201
|
Bochicchio B, Pepe A. Role of polyproline II conformation in human tropoelastin structure. Chirality 2012; 23:694-702. [PMID: 22135799 DOI: 10.1002/chir.20979] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this review, we present a comprehensive overview of the molecular studies on human tropoelastin domains accomplished by Tamburro and co-workers in the last decade. The used approach is the reductionist approach applied to human tropoelastin and is based on the observation that the tropoelastin gene exhibits a cassette-like organization, with a regular alternation of cross-linking and hydrophobic domains putatively responsible for the elasticity of the protein. The peculiar structure of human tropoelastin gene prompted us to study the isolated domains encoded by the exons of tropoelastin, with the perspective to get deep insights into the structural properties of the whole protein. At the molecular level, the results clearly evidence large flexibility of the polypeptide chains in the hydrophobic domains, which oscillate between rather extended and folded conformations. An important role was assigned to poly-proline II conformation considered as the hinge structure in the dynamic conformational equilibrium suggested for the hydrophobic domains. For the lysine-rich cross-linking domains, the structural studies exactly localized α-helix along the polypeptide sequence. Furthermore, at supramolecular level, these studies showed that several domains are able to self-assemble in two different aggregation patterns, the fibrous elastin-like structure for some proline-rich hydrophobic domains and the amyloid-like for some glycine-rich hydrophobic domains. Accordingly, the studies suggest that the reductionist approach was a valid tool for studying a complex protein, such as elastin, elucidating not only the structure but also the specific role played by its constituent domains.
Collapse
Affiliation(s)
- Brigida Bochicchio
- Laboratory of Protein Chemistry, Department of Chemistry A. M. Tamburro, University of Basilicata, Potenza, Italy.
| | | |
Collapse
|
202
|
Anderson VL, Webb WW. A desolvation model for trifluoroethanol-induced aggregation of enhanced green fluorescent protein. Biophys J 2012; 102:897-906. [PMID: 22385861 DOI: 10.1016/j.bpj.2012.01.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 12/01/2022] Open
Abstract
Studies of amyloid disease-associated proteins in aqueous solutions containing 2,2,2-trifluoroethanol (TFE) have shown that the formation of structural intermediates is often correlated with enhanced protein aggregation. Here, enhanced green fluorescent protein (EGFP) is used as a model protein system to investigate the causal relationship between TFE-induced structural transitions and aggregation. Using circular dichroism spectroscopy, light scattering measurements, and transmission electron microscopy imaging, we demonstrate that population of a partially α-helical, monomeric intermediate is roughly correlated with the growth of β-sheet-rich, flexible fibrils for acid-denatured EGFP. By fitting our circular dichroism data to a model in which TFE-water mixtures are assumed to be ideal solutions, we show that increasing entropic costs of protein solvation in TFE-water mixtures may both cause the population of the intermediate state and increase aggregate production. Tertiary structure and electrostatic repulsion also impede aggregation. We conclude that initiation of EGFP aggregation in TFE likely involves overcoming of multiple protective factors, rather than stabilization of aggregation-prone structural elements.
Collapse
Affiliation(s)
- Valerie L Anderson
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
203
|
Moesa HA, Wakabayashi S, Nakai K, Patil A. Chemical composition is maintained in poorly conserved intrinsically disordered regions and suggests a means for their classification. MOLECULAR BIOSYSTEMS 2012; 8:3262-73. [DOI: 10.1039/c2mb25202c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
204
|
Abstract
Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin - two elastomeric biopolymers - and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Mark B. van Eldijk
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Christopher L. McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
205
|
Lee KAW. Molecular recognition by the EWS transcriptional activation domain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:106-25. [PMID: 22399321 DOI: 10.1007/978-1-4614-0659-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interactions between Intrinsically Disordered Protein Regions (IDRs) and their targets commonly exhibit localised contacts via target-induced disorder to order transitions. Other more complex IDR target interactions have been termed "fuzzy" because the IDR does not form a well-defined induced structure. In some remarkable cases of fuzziness IDR function is apparently sequence independent and conferred by amino acid composition. Such cases have been referred to as "random fuzziness" but the molecular features involved are poorly characterised. The transcriptional activation domain (EAD) of oncogenic Ewing's Sarcoma Fusion Proteins (EFPs) is an ≈280 residue IDR with a biased composition restricted to Ala, Gly, Gln, Pro, Ser, Thr and Tyr. Multiple aromatic side chains (exclusively from Try residues) and the particular EAD composition are crucial for molecular recognition but there appears to be no other major geometrically constrained requirement. Computational analysis of the EAD using PONDR (Molecular Kinetics, Inc. http://www.pondr. com) complements the functional data and shows, accordingly, that propensity for structural order within the EAD is conferred by Tyr residues. To conclude, molecular recognition by the EAD is extraordinarily malleable and involves multiple aromatic contacts facilitated by a flexible peptide backbone and, most likely, a limited number of weaker contributions from amenable side chains. I propose to refer to this mode of fuzzy recognition as "polyaromatic", noting that it shares some fundamental features with the "polyelectrostatic" (phosphorylation-dependent) interaction of the Sic1 Cdk inhibitor and Cdc4._I will also speculate on more detailed models for molecular recognition by the EAD and their relationship to native (non-oncogenic) EAD function.
Collapse
Affiliation(s)
- Kevin A W Lee
- Department of Biology, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
206
|
Li G, Rauscher S, Baud S, Pomès R. Binding of inositol stereoisomers to model amyloidogenic peptides. J Phys Chem B 2011; 116:1111-9. [PMID: 22091989 DOI: 10.1021/jp208567n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The self-aggregation of proteins into amyloid fibrils is a pathological hallmark of numerous incurable diseases such as Alzheimer's disease. scyllo-Inositol is a stereochemistry-dependent in vitro inhibitor of amyloid formation. As the first step to elucidate its mechanism of action, we present molecular dynamics simulations of scyllo-inositol and its inactive stereoisomer, chiro-inositol, with simple peptide models, alanine dipeptide (ADP) and (Gly-Ala)(4). We characterize molecular interactions and compute equilibrium binding constants between inositol and ADP as well as, successively, monomers, amorphous aggregates, and fibril-like β-sheet aggregates of (Gly-Ala)(4). Inositol interacts weakly with all peptide systems considered, with millimolar to molar affinities, and displaces the conformational equilibria of ADP but not of the (Gly-Ala)(4) systems. However, scyllo- and chiro-inositol adopt different binding modes on the surface of β-sheet aggregates. These results suggest that inositol does not inhibit amyloid formation by breaking up preformed aggregates but rather by binding to the surface of prefibrillar aggregates.
