201
|
Camacho L, Latendresse JR, Muskhelishvili L, Law CD, Delclos KB. Effects of intravenous and oral di(2-ethylhexyl) phthalate (DEHP) and 20% Intralipid vehicle on neonatal rat testis, lung, liver, and kidney. Food Chem Toxicol 2020; 144:111497. [PMID: 32540476 DOI: 10.1016/j.fct.2020.111497] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023]
Abstract
The highest human exposures to the plasticizer di(2-ethylhexyl) phthalate (DEHP) occur through intravenous (iv) exposure from medical procedures. Rodent toxicity studies, mainly using oral exposures, have identified male reproductive toxicity after developmental exposure to DEHP as the primary concern. Other organs are also affected by DEHP and route may influence the degree of target organ involvement. Cammack et al. (2003) reported a critical study focused on testicular toxicity using oral and iv exposures of neonatal Sprague-Dawley rats to 60, 300, or 600 mg/kg body weight/day DEHP in Intralipid vehicle. The present study followed the same dosing paradigm and included assessment of additional organs to evaluate the potential utility of this design for DEHP alternatives. Reduction of testis weight was observed in all DEHP treatment groups and germ cell and Sertoli cell toxicity was observed at the two highest doses with both routes. Lung granulomas occurred in all iv DEHP groups, possibly related to increased fat particle size in DEHP lipid emulsions. Lung alveolar development was inhibited after both oral and iv high dose DEHP. Toxicity of oral Intralipid vehicle was observed in germ and Sertoli cells. The lack of such effects after iv vehicle exposure suggested that this may be a gut-mediated effect.
Collapse
Affiliation(s)
- Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | | | | | - Charles D Law
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - K Barry Delclos
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA.
| |
Collapse
|
202
|
Chen S, Wu Q, Zhong D, Li C, Du L. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway. Respir Res 2020; 21:140. [PMID: 32513156 PMCID: PMC7278162 DOI: 10.1186/s12931-020-01403-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/21/2020] [Indexed: 02/01/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants and hyperoxia exposure is a major cause. In hyperoxic lung injury animal model, alveolar simplification and pro-inflammatory cells infiltration are the main pathophysiologic changes. Caffeine is a drug used to treat apnea in premature infants. Early use of caffeine can decrease the rate and the severity of BPD while the mechanisms are still unclear. The purpose of this study was to evaluate the effects of caffeine on inflammation and lung development in neonatal mice with hyperoxic lung injury and to explore the possible mechanism. Methods Following 14 d of 75% oxygen exposure in newborn mouse, the BPD model was established. Caffeine at a dose of 1 g/L was added in drinking water to nursing mouse. We measured the concentration of caffeine in serum and oxidative stress in lung by commercially available kits. Adenosine 2A receptor (A2AR) expression and lung inflammation were measured by Immunohistochemistry and western blotting. Apoptosis and surfactant protein-C (SFTPC) levels were measured by immunofluorescence. The inflammasome and NF-κB pathway proteins were assessed by western blotting. Results We found that the caffeine concentration in plasma at present dose significantly decreased the expression of A2AR protein in mice lung. Caffeine treatment significantly reduced oxidative stress, improved weight gain, promoted alveolar development, attenuated inflammatory infiltration and lung injury in hyperoxia-induced lung injury mice. Moreover, caffeine decreased the cell apoptosis in lung tissues, especially the Type II alveolar epithelial cell. The expression of NLRP3 inflammasome protein and NF-κB pathway were significantly inhibited by caffeine treatment. Conclusion Caffeine treatment can protect hyperoxia-induced mice lung from oxidative injury by inhibiting NLRP3 inflammasome and NF-κB pathway.
Collapse
Affiliation(s)
- Shangqin Chen
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China.,Department of Neonatology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuping Wu
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China.,Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dingjuan Zhong
- Molecular Center for Ophthalmic Optics, Hunan Provincial People's Hospital, Changsha, China.,Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Changchong Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lizhong Du
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China. .,Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No.3333 Binsheng Road, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
203
|
Shin J, Kim SH, Jung YH, Choi CW, Kim BI. Factors Associated with Clinical Response to Low-Dose Dexamethasone Therapy for Bronchopulmonary Dysplasia in Very Low Birth Weight Infants. NEONATAL MEDICINE 2020. [DOI: 10.5385/nm.2020.27.2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
204
|
Wang LJ, Hu Y, Wang W, Zhang CY, Bai YZ, Zhang SC. Gastroesophageal Reflux Poses a Potential Risk for Late Complications of Bronchopulmonary Dysplasia: A Prospective Cohort Study. Chest 2020; 158:1596-1605. [PMID: 32450238 DOI: 10.1016/j.chest.2020.05.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/17/2020] [Accepted: 05/09/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is the most common respiratory disorder in extremely low birth weight infants. Although most symptoms of BPD improve, some late complications exist, even with regular treatment. Gastroesophageal reflux (GER), also common in extremely premature infants, may be related to many cardiorespiratory symptoms. However, the potential of GER as a risk factor for late complications associated with BPD is still unclear. RESEARCH QUESTION The goal of this study was to determine if GER increases the risk of late complications of BPD in infants. STUDY DESIGN AND METHODS A multicenter prospective cohort of 131 infants (79 male subjects, 52 female subjects) with BPD was enrolled. The development of late complications was assessed over an 18-month follow-up period. Twenty-four-hour pH-multichannel intraluminal impedance and gastric sodium concentrations were analyzed in all infants at 36 weeks' postmenstrual age and at the last interview. Prevalence and risk factors of late complications of BPD were analyzed by using forward logistic regression. RESULTS The prevalence of late complications in BPD infants was 63.79% and included respiratory symptoms (49.14%), vomiting (38.79%), retinopathy of prematurity (25.86%), hypoxic-ischemic injury (3.45%), rehospitalization (26.72%), and sudden death (0.86%). Respiratory diseases constituted the most frequent complication. The prevalence of GER in BPD was 42.24% and included acid GER (18.10%) and duodenogastroesophageal reflux (DGER; 24.14%). Risk factors for respiratory symptoms were gestational age ≤ 30 weeks (OR, 3.213; 95% CI, 1.221-8.460), birth weight < 1,500 g (OR, 2.803; 95% CI, 1.014-7.749), invasive ventilation > 7 days (OR, 4.952; 95% CI, 1.508-16.267), acid GER (OR, 4.630; 95% CI, 1.305-16.420), and DGER (OR, 5.588; 95% CI, 1.770-17.648). Infants with BPD and DGER were more prone to late complications than those with acid GER or no reflux. INTERPRETATION The prevalence of late complications is high in infants with BPD. GER (and in particular, DGER) poses a tentative risk for these late complications. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT03014453; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Luo-Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China; Department of Pediatrics, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Yu Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chun-Yan Zhang
- Department of Pediatrics, the First Hospital of Jilin University, Changchun, China
| | - Yu-Zuo Bai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shu-Cheng Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
205
|
Analysis of interleukins 6, 8, 10 and 17 in the lungs of premature neonates with bronchopulmonary dysplasia. Cytokine 2020; 131:155118. [PMID: 32403004 DOI: 10.1016/j.cyto.2020.155118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is an abnormality that occurs in premature neonate lung development. The pathophysiology is uncertain, but the inflammatory response to lung injury may be the responsible pathway. The objective of this study is to evaluate the role of interleukins 6, 8, 10, and 17 through the anatomopathological and immunohistochemical study of the lungs of premature neonates with BPD. Thirty-two cases of neonatal autopsies from the Pathology Department of the Clinics Hospital of the Universidade Federal do Paraná, who presented between 1991 and 2005 were selected. The sample included neonates less than 34 weeks of gestational age who underwent oxygen therapy and had pulmonary formalin-fixed paraffin-embedded (FFPE) samples. Pulmonary specimens were later classified into three groups according to histopathological and morphometric changes (classic BPD, new BPD, and without BPD) and subjected to immunohistochemical analysis. The antibodies selected for the study were anti-IL-6, anti-IL-8, anti-IL-10, and anti-IL-17A monoclonal antibodies. IL-6, IL-8, and IL-10 showed no significant differences in tissue expression among the groups. IL-17A had higher tissue immunoreactivity in the group without BPD compared with the classic BPD group (1686 vs. 866 μm2, p = 0.029). This study showed that the involvement of interleukins 6, 8, and 10 might not be significantly different between the two types of BPD. We speculated that IL-17A could be a protective factor in this disease.
