor D, Cervelló E. The Acute Effects of Exercise Intensity on Inhibitory Cognitive Control in Adolescents. Front Psychol 2017; 8:921. [PMID: 28620337 PMCID: PMC5450506 DOI: 10.3389/fpsyg.2017.00921] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/18/2017] [Indexed: 12/12/2022] Open
Abstract
Adolescence is an important stage for brain maturation. There are many studies of exercise-cognition relations, but there is still a lack of knowledge about the impact of combining different intensities of exercise on adolescents' cognitive responses. The main objective of this study was to analyze the effect of three physical education sessions (based on Zumba dance) of different intensities (no exercise, predominantly light intensity, and predominantly vigorous intensity) on the inhibition response (measured with the Stroop test) in adolescents. Forty-four adolescent students (age 16.39 ± 0.68) completed a Stroop test before and after the three different physical education sessions. The results show than the predominantly vigorous session represented the strongest stimulus to increase cognitive inhibitory control. This means that the cognitive effect of exercise can be conditioned by exercise intensity and implies the need to control exercise intensity in physical educational programs for adolescents.
Collapse
Affiliation(s)
- Fernando Peruyero
- Sport Research Center, Miguel Hernandez University of ElcheElche, Spain
| | - Julio Zapata
- Sport Research Center, Miguel Hernandez University of ElcheElche, Spain
| | - Diego Pastor
- Sport Research Center, Miguel Hernandez University of ElcheElche, Spain
| | - Eduardo Cervelló
- Sport Research Center, Miguel Hernandez University of ElcheElche, Spain
| |
Collapse
|
203
|
Oleic acid-derived oleoylethanolamide: A nutritional science perspective. Prog Lipid Res 2017; 67:1-15. [PMID: 28389247 DOI: 10.1016/j.plipres.2017.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 01/11/2023]
Abstract
The fatty acid ethanolamide oleoylethanolamide (OEA) is an endogenous lipid mediator derived from the monounsaturated fatty acid, oleic acid. OEA is synthesized from membrane glycerophospholipids and is a high-affinity agonist of the nuclear transcription factor peroxisome proliferator-activated receptor α (PPAR-α). Dietary intake of oleic acid elevates circulating levels of OEA in humans by increasing substrate availability for OEA biosynthesis. Numerous clinical studies demonstrate a beneficial relationship between high-oleic acid diets and body composition, with emerging evidence to suggest OEA may mediate this response through modulation of lipid metabolism and energy intake. OEA exposure has been shown to stimulate fatty acid uptake, lipolysis, and β-oxidation, and also promote food intake control. Future research on high-oleic acid diets and body composition is warranted to confirm these outcomes and elucidate the underlying mechanisms by which oleic acid exerts its biological effects. These findings have significant practical implications, as the oleic acid-derived OEA molecule may be a promising therapeutic agent for weight management and obesity treatment.
Collapse
|
204
|
Exercise works for depression: bridging the implementation gap and making exercise a core component of treatment. Acta Neuropsychiatr 2017; 29:124-126. [PMID: 28262083 DOI: 10.1017/neu.2017.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
205
|
A critical review of exercise as a treatment for clinically depressed adults: time to get pragmatic. Acta Neuropsychiatr 2017; 29:65-71. [PMID: 27145824 DOI: 10.1017/neu.2016.21] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Although considerable evidence supports the efficacy of exercise as an antidepressant treatment, critical reviews informing routine practice and future research directions are scarce. METHODS We critically reviewed exercise studies for clinically depressed adults, focussing on the PICOS criteria referred to participants, interventions, comparisons, outcomes, and study designs. RESULTS Most studies have not screened their samples for symptom heterogeneity. Also, they have employed heterogeneous exercise interventions and control groups that may lead to an underestimation of the benefits of exercise. In addition, pragmatic trials allowing scalable replication and implementation in routine practice are scarce. Future studies, can consider the research domain criteria as a diagnostic framework, and conduct moderator analyses to identify depressed subgroups with symptomatology and biopsychosocial characteristics associated with differential responses to exercise interventions. The search for biomarkers of the antidepressant responses to exercise should be prioritised. Further, non-physically active comparison groups should be used to minimise treatment cross-overs and thus the underestimation of the effects of exercise interventions. Finally, the use of outcome measures that maintain their validity at low and moderate levels of symptom severity and the development of trials with a pragmatic design are essential. CONCLUSION The current evidence base is fraught with methodological considerations that need to be taken into account in order to increase further our understanding on the impact of exercise as medicine in depression. Future research should include moderator analyses, incorporate biomarker assays, use appropriate control and comparison groups, assess outcomes with psychometrically sensitive measures, and prioritise pragmatic trials towards transition to routine practice.
Collapse
|
206
|
Basso JC, Suzuki WA. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast 2017; 2:127-152. [PMID: 29765853 PMCID: PMC5928534 DOI: 10.3233/bpl-160040] [Citation(s) in RCA: 430] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research.
Collapse
Affiliation(s)
- Julia C. Basso
- Center for Neural Science, New York University, New York, NY, USA
| | - Wendy A. Suzuki
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
207
|
Exercise training and high-fat diet elicit endocannabinoid system modifications in the rat hypothalamus and hippocampus. J Physiol Biochem 2017; 73:335-347. [PMID: 28283967 DOI: 10.1007/s13105-017-0557-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023]
Abstract
The purpose of the present study was to examine the effect of chronic exercise on the hypothalamus and hippocampus levels of the endocannabinoids (eCBs) anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and of two AEA congeners and on the expression of genes coding for CB1, CB2 receptors (Cnr1 and Cnr2, respectively), and the enzymes responsible for eCB biosynthesis and degradation, in rats fed with a standard or high-fat diet. Male Wistar rats (n = 28) were placed on a 12-week high-fat (HFD) or standard diet period, followed by 12 weeks of exercise training for half of each group. Tissue levels of eCBs and related lipids were measured by liquid chromatography mass spectrometry, and expression of genes coding for CB1 and CB2 receptors and eCB metabolic enzymes was measured by quantitative real-time polymerase chain reaction (qPCR). HFD induced a significant increase in 2-AG (p < 0.01) in hypothalamus. High-fat diet paired with exercise training had no effect on AEA, 2-AG, and AEA congener levels in the hypothalamus and hippocampus. Cnr1 expression levels were significantly increased in the hippocampus in response to HFD, exercise, and the combination of both (p < 0.05). Our results indicate that eCB signaling in the CNS is sensitive to diet and/or exercise.
Collapse
|
208
|
Physical activity levels determine exercise-induced changes in brain excitability. PLoS One 2017; 12:e0173672. [PMID: 28278300 PMCID: PMC5344515 DOI: 10.1371/journal.pone.0173672] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/25/2017] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that regular physical activity can impact cortical function and facilitate plasticity. In the present study, we examined how physical activity levels influence corticospinal excitability and intracortical circuitry in motor cortex following a single session of moderate intensity aerobic exercise. We aimed to determine whether exercise-induced short-term plasticity differed between high versus low physically active individuals. Participants included twenty-eight young, healthy adults divided into two equal groups based on physical activity level determined by the International Physical Activity Questionnaire: low-to-moderate (LOW) and high (HIGH) physical activity. Transcranial magnetic stimulation was used to assess motor cortex excitability via motor evoked potential (MEP) recruitment curves for the first dorsal interosseous (FDI) muscle at rest (MEPREST) and during tonic contraction (MEPACTIVE), short-interval intracortical inhibition (SICI) and facilitation (SICF), and intracortical facilitation (ICF). All dependent measures were obtained in the resting FDI muscle, with the exception of AMT and MEPACTIVE recruitment curves that were obtained during tonic FDI contraction. Dependent measures were acquired before and following moderate intensity aerobic exercise (20 mins, ~60% of the age-predicted maximal heart rate) performed on a recumbent cycle ergometer. Results indicate that MEPREST recruitment curve amplitudes and area under the recruitment curve (AURC) were increased following exercise in the HIGH group only (p = 0.002 and p = 0.044, respectively). SICI and ICF were reduced following exercise irrespective of physical activity level (p = 0.007 and p = 0.04, respectively). MEPACTIVE recruitment curves and SICF were unaltered by exercise. These findings indicate that the propensity for exercise-induced plasticity is different in high versus low physically active individuals. Additionally, these data highlight that a single session of aerobic exercise can transiently reduce inhibition in the motor cortex regardless of physical activity level, potentially priming the system for plasticity induction.
Collapse
|
209
|
Monoamines and cortisol as potential mediators of the relationship between exercise and depressive symptoms. Eur Arch Psychiatry Clin Neurosci 2017; 267:117-121. [PMID: 27484978 DOI: 10.1007/s00406-016-0719-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022]
Abstract
A randomized controlled trial was conducted to assess the effects of exercise plus pharmacotherapy on monoamine neurotransmitters (dopamine, noradrenaline, adrenaline, serotonin) and cortisol levels. A total of 26 women with clinical depression were randomly assigned to one of the two groups: aerobic exercise plus pharmacotherapy or only pharmacotherapy. The exercise program consisted of aerobic exercise, 45-50 min/session, three times/week, for 16 weeks. The biological parameters were measured before and after the exercise program. Adding exercise to pharmacotherapy had no additional effects on monoamines and cortisol plasma levels. These data are preliminary outcomes from a small sample and should be replicated.