Collapse
Affiliation(s)
- Grace Li
- Department of Biochemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | | | | | | |
Collapse
|
207
|
Sun C, Mitchell O, Huang J, Boutis GS. NMR studies of localized water and protein backbone dynamics in mechanically strained elastin. J Phys Chem B 2011; 115:13935-42. [PMID: 22017547 PMCID: PMC3622950 DOI: 10.1021/jp207607r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on measurements of the dynamics of localized waters of hydration and the protein backbone of elastin, a remarkable resilient protein found in vertebrate tissues, as a function of the applied external strain. Using deuterium 2D T(1)-T(2) NMR, we separate four reservoirs in the elastin-water system characterized by water with distinguishable mobilities. The measured correlation times corresponding to random tumbling of water localized to the protein is observed to decrease with increasing strain and is interpreted as an increase in its orientational entropy. The NMR T(1) and T(1ρ) relaxation times of the carbonyl and aliphatic carbons of the protein backbone are measured and indicate a reduction in the correlation time as the elastomer strain is increased. It is argued, and supported by MD simulation of a short model elastin peptide [VPGVG](3), that the observed changes in the backbone dynamics give rise to the development of an entropic elastomeric force that is responsible for elastins' remarkable elasticity.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York 11210, United States
| | - Odingo Mitchell
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York 11210, United States
| | - Jiaxin Huang
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York 11210, United States
| | - Gregory S. Boutis
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York 11210, United States
| |
Collapse
|
208
|
Castle JE, Salvi AM, Flamia R, Satriano G. Surface science aspects of supramolecular conformation in elastin-like polypeptides. SURF INTERFACE ANAL 2011. [DOI: 10.1002/sia.3857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James E. Castle
- Surface Analysis Laboratory, FEPS; University of Surrey; Guildford GU2 7XH UK
| | - Anna Maria Salvi
- Dipartimento di Chimica ‘Antonio Mario TAMBURRO’; Università della Basilicata; Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| | - Roberta Flamia
- Dipartimento di Chimica ‘Antonio Mario TAMBURRO’; Università della Basilicata; Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| | - Giuseppina Satriano
- Dipartimento di Chimica ‘Antonio Mario TAMBURRO’; Università della Basilicata; Viale dell'Ateneo Lucano 10 85100 Potenza Italy
| |
Collapse
|
209
|
Yeo GC, Keeley FW, Weiss AS. Coacervation of tropoelastin. Adv Colloid Interface Sci 2011; 167:94-103. [PMID: 21081222 DOI: 10.1016/j.cis.2010.10.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/14/2022]
Abstract
The coacervation of tropoelastin represents the first major stage of elastic fiber assembly. The process has been modeled in vitro by numerous studies, initially with mixtures of solubilized elastin, and subsequently with synthetic elastin peptides that represent hydrophobic repeat units, isolated hydrophobic domains, segments of alternating hydrophobic and cross-linking domains, or the full-length monomer. Tropoelastin coacervation in vitro is characterized by two stages: an initial phase separation, which involves a reversible inverse temperature transition of monomer to n-mer; and maturation, which is defined by the irreversible coalescence of coacervates into large species with fibrillar structures. Coacervation is an intrinsic ability of tropoelastin. It is primarily influenced by the number, sequence, and contextual arrangement of hydrophobic domains, although hydrophilic sequences can also affect the behavior of the hydrophobic domains and thus affect coacervation. External conditions including ionic strength, pH, and temperature also directly influence the propensity of tropoelastin to self-associate. Coacervation is an endothermic, entropically-driven process driven by the cooperative interactions of hydrophobic domains following destabilization of the clathrate-like water shielding these regions. The formation of such assemblies is believed to follow a helical nucleation model of polymerization. Coacervation is closely associated with conformational transitions of the monomer, such as increased β-structures in hydrophobic domains and α-helices in cross-linking domains. Tropoelastin coacervation in vivo is thought to mainly involve the central hydrophobic domains. In addition, cell-surface glycosaminoglycans and microfibrillar proteins may regulate the process. Coacervation is essential for progression to downstream elastogenic stages, and impairment of the process can result in elastin haploinsufficiency disorders such as supravalvular aortic stenosis.
Collapse
|
210
|
Leclerc J, Lefèvre T, Pottier F, Morency LP, Lapointe-Verreault C, Gagné SM, Auger M. Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution. Biopolymers 2011; 97:337-46. [DOI: 10.1002/bip.21717] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/31/2011] [Indexed: 11/07/2022]
|
211
|
Li L, Teller S, Clifton RJ, Jia X, Kiick KL. Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules 2011; 12:2302-10. [PMID: 21553895 PMCID: PMC3139215 DOI: 10.1021/bm200373p] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resilin, the highly elastomeric protein found in specialized compartments of most arthropods, possesses superior resilience and excellent high-frequency responsiveness. Enabled by biosynthetic strategies, we have designed and produced a modular, recombinant resilin-like polypeptide bearing both mechanically active and biologically active domains to create novel biomaterial microenvironments for engineering mechanically active tissues such as blood vessels, cardiovascular tissues, and vocal folds. Preliminary studies revealed that these recombinant materials exhibit promising mechanical properties and support the adhesion of NIH 3T3 fibroblasts. In this Article, we detail the characterization of the dynamic mechanical properties of these materials, as assessed via dynamic oscillatory shear rheology at various protein concentrations and cross-linking ratios. Simply by varying the polypeptide concentration and cross-linker ratios, the storage modulus G' can be easily tuned within the range of 500 Pa to 10 kPa. Strain-stress cycles and resilience measurements were probed via standard tensile testing methods and indicated the excellent resilience (>90%) of these materials, even when the mechanically active domains are intercepted by nonmechanically active biological cassettes. Further evaluation, at high frequencies, of the mechanical properties of these materials were assessed by a custom-designed torsional wave apparatus (TWA) at frequencies close to human phonation, indicating elastic modulus values from 200 to 2500 Pa, which is within the range of experimental data collected on excised porcine and human vocal fold tissues. The results validate the outstanding mechanical properties of the engineered materials, which are highly comparable to the mechanical properties of targeted vocal fold tissues. The ease of production of these biologically active materials, coupled to their outstanding mechanical properties over a range of compositions, suggests their potential in tissue regeneration applications.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
212
|
Salvi AM, Moscarelli P, Satriano G, Bochicchio B, Castle JE. Influence of amino acid specificities on the molecular and supramolecular organization of glycine-rich elastin-like polypeptides in water. Biopolymers 2011; 95:702-21. [PMID: 21509743 DOI: 10.1002/bip.21636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/05/2022]
Abstract
Elastin-like polypeptides adopt complex supramolecular structures, showing either a hydrophobic or a hydrophilic surface, depending on their surrounding environment and the supporting substrate. The preferred organization is important in many situations ranging from biocompatibility to bio-function. Here we compare the n-repeat pentamer LeuGlyGlyValGly (n = 7) with the analogue ValGlyGlyValGly (n = 5), as water suspensions and as deposits on silicon substrates. These sequences contain the repeat XxxGlyGlyZzzGly (Xxx, Zzz = Val, Leu) motif belonging to the hydrophobic glycine-rich domain of elastin and represent a simplified model from which to obtain information on molecular interactions functional to elastin itself. The compounds studied differ only by the presence of the -CH(2)- spacer in the Leu moiety and thus the work was aimed at revealing the influence of this spacer element on self assembly. Both polypeptides were studied under identical conditions, using combined techniques, to identify differences in their conformational states both at molecular (CD, FTIR) and supramolecular (XPS, AFM) levels. By these means, together with a Congo Red spectroscopic assay of β-sheet formation in water, a clear correlation between amino acid sequences (sequence specificity) and their kinetics and ordering of aggregation has emerged. The novel outcomes of this work are from the supplementary measurements, made to augment the AFM and XPS studies, showing that the significant step in the self assembly of both polypeptides takes place in the liquid phase and from the finding that the substitution of Val by Leu in the first position of the pentapeptide effectively inhibits the formation of amyloidal fibers.