Collapse
|
206
|
Zhu Y, Chen X, Mi L, Wang Q, Zhu H, Ju H, Lu H. Sumoylation of CCAAT-enhancer-binding protein α inhibits lung differentiation in Bronchopulmonary Dysplasia model rats. J Cell Mol Med 2020; 24:7067-7071. [PMID: 32363643 PMCID: PMC7299724 DOI: 10.1111/jcmm.15310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 01/17/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a major cause of mortality and morbidity in premature infants, characterized by alveolar simplification, surfactant deficiency, and respiratory distress. In the present study, we have investigated the functional roles of sumoylated CCAAT/enhancer binding protein alpha (C/EBPα) in the BPD rat model. A significant increase in small ubiquitin‐like modifier 1 (SUMO1) and sumoylated C/EBPα protein levels were observed in BPD rats, and the levels of the sumoylated C/EBPα were associated with the pulmonary surfactant proteins (SPs). In order to confirm the role of sumoylated C/EBPα in BPD rats, SUMO1 was knocked down by lentiviral transfection of neonatal rat lungs with SUMO1‐RNAi‐LV. We found that the expression of C/EBPα and surfactant proteins increased following SUMO1 knockdown. Furthermore, the relatively low decrease in the levels of C/EBPα sumoylation was correlated with reduced glycogen consumption. Besides, co‐immunoprecipitation assays revealed that sumoylation is involved in the regulation of the interaction between C/EBPα and TGFβ2 in the lung. In conclusion, our findings indicate that sumoylation may act as a negative regulator of the C/EBPα‐mediated transactivation in BPD rats.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lanlan Mi
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiuxia Wang
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huimin Ju
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongyan Lu
- Department of Pediatrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
207
|
Antecedents of Objectively Diagnosed Diffuse White Matter Abnormality in Very Preterm Infants. Pediatr Neurol 2020; 106:56-62. [PMID: 32139164 PMCID: PMC7500641 DOI: 10.1016/j.pediatrneurol.2020.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diffuse white matter abnormality (diffuse excessive high signal intensity) is the most common finding on structural brain magnetic resonance imaging (MRI) at term-equivalent age in very preterm infants. Yet, there remains a large gap in our understanding of the etiology of diffuse white matter abnormality. Our objective was to evaluate perinatal and neonatal inflammation-associated antecedents of diffuse white matter abnormality on MRI. METHODS We prospectively enrolled 110 very preterm infants born at ≤31 weeks gestational age and collected data on multiple perinatal/neonatal exposures, especially inflammation initiating-illnesses. We performed structural MRI at term-equivalent age and quantified the volume of diffuse white matter abnormality objectively. Multivariable regression was used to identify clinical antecedents of diffuse white matter abnormality. RESULTS The mean (S.D.) birth gestational age of the final study sample of 98 very preterm infants was 28.3 (2.5) weeks. Multiple inflammation initiating-illnesses were associated with diffuse white matter abnormality in univariate analyses. In multivariable linear regression analyses controlling for gestational age, severe retinopathy of prematurity (P < 0.001) and bronchopulmonary dysplasia (P = 0.006) were independent risk factors, whereas maternal treatment with 17-hydroxyprogesterone (P < 0.001) was protective of later development of objectively quantified diffuse white matter abnormality. CONCLUSIONS We identified several perinatal and neonatal antecedent clinical factors associated with diffuse white matter abnormality. Although we found some support for inflammation as a common underlying mechanism, larger studies are needed to validate inflammation as a potential common pathway to the development of diffuse white matter abnormality in very preterm infants.
Collapse
|
208
|
Mesenchymal stem/stromal cells stably transduced with an inhibitor of CC chemokine ligand 2 ameliorate bronchopulmonary dysplasia and pulmonary hypertension. Cytotherapy 2020; 22:180-192. [PMID: 32139242 DOI: 10.1016/j.jcyt.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Perinatal bronchopulmonary dysplasia (BPD) is defined as lung injury in preterm infants caused by various factors, resulting in serious respiratory dysfunction and high mortality. The administration of mesenchymal stem/stromal cells (MSCs) to treat/prevent BPD has proven to have certain therapeutic effects. However, MSCs can only weakly regulate macrophage function, which is strongly involved in the development of BPD. 7ND-MSCs are MSCs transfected with 7ND, a truncated version of CC chemokine ligand 2 (CCL2) that promotes macrophage activation, using a lentiviral vector. In the present study, we show in a BPD rat model that 7ND-MSC administration, but not MSCs alone, ameliorated the impaired alveolarization evaluated by volume density and surface area in the lung tissue, as well as pulmonary artery remodeling and pulmonary hypertension induced by BPD. In addition, 7ND-MSCs, but not MSCs alone, reduced M1 macrophages and the messenger RNA expressions of interleukin-6 and CCL2 in the lung tissue. Thus, the present study showed the treatment effect of 7ND-MSCs in a BPD rat model, which was more effective than that of MSCs alone.
Collapse
|
209
|
Jeon GW. Changes in the Incidence of Bronchopulmonary Dysplasia among Preterm Infants in a Single Center over 10 Years. NEONATAL MEDICINE 2020. [DOI: 10.5385/nm.2020.27.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
210
|
Mao X, Guo Y, Qiu J, Zhao L, Xu J, Yin J, Lu K, Zhang M, Cheng R. Next-generation sequencing to investigate circular RNA profiles in the peripheral blood of preterm neonates with bronchopulmonary dysplasia. J Clin Lab Anal 2020; 34:e23260. [PMID: 32091150 PMCID: PMC7370752 DOI: 10.1002/jcla.23260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022] Open
Abstract
Background Circular RNAs (circRNAs) are emerging noncoding RNAs that are involved in many biological processes and diseases. The expression profile of circRNAs in preterm neonates with bronchopulmonary dysplasia (BPD) remains unresolved. Methods In BPD infants, peripheral venous blood was drawn and circRNAs were extracted and sequenced by next‐generation sequencing. The levels of the selected circRNAs were measured by real‐time quantitative reverse transcription PCR. Results Among thousands of circRNAs, 491 circRNAs were significantly changed. Among the top 10 changed circRNAs, hsa_circ_0003122, hsa_circ_0003357, hsa_circ_0009983, hsa_circ_0003037, and hsa_circ_0009256 were significantly increased, while hsa_circ_0014932, hsa_circ_0015109, hsa_circ_0017811, hsa_circ_0020588, and hsa_circ_0015066 were significantly decreased. These altered circRNAs are involved in complicated biological functions and signaling pathways. Additionally, hsa_circ_0005577 (hsa_circ_FANCL), which was significantly increased in the moderate‐to‐severe BPD subjects, was correlated with oxygenation therapy. Conclusion These results suggest that an aberrant circRNA profile in the peripheral blood of BPD infants might be important in BPD pathogenesis.
Collapse
Affiliation(s)
- Xiaonan Mao
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Qiu
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhao
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Xu
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiao Yin
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Keyu Lu
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- Department of Immunology, National Health Commission of Key Lab of Antibody Technology, Nanjing Medical University, Nanjing, China
| | - Rui Cheng
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
211
|
S-endoglin expression is induced in hyperoxia and contributes to altered pulmonary angiogenesis in bronchopulmonary dysplasia development. Sci Rep 2020; 10:3043. [PMID: 32080296 PMCID: PMC7033222 DOI: 10.1038/s41598-020-59928-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Altered pulmonary angiogenesis contributes to disrupted alveolarization, which is the main characteristic of bronchopulmonary dysplasia (BPD). Transforming growth factor β (TGFβ) plays an important role during lung vascular development, and recent studies have demonstrated that endoglin is engaged in the modulation of TGFβ downstream signalling. Although there are two different isoforms of endoglin, L- and S-endoglin, little is known about the effect of S-endoglin in developing lungs. We analysed the expression of both L- and S-endoglin in the lung vasculature and its contribution to TGFβ-activin-like kinase (ALK)-Smad signalling with respect to BPD development. Hyperoxia impaired pulmonary angiogenesis accompanied by alveolar simplification in neonatal mouse lungs. S-endoglin, phosphorylated Smad2/3 and connective tissue growth factor levels were significantly increased in hyperoxia-exposed mice, while L-endoglin, phosphor-Smad1/5 and platelet-endothelial cell adhesion molecule-1 levels were significantly decreased. Hyperoxia suppressed the tubular growth of human pulmonary microvascular endothelial cells (ECs), and the selective inhibition of ALK5 signalling restored tubular growth. These results indicate that hyperoxia alters the balance in two isoforms of endoglin towards increased S-endoglin and that S-endoglin attenuates TGFβ-ALK1-Smad1/5 signalling but stimulates TGFβ-ALK5-Smad2/3 signalling in pulmonary ECs, which may lead to impaired pulmonary angiogenesis in developing lungs.
Collapse
|
212
|
Yang Y, Cheng R, Wu Q, Qiao LX, Yang ZM, Gu HB, Jiang SY, Liu SL, Jiang SH. [Safety and efficacy of caffeine use started at different time in preterm infants: a multicenter study in Jiangsu Province, China]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:130-135. [PMID: 32051079 PMCID: PMC7390015 DOI: 10.7499/j.issn.1008-8830.2020.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the efficacy and safety of caffeine used in the early (≤72 hours after birth) and late (>72 hours after birth) stage in preterm infants with a gestational age of ≤31 weeks. METHODS A retrospective analysis was performed for 640 preterm infants (with a gestational age of ≤31 weeks) who were admitted to the neonatal intensive care unit of eight hospitals in Jiangsu Province, China. Of the 640 preterm infants, 510 were given caffeine in the early stage (≤72 hours after birth; early use group) and 130 were given caffeine in the late stage (>72 hours after birth; late use group). The clinical data were compared between the two groups. RESULTS There were no significant differences in birth weight, Apgar score, sex, gestational age, and age on admission between the two groups (P>0.05). Compared with the late use group, the early use group had a significantly younger age at the beginning and withdrawal of caffeine treatment (P<0.05) and a significantly shorter duration of caffeine treatment (P<0.05). There was no significant difference in respiratory support on admission between the two groups (P>0.05). Compared with the late use group, the early use group had significantly lower incidence rate of apnea (P<0.05) and significantly shorter oxygen supply time and length of hospital stay (P<0.05). There were no significant differences between the two groups in the incidence rates of neonatal intracranial hemorrhage, periventricular leukomalacia, necrotizing enterocolitis, retinopathy of prematurity, and patent ductus arteriosus at discharge and NBNA score at the corrected gestational age of 40 weeks (P>0.05). However, significant differences were found in the incidence of bronchopulmonary dysplasia and the rate of home oxygen therapy, but there was no significant difference in the mortality rate between the two groups (P>0.05). CONCLUSIONS Early use of caffeine can shorten the duration of caffeine treatment, oxygen supply time, and length of hospital stay, with little adverse effect, in preterm infants with a gestational age of ≤31 weeks.