Collapse
|
210
|
Xu P, Wang K, Lu C, Dong L, Chen Y, Wang Q, Shi Z, Yang Y, Chen S, Liu X. Effects of the chronic restraint stress induced depression on reward-related learning in rats. Behav Brain Res 2017; 321:185-192. [DOI: 10.1016/j.bbr.2016.12.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/25/2016] [Accepted: 12/29/2016] [Indexed: 12/16/2022]
|
211
|
Volkow ND, Hampson AJ, Baler RD. Don't Worry, Be Happy: Endocannabinoids and Cannabis at the Intersection of Stress and Reward. Annu Rev Pharmacol Toxicol 2017; 57:285-308. [DOI: 10.1146/annurev-pharmtox-010716-104615] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| | - Aidan J. Hampson
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| | - Ruben D. Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
212
|
Håkansson K, Ledreux A, Daffner K, Terjestam Y, Bergman P, Carlsson R, Kivipelto M, Winblad B, Granholm AC, Mohammed AKH. BDNF Responses in Healthy Older Persons to 35 Minutes of Physical Exercise, Cognitive Training, and Mindfulness: Associations with Working Memory Function. J Alzheimers Dis 2017; 55:645-657. [PMID: 27716670 PMCID: PMC6135088 DOI: 10.3233/jad-160593] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has a central role in brain plasticity by mediating changes in cortical thickness and synaptic density in response to physical activity and environmental enrichment. Previous studies suggest that physical exercise can augment BDNF levels, both in serum and the brain, but no other study has examined how different types of activities compare with physical exercise in their ability to affect BDNF levels. By using a balanced cross over experimental design, we exposed nineteen healthy older adults to 35-minute sessions of physical exercise, cognitive training, and mindfulness practice, and compared the resulting changes in mature BDNF levels between the three activities. We show that a single bout of physical exercise has significantly larger impact on serum BDNF levels than either cognitive training or mindfulness practice in the same persons. This is the first study on immediate BDNF effects of physical activity in older healthy humans and also the first study to demonstrate an association between serum BDNF responsivity to acute physical exercise and working memory function. We conclude that the BDNF increase we found after physical exercise more probably has a peripheral than a central origin, but that the association between post-intervention BDNF levels and cognitive function could have implications for BDNF responsivity in serum as a potential marker of cognitive health.
Collapse
Affiliation(s)
- Krister Håkansson
- Department of Psychology, Linnaeus University, Växjö, Sweden
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of NVS, Karolinska Institutet, Stockholm, Sweden
- Aging Research Center (ARC), Department of NVS, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Aurélie Ledreux
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Kirk Daffner
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Patrick Bergman
- Department of Sport Science, Linnaeus University, Växjö, Sweden
| | - Roger Carlsson
- Department of Psychology, Linnaeus University, Växjö, Sweden
| | - Miia Kivipelto
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of NVS, Karolinska Institutet, Stockholm, Sweden
- Aging Research Center (ARC), Department of NVS, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Bengt Winblad
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of NVS, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Charlotte Granholm
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Abdul Kadir H. Mohammed
- Department of Psychology, Linnaeus University, Växjö, Sweden
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of NVS, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
213
|
BDNF concentrations and daily fluctuations differ among ADHD children and respond differently to methylphenidate with no relationship with depressive symptomatology. Psychopharmacology (Berl) 2017; 234:267-279. [PMID: 27807606 DOI: 10.1007/s00213-016-4460-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/06/2016] [Indexed: 01/09/2023]
Abstract
RATIONALE Brain-derived neurotrophic factor (BDNF) enhances the growth and maintenance of several monoamine neuronal systems, serves as a neurotransmitter modulator and participates in the mechanisms of neuronal plasticity. Therefore, BDNF is a good candidate for interventions in the pathogenesis and/or treatment response of attention deficit hyperactivity disorder (ADHD). OBJECTIVE We quantified the basal concentration and daily fluctuation of serum BDNF, as well as changes after methylphenidate treatment. METHOD A total of 148 children, 4-5 years old, were classified into groups as follows: ADHD group (n = 107, DSM-IV-TR criteria) and a control group (CG, n = 41). Blood samples were drawn at 2000 and 0900 hours from both groups, and after 4.63 ± 2.3 months of treatment, blood was drawn only from the ADHD group for BDNF measurements. Factorial analysis was performed (Stata software, version 12.0). RESULTS Morning BDNF (36.36 ± 11.62 ng/ml) in the CG was very similar to that in the predominantly inattentive children (PAD), although the evening concentration in the CG was higher (CG 31.78 ± 11.92 vs PAD 26.41 ± 11.55 ng/ml). The hyperactive-impulsive group, including patients with comorbid conduct disorder (PHI/CD), had lower concentrations. Methylphenidate (MPH) did not modify the concentration or the absence of daily BDNF fluctuations in the PHI/CD children; however, MPH induced a significant decrease in BDNF in PAD and basal day/night fluctuations disappeared in this ADHD subtype. This profile was not altered by the presence of depressive symptoms. CONCLUSIONS Our data support a reduction in BDNF in untreated ADHD due to the lower concentrations in PHI/CD children, which is similar to other psychopathologic and cognitive disorders. MPH decreased BDNF only in the PAD group, which might indicate that BDNF is not directly implicated in the methylphenidate-induced amelioration of the neuropsychological and organic immaturity of ADHD patients.
Collapse
|
214
|
Huang T, Gejl AK, Tarp J, Andersen LB, Peijs L, Bugge A. Cross-sectional associations of objectively measured physical activity with brain-derived neurotrophic factor in adolescents. Physiol Behav 2016; 171:87-91. [PMID: 28027935 DOI: 10.1016/j.physbeh.2016.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The purpose of this study was to examine the associations between objectively measured physical activity and serum brain-derived neurotrophic factor (BDNF) in adolescents. METHODS Cross-sectional analyses were performed using data from 415 adolescents who participated in the 2015 follow-up of the Childhood Health Activity and Motor Performance School Study Denmark (the CHAMPS-study DK). Physical activity was objectively measured by accelerometry monitors. Serum BDNF levels were analyzed using the Enzyme-linked immunosorbent assay (ELISA). Anthropometrics and pubertal status were measured using standardized procedures. RESULTS With adjustment for age, pubertal status and body mass index, mean physical activity (counts per minute) was negatively associated with serum BDNF in boys (P=0.013). Similarly, moderate-to-vigorous physical activity (MVPA) was negatively associated with serum BDNF in boys (P=0.035). In girls, mean physical activity and MVPA were not associated with serum BDNF. Without adjustment for wear time, sedentary time was not associated with serum BDNF in either sex. CONCLUSION These findings indicate that higher physical activity is associated with lower serum BDNF in boys, but not in girls.
Collapse
Affiliation(s)
- Tao Huang
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Anne Kær Gejl
- Centre of Research in Childhood Health, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jakob Tarp
- Centre of Research in Childhood Health, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Lars Bo Andersen
- Faculty of Teacher Education and Sport, Sogn og Fjordane University College, Sogndal, Norway; Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Lone Peijs
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Denmark
| | - Anna Bugge
- Centre of Research in Childhood Health, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
215
|
Thompson Z, Argueta D, Garland T, DiPatrizio N. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes. Physiol Behav 2016; 170:141-150. [PMID: 28017680 DOI: 10.1016/j.physbeh.2016.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
Abstract
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30min before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Donovan Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Nicholas DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
216
|
Chandrasekhar Y, Ramya EM, Navya K, Phani Kumar G, Anilakumar KR. Antidepressant like effects of hydrolysable tannins of Terminalia catappa leaf extract via modulation of hippocampal plasticity and regulation of monoamine neurotransmitters subjected to chronic mild stress (CMS). Biomed Pharmacother 2016; 86:414-425. [PMID: 28012396 DOI: 10.1016/j.biopha.2016.12.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Terminalia catappa L. belonging to Combretaceae family is a folk medicine, known for its multiple pharmacological properties, but the neuro-modulatory effect of TC against chronic mild stress was seldom explored. The present study was designed to elucidate potential antidepressant-like effect of Terminalia cattapa (leaf) hydro-alcoholic extract (TC) by using CMS model for a period of 7 weeks. Identification of hydrolysable tannins was done by using LC-MS. After the CMS exposure, mice groups were administered with imipramine (IMP, 10mg/kg, i.p.) and TC (25, 50 and 100mg/kg of TC, p.o.). Behavioural paradigms used for the study included forced swimming test (FST), tail suspension test (TST) and sucrose preference test (SPT). After behavioural tests, monoamine neurotransmitter, cortisol, AchE, oxidative stress levels and mRNA expression studies relevant to depression were assessed. TC supplementation significantly reversed CMS induced immobility time in FST and other behavioural paradigms. Moreover, TC administration significantly restored CMS induced changes in concentrations of hippocampal neurotransmitters (5-HT, DA and NE) as well as levels of acetyl cholinesterase, cortisol, monoamine oxidases (MAO-A, MAO-B), BDNF, CREB, and p-CREB. It suggests that TC supplementation could supress stress induced depression by regulating monoamine neurotransmitters, CREB, BDNF, cortisol, AchE level as well as by amelioration of oxidative stress. Hence TC can be used as a complementary medicine against depression-like disorder.