Collapse
Affiliation(s)
- Anna M Salvi
- Dipartimento di Chimica Antonio Mario Tamburro, Università della Basilicata, Potenza, Italy.
| | | | | | | | | |
Collapse
|
213
|
Sharpe S, Simonetti K, Yau J, Walsh P. Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG. Biomacromolecules 2011; 12:1546-55. [PMID: 21456595 PMCID: PMC3089984 DOI: 10.1021/bm101486s] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The characterization of the molecular structure and physical properties of self-assembling peptides is an important aspect of optimizing their utility as scaffolds for biomaterials and other applications. Here we report the formation of autofluorescent fibrils by an octapeptide (GVGVAGVG) derived via a single amino acid substitution in one of the hydrophobic repeat elements of human elastin. This is the shortest and most well-defined peptide so far reported to exhibit intrinsic fluorescence in the absence of a discrete fluorophore. Structural characterization by FTIR and solid-state NMR reveals a predominantly β-sheet conformation for the peptide in the fibrils, which are likely assembled in an amyloid-like cross-β structure. Investigation of dynamics and the effects of hydration on the peptide are consistent with a rigid, water excluded structure, which has implications for the likely mechanism of intrinsic fibril fluorescence.
Collapse
Affiliation(s)
- Simon Sharpe
- Molecular Structure and Function Programme, The Hospital for Sick Children, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
214
|
Cheng S, Cetinkaya M, Gräter F. How sequence determines elasticity of disordered proteins. Biophys J 2011; 99:3863-9. [PMID: 21156127 DOI: 10.1016/j.bpj.2010.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022] Open
Abstract
How nature tunes sequences of disordered protein to yield the desired coiling properties is not yet well understood. To shed light on the relationship between protein sequence and elasticity, we here investigate four different natural disordered proteins with elastomeric function, namely: FG repeats in the nucleoporins; resilin in the wing tendon of dragonfly; PPAK in the muscle protein titin; and spider silk. We obtain force-extension curves for these proteins from extensive explicit solvent molecular dynamics simulations, which we compare to purely entropic coiling by modeling the four proteins as entropic chains. Although proline and glycine content are in general indicators for the entropic elasticity as expected, divergence from simple additivity is observed. Namely, coiling propensities correlate with polyproline II content more strongly than with proline content, and given a preponderance of glycines for sufficient backbone flexibility, nonlocal interactions such as electrostatic forces can result in strongly enhanced coiling, which results for the case of resilin in a distinct hump in the force-extension curve. Our results, which are directly testable by force spectroscopy experiments, shed light on how evolution has designed unfolded elastomeric proteins for different functions.
Collapse
Affiliation(s)
- Shanmei Cheng
- German Max Planck Society-Chinese Academy of Sciences Partner Institute and Key Laboratory for Computational Biology, Shanghai Institute for Biological Sciences, Shanghai, China
| | | | | |
Collapse
|
215
|
Cheung KLY, Bates M, Ananthanarayanan VS. Effect of FKBP65, a putative elastin chaperone, on the coacervation of tropoelastin in vitro. Biochem Cell Biol 2011; 88:917-25. [PMID: 21102654 DOI: 10.1139/o10-137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
FKBP65 is a protein of the endoplasmic reticulum that is relatively abundant in elastin-producing cells and is associated with tropoelastin in the secretory pathway. To test an earlier suggestion by Davis and co-workers that FKBP65 could act as an intracellular chaperone for elastin, we obtained recombinant FKBP65 (rFKBP65) by expressing it in E. coli and examined its effect on the coacervation characteristics of chicken aorta tropoelastin (TE) using an in vitro turbidimetric assay. Our results reveal that rFKBP65 markedly promotes the initiation of coacervation of TE without significantly affecting the temperature of onset of coacervation. This effect shows saturation at a 1:2 molar ratio of TE to rFKBP65. By contrast, FKBP12, a peptidyl prolyl isomerase, has a negligible effect on TE coacervation. Moreover, the effect of rFKBP65 on TE coacervation is unaffected by the addition of rapamycin, an inhibitor of peptidyl prolyl isomerase (PPIase) activity. These observations rule out the involvement of the PPIase activity of rFKBP65 in modulating the coacervation of TE. Additional experiments using a polypeptide model of TE showed that rFKBP65, while promoting coacervation, may retard the maturation of this model polypeptide into larger aggregates. Based on these results, we suggest that FKBP65 may act as an elastin chaperone in vivo by controlling both the coacervation and the maturation stages of its self-assembly into fibrils.