Collapse
Affiliation(s)
- Yang Yang
- Children's Hospital Affiliated to Nanjing Medical University, Nanjing 210008, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Sun Y, Chen C, Zhang X, Wang S, Zhu R, Zhou A, Chen S, Feng J. Heparin improves alveolarization and vascular development in hyperoxia-induced bronchopulmonary dysplasia by inhibiting neutrophil extracellular traps. Biochem Biophys Res Commun 2020; 522:33-39. [PMID: 31735330 DOI: 10.1016/j.bbrc.2019.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
The objective of this study was to assess the role of NETs in BPD of hyperoxia-induced rat model and the effect of heparin on alveolarization and vascular development in BPD. The neonatal rats exposed to 90% oxygen continuously for 7 days to mimic BPD, meanwhile, the rats were injected by different doses of histones to evaluate the impact on lung injury. The newborn rats exposed to hyperoxia were injected by different doses of heparin (250 U/kg, 500 U/kg) or anti-H4 antibody to evaluate the effect of heparin. Histones and hyperoxia impaired alveolarization with the increase of mean linear intercept (MLI) and the decrease of radial alveolar count (RAC), decreased lung angiogenesis with the decrease expression of VEGF, and increased the expression of NETs, histones and pro-inflammatory factor. However, low dose heparin (250U/kg) administration enhanced survival, improved alveolarization and vascular development in hyperoxia-induced BPD, as well as reduced expression of NETs, histones and pro-inflammatory factor. We concluded that heparin improves alveolarization and vascularization in BPD by inhibiting NETs.
Collapse
Affiliation(s)
- Yuanyuan Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cuie Chen
- Yiwu Maternity and Children Health Care Hospital, Jinhua, China
| | - Xixi Zhang
- Yuhuan People's Hospital, Taizhou, China
| | - Shi Wang
- Wenzhou Medical University, Wenzhou, China
| | - Ronghe Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Aihua Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shujun Chen
- Yiwu Maternity and Children Health Care Hospital, Jinhua, China
| | - Jianhua Feng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
214
|
[Expression of microRNA-495-5p in preterm infants with bronchopulmonary dysplasia: a bioinformatics analysis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22. [PMID: 31948520 PMCID: PMC7389715 DOI: 10.7499/j.issn.1008-8830.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the expression of microRNA-495-5p (miRNA-495-5p) in the serum of preterm infants with bronchopulmonary dysplasia (BPD) based on a bioinformatics analysis, and to provide a theoretical basis for further research on the association between miRNA-495-5p and BPD. METHODS A total of 40 preterm infants who were admitted to the neonatal intensive care unit from January 2015 to December 2016 were enrolled. Among these infants, 20 with early clinical manifestations of BPD were enrolled as the BPD group, and 20 without such manifestations were enrolled as the control group. Peripheral blood samples were collected. The miRNA microarray technique was used to screen out differentially expressed miRNAs in serum between the two groups. RT-PCR was used for validation of results. TargetScan, miRDB, and miRWalk databases were used to predict the target genes of miRNA-495-5p. The DAVID database was used to perform gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the target genes. RESULTS Compared with the control group, the BPD group had a significant increase in the expression of miRNA-495-5p in serum (P<0.05). A total of 117 target genes of miRNA-495-5p were predicted by the above three databases and they were involved in several molecular functions (including transcriptional regulatory activity, transcriptional activation activity, and transcription cofactor activity), biological processes (such as metabolic regulation, DNA-dependent transcriptional regulation, and vascular pattern), and cell components (including nucleoplasm, membrane components, and insoluble components) (P<0.05). As for signaling pathways, these genes were significantly enriched in the mTOR signaling pathway (P<0.05). CONCLUSIONS MiRNA-495-5p may be involved in the development and progression of BPD by regulating angiogenesis, stem cell differentiation, apoptosis, and autophagy, which provides clues for further research on the role and functional mechanism of miRNA-495-5p in BPD.
Collapse
|
215
|
Mitchell A, Wanczyk H, Jensen T, Finck C. Human induced pluripotent stem cells ameliorate hyperoxia-induced lung injury in a mouse model. Am J Transl Res 2020; 12:292-307. [PMID: 32051754 PMCID: PMC7013222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Hyperoxia-induced lung injury occurs in neonates on oxygen support due to premature birth, often leading to the development of bronchopulmonary dysplasia. Current treatment options have limited effect. The aim of this study was to determine if human induced pluripotent stem cells (iPSCs) and those differentiated to an alveolar-like phenotype (diPSCs) could repair hyperoxia-induced lung damage in a mouse model. Neonatal C57BL6/J mice were separated into two groups and exposed to 75% oxygen over 6 or 14 days. Cell treatments were instilled intra-orally following removal. Controls included hyperoxia, normoxia, and a vehicle. 7 and 14 days post treatment, lungs were extracted and histomorphometric analysis performed. Gene expression of markers mediating inflammation (Tgfβ1, Nfkb1, and Il-6) were investigated. In addition, exosomes from each cell type were isolated and administered as a cell free alternative. There was a significant difference between the mean linear intercept (MLI) in hyperoxic vs. normoxic lungs prior to treatment. No difference existed between the MLI in iPSC-treated lungs vs. normoxic lungs after 6 and 14 days of hyperoxia. For mice exposed to 6 days of hyperoxia, gene expression in iPSC-treated lungs returned to normal 14 days later. At the same time points, diPSCs were not as effective. Exosomes were also not as effective in reversing hyperoxic lung damage as their cellular counterparts. This study highlights the potential benefit of using iPSCs to repair damaged lung tissue through possible modulation of the inflammatory response, leading to novel therapies for acute hyperoxia-induced lung injury and the prevention of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Adam Mitchell
- University of Connecticut Health Center263 Farmington Ave, Farmington, CT, USA
| | - Heather Wanczyk
- University of Connecticut Health Center263 Farmington Ave, Farmington, CT, USA
| | - Todd Jensen
- University of Connecticut Health Center263 Farmington Ave, Farmington, CT, USA
| | - Christine Finck
- University of Connecticut Health Center263 Farmington Ave, Farmington, CT, USA
- Connecticut Children’s Medical Center282 Washington St, Hartford, CT, USA
| |
Collapse
|
216
|
Chen LL, Zmuda EJ, Talavera MM, Frick J, Brock G, Liu Y, Klebanoff MA, Trittmann JK. Dual-specificity phosphatase (DUSP) genetic variants predict pulmonary hypertension in patients with bronchopulmonary dysplasia. Pediatr Res 2020; 87:81-87. [PMID: 31330530 PMCID: PMC6962530 DOI: 10.1038/s41390-019-0502-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/10/2019] [Accepted: 07/10/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) in patients with bronchopulmonary dysplasia (BPD) results from vasoconstriction and/or vascular remodeling, which can be regulated by mitogen-activated protein kinases (MAPKs). MAPKs are deactivated by dual-specificity phosphatases (DUSPs). We hypothesized that single-nucleotide polymorphisms (SNPs) in DUSP genes could be used to predict PH in BPD. METHODS Preterm infants diagnosed with BPD (n = 188) were studied. PH was defined by echocardiographic criteria. Genomic DNA isolated from patient blood samples was analyzed for 31 SNPs in DUSP genes. Clinical characteristics and minor allele frequencies were compared between BPD-PH (cases) and BPD-without PH (control) groups. Biomarker models to predict PH in BPD using clinical and SNP data were tested by calculations of area under the ROC curve. RESULTS In our BPD cohort, 32% (n = 61) had PH. Of the DUSP SNPs evaluated, DUSP1 SNP rs322351 was less common, and DUSP5 SNPs rs1042606 and rs3793892 were more common in cases than in controls. The best fit biomarker model combines clinical and DUSP genetic data with an area under the ROC curve of 0.76. CONCLUSION We identified three DUSP SNPs as potential BPD-PH biomarkers. Combining clinical and DUSP genetic data yields the most robust predictor for PH in BPD.
Collapse
Affiliation(s)
- Lauren L Chen
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Erik J Zmuda
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Maria M Talavera
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jessica Frick
- Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Guy Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Mark A Klebanoff
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jennifer K Trittmann
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA. .,Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
217
|
Yang K, Dong W. Perspectives on Probiotics and Bronchopulmonary Dysplasia. Front Pediatr 2020; 8:570247. [PMID: 33194897 PMCID: PMC7649774 DOI: 10.3389/fped.2020.570247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease of preterm infants, associated with high morbidity and hospitalization expenses. With the revolutionary advances in microbiological analysis technology, increasing evidence indicates that children with BPD are affected by lung microbiota dysbiosis, which may be related to the illness occurrence and progression. However, dysbiosis treatment in BPD patients has not been fully investigated. Probiotics are living microorganisms known to improve human health for their anti-inflammatory and anti-tumor effects, and particularly by balancing gut microbiota composition, which promotes gut-lung axis recovery. The aim of the present review is to examine current evidence of lung microbiota dysbiosis and explore potential applications of probiotics in BPD, which may provide new insights into treatment strategies of this disease.