Collapse
Affiliation(s)
- Y Chandrasekhar
- Applied Nutrition Division, Defence Food Research Laboratory, DRDO, Mysore 570011, Karnataka, India.
| | - E M Ramya
- Applied Nutrition Division, Defence Food Research Laboratory, DRDO, Mysore 570011, Karnataka, India
| | - K Navya
- Applied Nutrition Division, Defence Food Research Laboratory, DRDO, Mysore 570011, Karnataka, India
| | - G Phani Kumar
- Applied Nutrition Division, Defence Food Research Laboratory, DRDO, Mysore 570011, Karnataka, India.
| | - K R Anilakumar
- Applied Nutrition Division, Defence Food Research Laboratory, DRDO, Mysore 570011, Karnataka, India.
| |
Collapse
|
217
|
Kawazu T, Nakamura T, Moriki T, Kamijo YI, Nishimura Y, Kinoshita T, Tajima F. Aerobic Exercise Combined With Noninvasive Positive Pressure Ventilation Increases Serum Brain-Derived Neurotrophic Factor in Healthy Males. PM R 2016; 8:1136-1141. [DOI: 10.1016/j.pmrj.2016.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|
218
|
Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans. Psychoneuroendocrinology 2016; 74:258-268. [PMID: 27689899 DOI: 10.1016/j.psyneuen.2016.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, p<0.05) when participants were sleep-deprived. This coincided with increased hunger ratings (+25% vs. normal sleep, p<0.05). Moreover, plasma 2AG was elevated 15min post-exercise (+44%, p<0.05). Sleep duration did not however modulate this exercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (p<0.05). Given that activation of the endocannabinoid system has been previously shown to acutely increase appetite and mood, our results could suggest that behavioral effects of acute sleep loss, such as increased hunger and transiently improved psychological state, may partially result from activation of this signaling pathway. In contrast, more pronounced exercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration.
Collapse
|
219
|
Ghezzi A, Filli L, Solaro C, Mekies C, Landete L, Lycke J. Country breakout session highlights. Neurodegener Dis Manag 2016; 6:41-44. [PMID: 27874497 DOI: 10.2217/nmt-2016-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the 2016 MS Experts Summit, country-relevant aspects pertaining to the management of symptoms and disability in multiple sclerosis (MS), with emphasis on those associated with spasticity, were explored in interactive country breakout sessions chaired by selected MS experts. Attendees had the opportunity to review and discuss topics in their own native language. After feedback from each session leader, key messages were collated and presented in a Plenary Session by Summit chair, Professor Angelo Ghezzi. Topics at this year's Summit included: gait tracking (Germany/Switzerland); the Care Alliance against MS spasticity (Italy); MS spasticity and associated symptoms (France); improvement in MS symptoms and functionality and patients' independence (Spain); Swedish MS guidelines (Sweden/Rest of World).
Collapse
Affiliation(s)
- Angelo Ghezzi
- Neurologia 2, Centro Studi Sclerosi Multipla, Gallarate Hospital, Gallarate, Italy
| | - Linard Filli
- Gait Research Laboratory, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Claudio Solaro
- Neurology Unit, Head & Neck Department, ASL 3 'Genovese', Genova, Italy
| | - Claude Mekies
- Clinique du Parc, Clinique des Cèdres, Toulouse, France
| | - Lamberto Landete
- Neurology Department, Hospital Universitario Dr. Peset, Valencia, Spain
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience & Physiology at Sahlgrenska Academy, University of Gothenburg & Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
220
|
Bennett MR, Arnold J, Hatton SN, Lagopoulos J. Regulation of fear extinction by long-term depression: The roles of endocannabinoids and brain derived neurotrophic factor. Behav Brain Res 2016; 319:148-164. [PMID: 27867101 DOI: 10.1016/j.bbr.2016.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/19/2022]
Abstract
The extinction of a conditioned fear response is of great interest in the search for a means of ameliorating adverse neurobiological changes resulting from stress. The discovery that endocannibinoid (EC) levels are inversely related to the extent of such stress, and that the amygdala is a primary site mediating stress, suggests that ECs in this brain region might play a major role in extinction. Supporting this are the observations that the basolateral complex of the amygdala shows an increase in ECs only during extinction and that early clinical trials indicate that cannabinoid-like agents, when taken orally by patients suffering from post traumatic stress disorder (PTSD), reduce insomnia and nightmares. In order to optimize the potential of these agents to ameliorate symptoms of PTSD four important questions need to be answered: first, what is the identity of the cells that release ECs in the amygdala during extinction; second, what are their sites of action; third, what roles do the ECs play in the alleviation of long- depression (LTD), a process central to extinction; and finally, to what extent does brain derived neurotrophic factor (BDNF) facilitate the release of ECs? A review of the relevant literature is presented in an attempt to answer these questions. It is suggested that the principal cell involved in EC synthesis and release during extinction is the so-called excitatory extinction neuron in the basal nucleus of the amygdala. Furthermore that the main site of action of the ECs is the adjacent calcitonin gene-related peptide inhibitory interneurons, whose normal role of blocking the excitatory neurons is greatly diminished. The molecular pathways leading (during extinction trials) to the synthesis and release of ECs from synaptic spines of extinction neurons, that is potentiated by BDNF, are also delineated in this review. Finally, consideration is given to how the autocrine action of BDNF, linked to the release of ECs, can lead to the sustained release of these, so maintaining extinction over long times.
Collapse
Affiliation(s)
- Maxwell R Bennett
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
| | - Jonathon Arnold
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Sean N Hatton
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Jim Lagopoulos
- The Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia; The Sunshine Coast Mind and Neuroscience, Thompson Institute, The University of the Sunshine Coast, QLD, Australia
| |
Collapse
|
221
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
222
|
Greer TL, Trombello JM, Rethorst CD, Carmody TJ, Jha MK, Liao A, Grannemann BD, Chambliss HO, Church TS, Trivedi MH. IMPROVEMENTS IN PSYCHOSOCIAL FUNCTIONING AND HEALTH-RELATED QUALITY OF LIFE FOLLOWING EXERCISE AUGMENTATION IN PATIENTS WITH TREATMENT RESPONSE BUT NONREMITTED MAJOR DEPRESSIVE DISORDER: RESULTS FROM THE TREAD STUDY. Depress Anxiety 2016; 33:870-81. [PMID: 27164293 PMCID: PMC5662022 DOI: 10.1002/da.22521] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Functional impairments often remain despite symptomatic improvement with antidepressant treatment, supporting the need for novel treatment approaches. The present study examined the extent to which exercise augmentation improved several domains of psychosocial functioning and quality of life (QoL) among depressed participants. METHODS Data were collected from 122 partial responders to antidepressant medication. Participants were randomized to either high- (16 kcal/kg of weight/week [KKW]) or low-dose (4-KKW) exercise. Participants completed a combination of supervised and home-based exercise for 12 weeks. The Short-Form Health Survey, Work and Social Adjustment Scale, Social Adjustment Scale, Quality of Life Enjoyment and Satisfaction Questionnaire, and Satisfaction with Life Scale were collected at 6 and 12 weeks. Participants with data for at least one of the two follow-up time points (n = 106) were analyzed using a linear mixed model to assess change from baseline within groups and the difference between groups for each psychosocial outcome measure. All analyses controlled for covariates, including baseline depressive symptomatology. RESULTS Participants experienced significant improvements in functioning across tested domains, and generally fell within a healthy range of functioning on all measures at Weeks 6 and 12. Although no differences were found between exercise groups, improvements were observed across a variety of psychosocial and QoL domains, even in the low-dose exercise group. CONCLUSIONS These findings support exercise augmentation of antidepressant treatment as a viable intervention for treatment-resistant depression to improve function in addition to symptoms.