Collapse
Affiliation(s)
- Kevin L Y Cheung
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
216
|
Elices M, Guinea GV, Plaza GR, Karatzas C, Riekel C, Agulló-Rueda F, Daza R, Pérez-Rigueiro J. Bioinspired Fibers Follow the Track of Natural Spider Silk. Macromolecules 2011. [DOI: 10.1021/ma102291m er] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G. V. Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G. R. Plaza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - C. Karatzas
- Nexia Biotechnologies Inc., Vaudreuil-Dorion, QC J7V 8P5Canada
| | - C. Riekel
- European Synchroton Radiation Facility, B.P. 220, F-38043, Grenoble Cedex, France
| | - F. Agulló-Rueda
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - R. Daza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - J. Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
217
|
Elices M, Guinea GV, Plaza GR, Karatzas C, Riekel C, Agulló-Rueda F, Daza R, Pérez-Rigueiro J. Bioinspired Fibers Follow the Track of Natural Spider Silk. Macromolecules 2011. [DOI: 10.1021/ma102291m] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G. V. Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - G. R. Plaza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - C. Karatzas
- Nexia Biotechnologies Inc., Vaudreuil-Dorion, QC J7V 8P5Canada
| | - C. Riekel
- European Synchroton Radiation Facility, B.P. 220, F-38043, Grenoble Cedex, France
| | - F. Agulló-Rueda
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
| | - R. Daza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - J. Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
218
|
Lefèvre T, Boudreault S, Cloutier C, Pézolet M. Diversity of Molecular Transformations Involved in the Formation of Spider Silks. J Mol Biol 2011; 405:238-53. [DOI: 10.1016/j.jmb.2010.10.052] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
|
219
|
Muiznieks LD, Keeley FW. Proline periodicity modulates the self-assembly properties of elastin-like polypeptides. J Biol Chem 2010; 285:39779-89. [PMID: 20947499 PMCID: PMC3000959 DOI: 10.1074/jbc.m110.164467] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/23/2010] [Indexed: 11/06/2022] Open
Abstract
Elastin is a self-assembling protein of the extracellular matrix that provides tissues with elastic extensibility and recoil. The monomeric precursor, tropoelastin, is highly hydrophobic yet remains substantially disordered and flexible in solution, due in large part to a high combined threshold of proline and glycine residues within hydrophobic sequences. In fact, proline-poor elastin-like sequences are known to form amyloid-like fibrils, rich in β-structure, from solution. On this basis, it is clear that hydrophobic elastin sequences are in general optimized to avoid an amyloid fate. However, a small number of hydrophobic domains near the C terminus of tropoelastin are substantially depleted of proline residues. Here we investigated the specific contribution of proline number and spacing to the structure and self-assembly propensities of elastin-like polypeptides. Increasing the spacing between proline residues significantly decreased the ability of polypeptides to reversibly self-associate. Real-time imaging of the assembly process revealed the presence of smaller colloidal droplets that displayed enhanced propensity to cluster into dense networks. Structural characterization showed that these aggregates were enriched in β-structure but unable to bind thioflavin-T. These data strongly support a model where proline-poor regions of the elastin monomer provide a unique contribution to assembly and suggest a role for localized β-sheet in mediating self-assembly interactions.
Collapse
Affiliation(s)
- Lisa D. Muiznieks
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 and
| | - Fred W. Keeley
- From the Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8 and
- the Department of Biochemistry, the University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
220
|
Huang H, Sun XS. Rational design of responsive self-assembling peptides from native protein sequences. Biomacromolecules 2010; 11:3390-4. [PMID: 21080625 DOI: 10.1021/bm100894j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study used identified functional native domains from spider flagelliform silk protein and the Ca(2+) binding domain of lipase Lip A from Serratia marcescens . After carefully comparing the primary structures of both sequences, we rationally designed a newly sequenced eD(2) by "hiding" the ion binding sequence in the silk structure sequence. This helped avoid redundancy, and the new sequence had properties of both model sequences. In water, eD(2) formed uniform spherical agglomerates with a β-spiral structure. Triggered by Ca(2+), eD(2) formed nanofibers with higher compliance and thermal stability. We demonstrated the specialties of this novel peptide design by changing the pH, using other metal ions, and mutating the model sequence.
Collapse
Affiliation(s)
- Hongzhou Huang
- Bio-Materials and Technology Lab, Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | | |
Collapse
|
221
|
Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc Natl Acad Sci U S A 2010; 107:20352-7. [PMID: 21048085 DOI: 10.1073/pnas.1012999107] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main principles of protein-protein recognition are elucidated by the studies of homooligomers which in turn mediate and regulate gene expression, activity of enzymes, ion channels, receptors, and cell-cell adhesion processes. Here we explore oligomeric states of homologous proteins in various organisms to better understand the functional roles and evolutionary mechanisms of homooligomerization. We observe a great diversity in mechanisms controlling oligomerization and focus in our study on insertions and deletions in homologous proteins and how they enable or disable complex formation. We show that insertions and deletions which differentiate monomers and dimers have a significant tendency to be located on the interaction interfaces and about a quarter of all proteins studied and forty percent of enzymes have regions which mediate or disrupt the formation of oligomers. We suggest that relatively small insertions or deletions may have a profound effect on complex stability and/or specificity. Indeed removal of complex enabling regions from protein structures in many cases resulted in the complete or partial loss of stability. Moreover, we find that insertions and deletions modulating oligomerization have a lower aggregation propensity and contain a larger fraction of polar, charged residues, glycine and proline compared to conventional interfaces and protein surface. Most likely, these regions may mediate specific interactions, prevent nonspecific dysfunctional aggregation and preclude undesired interactions between close paralogs therefore separating their functional pathways. Last, we show how the presence or absence of insertions and deletions on interfaces might be of practical value in annotating protein oligomeric states.
Collapse
|
222
|
Huang Z, Lu Y, Majithia R, Shah J, Meissner K, Matthews KS, Bondos SE, Lou J. Size dictates mechanical properties for protein fibers self-assembled by the Drosophila hox transcription factor ultrabithorax. Biomacromolecules 2010; 11:3644-51. [PMID: 21047055 DOI: 10.1021/bm1010992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of protein-based materials with diverse mechanical properties will facilitate the realization of a broad range of potential applications. The recombinant Drosophila melanogaster transcription factor Ultrabithorax self-assembles under mild conditions in aqueous buffers into extremely extensible materials. By controlling fiber diameter, both the mechanism of extension and the magnitude of the mechanical properties can be varied. Narrow Ultrabithorax fibers (diameter <10 μm) extend elastically, whereas the predominantly plastic deformation of wide fibers (diameter >15 μm) reflects the increase in breaking strain with increasing diameter, apparently due to a change in structure. The breaking stress/strain of the widest fibers resembles that of natural elastin. Intermediate fibers display mixed properties. Fiber bundles retain the mechanical properties of individual fibers but can withstand much larger forces. Controlling fiber size and generating fiber superstructures is a facile way to manipulate the mechanical characteristics of protein fibers and rationally engineer macroscale protein-based materials with desirable properties.