Collapse
Affiliation(s)
- Kun Yang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
218
|
Effect of a new respiratory care bundle on bronchopulmonary dysplasia in preterm neonates. Eur J Pediatr 2020; 179:1833-1842. [PMID: 32488737 PMCID: PMC7266384 DOI: 10.1007/s00431-020-03694-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/03/2023]
Abstract
The development of devices that can fix the tidal volume in high-frequency oscillatory ventilation (HFOV) has allowed for a significant improvement in the management of HFOV. At our institution, this had led to the earlier use of HFOV and promoted a change in the treatment strategy involving the use of higher frequencies (above 15 Hz) and lower high-frequency tidal volumes (VThf). The purpose of this observational study was to assess how survival without bronchopulmonary dysplasia grades 2 and 3 (SF-BPD) is influenced by these modifications in the respiratory strategy applied to preterm infants (gestational age < 32 weeks at birth) who required mechanical ventilation (MV) in the first 3 days of life. We compared a baseline period (2012-2013) against a period in which this strategy had been fully implemented (2016-2017). A total of 182 patients were exposed to MV in the first 3 days of life being a higher proportion on HFOV at day 3 in the second period 79.5% (n 35) in 2016-2017 vs 55.4% (n 31) in 2012-2013. After adjusting for perinatal risk factors, the second period is associated with an increased rate of SF-BPD (OR 2.28; CI 95% 1.072-4.878); this effect is more evident in neonates born at a gestational age of less than 29 weeks (OR 4.87; 95% CI 1.9-12.48).Conclusions : The early use of HFOV combined with the use of higher frequencies and very low VT was associated with an increase in the study population's SF-BPD. What is Known: • High-frequency ventilation with volume guarantee improve ventilation stability and has been shown to reduce lung damage in animal models. What is New: • The strategy of an earlier use of high-frequency oscillatory ventilation combined with the use of higher frequencies and lower tidal volume is associated to an increase in survival without bronchopulmonary dysplasia in our population of preterm infants.
Collapse
|
219
|
Zhang X, Chu X, Weng B, Gong X, Cai C. An Innovative Model of Bronchopulmonary Dysplasia in Premature Infants. Front Pediatr 2020; 8:271. [PMID: 32537448 PMCID: PMC7267036 DOI: 10.3389/fped.2020.00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/29/2020] [Indexed: 02/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is one of the common chronic lung diseases (CLD) of premature infants, which causes unpredictable consequences to the family and society. Therefore, the pathogenesis and prevention methods of BPD are the focus of current research, and the establishment of an effective and appropriate animal model of BPD in premature infants is the key to the research. In this study, premature rats were exposed to hyperoxia environment. Compared with the air group, the body weight and alveolar radiation count of the hyperoxia group decreased significantly, but there was no significant difference in body length. HE staining was used to observe the pathological changes of BPD in the lung tissue. The above results proved that under the hyperoxia condition, the BPD animal model of premature infants was successfully established, which provided a new choice for the future research of BPD.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Chu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Weng
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Gong
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cai
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
220
|
Atag E, Krivec U, Ersu R. Non-invasive Ventilation for Children With Chronic Lung Disease. Front Pediatr 2020; 8:561639. [PMID: 33262959 PMCID: PMC7687222 DOI: 10.3389/fped.2020.561639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Abstract
Advances in medical care and supportive care options have contributed to the survival of children with complex disorders, including children with chronic lung disease. By delivering a positive pressure or a volume during the patient's inspiration, NIV is able to reverse nocturnal alveolar hypoventilation in patients who experience hypoventilation during sleep, such as patients with chronic lung disease. Bronchopulmonary dysplasia (BPD) is a common complication of prematurity, and despite significant advances in neonatal care over recent decades its incidence has not diminished. Most affected infants have mild disease and require a short period of oxygen supplementation or respiratory support. However, severely affected infants can become dependent on positive pressure support for a prolonged period. In case of established severe BPD, respiratory support with non-invasive or invasive positive pressure ventilation is required. Patients with cystic fibrosis (CF) and advanced lung disease develop hypoxaemia and hypercapnia during sleep and hypoventilation during sleep usually predates daytime hypercapnia. Hypoxaemia and hypercapnia indicates poor prognosis and prompts referral for lung transplantation. The prevention of respiratory failure during sleep in CF may prolong survival. Long-term oxygen therapy has not been shown to improve survival in people with CF. A Cochrane review on the use NIV in CF concluded that NIV in combination with oxygen therapy improves gas exchange during sleep to a greater extent than oxygen therapy alone in people with moderate to severe CF lung disease. Uncontrolled, non-randomized studies suggest survival benefit with NIV in addition to being an effective bridge to transplantation. Complications of NIV relate mainly to prolonged use of a face or nasal mask which can lead to skin trauma, and neurodevelopmental delay by acting as a physical barrier to social interaction. Another associated risk is pulmonary aspiration caused by vomiting whilst wearing a face mask. Adherence to NIV is one of the major barriers to treatment in children. This article will review the current evidence for indications, adverse effects and long term follow up including adherence to NIV in children with chronic lung disease.
Collapse
Affiliation(s)
- Emine Atag
- Division of Pediatric Pulmonology, Medipol University, Istanbul, Turkey
| | - Uros Krivec
- Division of Pediatric Pulmonology, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Refika Ersu
- Division of Pediatric Respirology, Children's Hospital of Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
221
|
Maiwald CA, Niemarkt HJ, Poets CF, Urschitz MS, König J, Hummler H, Bassler D, Engel C, Franz AR. Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO 2-C) on outcome of extremely preterm infants - study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy. BMC Pediatr 2019; 19:363. [PMID: 31630690 PMCID: PMC6802113 DOI: 10.1186/s12887-019-1735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Most extremely low gestational age neonates (ELGANS, postmenstrual age at birth (PMA) < 28 completed weeks) require supplemental oxygen and experience frequent intermittent hypoxemic and hyperoxemic episodes. Hypoxemic episodes and exposure to inadequately high concentrations of oxygen are associated with an increased risk of retinopathy of prematurity (ROP), chronic lung disease of prematurity (BPD), necrotizing enterocolitis (NEC), neurodevelopmental impairment (NDI), and death beyond 36 weeks PMA. Closed-loop automated control of the inspiratory fraction of oxygen (FiO2-C) reduces time outside the hemoglobin oxygen saturation (SpO2) target range, number and duration of hypo- and hyperoxemic episodes and caregivers' workload. Effects on clinically important outcomes in ELGANs such as ROP, BPD, NEC, NDI and mortality have not yet been studied. METHODS An outcome-assessor-blinded, randomized controlled, parallel-group trial was designed and powered to study the effect of FiO2-C (in addition to routine manual control (RMC) of FiO2), compared to RMC only, on death and severe complications related to hypoxemia and/or hyperoxemia. 2340 ELGANS with a GA of 23 + 0/7 to 27 + 6/7 weeks will be recruited in approximately 75 European tertiary care neonatal centers. Study participants are randomly assigned to RMC (control-group) or FiO2-C in addition to RMC (intervention-group). Central randomization is stratified for center, gender and PMA at birth (< 26 weeks and ≥ 26 weeks). FiO2-C is provided by commercially available and CE-marked ventilators with an FiO2-C algorithm intended for use in newborn infants. The primary outcome variable (composite of death, severe ROP, BPD or NEC) is assessed at 36 weeks PMA (or, in case of ROP, until complete vascularization of the retina, respectively). The co-primary outcome variable (composite outcome of death, language/cognitive delay, motor impairment, severe visual impairment or hearing impairment) is assessed at 24 months corrected age. DISCUSSION Short-term studies on FiO2-C showed improved time ELGANs spent within their assigned SpO2 target range, but effects of FiO2-C on clinical outcomes are yet unknown and will be addressed in the FiO2-C trial. This will ensure an appropriate assessment of safety and efficacy before FiO2-C may be implemented as standard therapy. TRIAL REGISTRATION The study is registered at www.ClinicalTrials.gov: NCT03168516 , May 30, 2017.