Collapse
Affiliation(s)
- Tracy L. Greer
- The University of Texas Southwestern Medical Center, Division of Mood Disorders, Department of Psychiatry, Dallas, TX, USA,Address Correspondence to: Tracy L. Greer, Ph.D. Associate Professor, Department of Psychiatry, Center for Depression Research and Clinical Care, 5323 Harry Hines Blvd., Dallas, TX 75390-9119, Phone: 214-648-0156, Fax: 214-648-0167,
| | - Joseph M. Trombello
- The University of Texas Southwestern Medical Center, Division of Mood Disorders, Department of Psychiatry, Dallas, TX, USA
| | - Chad D. Rethorst
- The University of Texas Southwestern Medical Center, Division of Mood Disorders, Department of Psychiatry, Dallas, TX, USA
| | - Thomas J. Carmody
- The University of Texas Southwestern Medical Center, Division of Mood Disorders, Department of Psychiatry, Dallas, TX, USA,The University of Texas Southwestern Medical Center, Department of Clinical Sciences, Dallas, TX USA
| | - Manish K. Jha
- The University of Texas Southwestern Medical Center, Division of Mood Disorders, Department of Psychiatry, Dallas, TX, USA
| | - Allen Liao
- The University of Texas Southwestern Medical Center, Division of Mood Disorders, Department of Psychiatry, Dallas, TX, USA
| | - Bruce D. Grannemann
- The University of Texas Southwestern Medical Center, Division of Mood Disorders, Department of Psychiatry, Dallas, TX, USA
| | | | - Timothy S. Church
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Madhukar H. Trivedi
- The University of Texas Southwestern Medical Center, Division of Mood Disorders, Department of Psychiatry, Dallas, TX, USA
| |
Collapse
|
223
|
Brellenthin AG, Koltyn KF. Exercise as an adjunctive treatment for cannabis use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 42:481-489. [PMID: 27314543 PMCID: PMC5055462 DOI: 10.1080/00952990.2016.1185434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Despite cannabis being the most widely used illicit substance in the United States, individuals diagnosed with cannabis use disorder (CUD) have few well-researched, affordable treatment options available to them. Although found to be effective for improving treatment outcomes in other drug populations, exercise is an affordable and highly accessible treatment approach that has not been routinely investigated in cannabis users. OBJECTIVES The aim of this paper is to inform the topic regarding exercise's potential as an adjunctive treatment for individuals with CUD. METHODS We reviewed the evidence surrounding cannabis use and its current treatment in the United States, explored the rationale for including exercise in the treatment of substance use disorders (SUDs), and in particular, proposed a biological mechanism (i.e., endocannabinoids (eCBs)) that should be examined when utilizing exercise for the treatment of CUD. RESULTS Cannabis use is widespread and increasing in the United States. Chronic, heavy cannabis use may dysregulate the endogenous cannabinoid system, which has implications for several psychobiological processes that interact with the eCB system such as reward processing and the stress response. Given that exercise is a potent activator of the eCB system, it is mechanistically plausible that exercise could be an optimal method to supplement cessation efforts by reducing psychophysical withdrawal, managing stress, and attenuating drug cravings. CONCLUSION We suggest there is a strong behavioral and physiological rationale to design studies which specifically assess the efficacy of exercise, in combination with other therapies, in treating CUD. Moreover, it will be especially important to include the investigation of psychobiological mechanisms (e.g., eCBs, hippocampal volume), which have been associated with both exercise and SUDs, to examine the broader impact of exercise on behavioral and physiological responses to treatment.
Collapse
Affiliation(s)
| | - Kelli F Koltyn
- a Department of Kinesiology , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
224
|
Scheggi S, Melis M, De Felice M, Aroni S, Muntoni AL, Pelliccia T, Gambarana C, De Montis MG, Pistis M. PPARα modulation of mesolimbic dopamine transmission rescues depression-related behaviors. Neuropharmacology 2016; 110:251-259. [PMID: 27457507 DOI: 10.1016/j.neuropharm.2016.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/19/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023]
Abstract
Depressive disorders cause a substantial burden for the individual and the society. Key depressive symptoms can be modeled in animals and enable the development of novel therapeutic interventions. Chronic unavoidable stress disrupts rats' competence to escape noxious stimuli and self-administer sucrose, configuring a depression model characterized by escape deficit and motivational anhedonia associated to impaired dopaminergic responses to sucrose in the nucleus accumbens shell (NAcS). Repeated treatments that restore these responses also relieve behavioral symptoms. Ventral tegmental area (VTA) dopamine neurons encode reward and motivation and are implicated in the neuropathology of depressive-like behaviors. Peroxisome proliferator-activated receptors type-α (PPARα) acutely regulate VTA dopamine neuron firing via β2 subunit-containing nicotinic acetylcholine receptors (β2*nAChRs) through phosphorylation and this effect is predictive of antidepressant-like effects. Here, by combining behavioral, electrophysiological and biochemical techniques, we studied the effects of repeated PPARα stimulation by fenofibrate on mesolimbic dopamine system. We found decreased β2*nAChRs phosphorylation levels and a switch from tonic to phasic activity of dopamine cells in the VTA, and increased phosphorylation of dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32) in the NAcS. We then investigated whether long-term fenofibrate administration to stressed rats reinstated the decreased DARPP-32 response to sucrose and whether this effect translated into antidepressant-like properties. Fenofibrate restored dopaminergic responses to appetitive stimuli, reactivity to aversive stimuli and motivation to self-administer sucrose. Overall, this study suggests PPARα as new targets for antidepressant therapies endowed with motivational anti-anhedonic properties, further supporting the role of an unbalanced mesolimbic dopamine system in pathophysiology of depressive disorders.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Miriam Melis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Marta De Felice
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Sonia Aroni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Italy
| | - Teresa Pelliccia
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Italy.
| |
Collapse
|
225
|
The Effects of Acute Physical Exercise on Memory, Peripheral BDNF, and Cortisol in Young Adults. Neural Plast 2016; 2016:6860573. [PMID: 27437149 PMCID: PMC4942640 DOI: 10.1155/2016/6860573] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/28/2016] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
In animals, physical activity has been shown to induce functional and structural changes especially in the hippocampus and to improve memory, probably by upregulating the release of neurotrophic factors. In humans, results on the effect of acute exercise on memory are inconsistent so far. Therefore, the aim of the present study was to assess the effects of a single bout of physical exercise on memory consolidation and the underlying neuroendocrinological mechanisms in young adults. Participants encoded a list of German-Polish vocabulary before exercising for 30 minutes with either high intensity or low intensity or before a relaxing phase. Retention of the vocabulary was assessed 20 minutes after the intervention as well as 24 hours later. Serum BDNF and salivary cortisol were measured at baseline, after learning, and after the intervention. The high-intensity exercise group showed an increase in BDNF and cortisol after exercising compared to baseline. Exercise after learning did not enhance the absolute number of recalled words. Participants of the high-intensity exercise group, however, forgot less vocabulary than the relaxing group 24 hours after learning. There was no robust relationship between memory scores and the increase in BDNF and cortisol, respectively, suggesting that further parameters have to be taken into account to explain the effects of exercise on memory in humans.
Collapse
|
226
|
Mustroph ML, Pinardo H, Merritt JR, Rhodes JS. Parameters for abolishing conditioned place preference for cocaine from running and environmental enrichment in male C57BL/6J mice. Behav Brain Res 2016; 312:366-73. [PMID: 27363922 DOI: 10.1016/j.bbr.2016.06.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/26/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Evidence suggests that 4 weeks of voluntary wheel running abolishes conditioned place preference (CPP) for cocaine in male C57BL/6J mice. OBJECTIVES To determine the duration and timing of exposure to running wheels necessary to reduce CPP, and the extent to which the running per se influences CPP as compared to environmental enrichment without running. METHODS A total of 239 males were conditioned for 4days twice daily with cocaine (10mg/kg) and then split into 7 intervention groups prior to 4days of CPP testing. Experiment 1 consisted of two groups housed as follows: short sedentary group (SS; n=20) in normal cages for 1 week; the short running group (SR; n=20) with running wheels for 1 week. Experiment 2 consisted of five groups housed as follows; short 1 week of running followed by a 3 week sedentary period (SRS; n=20); a 3 week sedentary period followed by 1 week of running (SSR; n=20); long sedentary group (LS; n=66) in normal cages for 4 weeks; long running group (LR; n=66) with running wheels for 4 weeks; and long environmental enrichment group (EE; n=27) with toys for 4 weeks. RESULTS Levels of running were similar in all running groups. Both running and environmental enrichment reduced CPP relative to sedentary groups. CONCLUSIONS Results suggest that the abolishment of cocaine CPP from running is robust and occurs with as low as 1 week of intervention but may be related to enrichment component of running rather than physical activity.