Collapse
Affiliation(s)
- Zhao Huang
- Departments of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | | | | | | | | | | | | | | |
Collapse
|
223
|
Perry DJ, Bittencourt D, Siltberg-Liberles J, Rech EL, Lewis RV. Piriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 2010; 11:3000-6. [PMID: 20954740 DOI: 10.1021/bm1007585] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orb-weaving spider silk fibers are assembled from very large, highly repetitive proteins. The repeated segments contain, in turn, short, simple, and repetitive amino acid motifs that account for the physical and mechanical properties of the assembled fiber. Of the six orb-weaver silk fibroins, the piriform silk that makes the attachment discs, which lashes the joints of the web and attaches dragline silk to surfaces, has not been previously characterized. Piriform silk protein cDNAs were isolated from phage libraries of three species: A. trifasciata , N. clavipes , and N. cruentata . The deduced amino acid sequences from these genes revealed two new repetitive motifs: an alternating proline motif, where every other amino acid is proline, and a glutamine-rich motif of 6-8 amino acids. Similar to other spider silk proteins, the repeated segments are large (>200 amino acids) and highly homogenized within a species. There is also substantial sequence similarity across the genes from the three species, with particular conservation of the repetitive motifs. Northern blot analysis revealed that the mRNA is larger than 11 kb and is expressed exclusively in the piriform glands of the spider. Phylogenetic analysis of the C-terminal regions of the new proteins with published spidroins robustly shows that the piriform sequences form an ortholog group.
Collapse
Affiliation(s)
- David J Perry
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 821071-3944, United States, Laboratory of Molecular Biology, EMBRAPA Western Amazonia, Manaus, AM, Brazil, and Laboratory of Gene Transfer, Biotechnology Unit, EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| | | | | | | | | |
Collapse
|
224
|
Nikolic A, Baud S, Rauscher S, Pomès R. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces. Proteins 2010; 79:1-22. [DOI: 10.1002/prot.22854] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/21/2010] [Accepted: 07/24/2010] [Indexed: 12/20/2022]
|
225
|
Muiznieks LD, Weiss AS, Keeley FW. Structural disorder and dynamics of elastin. Biochem Cell Biol 2010; 88:239-50. [PMID: 20453927 DOI: 10.1139/o09-161] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elastin is a self-assembling, extracellular-matrix protein that is the major provider of tissue elasticity. Here we review structural studies of elastin from over four decades, and draw together evidence for solution flexibility and conformational disorder that is inherent in all levels of structural organization. The characterization of disorder is consistent with an entropy-driven mechanism of elastic recoil. We conclude that conformational disorder is a constitutive feature of elastin structure and function.
Collapse
Affiliation(s)
- Lisa D Muiznieks
- Research Institute, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada.
| | | | | |
Collapse
|
226
|
Abstract
Protein disorder is abundant in proteomes throughout all kingdoms of life and serves many biologically important roles. Disordered states of proteins are challenging to study experimentally due to their structural heterogeneity and tendency to aggregate. Computer simulations, which are not impeded by these properties, have recently emerged as a useful tool to characterize the conformational ensembles of intrinsically disordered proteins. In this review, we provide a survey of computational studies of protein disorder with an emphasis on the interdisciplinary nature of these studies. The application of simulation techniques to the study of disordered states is described in the context of experimental and bioinformatics approaches. Experimental data can be incorporated into simulations, and simulations can provide predictions for experiment. In this way, simulations have been integrated into the existing methodologies for the study of disordered state ensembles. We provide recent examples of simulations of disordered states from the literature and our own work. Throughout the review, we emphasize important predictions and biophysical understanding made possible through the use of simulations. This review is intended as both an overview and a guide for structural biologists and theoretical biophysicists seeking accurate, atomic-level descriptions of disordered state ensembles.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | |
Collapse
|
227
|
Dölker N, Zachariae U, Grubmüller H. Hydrophilic linkers and polar contacts affect aggregation of FG repeat peptides. Biophys J 2010; 98:2653-61. [PMID: 20513410 DOI: 10.1016/j.bpj.2010.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 02/03/2010] [Accepted: 02/12/2010] [Indexed: 11/28/2022] Open
Abstract
Transport of large proteins into the nucleus involves two events, binding of the cargo protein to a transport receptor in the cytoplasm and passage of the cargo-transporter complex through the selective permeability barrier of the nuclear pore complex. The permeability barrier is formed by largely disordered polypeptides, each containing a number of conserved hydrophobic phenylalanine-glycine (FG) sequence motifs, connected by hydrophilic linkers of varying sequence (FG nups). How the motifs interact to form the permeability barrier, however, is not yet known. We have, therefore, carried out molecular dynamics simulations on various model FG repeat peptides to study the aggregation propensity of FG nups and the specific roles of the hydrophobic FG motifs and the hydrophilic linkers. Our simulations show spontaneous aggregation of the model nups into hydrated aggregates, which exhibit structural features assumed to be part of the permeability barrier. Our simulations suggest that short beta-sheets are an important structural feature of the aggregates and that Phe residues are sufficiently exposed to allow rapid binding of transport receptors. A surprisingly large influence of the amino acid composition of the hydrophilic linkers on aggregation is seen, as well as a major contribution of hydrogen-bonding patterns.
Collapse
Affiliation(s)
- Nicole Dölker
- Max-Planck-Institute for Biophysical Chemistry, Department of Theoretical and Computational Biophysics, Göttingen, Germany.
| | | | | |
Collapse
|
228
|
Cirulis JT, Keeley FW. Kinetics and Morphology of Self-Assembly of an Elastin-like Polypeptide Based on the Alternating Domain Arrangement of Human Tropoelastin. Biochemistry 2010; 49:5726-33. [DOI: 10.1021/bi100468v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Judith T. Cirulis
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, and Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G1X8
| | - Fred W. Keeley
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, and Department of Biochemistry, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G1X8
| |
Collapse
|
229
|
Díaz-Flores L, Gutiérrez R, Madrid JF, Alvarez-Argüelles H, Valladares F, Spreafico M, Díaz-Flores L. Choroid plexus papilloma with stromal deposition of amyloid and elastic material. Amyloid 2010; 17:69-74. [PMID: 20462365 DOI: 10.3109/13506129.2010.483117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congophilic birefringent amyloid deposits, with immunostaining for transthyretin (TTR) and amyloid P, associated with numerous coarse, enlarged and thick elastic fibres, are reported in the stroma of two choroid plexus papillomas, a finding not previously described in choroid plexus tumours. TTR was expressed as aggregates of 'doughnut-shaped' bodies, in which the TTR-positive peripheral area encircled the elastic fibre (TTR-negative core). Ultrastructurally, the amyloid microfibrils surrounded the elastic fibres and appeared to continue into the microfibrillar mantle of the latter. The stromal TTR-amyloid deposits associated with abundant elastic fibres in tumours that occur in the choroid plexus may be related to the alteration (production/accumulation, insufficient breakdown and/or extracellular matrix modifications) of some of the choroid plexus functions (removal, target and source of polypeptides, including TTR synthesis) and may be of interest for future studies on choroid plexus polypeptide activity and on protein development into elastomeric and amyloidogenic microfibrils.