Collapse
Affiliation(s)
- Christian A. Maiwald
- Department of Neonatology, University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
- Center for Pediatric Clinical Studies (CPCS), University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
| | | | - Christian F. Poets
- Department of Neonatology, University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
| | - Michael S. Urschitz
- Institute of Medical Biostatistics, Epidemiology and Informatics, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics, Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | - Corinna Engel
- Center for Pediatric Clinical Studies (CPCS), University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
| | - Axel R. Franz
- Department of Neonatology, University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
- Center for Pediatric Clinical Studies (CPCS), University Children’s Hospital Tübingen, Calwerstr. 7, 72076 Tübingen, Germany
| |
Collapse
|
222
|
Impact of Early Life Antibiotic Exposure and Neonatal Hyperoxia on the Murine Microbiome and Lung Injury. Sci Rep 2019; 9:14992. [PMID: 31628395 PMCID: PMC6802223 DOI: 10.1038/s41598-019-51506-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cross talk between the intestinal microbiome and the lung and its role in lung health remains unknown. Perinatal exposure to antibiotics disrupts the neonatal microbiome and may have an impact on the preterm lung. We hypothesized that perinatal antibiotic exposure leads to long-term intestinal dysbiosis and increased alveolar simplification in a murine hyperoxia model. Pregnant C57BL/6 wild type dams and neonatal mice were treated with antibiotics before and/or immediately after delivery. Control mice received phosphate-buffered saline (PBS). Neonatal mice were exposed to 95% oxygen for 4 days or room air. Microbiome analysis was performed using 16S rRNA gene sequencing. Pulmonary alveolarization and vascularization were analyzed at postnatal day (PND) 21. Perinatal antibiotic exposure modified intestinal beta diversity but not alpha diversity in neonatal mice. Neonatal hyperoxia exposure altered intestinal beta diversity and relative abundance of commensal bacteria in antibiotic treated mice. Hyperoxia disrupted pulmonary alveolarization and vascularization at PND 21; however, there were no differences in the degree of lung injury in antibiotic treated mice compared to vehicle treated controls. Our study suggests that exposure to both hyperoxia and antibiotics early in life may cause long-term alterations in the intestinal microbiome, but intestinal dysbiosis may not significantly influence neonatal hyperoxic lung injury.
Collapse
|
223
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
224
|
Wang X, Cui H, Wu S. CTGF: A potential therapeutic target for Bronchopulmonary dysplasia. Eur J Pharmacol 2019; 860:172588. [DOI: 10.1016/j.ejphar.2019.172588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
|
225
|
Koltsida G, Konstantinopoulou S. Long term outcomes in chronic lung disease requiring tracheostomy and chronic mechanical ventilation. Semin Fetal Neonatal Med 2019; 24:101044. [PMID: 31706921 DOI: 10.1016/j.siny.2019.101044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common serious complication associated with preterm birth. Infants with severe BPD often require prolonged and intensive pulmonary care. Among those with the most severe lung disease, this care may include tracheostomy and long-term invasive mechanical ventilation. Although there is a plethora of data on long term respiratory and developmental outcomes of BPD survivors, relevant information on BPD survivors requiring chronic respiratory failure are limited. When compared to those born at term gestation, infants with BPD requiring chronic ventilation are at increased risk of hospitalizations and develop more frequent lower respiratory infections. In childhood and young adulthood, spirometry often shows an obstructive flow pattern. From a neurodevelopmental standpoint, the short-term outcomes appear optimistic, with improvement in growth and increased participation in development-promoting activities. Nonetheless, children born prematurely are vulnerable for long term cognitive, educational and behavioral impairments. BPD is an additional risk factor which exacerbates these deficits, thus contributing to lifelong neurodevelopmental impairments of prematurity.
Collapse
Affiliation(s)
- Georgia Koltsida
- First Department of Pediatrics, National and Kapodistrian University of Athens, School of Medicine, Aghia Sophia Children's Hospital, Greece.
| | - Sofia Konstantinopoulou
- Division of Pulmonary Medicine, Department of Pediatrics, Sheikh Khalifa Medical City, Al Karama Street, Tibbiyya, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
226
|
May LA, Jadhav SP, Guillerman RP, Ketwaroo PD, Masand P, Carbajal MM, Krishnamurthy R. A novel approach using volumetric dynamic airway computed tomography to determine positive end-expiratory pressure (PEEP) settings to maintain airway patency in ventilated infants with bronchopulmonary dysplasia. Pediatr Radiol 2019; 49:1276-1284. [PMID: 31312862 DOI: 10.1007/s00247-019-04465-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/25/2019] [Accepted: 06/25/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) is a key mechanical ventilator setting in infants with bronchopulmonary dysplasia (BPD). Excessive PEEP can result in insufficient carbon dioxide elimination and lung damage, while insufficient PEEP can result in impaired gas exchange secondary to airway and alveolar collapse. Determining PEEP settings based on clinical parameters alone is challenging and variable. OBJECTIVE The purpose of this study was to describe our experience using dynamic airway CT to determine the lowest PEEP setting sufficient to maintain expiratory central airway patency of at least 50% of the inspiratory cross-sectional area in children with BPD requiring long-term ventilator support. MATERIALS AND METHODS We retrospectively identified all infants with BPD who underwent volumetric CT with a dynamic airway protocol for PEEP optimization from December 2014 through April 2019. Sixteen infants with BPD underwent 17 CT exams. Each CT exam consisted of acquisitions spanning the trachea and mainstem bronchi. We measured cross-sectional area of the trachea and mainstem bronchi and qualitatively assessed the amount of atelectasis. We documented changes in management as a result of the CT exam. RESULTS The average effective dose was 0.1-0.8 mSv/scan. Of 17 CT exams, PEEP was increased in 9, decreased in 3 and unchanged after 5 exams. CONCLUSION Dynamic airway CT shows promise to assist the clinician in determining PEEP settings to maintain airway patency in infants with BPD requiring long-term ventilator support. Further evaluation of the impact of this maneuver on gas exchange, cardiac output and other physiological measures is needed.
Collapse
Affiliation(s)
- Lauren A May
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA. .,Department of Radiology, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA.
| | - Siddharth P Jadhav
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA
| | - R Paul Guillerman
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA
| | - Pamela D Ketwaroo
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA
| | - Prakash Masand
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 6701 Fannin St., Suite 470, Houston, TX, 77030, USA
| | - Melissa M Carbajal
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
227
|
Lung Function and Relevant Clinical Factors in Very Low Birth Weight Preterm Infants with Chronic Lung Disease: An Observational Study. Can Respir J 2019; 2019:5824180. [PMID: 31467619 PMCID: PMC6701395 DOI: 10.1155/2019/5824180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 11/17/2022] Open
Abstract
Background Chronic lung disease (CLD), most commonly seen in premature infants who required mechanical ventilation, is associated with functional consequences on lungs and respiratory morbidity. This study aimed to evaluate the lung function of premature infants before discharge and their relevant factors related to the lung function. Methods Very low birth weight (VLBW) preterm infants, who required respiratory support soon after birth and were admitted to a hospital in Taiwan, were enrolled. Infants with a need for supplemental oxygen or positive-pressure ventilation support at the postmenstrual age (PMA) of 36 weeks were diagnosed with CLD. Lung function was examined once using EXHALYZER® D before infants were ready for discharge. Results Forty-five VLBW preterm infants received the lung function test before discharge, 27 of whom were diagnosed with CLD. The gestational age (p=0.001) and birth weight (p < 0.001) were smaller in the CLD group than in the no-CLD group. Furthermore, infants with CLD required a longer duration of respiratory support (p < 0.001). The postnatal age and PMA were higher and body size was bigger in infants with CLD on lung function measurement. However, lung function was comparable between the groups. The functional residual capacity and tidal volume were associated with body size upon measuring lung function among all VLBW premature infants. FRC was positively correlated with the body length on measuring lung function in those with CLD. Conclusion In our study, we showed FRC was positively related to the PMA and body length and tidal volume was positively correlated with the body weight and length on lung function measurement in VLBW preterm infants before discharge. Moreover, FRC was positively correlated with the body length on measuring lung function in those with CLD. The lung volume, ventilation, and respiratory mechanics on discharge were comparable between CLD and no-CLD groups.
Collapse
|
228
|
You K, Parikh P, Khandalavala K, Wicher SA, Manlove L, Yang B, Roesler A, Roos BB, Teske JJ, Britt RD, Pabelick CM, Prakash YS. Moderate hyperoxia induces senescence in developing human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2019; 317:L525-L536. [PMID: 31411059 DOI: 10.1152/ajplung.00067.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxia exposure in premature infants increases the risk of subsequent lung diseases, such as asthma and bronchopulmonary dysplasia. Fibroblasts help maintain bronchial and alveolar integrity. Thus, understanding mechanisms by which hyperoxia influences fibroblasts is critical. Cellular senescence is increasingly recognized as important to the pathophysiology of multiple diseases. We hypothesized that clinically relevant moderate hyperoxia (<50% O2) induces senescence in developing fibroblasts. Using primary human fetal lung fibroblasts, we investigated effects of 40% O2 on senescence, endoplasmic reticulum (ER) stress, and autophagy pathways. Fibroblasts were exposed to 21% or 40% O2 for 7 days with etoposide as a positive control to induce senescence, evaluated by morphological changes, β-galactosidase activity, and DNA damage markers. Senescence-associated secretory phenotype (SASP) profile of inflammatory and profibrotic markers was further assessed. Hyperoxia decreased proliferation but increased cell size. SA-β-gal activity and DNA damage response, cell cycle arrest in G2/M phase, and marked upregulation of phosphorylated p53 and p21 were noted. Reduced autophagy was noted with hyperoxia. mRNA expression of proinflammatory and profibrotic factors (TNF-α, IL-1, IL-8, MMP3) was elevated by hyperoxia or etoposide. Hyperoxia increased several SASP factors (PAI-1, IL1-α, IL1-β, IL-6, LAP, TNF-α). The secretome of senescent fibroblasts promoted extracellular matrix formation by naïve fibroblasts. Overall, we demonstrate that moderate hyperoxia enhances senescence in primary human fetal lung fibroblasts with reduced autophagy but not enhanced ER stress. The resulting SASP is profibrotic and may contribute to abnormal repair in the lung following hyperoxia.