Collapse
Affiliation(s)
- M L Mustroph
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA.
| | - H Pinardo
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| | - J R Merritt
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| | - J S Rhodes
- University of Illinois at Urbana-Champaign, Beckman Institute of Advanced Science and Technology, 405 N. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
227
|
Karaca S, Saleh A, Canan F, Potenza MN. Comorbidity between Behavioral Addictions and Attention Deficit/Hyperactivity Disorder: a Systematic Review. Int J Ment Health Addict 2016. [DOI: 10.1007/s11469-016-9660-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
228
|
Gillman AS, Hutchison KE, Bryan AD. Cannabis and Exercise Science: A Commentary on Existing Studies and Suggestions for Future Directions. Sports Med 2016; 45:1357-63. [PMID: 26178329 DOI: 10.1007/s40279-015-0362-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Policies regarding cannabis use are rapidly changing, yet public officials have limited access to scientific information that might inform the creation of these policies. One important area in which to begin investigations is the link between recreational cannabis use and health, specifically exercise. There are common anecdotal reports that cannabis decreases motivation, including motivation to exercise. On the other hand, there are also anecdotal reports that cannabis is used prior to athletic activity. In fact, the World Anti-Doping Agency includes cannabis as a prohibited substance in sport, partly because it is believed that it may enhance sports performance. At the current time, there is limited scientific evidence to support either one of these opposing lay perspectives. Given recent political, cultural, and legal trends, and the growing acceptance of recreational cannabis use, it is important to develop a more nuanced understanding of the relationship between cannabis and exercise, specifically the potential effects of use on exercise performance, motivation, and recovery.
Collapse
Affiliation(s)
- Arielle S Gillman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80309-0345, USA.
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80309-0345, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244, 345 UCB, Boulder, CO, 80309-0345, USA
| |
Collapse
|
229
|
Abstract
In elite soccer, players are frequently exposed to various situations and conditions that can interfere with sleep, potentially leading to sleep deprivation. This article provides a comprehensive and critical review of the current available literature regarding the potential acute and chronic stressors (i.e., psychological, sociological and physiological stressors) placed on elite soccer players that may result in compromised sleep quantity and/or quality. Sleep is an essential part of the recovery process as it provides a number of important psychological and physiological functions. The effects of sleep disturbance on post-soccer match fatigue mechanisms and recovery time course are also described. Physiological and cognitive changes that occur when competing at night are often not conducive to sleep induction. Although the influence of high-intensity exercise performed during the night on subsequent sleep is still debated, environmental conditions (e.g., bright light in the stadium, light emanated from the screens) and behaviours related to evening soccer matches (e.g., napping, caffeine consumption, alcohol consumption) as well as engagement and arousal induced by the match may all potentially affect subsequent sleep. Apart from night soccer matches, soccer players are subjected to inconsistency in match schedules, unique team schedules and travel fatigue that may also contribute to the sleep debt. Sleep deprivation may be detrimental to the outcome of the recovery process after a match, resulting in impaired muscle glycogen repletion, impaired muscle damage repair, alterations in cognitive function and an increase in mental fatigue. The role of sleep in recovery is a complex issue, reinforcing the need for future research to estimate the quantitative and qualitative importance of sleep and to identify influencing factors. Efficient and individualised solutions are likely needed.
Collapse
|
230
|
Diamond A, Ling DS. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev Cogn Neurosci 2016; 18:34-48. [PMID: 26749076 PMCID: PMC5108631 DOI: 10.1016/j.dcn.2015.11.005] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/26/2015] [Accepted: 11/23/2015] [Indexed: 12/26/2022] Open
Abstract
The 'Executive Functions' (EFs) of inhibitory control, working memory, and cognitive flexibility enable us to think before we act, resist temptations or impulsive reactions, stay focused, reason, problem-solve, flexibly adjust to changed demands or priorities, and see things from new and different perspectives. These skills are critical for success in all life's aspects and are sometimes more predictive than even IQ or socioeconomic status. Understandably, there is great interest in improving EFs. It's now clear they can be improved at any age through training and practice, much as physical exercise hones physical fitness. However, despite claims to the contrary, wide transfer does not seem to occur and 'mindless' aerobic exercise does little to improve EFs. Important questions remain: How much can EFs be improved (are benefits only superficial) and how long can benefits be sustained? What are the best methods for improving EFs? What about an approach accounts for its success? Do the answers to these differ by individual characteristics such as age or gender? Since stress, sadness, loneliness, or poor health impair EFs, and the reverse enhances EFs, we predict that besides directly train EFs, the most successful approaches for improving EFs will also address emotional, social, and physical needs.
Collapse
Affiliation(s)
- Adele Diamond
- Program in Developmental Cognitive Neuroscience, Department of Psychiatry, UBC, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1.
| | - Daphne S Ling
- Program in Developmental Cognitive Neuroscience, Department of Psychiatry, UBC, 2255 Wesbrook Mall, Vancouver, BC, Canada V6T 2A1
| |
Collapse
|
231
|
Snow NJ, Mang CS, Roig M, McDonnell MN, Campbell KL, Boyd LA. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task. PLoS One 2016; 11:e0150039. [PMID: 26901664 PMCID: PMC4764690 DOI: 10.1371/journal.pone.0150039] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. MATERIALS AND METHODS Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. RESULTS There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). DISCUSSION An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning.
Collapse
Affiliation(s)
- Nicholas J. Snow
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Cameron S. Mang
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Marc Roig
- School of Physical and Occupational Therapy, McGill University, Montréal, Canada
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montréal Centre for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Michelle N. McDonnell
- International Centre for Allied Health Evidence and Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Kristin L. Campbell
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Lara A. Boyd
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
232
|
Endocannabinoids as Guardians of Metastasis. Int J Mol Sci 2016; 17:230. [PMID: 26875980 PMCID: PMC4783962 DOI: 10.3390/ijms17020230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/24/2015] [Accepted: 02/01/2016] [Indexed: 01/01/2023] Open
Abstract
Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in cancer pathophysiology in several ways, including tumor growth and progression, peritumoral inflammation, nausea and cancer pain. Recently we showed that the endocannabinoid profiles are deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer. The present topical review summarizes the complexity of endocannabinoid signaling in the context of tumor growth and metastasis.
Collapse
|
233
|
Antunes HKM, Leite GSF, Lee KS, Barreto AT, Santos RVTD, Souza HDS, Tufik S, de Mello MT. Exercise deprivation increases negative mood in exercise-addicted subjects and modifies their biochemical markers. Physiol Behav 2016; 156:182-90. [PMID: 26812592 DOI: 10.1016/j.physbeh.2016.01.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/19/2016] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The aim of this study was to identify the possible association between biochemical markers of exercise addiction and affective parameters in a sample of athletes during 2weeks of withdrawal exercise. Eighteen male runners were distributed into a control group (n=10) composed of runners without exercise addiction symptoms and an exercise addiction group (n=8) composed of runners with exercise addiction symptoms. The volunteers performed a baseline evaluation that included affective questionnaires, blood samples, body composition and an aerobic test performed at ventilatory threshold I. After the baseline evaluation, the groups started an exercise withdrawal period that was sustained for 2weeks. During exercise withdrawal, an actigraph accelerometer was used to monitor the movement index, and CK and LDH were measured in blood samples to validate the non-exercise practice. At the end of the exercise withdrawal period, a blood collection, aerobic test and mood scale was performed in the re-test. The results showed that at the end of the experimental protocol, when compared with the control group, the exercise addiction group showed an increase in depression, confusion, anger, fatigue and decreased vigor mood that improved post-exercise, along with low levels of anandamide at all time-points evaluated and a modest increase in β-endorphin post-exercise. Moreover, the exercise addiction group showed a decrease in oxygen consumption and respiratory exchange ratio after the exercise withdrawal period, which characterized a detraining phenomenon. Our data suggest that a 2-week withdrawal exercise period resulted in an increase of negative mood in exercise addiction; additionally, exercise addiction showed low levels of anandamide.
Collapse
Affiliation(s)
- Hanna Karen Moreira Antunes
- Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, SP, Brazil; Centro de Estudos em Psicobiologia e Exercício (CEPE), São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, SP, Brazil.
| | | | - Kil Sun Lee
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ronaldo Vagner Thomatieli Dos Santos
- Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, SP, Brazil; Centro de Estudos em Psicobiologia e Exercício (CEPE), São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, SP, Brazil
| | - Helton de Sá Souza
- Centro de Estudos em Psicobiologia e Exercício (CEPE), São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, SP, Brazil
| | - Marco Tulio de Mello
- Centro de Estudos em Psicobiologia e Exercício (CEPE), São Paulo, SP, Brazil; Departamento de Esportes, Faculdade de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
234
|
Heijnen S, Hommel B, Kibele A, Colzato LS. Neuromodulation of Aerobic Exercise-A Review. Front Psychol 2016; 6:1890. [PMID: 26779053 PMCID: PMC4703784 DOI: 10.3389/fpsyg.2015.01890] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors.