Collapse
Affiliation(s)
- L Díaz-Flores
- Faculty of Medicine, Department of Anatomy, University of La Laguna, Tenerife, Spain.
| | | | | | | | | | | | | |
Collapse
|
230
|
Dual coding in alternative reading frames correlates with intrinsic protein disorder. Proc Natl Acad Sci U S A 2010; 107:5429-34. [PMID: 20212158 DOI: 10.1073/pnas.0907841107] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Numerous human genes display dual coding within alternatively spliced regions, which give rise to distinct protein products that include segments translated in more than one reading frame. To resolve the ensuing protein structural puzzle, we identified 67 human genes with alternative splice variants comprising a dual-coding region at least 75 nucleotides in length and analyzed the structural status of the protein segments they encode. The inspection of their amino acid composition and predictions by the IUPred and PONDR VSL2 algorithms suggest a high propensity for structural disorder in dual-coding regions. In the case of +1 frameshifts, the average level of disorder in the two frames is similarly high (47.2% in the ancestral frame, 58.2% in the derived frame, with the average level of disorder in human proteins being approximately 30%), whereas in the case of -1 frameshifts, there is a significant tendency to become more disordered upon shifting the frame (16.7% in the ancestral frame, 56.3% in the derived frame). The regions encoded by the derived frame are mostly disordered (disorder percentage > 50%) in 39 out of 62 cases, which strongly suggests that structural disorder enables these protein products to exist and function without the need of a highly evolved 3D fold. The potential advantages are also demonstrated by the appearance of novel functions and the high incidence of transcripts escaping nonsense-mediated decay. By discussing several examples, we demonstrate that dual coding may be an effective mechanism for the evolutionary appearance of novel intrinsically disordered regions with new functions.
Collapse
|
231
|
Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc Natl Acad Sci U S A 2009; 107:163-8. [PMID: 19966296 DOI: 10.1073/pnas.0908714107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid fibers are filamentous protein structures commonly associated with neurodegenerative diseases. Unlike disease-associated amyloids, which are the products of protein misfolding, Escherichia coli assemble membrane-anchored functional amyloid fibers called curli. Curli fibers are composed of two proteins, CsgA and CsgB. In vivo, the polymerization of the major curli subunit protein, CsgA, is dependent on CsgB-mediated nucleation. The amyloid core of CsgA features five imperfect repeats (R1-R5), and R1 and R5 govern CsgA responsiveness to CsgB nucleation and self-seeding by CsgA fibers. Here, the specificity of bacterial amyloid nucleation was probed, revealing that certain aspartic acid and glycine residues inhibit the intrinsic aggregation propensities and nucleation responsiveness of R2, R3, and R4. These residues function as "gatekeepers" to modulate CsgA polymerization efficiency and potential toxicity. A CsgA molecule lacking gatekeeper residues polymerized in vitro significantly faster than wild-type CsgA and polymerized in vivo in the absence of the nucleation machinery, resulting in mislocalized fibers. This uncontrolled polymerization was associated with cytotoxicity, suggesting that incorrectly regulated CsgA polymerization was detrimental to the cell.
Collapse
|
232
|
Tamburro AM, Panariello S, Santopietro V, Bracalello A, Bochicchio B, Pepe A. Molecular and Supramolecular Structural Studies on Significant Repetitive Sequences of Resilin. Chembiochem 2009; 11:83-93. [DOI: 10.1002/cbic.200900460] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
233
|
|
234
|
Rousseau ME, Lefèvre T, Pézolet M. Conformation and Orientation of Proteins in Various Types of Silk Fibers Produced by Nephila clavipes Spiders. Biomacromolecules 2009; 10:2945-53. [DOI: 10.1021/bm9007919] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Eve Rousseau
- Centre de recherche sur les matériaux avancés, Département de chimie, Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la médecine, Québec (Québec) G1 V 0A6, Canada
| | - Thierry Lefèvre
- Centre de recherche sur les matériaux avancés, Département de chimie, Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la médecine, Québec (Québec) G1 V 0A6, Canada
| | - Michel Pézolet
- Centre de recherche sur les matériaux avancés, Département de chimie, Université Laval, Pavillon Alexandre-Vachon, 1045 avenue de la médecine, Québec (Québec) G1 V 0A6, Canada
| |
Collapse
|
235
|
Rauscher S, Neale C, Pomès R. Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling. J Chem Theory Comput 2009; 5:2640-62. [DOI: 10.1021/ct900302n] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah Rauscher
- Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8 and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Chris Neale
- Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8 and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Régis Pomès
- Molecular Structure and Function, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8 and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
236
|
Lakshminarayanan R, Yoon I, Hegde BG, Daming F, Du C, Moradian-Oldak J. Analysis of secondary structure and self-assembly of amelogenin by variable temperature circular dichroism and isothermal titration calorimetry. Proteins 2009; 76:560-9. [PMID: 19274734 PMCID: PMC2748104 DOI: 10.1002/prot.22369] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Amelogenin is a proline-rich enamel matrix protein known to play an important role in the oriented growth of enamel crystals. Amelogenin self-assembles to form nanospheres and higher order structures mediated by hydrophobic interactions. This study aims to obtain a better insight into the relationship between primary-secondary structure and self-assembly of amelogenin by applying computational and biophysical methods. Variable temperature circular dichroism studies indicated that under physiological pH recombinant full-length porcine amelogenin contains unordered structures in equilibrium with polyproline type II (PPII) structure, the latter being more populated at lower temperatures. Increasing the concentration of rP172 resulted in the promotion of folding to an ordered beta-structured assembly. Isothermal titration calorimetry dilution studies revealed that at all temperatures, self-assembly is entropically driven due to the hydrophobic effect and the molar heat of assembly (DeltaH(A)) decreases with temperature. Using a computational approach, a profile of domains in the amino acid sequence that have a high propensity to assemble and to have PPII structures has been identified. We conclude that the assembly properties of amelogenin are due to complementarity between the hydrophobic and PPII helix prone regions.