Collapse
Affiliation(s)
- Kai You
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Pavan Parikh
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Karl Khandalavala
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Sarah A Wicher
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Logan Manlove
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Binxia Yang
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Annie Roesler
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Ben B Roos
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Jacob J Teske
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China
| | - Rodney D Britt
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Christina M Pabelick
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang City, China.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
229
|
Suffolk R, Agertoft L, Johansen M, Zachariassen G. Late-onset group B streptococcus infections and severe bronchopulmonary dysplasia in an extremely preterm born infant. BMJ Case Rep 2019; 12:12/7/e229255. [DOI: 10.1136/bcr-2019-229255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This case report is about a boy born extremely preterm at gestational age of 24 weeks, with extremely low birth weight, developing severe bronchopulmonary dysplasia and in need of mechanical ventilation for 155 days. He also had five recurrent infections with group B streptococcus (GBS) within 4 months from birth, and his respiratory condition clearly deteriorated with every GBS infection. It was difficult to wean him from mechanical ventilation. Finally he was extubated when he was 7 months old and kept out of mechanical ventilation after receiving high-dose methylprednisolone, given according to international recommendations. After GBS was cultured for the fifth time, he received oral rifampicin along with intravenous penicillin and after this treatment, GBS did not occur again. At the age of 22 months, the boy no longer needed any respiratory support and he was about 6 months late in his neurological development.
Collapse
|
230
|
Nguyen L, Castro O, De Dios R, Sandoval J, McKenna S, Wright CJ. Sex-differences in LPS-induced neonatal lung injury. Sci Rep 2019; 9:8514. [PMID: 31186497 PMCID: PMC6560218 DOI: 10.1038/s41598-019-44955-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023] Open
Abstract
Being of the male sex has been identified as a risk factor for multiple morbidities associated with preterm birth, including bronchopulmonary dysplasia (BPD). Exposure to inflammatory stress is a well-recognized risk factor for developing BPD. Whether there is a sex difference in pulmonary innate immune TLR4 signaling, lung injury and subsequent abnormal lung development is unknown. Neonatal (P0) male and female mice (ICR) were exposed to systemic LPS (5 mg/kg, IP) and innate immune signaling, and the transcriptional response were assessed (1 and 5 hours), along with lung development (P7). Male and female mice demonstrated a similar degree of impaired lung development with decreased radial alveolar counts, increased surface area, increased airspace area and increased mean linear intercept. We found no differences between male and female mice in the baseline pulmonary expression of key components of TLR4-NFκB signaling, or in the LPS-induced pulmonary expression of key mediators of neonatal lung injury. Finally, we found no difference in the kinetics of LPS-induced pulmonary NFκB activation between male and female mice. Together, these data support the conclusion that the innate immune response to early postnatal LPS exposure and resulting pulmonary sequelae is similar in male and female mice.
Collapse
Affiliation(s)
- Leanna Nguyen
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Odalis Castro
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Jeryl Sandoval
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
231
|
Wu Q, Chong L, Shao Y, Chen S, Li C. Lipoxin A4 reduces hyperoxia-induced lung injury in neonatal rats through PINK1 signaling pathway. Int Immunopharmacol 2019; 73:414-423. [PMID: 31152979 DOI: 10.1016/j.intimp.2019.05.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants and is mainly caused by hyperoxia exposure and mechanical ventilation. Alveolar simplification, pulmonary vascular abnormalities and pulmonary inflammation are the main pathological changes in hyperoxic lung injury animals. Lipoxin A4 (LXA4) is an important endogenous lipid that can mediate the regression of inflammation and plays a role in acute lung injury and asthma. The purpose of this study was to evaluate the effects of LXA4 on inflammation and lung function in neonatal rats with hyperoxic lung injury and to explore the mechanism of the PINK1 pathway. After 85% oxygen exposure in newborn rats for 7 days, the BPD model was established. We found that LXA4 could significantly reduce cell and protein infiltration and oxidative stress in rat lungs, improve pulmonary function and alveolar simplification, and promote weight gain. LXA4 inhibited the expression of TNF-α, MCP-1 and IL-1β in serum and BALF from hyperoxic rats. Moreover, we found that LXA4 could reduce the expression of the PINK1 gene and down-regulate the expression of PINK1, Parkin, BNIP3L/Nix and the autophagic protein LC3B.These protective effects of LXA4 could be partially reversed by addition of BOC-2.Thus, we concluded that LXA4 can alleviate the airway inflammatory response, reduce the severity of lung injury and improve lung function in a hyperoxic rat model of BPD partly through the PINK1 signaling pathway.
Collapse
Affiliation(s)
- Qiuping Wu
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Chong
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youyou Shao
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shangqin Chen
- Discipline of Neonatology Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changchong Li
- Discipline of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
232
|
Montigaud Y, Périnel S, Dubus JC, Leclerc L, Suau M, Goy C, Clotagatide A, Prévôt N, Pourchez J. Development of an ex vivo respiratory pediatric model of bronchopulmonary dysplasia for aerosol deposition studies. Sci Rep 2019; 9:5720. [PMID: 30952897 PMCID: PMC6450907 DOI: 10.1038/s41598-019-42103-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/20/2019] [Indexed: 01/03/2023] Open
Abstract
Ethical restrictions are limitations of in vivo inhalation studies, on humans and animal models. Thus, in vitro or ex vivo anatomical models offer an interesting alternative if limitations are clearly identified and if extrapolation to human is made with caution. This work aimed to develop an ex vivo infant-like respiratory model of bronchopulmonary dysplasia easy to use, reliable and relevant compared to in vivo infant data. This model is composed of a 3D-printed head connected to a sealed enclosure containing a leporine thorax. Physiological data and pleural-mimicking depressions were measured for chosen respiratory rates. Homogeneity of ventilation was assessed by 81mkrypton scintigraphies. Regional radioaerosol deposition was quantified with 99mtechnetium-diethylene triamine pentaacetic acid after jet nebulization. Tidal volumes values are ranged from 33.16 ± 7.37 to 37.44 ± 7.43 mL and compliance values from 1.78 ± 0.65 to 1.85 ± 0.99 mL/cmH2O. Ventilation scintigraphies showed a homogenous ventilation with asymmetric repartition: 56.94% ± 9.4% in right lung and 42.83% ± 9.36 in left lung. Regional aerosol deposition in lungs exerted 2.60% ± 2.24% of initial load of radioactivity. To conclude the anatomical model satisfactorily mimic a 3-months old BPD-suffering bronchopulmonary dysplasia and can be an interesting tool for aerosol regional deposition studies.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Sophie Périnel
- INSERM U 1059 Sainbiose, Université Jean Monnet, F-42023, Saint-Etienne, France
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | - Jean-Christophe Dubus
- Médecine infantile, pneumo-allergologie, CRCM & CNRS, URMITE 6236, Assistance publique-Hôpitaux de Marseille, 13385, Marseille cedex 5, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Marie Suau
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Clémence Goy
- INSERM U 1059 Sainbiose, Université Jean Monnet, F-42023, Saint-Etienne, France
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | - Anthony Clotagatide
- INSERM U 1059 Sainbiose, Université Jean Monnet, F-42023, Saint-Etienne, France
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | - Nathalie Prévôt
- INSERM U 1059 Sainbiose, Université Jean Monnet, F-42023, Saint-Etienne, France
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France.
| |
Collapse
|
233
|
Zhu X, Lei X, Wang J, Dong W. Protective effects of resveratrol on hyperoxia-induced lung injury in neonatal rats by alleviating apoptosis and ROS production. J Matern Fetal Neonatal Med 2019; 33:4150-4158. [PMID: 30890012 DOI: 10.1080/14767058.2019.1597846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Bronchopulmonary dysplasia (BPD) is one of the most common long-term lung complications of prematurely born infants caused by prolonged injury and repair during immature lung development. Resveratrol has reported to exert anti-inflammatory, antioxidation, and antiapoptosis effects. This study aimed to investigate the effect of resveratrol in BPD.Methods: Neonate rats were delivered spontaneously and randomized divided into four groups on postnatal day (PN) 0.5: room air (21% O2)+dimethyl sulfoxide (DMSO), room air + resveratrol, hyperoxia (80%)+DMSO, hyperoxia + resveratrol. Lung tissues were collected on PN1, PN7, and PN14. Protective effects of resveratrol on hyperoxia-induced lung injury were evaluated by hematoxylin and eosin (HE) staining, TUNEL staining, reactive oxygen species (ROS) detection, qRT-PCR, and western blotting.Results: Hyperoxia-induced alveolar simplification and apoptosis were alleviated by resveratrol; resveratrol reduced ROS production, up-regulated SIRT1, decreased the expressing of p53, and acetyl-p53 in the lung of hyperoxia-exposed neonatal rats.Conclusions: This study showed that resveratrol alleviated hyperoxia-induced apoptosis in neonatal rats lung tissue via reducing ROS and p53. Resveratrol-induced SIRT1 upregulation and acetyl-p53 reduction may also be involved in lung protection.