Collapse
Affiliation(s)
- Saskia Heijnen
- Cognitive Psychology Unit, Leiden UniversityLeiden, Netherlands; Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| | - Bernhard Hommel
- Cognitive Psychology Unit, Leiden UniversityLeiden, Netherlands; Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| | - Armin Kibele
- Institute for Sports and Sport Science, University of Kassel Kassel, Germany
| | - Lorenza S Colzato
- Cognitive Psychology Unit, Leiden UniversityLeiden, Netherlands; Leiden Institute for Brain and Cognition, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
235
|
Smith JP, Prince MA, Achua JK, Robertson JM, Anderson RT, Ronan PJ, Summers CH. Intensity of anxiety is modified via complex integrative stress circuitries. Psychoneuroendocrinology 2016; 63:351-61. [PMID: 26555428 PMCID: PMC4838407 DOI: 10.1016/j.psyneuen.2015.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/10/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022]
Abstract
Escalation of anxious behavior while environmentally and socially relevant contextual events amplify the intensity of emotional response produces a testable gradient of anxiety shaped by integrative circuitries. Apprehension of the Stress-Alternatives Model apparatus (SAM) oval open field (OF) is measured by the active latency to escape, and is delayed by unfamiliarity with the passageway. Familiar OF escape is the least anxious behavior along the continuum, which can be reduced by anxiolytics such as icv neuropeptide S (NPS). Social aggression increases anxiousness in the SAM, reducing the number of mice willing to escape by 50%. The apprehension accompanying escape during social aggression is diminished by anxiolytics, such as exercise and corticotropin releasing-factor receptor 1 (CRF1) antagonism, but exacerbated by anxiogenic treatment, like antagonism of α2-adrenoreceptors. What is more, the anxiolytic CRF1 and anxiogenic α2-adrenoreceptor antagonists also modify behavioral phenotypes, with CRF1 antagonism allowing escape by previously submissive animals, and α2-adrenoreceptor antagonism hindering escape in mice that previously engaged in it. Gene expression of NPS and brain-derived neurotrophic factor (BDNF) in the central amygdala (CeA), as well as corticosterone secretion, increased concomitantly with the escalating anxious content of the mouse-specific anxiety continuum. The general trend of CeA NPS and BDNF expression suggested that NPS production was promoted by increasing anxiousness, and that BDNF synthesis was associated with learning about ever-more anxious conditions. The intensity gradient for anxious behavior resulting from varying contextual conditions may yield an improved conceptualization of the complexity of mechanisms producing the natural continuum of human anxious conditions, and potential therapies that arise therefrom.
Collapse
Affiliation(s)
- Justin P. Smith
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota 57105 USA,Institute of Possibility, 322 E. 8th Street, Suite 302, Sioux Falls, SD 57103 USA,Sanford Health, 2301 E. 60th St. N., Sioux Falls, SD 57104 USA
| | - Melissa A. Prince
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Justin K. Achua
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota 57105 USA
| | - James M. Robertson
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Raymond T. Anderson
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Department of Biochemistry, West Virginia University School of Medicine 1 Medical Center Dr., Morgantown, WV 26506 USA
| | - Patrick J. Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, South Dakota 57105 USA,Avera Research Institute, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota 57105 USA,Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO 80220 USA,Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Cliff H. Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA,Corresponding author: Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069-2390, 605 677 6177, fax: 605 677 6557.
| |
Collapse
|
236
|
Sex differences in drug addiction and response to exercise intervention: From human to animal studies. Front Neuroendocrinol 2016; 40:24-41. [PMID: 26182835 PMCID: PMC4712120 DOI: 10.1016/j.yfrne.2015.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023]
Abstract
Accumulated research supports the idea that exercise could be an option of potential prevention and treatment for drug addiction. During the past few years, there has been increased interest in investigating of sex differences in exercise and drug addiction. This demonstrates that sex-specific exercise intervention strategies may be important for preventing and treating drug addiction in men and women. However, little is known about how and why sex differences are found when doing exercise-induced interventions for drug addiction. In this review, we included both animal and human that pulled subjects from a varied age demographic, as well as neurobiological mechanisms that may highlight the sex-related differences in these potential to assess the impact of sex-specific roles in drug addiction and exercise therapies.
Collapse
|
237
|
Reynolds GO, Otto MW, Ellis TD, Cronin-Golomb A. The Therapeutic Potential of Exercise to Improve Mood, Cognition, and Sleep in Parkinson's Disease. Mov Disord 2016; 31:23-38. [PMID: 26715466 PMCID: PMC4724300 DOI: 10.1002/mds.26484] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023] Open
Abstract
In addition to the classic motor symptoms, Parkinson's disease (PD) is associated with a variety of nonmotor symptoms that significantly reduce quality of life, even in the early stages of the disease. There is an urgent need to develop evidence-based treatments for these symptoms, which include mood disturbances, cognitive dysfunction, and sleep disruption. We focus here on exercise interventions, which have been used to improve mood, cognition, and sleep in healthy older adults and clinical populations, but to date have primarily targeted motor symptoms in PD. We synthesize the existing literature on the benefits of aerobic exercise and strength training on mood, sleep, and cognition as demonstrated in healthy older adults and adults with PD, and suggest that these types of exercise offer a feasible and promising adjunct treatment for mood, cognition, and sleep difficulties in PD. Across stages of the disease, exercise interventions represent a treatment strategy with the unique ability to improve a range of nonmotor symptoms while also alleviating the classic motor symptoms of the disease. Future research in PD should include nonmotor outcomes in exercise trials with the goal of developing evidence-based exercise interventions as a safe, broad-spectrum treatment approach to improve mood, cognition, and sleep for individuals with PD.
Collapse
Affiliation(s)
| | - Michael W. Otto
- Boston University, Department of Psychological and Brain Sciences
| | - Terry D. Ellis
- Boston University College of Health and Rehabilitation Sciences: Sargent College, Department of Physical Therapy & Athletic Training and Center for Neurorehabilitation
| | | |
Collapse
|
238
|
Carneiro LSF, Fonseca AM, Vieira-Coelho MA, Mota MP, Vasconcelos-Raposo J. Effects of structured exercise and pharmacotherapy vs. pharmacotherapy for adults with depressive symptoms: A randomized clinical trial. J Psychiatr Res 2015; 71:48-55. [PMID: 26522871 DOI: 10.1016/j.jpsychires.2015.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Physical exercise has been consistently documented as a complementary therapy in the treatment of depressive disorders. However, despite a higher prevalence among women compared to men, the trials developed in women are scarce. In addition, the optimal dosage of exercise capable of producing benefits that reduce depressive symptoms remains unclear. This clinical trial is designed to measure the effect of a structured physical exercise program as a complement to antidepressant medication in the treatment of women with depression. METHODS From July 2013 to May 2014, we implemented a randomized controlled trial (HAPPY BRAIN study). A total of 26 women (aged 50.16 ± 12.08) diagnosed with clinical depression were randomized either to a supervised aerobic exercise group (45-50 min/week three times a week for four months) plus pharmacotherapy (intervention group), or only antidepressant medication (control group). RESULTS The exercise group presented a decrease in BDI-II and DASS-21 total score scales. Relatively to DASS-21, it showed a significant decrease in anxiety and stress. The exercise group when compared to a control group showed improvement in relation to physical functioning parameters between baseline and post-intervention. Moreover, anthropometric parameters presented only significant differences between groups in fat mass percentage. Nonetheless, no differences were found between groups in weight, body mass index, waist circumference, and self-esteem. CONCLUSION Our results showed that supervised structured aerobic exercise training could be an effective adjuvant therapy for treating women with depression, reducing depressive symptomatology and improving physical fitness. A key factor of this improvement included strict control of exercise workload parameters and adjustment to each subject's capacity. In our study, due to the sample size there is an increase in the probability of type II errors.
Collapse
Affiliation(s)
- Lara S F Carneiro
- Centre of Research, Sports Sciences, Health and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| | - António Manuel Fonseca
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
| | - Maria Augusta Vieira-Coelho
- Psychiatry and Mental Health Clinic, Centro Hospitalar São João, Porto, Portugal; Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria Paula Mota
- Centre of Research, Sports Sciences, Health and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - José Vasconcelos-Raposo
- Department of Education and Psychology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
239
|
Heinonen I, Kalliokoski KK, Hannukainen JC, Duncker DJ, Nuutila P, Knuuti J. Organ-specific physiological responses to acute physical exercise and long-term training in humans. Physiology (Bethesda) 2015; 29:421-36. [PMID: 25362636 DOI: 10.1152/physiol.00067.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, Finland; Department of Cardiology, Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kari K Kalliokoski
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jarna C Hannukainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Dirk J Duncker
- Department of Cardiology, Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland; and
| | - Juhani Knuuti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
240
|
Medina JL, Jacquart J, Smits JAJ. Optimizing the Exercise Prescription for Depression: The Search for Biomarkers of Response. Curr Opin Psychol 2015; 4:43-47. [PMID: 26309904 DOI: 10.1016/j.copsyc.2015.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is growing support for the efficacy of exercise interventions for the treatment of individuals who present with mild-to-moderate depression. The variability in treatment response across studies and individuals suggests that the efficacy of exercise for depression will be most optimal when prescribed to individuals who are most prone to respond. The present article reviews contemporary theoretical accounts and recent empirical data pointing to neuroinflammatory states and neurotrophin production as possible biomarkers of the antidepressant response to exercise. The larger exercise and depression literatures provide justification for elevated levels of pro-inflammatory cytokines and deficits in BDNF production as putative matching variables. Although there is some empirical support for these hypotheses, it is clear that this research warrants replication and extension. We offer a few suggestions for future research in this emerging area.