Collapse
Affiliation(s)
- Rajamani Lakshminarayanan
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street CSA 103, Los Angeles, CA 90033, USA
| | - Il Yoon
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 607 Charles E Young Drive East, Los Angeles, CA 90095, USA
| | - Balachandra G. Hegde
- Department of Biochemistry and Molecular Biology, and the Zilka Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Fan Daming
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street CSA 103, Los Angeles, CA 90033, USA
| | - Chang Du
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street CSA 103, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, 2250 Alcazar Street CSA 103, Los Angeles, CA 90033, USA
| |
Collapse
|
237
|
Renault A, Rioux-Dubé JF, Lefèvre T, Pezennec S, Beaufils S, Vié V, Tremblay M, Pézolet M. Surface properties and conformation of Nephila clavipes spider recombinant silk proteins at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:8170-8180. [PMID: 19400566 DOI: 10.1021/la900475q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The dragline fiber of spiders is composed of two proteins, the major ampullate spidroins I and II (MaSpI and MaSpII). To better understand the assembly mechanism and the properties of these proteins, the adsorption behavior of the recombinant proteins of the spider Nephila clavipes produced by Nexia Biotechnologies Inc. has been studied at the air-water interface using ellipsometry, surface pressure, rheological, and infrared measurements. The results show that the adsorption is more rapid and more molecules are present at the interface for MaSpII than for MaSpI. MaSpII has thus a higher affinity for the interface than MaSpI, which is consistent with its higher aggregation propensity in water. The films formed at the interface consist of networks containing a high content of intermolecular beta-sheets as revealed by the in situ polarization modulation infrared absorption reflection spectra. The infrared results further demonstrate that, for MaSpI, the beta-sheets are formed as soon as the proteins adsorb to the interface while for MaSpII the beta-sheet formation occurs more slowly. The amount of beta-sheets is lower for MaSpII than for MaSpI, most likely due to the presence of proline residues in its sequence. Both proteins form elastic films, but they are heterogeneous for MaSpI and homogeneous for MaSpII most probably as a result of a more ordered and slower aggregation process for MaSpII. This difference in their mechanism of assembly and interfacial behaviors does not seem to arise from their overall hydrophobicity or from a specific pattern of hydrophobicity, but rather from the longer polyalanine motifs, lower glycine content, and higher proline content of MaSpII. The propensity of both spidroins to form beta-sheets, especially the polyalanine blocks, suggests the participation of both proteins in the silk's beta-sheet crystallites.
Collapse
Affiliation(s)
- Anne Renault
- Centre de recherche sur les materiaux avances, Departement de chimie, Universite Laval, Quebec, Canada G1 V 0A6
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Papadopoulos P, Ene R, Weidner I, Kremer F. Similarities in the structural organization of major and minor ampullate spider silk. Macromol Rapid Commun 2009; 30:851-7. [PMID: 21706668 DOI: 10.1002/marc.200900018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/07/2009] [Accepted: 03/11/2009] [Indexed: 11/06/2022]
Abstract
Minor and major ampullate spider silks are studied under varying mechanical stress by static and time-resolved FT-IR spectroscopy. This enables one to trace the external mechanical excitation on a microscopic level and to determine for the different moieties the time dependence of the molecular order parameters and corresponding band shifts. It is concluded that the hierarchical nanostructure of both types of silk is similar, being composed of highly oriented nanocrystals, which are interconnected by amorphous chains that obey the worm-like chain model and have a Gaussian distribution of pre-strain. By that it is possible to describe the mechanical properties of both silks by two adjustable parameters only, the center and width of the distribution. For major ampullate silk, the observed variability is small in pronounced contrast to the findings for minor ampullate.
Collapse
|
239
|
Greer AM, Huang Z, Oriakhi A, Lu Y, Lou J, Matthews KS, Bondos SE. The Drosophila Transcription Factor Ultrabithorax Self-Assembles into Protein-Based Biomaterials with Multiple Morphologies. Biomacromolecules 2009; 10:829-37. [DOI: 10.1021/bm801315v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Alexandra M. Greer
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Zhao Huang
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Ashley Oriakhi
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Yang Lu
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Jun Lou
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Kathleen S. Matthews
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Sarah E. Bondos
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| |
Collapse
|
240
|
Teeuwen RLM, van Berkel SS, van Dulmen THH, Schoffelen S, Meeuwissen SA, Zuilhof H, de Wolf FA, van Hest JCM. “Clickable” elastins: elastin-like polypeptides functionalized with azide or alkyne groups. Chem Commun (Camb) 2009:4022-4. [DOI: 10.1039/b903903a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
241
|
Mackintosh SH, Meade SJ, Healy JP, Sutton KH, Larsen NG, Squires AM, Gerrard JA. Wheat glutenin proteins assemble into a nanostructure with unusual structural features. J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2008.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
242
|
Abstract
Collagen is the most abundant protein in animals. This fibrous, structural protein comprises a right-handed bundle of three parallel, left-handed polyproline II-type helices. Much progress has been made in elucidating the structure of collagen triple helices and the physicochemical basis for their stability. New evidence demonstrates that stereoelectronic effects and preorganization play a key role in that stability. The fibrillar structure of type I collagen-the prototypical collagen fibril-has been revealed in detail. Artificial collagen fibrils that display some properties of natural collagen fibrils are now accessible using chemical synthesis and self-assembly. A rapidly emerging understanding of the mechanical and structural properties of native collagen fibrils will guide further development of artificial collagenous materials for biomedicine and nanotechnology.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
243
|
Falvo MR, Millard D, O’Brien ET, Superfine R, Lord ST. Length of tandem repeats in fibrin's alphaC region correlates with fiber extensibility. J Thromb Haemost 2008; 6:1991-3. [PMID: 18761721 PMCID: PMC2655637 DOI: 10.1111/j.1538-7836.2008.03147.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael R. Falvo
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Daniel Millard
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - E. Timothy O’Brien
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Richard Superfine
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Susan T. Lord
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
244
|
Glaves R, Baer M, Schreiner E, Stoll R, Marx D. Conformational Dynamics of Minimal Elastin-Like Polypeptides: The Role of Proline Revealed by Molecular Dynamics and Nuclear Magnetic Resonance. Chemphyschem 2008; 9:2759-65. [DOI: 10.1002/cphc.200800474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
245
|
Abstract
The term "biological complexes" broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications.
Collapse
|
246
|
Schultz CJ, Harrison MJ. Novel plant and fungal AGP-like proteins in the Medicago truncatula-Glomus intraradices arbuscular mycorrhizal symbiosis. MYCORRHIZA 2008; 18:403-412. [PMID: 18709392 DOI: 10.1007/s00572-008-0194-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 07/18/2008] [Indexed: 05/21/2023]
Abstract
The ability of arbuscular mycorrhizal (AM) fungi to colonise the root apoplast, and in coordination with the plant develop specialised plant-fungal interfaces, is key to successful symbioses. The availability of expressed sequence tags (EST) of the model legume, Medicago truncatula, and AM fungus, Glomus intraradices, permits identification of genes required for development of symbiotic interfaces. The M. truncatula EST database was searched to identify cell surface arabinogalactan-proteins (AGPs) expressed in mycorrhizal roots. Candidate genes were characterised and gene expression tested using reverse transcription polymerase chain reaction and promoter:reporter gene fusions. Genes encoding one plant AGP and three AGP-like (AGL) proteins (from G. intraradices) were identified. AGL proteins encoded by two AGL genes from G. intraradices (GiAGLs) represent a new structural class of AGPs not found in non-AM fungi or plants. Two GiAGLs differ from plant AGPs by containing charged repeats. Structural modelling shows that GiAGL1 can form a polyproline II helix with separate positively and negatively charged faces, whereas GiAGL3 is charged on all three faces. The unique structural properties of the newly discovered AGLs suggests that they could assist the formation of symbiotic interfaces through self-assembly and interactions with plant cell surfaces.