Collapse
Affiliation(s)
- Xiaodan Zhu
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Xiaoping Lei
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Junyi Wang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| |
Collapse
|
234
|
Mouradian GC, Alvarez-Argote S, Gorzek R, Thuku G, Michkalkiewicz T, Wong-Riley MTT, Konduri GG, Hodges MR. Acute and chronic changes in the control of breathing in a rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 316:L506-L518. [PMID: 30652496 PMCID: PMC6459293 DOI: 10.1152/ajplung.00086.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Infants born very prematurely (<28 wk gestation) have immature lungs and often require supplemental oxygen. However, long-term hyperoxia exposure can arrest lung development, leading to bronchopulmonary dysplasia (BPD), which increases acute and long-term respiratory morbidity and mortality. The neural mechanisms controlling breathing are highly plastic during development. Whether the ventilatory control system adapts to pulmonary disease associated with hyperoxia exposure in infancy remains unclear. Here, we assessed potential age-dependent adaptations in the control of breathing in an established rat model of BPD associated with hyperoxia. Hyperoxia exposure ( FI O 2 ; 0.9 from 0 to 10 days of life) led to a BPD-like lung phenotype, including sustained reductions in alveolar surface area and counts, and modest increases in airway resistance. Hyperoxia exposure also led to chronic increases in room air and acute hypoxic minute ventilation (V̇e) and age-dependent changes in breath-to-breath variability. Hyperoxia-exposed rats had normal oxygen saturation ( S p O 2 ) in room air but greater reductions in S p O 2 during acute hypoxia (12% O2) that were likely due to lung injury. Moreover, acute ventilatory sensitivity was reduced at P12 to P14. Perinatal hyperoxia led to greater glial fibrillary acidic protein expression and an increase in neuron counts within six of eight or one of eight key brainstem regions, respectively, controlling breathing, suggesting astrocytic expansion. In conclusion, perinatal hyperoxia in rats induced a BPD-like phenotype and age-dependent adaptations in V̇e that may be mediated through changes to the neural architecture of the ventilatory control system. Our results suggest chronically altered ventilatory control in BPD.
Collapse
Affiliation(s)
- Gary C Mouradian
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | | - Ryan Gorzek
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Gabriel Thuku
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Teresa Michkalkiewicz
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
- Children's Research Institute, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Girija Ganesh Konduri
- Department of Pediatrics, Medical College of Wisconsin , Milwaukee, Wisconsin
- Children's Research Institute, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
- Neuroscience Research Center, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
235
|
Rodgers JL, Iyer D, Rodgers LE, Vanthenapalli S, Panguluri SK. Impact of hyperoxia on cardiac pathophysiology. J Cell Physiol 2019; 234:12595-12603. [PMID: 30652312 DOI: 10.1002/jcp.28136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Mechanical ventilation with high oxygen therapy (hyperoxia) is widely implemented in critical care and ICU settings. Although supplemental oxygen is beneficial to treat hypoxia, its use is also associated with poor outcomes and high mortality in patients. Lung injury due to hyperoxia exposure has been well-documented in patients, including in adults and neonates. Thus, lung injury due to hyperoxia has been extensively researched in both preclinical and clinical studies. However, hyperoxia has also been shown to be associated with hemodynamic changes in patients in ICU, including reductions in heart rate, stroke volume, and cardiac output. In addition, certain experimental studies report that hyperoxia exposure in neonates results in cardiac dysfunction in later adult life. Despite this, until recently, the impact of hyperoxia within the heart has not been well studied, or reported, specifically in adult experimental models. To close this significant gap, our lab has sought to clarify hyperoxia-induced cardiac pathophysiology in adult murine models. This review discusses the current findings regarding the cardiovascular impact of hyperoxia exposure.
Collapse
Affiliation(s)
- Jennifer L Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Drishya Iyer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Lydia E Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Sahit Vanthenapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| |
Collapse
|
236
|
Loering S, Cameron GJM, Starkey MR, Hansbro PM. Lung development and emerging roles for type 2 immunity. J Pathol 2019; 247:686-696. [PMID: 30506724 DOI: 10.1002/path.5211] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Lung development is a complex process mediated through the interaction of multiple cell types, factors and mediators. In mice, it starts as early as embryonic day 9 and continues into early adulthood. The process can be separated into five different developmental stages: embryonic, pseudoglandular, canalicular, saccular, and alveolar. Whilst lung bud formation and branching morphogenesis have been studied extensively, the mechanisms of alveolarisation are incompletely understood. Aberrant lung development can lead to deleterious consequences for respiratory health such as bronchopulmonary dysplasia (BPD), a disease primarily affecting preterm neonates, which is characterised by increased pulmonary inflammation and disturbed alveolarisation. While the deleterious effects of type 1-mediated inflammatory responses on lung development have been well established, the role of type 2 responses in postnatal lung development remains poorly understood. Recent studies indicate that type 2-associated immune cells, such as group 2 innate lymphoid cells and alveolar macrophages, are increased in number during postnatal alveolarisation. Here, we present the current state of understanding of the postnatal stages of lung development and the key cell types and mediators known to be involved. We also provide an overview of how stem cells are involved in lung development and regeneration, and the negative influences of respiratory infections. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Svenja Loering
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Guy J M Cameron
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Center's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Center for Inflammation, Centenary Institute and The School of Life Sciences, University of Technology, Sydney, New South Wales, Australia
| |
Collapse
|
237
|
McGrath-Morrow SA, Collaco JM. Bronchopulmonary dysplasia: what are its links to COPD? Ther Adv Respir Dis 2019; 13:1753466619892492. [PMID: 31818194 PMCID: PMC6904782 DOI: 10.1177/1753466619892492] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that adverse early life events can affect long-term health trajectories throughout life. Preterm birth, in particular, is a significant early life event that affects approximately 10% of live births. Worldwide, prematurity is the number one cause of death in children less than 5 years of age and has been shown to disrupt normal lung development with lasting effects into adult life. Along with impaired lung development, interventions used to support gas exchange and other sequelae of prematurity can lead to the development of bronchopulmonary dysplasia (BPD). BPD is a chronic respiratory disease of infancy characterized by alveolar simplification, small airways disease, and pulmonary vascular changes. Although many survivors of BPD improve with age, survivors of BPD often have chronic lung disease characterized by airflow obstruction and intermittent pulmonary exacerbations. Long-term lung function trajectories as measured by FEV1 can be lower in children and adults with a history BPD. In this review, we discuss the epidemiology and manifestations of BPD and its long-term consequences throughout childhood and into adulthood. Available evidence suggests that disrupted lung development, genetic susceptibility and subsequent environment and infectious events that occur in prenatal and postnatal life likely increase the predisposition of children with BPD to develop early onset chronic obstructive pulmonary disease (COPD). The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Sharon A. McGrath-Morrow
- Eudowood Division of Pediatric Respiratory
Sciences, David M. Rubenstein Building, Suite 3075B, 200 North Wolfe Street,
Baltimore, MD, 21287-2533, USA
| | - Joseph M. Collaco
- Department of Pediatrics, Eudowood Division of
Respiratory Sciences, Johns Hopkins University School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
238
|
Nayeri UA, Buhimschi CS, Zhao G, Buhimschi IA, Bhandari V. Components of the antepartum, intrapartum, and postpartum exposome impact on distinct short-term adverse neonatal outcomes of premature infants: A prospective cohort study. PLoS One 2018; 13:e0207298. [PMID: 30517142 PMCID: PMC6281222 DOI: 10.1371/journal.pone.0207298] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
We aimed to test the hypothesis that determinants of the perinatal clinical exposome related to the underlying etiology of premature birth (PTB) impact differently on select neonatal outcomes. We conducted a prospective longitudinal study of 377 singleton preterm neonates [gestational age (GA) at birth: 23-34 weeks] separated into three distinct contemporaneous newborn cohorts: i) spontaneous PTB in the setting of intra-amniotic infection/inflammation (yes-IAI, n = 116); ii) spontaneous PTB in the absence of IAI (no-IAI, n = 130), and iii) iatrogenic PTB for preeclampsia (iPTB-PE, n = 131). Newborns (n = 372) were followed until death or discharge. Amniotic fluid defensins 1&2 and calgranulins A&C were used as biomarkers of IAI. An algorithm considering cord blood interleukin-6 (IL-6) and haptoglobin (Hp switch-on) was used to assess fetal exposure to IAI. Intraventricular hemorrhage (IVH), periventricular leukomalacia (PVL), necrotizing enterocolitis (NEC), bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), early-onset neonatal (EONS) and late-onset (LOS) sepsis, death. Independent risk factors for adverse outcomes were: i) IVH (n = 53): histologic chorioamnionitis, GA, fetal growth restriction, male sex, Hp switch-on; ii) PVL (n = 11): cord blood IL-6; iii) NEC (n = 25), GA; iv) BPD (n = 53): ventilator support, need for surfactant, GA; v) ROP (n = 79): ventilator support, Hp switch-on, GA; vi) fetal and neonatal death (n = 31): GA, amniotic fluid IL-6; vii) suspect EONS (n = 92): GA, Hp switch-on; viii) LOS (n = 81): GA. Our findings are applicable to pregnancies delivered between 23 and 34 weeks' gestation in the setting of IAI and PE, and suggest that GA and inflammatory intrauterine environment play key roles in occurrence of IVH, PVL, ROP, death, EONS and LOS. Postnatal determinants seem to play major role in NEC and BPD.