Collapse
Affiliation(s)
- Johnna L Medina
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043 ; Institute for Mental Health Research, The University of Texas at Austin, 305 E. 23rd St., Stop E9000, Austin, TX 78712
| | - Jolene Jacquart
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043 ; Institute for Mental Health Research, The University of Texas at Austin, 305 E. 23rd St., Stop E9000, Austin, TX 78712
| | - Jasper A J Smits
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043 ; Institute for Mental Health Research, The University of Texas at Austin, 305 E. 23rd St., Stop E9000, Austin, TX 78712
| |
Collapse
|
241
|
IL-1β and BDNF are associated with improvement in hypersomnia but not insomnia following exercise in major depressive disorder. Transl Psychiatry 2015; 5:e611. [PMID: 26241349 PMCID: PMC4564559 DOI: 10.1038/tp.2015.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/04/2015] [Accepted: 06/14/2015] [Indexed: 12/15/2022] Open
Abstract
Given the role of sleep in the development and treatment of major depressive disorder (MDD), it is becoming increasingly clear that elucidation of the biological mechanisms underlying sleep disturbances in MDD is crucial to improve treatment outcomes. Sleep disturbances are varied and can present as insomnia and/or hypersomnia. Though research has examined the biological underpinnings of insomnia in MDD, little is known about the role of biomarkers in hypersomnia associated with MDD. This paper examines biomarkers associated with changes in hypersomnia and insomnia and as predictors of improvements in sleep quality following exercise augmentation in persons with MDD. Subjects with non-remitted MDD were randomized to augmentation with one of two doses of aerobic exercise: 16 kilocalories per kilogram of body weight per week (KKW) or 4 KKW for 12 weeks. The four sleep-related items on the clinician-rated Inventory of Depressive Symptomatology (sleep onset insomnia, mid-nocturnal insomnia, early morning insomnia and hypersomnia) assessed self-reported sleep quality. Inflammatory cytokines (tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6) and brain-derived neurotrophic factor (BDNF) were assessed in blood samples collected before and following the 12-week intervention. Reduction in hypersomnia was correlated with reductions in BDNF (ρ = 0.26, P = 0.029) and IL-1β (ρ = 0.37, P = 0.002). Changes in these biomarkers were not associated with changes in insomnia; however, lower baseline levels of IL-1β were predictive of greater improvements in insomnia (F = 3.87, P = 0.050). In conclusion, improvement in hypersomnia is related to reductions in inflammatory markers and BDNF in persons with non-remitted MDD. Distinct biological mechanisms may explain reductions in insomnia.
Collapse
|
242
|
Mechanisms of exercise-induced hypoalgesia. THE JOURNAL OF PAIN 2015; 15:1294-1304. [PMID: 25261342 DOI: 10.1016/j.jpain.2014.09.006] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/17/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED The purpose of this study was to examine opioid and endocannabinoid mechanisms of exercise-induced hypoalgesia (EIH). Fifty-eight men and women (mean age = 21 years) completed 3 sessions. During the first session, participants were familiarized with the temporal summation of heat pain and pressure pain protocols. In the exercise sessions, following double-blind administration of either an opioid antagonist (50 mg naltrexone) or placebo, participants rated the intensity of heat pulses and indicated their pressure pain thresholds and pressure pain ratings before and after 3 minutes of submaximal isometric exercise. Blood was drawn before and after exercise. Results indicated that circulating concentrations of 2 endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as related lipids oleoylethanolamide, palmitoylethanolamide, N-docosahexaenoylethanolamine, and 2-oleoylglycerol, increased significantly (P < .05) following exercise. Pressure pain thresholds increased significantly (P < .05), whereas pressure pain ratings decreased significantly (P < .05) following exercise. Also, temporal summation ratings were significantly lower (P < .05) following exercise. These changes in pain responses did not differ between the placebo and naltrexone conditions (P > .05). A significant association was found between EIH and docosahexaenoylethanolamine. These results suggest involvement of a nonopioid mechanism in EIH following isometric exercise. PERSPECTIVE Currently, the mechanisms responsible for EIH are unknown. This study provides support for a potential endocannabinoid mechanism of EIH following isometric exercise.
Collapse
|
243
|
Alomari MA, Khabour OF, Alzoubi KH, Alzubi MA. Combining restricted diet with forced or voluntary exercises improves hippocampal BDNF and cognitive function in rats. Int J Neurosci 2015; 126:366-73. [PMID: 26000806 DOI: 10.3109/00207454.2015.1012587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dietary restriction (RDt) and exercise (Ex) enhances cognitive function due, at least in part, levels of neurotrophins such as brain-derived neurotrophic factor (BDNF). This study examined changes in BDNF levels and data acquisition and retention following every-other-day RDt alone, and combined with either voluntary wheel (VxRDt) or forced swimming Exs (FxRDt) in rats. Hippocampal BDNF was measured using ELISA while learning and memory formation were assessed with the radial arm water maze (RAWM) paradigm. After 6 weeks, VxRDt and FxRDt enhanced BDNF levels, and short- and long-term memories (p < 0.05). The magnitude of the increase in BDNF was significantly higher in VxRDt group than in other groups (p < 0.05). However, no differences were found in learning and memory formation between the Ex regiments (VxRDt versus FxRDt). Additionally, RDt alone neither modulated BDNF level nor enhanced learning and memory formation (p > 0.05). These results suggest more important role of Ex, as opposed to RDt, in enhancing learning and memory formation. In addition, VxRDt appears to be more potent in enhancing brain BDNF levels than FxRDt, when combined with RDt in rats.
Collapse
Affiliation(s)
- Mahmoud A Alomari
- a Department of Rehabilitation Sciences , Jordan University of Science and Technology , Irbid , Jordan
| | - Omar F Khabour
- b Department of Medical Laboratory Sciences , Jordan University of Science and Technology , Irbid , Jordan.,c Department of Biology, Faculty of Science , Taibah University , Madinah Munawara , Saudi Arabia
| | - Karem H Alzoubi
- d Department of Clinical Pharmacy , Jordan University of Science and Technology , Irbid , Jordan
| | - Mohammad A Alzubi
- b Department of Medical Laboratory Sciences , Jordan University of Science and Technology , Irbid , Jordan
| |
Collapse
|
244
|
Jin P, Yu HL, Tian-Lan, Zhang F, Quan ZS. Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 2015; 133:146-54. [PMID: 25864425 DOI: 10.1016/j.pbb.2015.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/22/2022]
Abstract
Oleoylethanolamide (OEA) is an endocannabinoid analog that belongs to a family of endogenous acylethanolamides. Increasing evidence suggests that OEA may act as an endogenous neuroprotective factor and participate in the control of mental disorder-related behaviors. In this study, we examined whether OEA is effective against depression and investigated the role of circulating endogenous acylethanolamides during stress. Mice were subjected to 28days of chronic unpredictable mild stress (CUMS), and during the last 21days, treated with oral OEA (1.5-6mg/kg) or 6mg/kg fluoxetine. Sucrose preference and open field test activity were used to evaluate depression-like behaviors during CUMS and after OEA treatment. Weights of the prefrontal cortex and hippocampus were determined, and the adrenal index was measured. Furthermore, changes in serum adrenocorticotropic hormone (ACTH), corticosterone (CORT) and total antioxidant capacity (T-AOC), brain-derived neurotrophic factor (BDNF), and lipid peroxidation product malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities in the hippocampus and prefrontal cortex were detected. Our findings indicate that OEA normalized sucrose preferences, locomotion distances, rearing frequencies, prefrontal cortex and hippocampal atrophy, and adrenal indices. In addition, OEA reversed the abnormalities of BDNF and MDA levels and SOD activities in the hippocampus and prefrontal cortex, as well as changes in serum levels of ACTH, CORT, and T-AOC. The antidepressant effects of OEA may be related to the regulation of BDNF levels in the hippocampus and prefrontal cortex, antioxidant defenses, and normalizing hyperactivity in the hypothalamic-pituitary-adrenal axis (HPA).