Collapse
Affiliation(s)
- Carolyn J Schultz
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
247
|
Cresce AVW, Dandu R, Burger A, Cappello J, Ghandehari H. Characterization and real-time imaging of gene expression of adenovirus embedded silk-elastinlike protein polymer hydrogels. Mol Pharm 2008; 5:891-7. [PMID: 18763804 DOI: 10.1021/mp800054w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transient expression levels, vector dissemination and toxicities associated with adenoviral vectors have prompted the usage of matrices for localized and controlled gene delivery. Two recombinant silk-elastinlike protein polymer analogues, SELP-47K and SELP-415K, consisting of different lengths and ratios of silk and elastin units, were previously shown to be injectable hydrogels capable of matrix-mediated controlled adenoviral gene delivery. Reported here is a study of spatiotemporal control over adenoviral gene expression with these SELP analogues in a human tumor xenograft model of head and neck cancer using whole animal imaging. Real-time images of viral expression levels indicate that polymer concentration and polymer structure are predominant factors that affect viral release and, thus, viral transfection. Decrease in polymer concentration and increase in polymer elastin content results in greater release, probably due to changes in the network structure of the hydrogel. To better understand this relationship, macro- and microstructural properties of the hydrogels were analyzed using dynamic mechanical analysis (DMA) and transmission electron microscopy (TEM). The results confirm that the concentration and the elastin content of the protein polymer affect the pore size of the hydrogel by changing the physical constraints of the SELP fibril network and the degree of hydration of the SELP fibrils. The potential to modulate viral release using SELP hydrogel delivery vehicles that can be injected intratumorally by minimally invasive techniques holds significant promise for the delivery of therapeutic viruses.
Collapse
Affiliation(s)
- Arthur von Wald Cresce
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
248
|
Guehrs KH, Schlott B, Grosse F, Weisshart K. Environmental conditions impinge on dragline silk protein composition. INSECT MOLECULAR BIOLOGY 2008; 17:553-564. [PMID: 18828841 DOI: 10.1111/j.1365-2583.2008.00826.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The silk formed in the major ampullate (MA) gland of the orb weaving spider Nephila clavipes is composed of two silk fibroins, which are called major ampullate spidroins 1 (MaSp1) and 2 (MaSp2). Analysis of proteolytic peptides and reactivity to spidroin type specific antibodies indicated that MaSp2 constituted only a minor part in the spinning dope as well as in the spun filaments. Upon starvation, a change in the silk's characteristic features was observed that was concomitant of a decrease in the contribution of MaSp2. The silk became less elastic and stiffer, which will better tailor its usability for the safety line, albeit at the expense of its employment as the web frame threads. In addition, since MaSp2 production requires greater ATP consumption, such a shift in the protein ratio cuts down on the energy costs to produce the silk. From this change in protein composition the spider might therefore benefit twice, by synthesizing 'cheaper' silk that into the bargain has properties that potentially can better support foraging in times of food shortage.
Collapse
Affiliation(s)
- K-H Guehrs
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
249
|
Savage KN, Gosline JM. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties. J Exp Biol 2008; 211:1937-47. [DOI: 10.1242/jeb.014217] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe silk that orb-weaving spiders produce for use as dragline and for the frame of the web is spun from the major ampullate (MA) glands, and it is renowned for its exceptional toughness. The fibroins that make up MA silk have previously been organized into two major groupings, spidroin-1 and spidroin-2,based largely on differences in amino acid sequence. The most apparent difference between spidroin-1 and spidroin-2 fibroins is the lack of proline in spidroin-1. The MA silk of Araneus diadematus comprises two spidroin-2 fibroins, and is therefore proline-rich, whereas spidroin-1 is preferentially expressed in Nephila clavipes MA silk, and so this silk is proline deficient. Together, these two silks provide a system for testing the consequences of proline-rich and proline-deficient fibroin networks. This study measures the mechanical and optical properties of dry and hydrated Araneus and Nephila MA silks. Since proline acts to disrupt secondary structure, it is hypothesized that the fibroin network of Araneus MA silk will contain less secondary structure than the network of Nephila MA silk. Mechanical and optical studies clearly support this hypothesis. Although the dry properties of these two silks are indistinguishable, there are large differences between the hydrated silks. Nephila silk does not swell upon hydration to the same degree as Araneus silk. In addition, upon hydration, Nephila MA silk retains more of its initial dry stiffness, and retains more molecular order,as indicated by birefringence measurements.
Collapse
Affiliation(s)
- Ken N. Savage
- Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada, V6K 1Z4
| | - John M. Gosline
- Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada, V6K 1Z4
| |
Collapse
|
250
|
Savage KN, Gosline JM. The role of proline in the elastic mechanism of hydrated spider silks. J Exp Biol 2008; 211:1948-57. [DOI: 10.1242/jeb.014225] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThis study used thermoelastic measurements to investigate the role of proline in the elastic mechanism of hydrated, spider major ampullate (MA) and flagelliform (FL) silks. Experiments on hydrated MA silk from Araneus diadematus (proline content 16%) reveal that conformational entropy elasticity accounts for about 90% of the elastic force at small extensions,but entropy elasticity drops to about half by 50% extension. The decrease in the entropic component with extension is due to the presence of relatively short and conformationally restricted network chains in Araneus MA silk. Experiments on hydrated Araneus FL silk (proline content 16%)indicate that entropy elasticity dominates the elastic mechanism up to extensions of 100% and beyond, which likely reflects the fact that the glycine-rich network chains in FL silk are longer and less conformationally restricted than those in the MA silk. Thus, the rubber-like, entropic elasticity of these two proline-rich silks is consistent with networks of amorphous chains that become mobile when hydrated. By contrast, the elastic mechanism of hydrated Nephila clavipes MA silk (proline content 3.5%)shows a small contribution from entropic elasticity for extensions of 5% or less, and by 10% extension the elastic force is due entirely to bond-energy elasticity, probably associated with the deformation of stable secondary structures. These results indicate that there are major differences in the structural organization of the glycine-rich network chains and the mechanism of elasticity in proline-rich and proline-deficient fibroins.
Collapse
Affiliation(s)
- Ken N. Savage
- Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada, V6K 1Z4
| | - John M. Gosline
- Department of Zoology, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia, Canada, V6K 1Z4
| |
Collapse
|