Collapse
Affiliation(s)
- Unzila Ali Nayeri
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, Connecticut, United states of America
| | - Catalin S. Buhimschi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, Connecticut, United states of America
| | - Guomao Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, Connecticut, United states of America
| | - Irina A. Buhimschi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, Connecticut, United states of America
| | - Vineet Bhandari
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, Connecticut, United states of America
- Department of Pediatrics, Yale University, School of Medicine, New Haven, Connecticut, United states of America
| |
Collapse
|
239
|
Hu Y, Fu J, Xue X. Association of the proliferation of lung fibroblasts with the ERK1/2 signaling pathway in neonatal rats with hyperoxia-induced lung fibrosis. Exp Ther Med 2018; 17:701-708. [PMID: 30651853 PMCID: PMC6307421 DOI: 10.3892/etm.2018.6999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/08/2018] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common, serious complication occurring in premature infants. Although clinical characteristics and pathologic changes are well described, the pathogenesis of alveolar dysplasia and interstitial fibrosis is less clear. Lung fibroblasts (LFs) are present in the extracellular matrix and serve essential roles during pulmonary epithelial injury and in response to fibrosis development in BPD. The current study investigated hyperoxia-induced proliferation of primary LFs in vitro and mechanisms that may be involved. Newborn rats were exposed to 90% oxygen, while control rats were kept in normal atmosphere. Primary LFs were isolated on postnatal day 3, 7 and 14. Hyperoxia-induced proliferation of LFs isolated on day 7 and 14 by accelerating the cell cycle progression from G1 to S phase. Collagen type I protein secretion and mRNA expression on day 7 and 14 were increased by hyperoxia compared with the controls. Hyperoxia significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) and significantly increased collagen type I expression compared with the room air control group. The findings indicated that an increase in LF proliferation in response to hyperoxia was associated with ERK1/2 phosphorylation. This mechanism may contribute to over-proliferation of LFs leading to disturbed formation of normal alveoli.
Collapse
Affiliation(s)
- Yu Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
240
|
The definition of bronchopulmonary dysplasia: an evolving dilemma. Pediatr Res 2018; 84:586-588. [PMID: 30188504 DOI: 10.1038/s41390-018-0167-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
The definition of bronchopulmonary dysplasia (BPD) continues to be a challenging one. The evolution of the disease as well as its definition are discussed. Limitations of the current as well as newer suggested definitions of BPD are summarized. Recognition of the variability of the pulmonary phenotype is a critical aspect of the disease that needs to identified, utilizing biomarkers that will potentially better inform the next iteration of the definition of BPD.
Collapse
|
241
|
Yockey LJ, Iwasaki A. Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity 2018; 49:397-412. [PMID: 30231982 PMCID: PMC6152841 DOI: 10.1016/j.immuni.2018.07.017] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/13/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Successful pregnancy requires carefully-coordinated communications between the mother and fetus. Immune cells and cytokine signaling pathways participate as mediators of these communications to promote healthy pregnancy. At the same time, certain infections or inflammatory conditions in pregnant mothers cause severe disease and have detrimental impacts on the developing fetus. In this review, we examine evidence for the role of maternal and fetal immune responses affecting pregnancy and fetal development, both under homeostasis and following infection. We discuss immune responses that are necessary to promote healthy pregnancy and those that lead to congenital disorders and pregnancy complications, with a particular emphasis on the role of interferons and cytokines. Understanding the contributions of the immune system in pregnancy and fetal development provides important insights into the pathogenesis underlying maternal and fetal diseases and sheds insights on possible targets for therapy.
Collapse
Affiliation(s)
- Laura J Yockey
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
242
|
Zhang F, Jia C, Lin X, Su Z, Wu F, Li Y, Lin L, Liu G. The association between surfactant protein B gene variation and bronchopulmonary dysplasia in Chinese premature newborns. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3753-3758. [PMID: 31949759 PMCID: PMC6962831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/24/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE This study aimed to correlate the pulmonary surfactant B (SP-B) gene variation with bronchopulmonary dysplasia (BPD) in ethnic Han, Chinese, premature newborns. METHOD 47 newborns with BPD and 55 controls without BPD were included. Genomic DNA was extracted from cord or artery blood. Genotyping for the SP-B gene was performed by polymerase chain reaction or gene sequencing, and the clinical characteristics were also analyzed. RESULTS Two types of SP-B gene variations in Exon 2 or Exon 5 were discovered, including V1 (Exon 2: c.[5A > C] + [5A > C] or c.[5A > C] + [=]) and V2 (Exon 5: c.[428C > T] + [428C > T] or c.[428C > T] + [=]). In the BPD group, there were 33 newborns with gene variations, of which type V1 and V2 accounted for 18 and 15 respectively. In the control group, there were 19 newborns with gene variations, of which type V1 and V2 accounted for 7 and 12 respectively. There was a significant difference between the two groups in type V1 variation (X2=8.956, P < 0.05), and V1 variation was more likely associated with BPD occurrence. Logistic regression analysis showed that gene variation, premature rupture of membranes, birth weight, and the duration of mechanical ventilation were associated with BPD development. Among them, gene variation and premature rupture of the membranes were risk factors for BPD development. CONCLUSIONS The exon 2 or 5 of SP-B gene variations were associated with the BPD in Chinese premature newborns, and the type V1: Exon 2: c.[5A > C] + [5A > C] or c.[5A > C] + [=] was a risk factor for the development of BPD.
Collapse
Affiliation(s)
- Feitong Zhang
- Department of Pediatrics and Neonatology, The First Affiliated Hospital of Jinan UniversityGuangzhou, Guangdong, China
| | - Chunhong Jia
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Xiaojun Lin
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Zhiwen Su
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Fan Wu
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Ying Li
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Lili Lin
- Division of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, Guangdong, China
| | - Guosheng Liu
- Department of Pediatrics and Neonatology, The First Affiliated Hospital of Jinan UniversityGuangzhou, Guangdong, China
| |
Collapse
|
243
|
[Dynamic expression and role of SUMO-modified C/EBPα in preterm rats with bronchopulmonary dysplasisa induced by hyperoxia exposure]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018. [PMID: 29764579 PMCID: PMC7389059 DOI: 10.7499/j.issn.1008-8830.2018.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To study the expression of SUMO-modified CCAAT enhancer binding protein α (C/EBPα) in preterm rat model of bronchopulmonary dysplasisa (BPD) induced by hyperoxia exposure and its role. METHODS Eighteen preterm rats were randomly divided into an air group and a hyperoxia group (n=9 each). The model of BPD was prepared in preterm rats exposed to hyperoxia. The rats from the two groups were sacrificed on postnatal days 4, 7 and 14 respectively (3 rats at each time) and lung tissues were harvested. Periodic acid-Schiff (PAS) staining was used to observe the differentiation of rat lung tissues. Ki67 expression was detected by immunohistochemistry. Western blot was used to measure the protein expression of small ubiquitin-related modifier-1(SUMO1) and C/EBPα. A co-immunoprecipitation assay was performed to measure the protein expression of SUMO-modified C/EBPα. RESULTS Compared with the air group, the hyperoxia group showed a decreased glycogen content in the lung tissue on postnatal day 4, and an increased content on postnatal days 7 and 14. Over the time of hyperoxia exposure, the hyperoxia group showed an increased expression of Ki67 in the lung tissue compared with the air group at all time points. Compared with the air group, the protein expression of C/EBPα increased on postnatal day 4 and decreased on postnatal days 7 and 14 in the hyperoxia group (P<0.05). The hyperoxia group had significantly upregulated expression of SUMO1 and SUMO-modified C/EBPα compared with the air group at all time points (P<0.05). In the hyperoxia group, the protein expression of SUMO-modified C/EBPα was positively correlated with the glycogen content (r=0.529, P<0.05) and the expression of Ki67 (r=0.671, P<0.05). CONCLUSIONS Hyperoxia may induce over-proliferation and differentiation disorders of alveolar epithelial cells in preterm rat model of BPD, possibly through an increased expression of SUMO-modified C/EBP&alpha.
Collapse
|
244
|
Yin J, Wang X, Zhang L, Wang X, Liu H, Hu Y, Yan X, Tang Y, Wang J, Li Z, Yu Z, Cao Y, Han S. Peptidome analysis of lung tissues from a hyperoxia‐induced bronchopulmonary dysplasia mouse model: Insights into the pathophysiological process of bronchopulmonary dysplasia. J Cell Physiol 2018; 233:7101-7112. [PMID: 29741761 DOI: 10.1002/jcp.26633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/30/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jing Yin
- Department of Pediatrics, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Xingyun Wang
- Department of Pediatrics, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Le Zhang
- Department of Neonatology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xing Wang
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Heng Liu
- Department of Pediatrics, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Yin Hu
- Department of Pediatrics, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Xiangyun Yan
- Department of Pediatrics, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Yongfeng Tang
- Department of Pediatrics, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Juan Wang
- Department of Pediatrics, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Zhengyin Li
- Department of Neonatology, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhangbin Yu
- Department of Pediatrics, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| | - Shuping Han
- Department of Pediatrics, The Affiliated Obsterics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, Jiangsu, China
| |
Collapse
|