Collapse
Affiliation(s)
- Peng Jin
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji 133000, PR China; Department of Pharmacology, Ischemic/Hypoxic Disease Institute, Cancer Research Institute, College of Medicine, Seoul National University, Yongon-dong 28, Chongno-gu, Seoul 110-799, Republic of Korea; Department of Biomedical Science, Ischemic/Hypoxic Disease Institute, Cancer Research Institute, College of Medicine, Seoul National University, Yongon-dong 28, Chongno-gu, Seoul 110-799, Republic of Korea
| | - Hai-Ling Yu
- College of Medicine, Yanbian University, Park Street 977, Yanji, 133002 Jilin, PR China.
| | - Tian-Lan
- College of Medicine, Yanbian University, Park Street 977, Yanji, 133002 Jilin, PR China
| | - Feng Zhang
- College of Medicine, Yanbian University, Park Street 977, Yanji, 133002 Jilin, PR China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji 133000, PR China.
| |
Collapse
|
245
|
Jeon YK, Ha CH. Expression of brain-derived neurotrophic factor, IGF-1 and cortisol elicited by regular aerobic exercise in adolescents. J Phys Ther Sci 2015; 27:737-41. [PMID: 25931720 PMCID: PMC4395704 DOI: 10.1589/jpts.27.737] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/21/2014] [Indexed: 01/17/2023] Open
Abstract
[Purpose] This study was conducted on adolescent subjects whose brains are still developing with the purpose of identifying the effect of 8 weeks duration of aerobic exercises on the expression of BDNF, IGF-1 and cortisol, to identify effect of aerobic exercise on the expression of cortisol, BDNF and IGF-1 related to nerve cell growth. [Subjects and Methods] The subjects were 20 junior-high school students with no history of physical illness. The students were divided into an exercise group and a control group. The exercise group performed 3 treadmill exercise times per week for 8 weeks. The exercise time for the consumption of 200 kcal was calculated and the exercises were performed by each individual for 8 weeks. [Results] The exercise group showed statistically significant in increases serum BDNF and IGF-1 after 8 weeks, but cortisol showed no significant change. There were statistically significant differences between the groups in serum BDNF and IGF-1 after 8 weeks, but the difference in cortisol levels was not significant. [Conclusion] We found that long-term regular aerobic exercises has a positive effect on the enhancement of serum BDNF levels at rest and IGF-1 of adolescents who are still undergoing through brain developments.
Collapse
Affiliation(s)
- Yong Kyun Jeon
- Department of Physical Education, Dankook University, Republic of Korea
| | - Chang Ho Ha
- Institute of Social Physical Education, Dongguk University, Republic of Korea ; Department of Human Performance and Leisure Studies, North Carolina A&T State University, USA
| |
Collapse
|
246
|
Powers MB, Medina JL, Burns S, Kauffman BY, Monfils M, Asmundson GJG, Diamond A, McIntyre C, Smits JAJ. Exercise Augmentation of Exposure Therapy for PTSD: Rationale and Pilot Efficacy Data. Cogn Behav Ther 2015; 44:314-27. [PMID: 25706090 DOI: 10.1080/16506073.2015.1012740] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is associated with synaptic plasticity, which is crucial for long-term learning and memory. Some studies suggest that people suffering from anxiety disorders show reduced BDNF relative to healthy controls. Lower BDNF is associated with impaired learning, cognitive deficits, and poor exposure-based treatment outcomes. A series of studies with rats showed that exercise elevates BDNF and enhances fear extinction. However, this strategy has not been tested in humans. In this pilot study, we randomized participants (N = 9, 8 females, M(Age) = 34) with posttraumatic stress disorder (PTSD) to (a) prolonged exposure alone (PE) or (b) prolonged exposure+exercise (PE+E). Participants randomized to the PE+E condition completed a 30-minute bout of moderate-intensity treadmill exercise (70% of age-predicted HR(max)) prior to each PE session. Consistent with prediction, the PE+E group showed a greater improvement in PTSD symptoms (d = 2.65) and elevated BDNF (d = 1.08) relative to the PE only condition. This pilot study provides initial support for further investigation into exercise augmented exposure therapy.
Collapse
Affiliation(s)
- Mark B Powers
- a Department of Psychology, Institute for Mental Health Research , The University of Texas at Austin , Austin , TX , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Schuch FB, Vasconcelos-Moreno MP, Borowsky C, Zimmermann AB, Rocha NS, Fleck MP. Exercise and severe major depression: effect on symptom severity and quality of life at discharge in an inpatient cohort. J Psychiatr Res 2015; 61:25-32. [PMID: 25439084 DOI: 10.1016/j.jpsychires.2014.11.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/09/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Exercise is a potential treatment for depression. However, few studies have evaluated the role of adjunct exercise in the treatment of severely major depressed inpatients. The goal of this study was to evaluate the effects of add-on exercise on the usual treatment of severely depressed inpatients. METHODS Fifty participants were randomized to an exercise (exercise + usual treatment) or a control (usual treatment) group. Twenty-five patients were randomly allocated to each group. The participants in the exercise group performed three sessions per week throughout the hospitalization period, with a goal dose of 16.5 kcal/kg/week plus the usual pharmacological treatment. Depressive symptoms and the Quality of Life (QoL) of the participants were assessed at the baseline, the second week, and discharge. RESULTS A significant group × time interaction was found for depressive symptoms and the physical and psychological domains of QoL. Differences between groups occurred at the second week and discharge with respect to depressive symptoms and the physical and psychological domains of QoL. There was no difference in the remission rate at discharge (48% and 32% for the exercise and control group, respectively). An NNT of 6.25 was found. No significant baseline characteristics predict remission at discharge. CONCLUSION Add-on exercise is an efficacious treatment for severely depressed inpatients, improving their depressive symptoms and QoL. Initial acceptance of exercise remains a challenge.
Collapse
Affiliation(s)
- F B Schuch
- Post-graduate Program in Medical Sciences: Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Psychiatry, Clinics Hospital of Porto Alegre, Porto Alegre, Brazil.
| | - M P Vasconcelos-Moreno
- Post-graduate Program in Medical Sciences: Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Psychiatry, Clinics Hospital of Porto Alegre, Porto Alegre, Brazil
| | - C Borowsky
- Department of Psychiatry, Clinics Hospital of Porto Alegre, Porto Alegre, Brazil
| | - A B Zimmermann
- Post-graduate Program in Medical Sciences: Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Psychiatry, Clinics Hospital of Porto Alegre, Porto Alegre, Brazil
| | - N S Rocha
- Post-graduate Program in Medical Sciences: Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Psychiatry, Clinics Hospital of Porto Alegre, Porto Alegre, Brazil
| | - M P Fleck
- Post-graduate Program in Medical Sciences: Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Psychiatry, Clinics Hospital of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
248
|
Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res 2015; 60:56-64. [PMID: 25455510 PMCID: PMC4314337 DOI: 10.1016/j.jpsychires.2014.10.003] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 12/11/2022]
Abstract
Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). When analyzing results across paradigms, sex significantly moderated the effect of exercise on BDNF levels, such that studies with more women showed less BDNF change resulting from exercise. Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans, but indicates that the magnitude of these effects may be lower in females relative to males.
Collapse
Affiliation(s)
- Kristin L. Szuhany
- Department of Psychological and Brain Sciences, Boston University 648 Beacon St., 5th Floor, Boston, MA 02215
| | - Matteo Bugatti
- Department of Psychological and Brain Sciences, Boston University 648 Beacon St., 5th Floor, Boston, MA 02215
| | - Michael W. Otto
- Department of Psychological and Brain Sciences, Boston University 648 Beacon St., 5th Floor, Boston, MA 02215
| |
Collapse
|
249
|
Mustroph ML, Merritt JR, Holloway AL, Pinardo H, Miller DS, Kilby CN, Bucko P, Wyer A, Rhodes JS. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice. Eur J Neurosci 2015; 41:216-26. [PMID: 25393660 PMCID: PMC4300275 DOI: 10.1111/ejn.12782] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/13/2014] [Indexed: 01/18/2023]
Abstract
Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin-thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU-positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir-containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU-positive/NeuN-positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir-fed runner mice showed similar levels of neurogenesis as sedentary, normal-fed controls. However, valganciclovir-fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice.
Collapse
Affiliation(s)
- M L Mustroph
- Beckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA; Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Chew BH, Shariff-Ghazali S, Fernandez A. Psychological aspects of diabetes care: Effecting behavioral change in patients. World J Diabetes 2014; 5:796-808. [PMID: 25512782 PMCID: PMC4265866 DOI: 10.4239/wjd.v5.i6.796] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/05/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
Patients with diabetes mellitus (DM) need psychological support throughout their life span from the time of diagnosis. The psychological make-up of the patients with DM play a central role in self-management behaviors. Without patient’s adherence to the effective therapies, there would be persistent sub-optimal control of diseases, increase diabetes-related complications, causing deterioration in quality of life, resulting in increased healthcare utilization and burden on healthcare systems. However, provision of psychosocial support is generally inadequate due to its challenging nature of needs and demands on the healthcare systems. This review article examines patient’s psychological aspects in general, elaborates in particular about emotion effects on health, and emotion in relation to other psychological domains such as cognition, self-regulation, self-efficacy and behavior. Some descriptions are also provided on willpower, resilience, illness perception and proactive coping in relating execution of new behaviors, coping with future-oriented thinking and influences of illness perception on health-related behaviors. These psychological aspects are further discussed in relation to DM and interventions for patients with DM. Equipped with the understanding of the pertinent nature of psychology in patients with DM; and knowing the links between the psychological disorders, inflammation and cardiovascular outcomes would hopefully encourages healthcare professionals in giving due attention to the psychological needs of patients with DM.
Collapse
|