201
|
Homophilic interaction and deformation of E-cadherin and cadherin 7 probed by single molecule force spectroscopy. Arch Biochem Biophys 2015; 587:38-47. [PMID: 26476343 DOI: 10.1016/j.abb.2015.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 01/18/2023]
Abstract
Cadherin-mediated adhesion plays a crucial role in multicellular organisms. Dysfunction within this adhesion system has major consequences in many pathologies, including cancer invasion and metastasis. However, mechanisms controlling cadherin recognition and adhesive strengthening are only partially understood. Here, we investigated the homophilic interactions and mechanical stability of the extracellular (EC) domains of E-cadherin and cadherin 7 using atomic force microscopy and magnetic tweezers. Besides exhibiting stronger interactions, E-cadherin also showed more efficient force-induced self-strengthening of interactions than cadherin 7. In addition, the distributions of the unbinding forces for both cadherins partially overlap with those of the unfolding forces, indicating that partial unfolding/deformation of the cadherin EC domains may take place during their homophilic interactions. These conformational changes may be involved in cadherins physiology function and contribute to the significant differences in adhesive strength mediated by type I and type II cadherins.
Collapse
|
202
|
Rubinstein R, Thu CA, Goodman KM, Wolcott HN, Bahna F, Mannepalli S, Ahlsen G, Chevee M, Halim A, Clausen H, Maniatis T, Shapiro L, Honig B. Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell 2015; 163:629-42. [PMID: 26478182 DOI: 10.1016/j.cell.2015.09.026] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/17/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022]
Abstract
Self-avoidance, a process preventing interactions of axons and dendrites from the same neuron during development, is mediated in vertebrates through the stochastic single-neuron expression of clustered protocadherin protein isoforms. Extracellular cadherin (EC) domains mediate isoform-specific homophilic binding between cells, conferring cell recognition through a poorly understood mechanism. Here, we report crystal structures for the EC1-EC3 domain regions from four protocadherin isoforms representing the α, β, and γ subfamilies. All are rod shaped and monomeric in solution. Biophysical measurements, cell aggregation assays, and computational docking reveal that trans binding between cells depends on the EC1-EC4 domains, which interact in an antiparallel orientation. We also show that the EC6 domains are required for the formation of cis-dimers. Overall, our results are consistent with a model in which protocadherin cis-dimers engage in a head-to-tail interaction between EC1-EC4 domains from apposed cell surfaces, possibly forming a zipper-like protein assembly, and thus providing a size-dependent self-recognition mechanism.
Collapse
Affiliation(s)
- Rotem Rubinstein
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Chan Aye Thu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Kerry Marie Goodman
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Holly Noelle Wolcott
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Fabiana Bahna
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Seetha Mannepalli
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Goran Ahlsen
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Maxime Chevee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
203
|
Erami Z, Timpson P, Yao W, Zaidel-Bar R, Anderson KI. There are four dynamically and functionally distinct populations of E-cadherin in cell junctions. Biol Open 2015; 4:1481-9. [PMID: 26471767 PMCID: PMC4728362 DOI: 10.1242/bio.014159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation.
Collapse
Affiliation(s)
- Zahra Erami
- Cancer Research UK Beatson Institute, Glasgow G11 7DU, UK
| | - Paul Timpson
- Cancer Research UK Beatson Institute, Glasgow G11 7DU, UK
| | - Wu Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | |
Collapse
|
204
|
Adherens Junctions Revisualized: Organizing Cadherins as Nanoassemblies. Dev Cell 2015; 35:12-20. [DOI: 10.1016/j.devcel.2015.09.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/27/2015] [Accepted: 09/17/2015] [Indexed: 01/31/2023]
|
205
|
Garg S, Fischer SC, Schuman EM, Stelzer EHK. Lateral assembly of N-cadherin drives tissue integrity by stabilizing adherens junctions. J R Soc Interface 2015; 12:20141055. [PMID: 25589573 DOI: 10.1098/rsif.2014.1055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cadherin interactions ensure the correct registry and anchorage of cells during tissue formation. Along the plasma membrane, cadherins form inter-junctional lattices via cis- and trans-dimerization. While structural studies have provided models for cadherin interactions, the molecular nature of cadherin binding in vivo remains unexplored. We undertook a multi-disciplinary approach combining live cell imaging of three-dimensional cell assemblies (spheroids) with a computational model to study the dynamics of N-cadherin interactions. Using a loss-of-function strategy, we demonstrate that each N-cadherin interface plays a distinct role in spheroid formation. We found that cis-dimerization is not a prerequisite for trans-interactions, but rather modulates trans-interfaces to ensure tissue stability. Using a model of N-cadherin junction dynamics, we show that the absence of cis-interactions results in low junction stability and loss of tissue integrity. By quantifying the binding and unbinding dynamics of the N-cadherin binding interfaces, we determined that mutating either interface results in a 10-fold increase in the dissociation constant. These findings provide new quantitative information on the steps driving cadherin intercellular adhesion and demonstrate the role of cis-interactions in junction stability.
Collapse
Affiliation(s)
- S Garg
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - S C Fischer
- Department of Physical Biology (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt Macromolecular Complexes (CEF MC), Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - E M Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - E H K Stelzer
- Department of Physical Biology (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt Macromolecular Complexes (CEF MC), Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| |
Collapse
|
206
|
Doro F, Colombo C, Alberti C, Arosio D, Belvisi L, Casagrande C, Fanelli R, Manzoni L, Parisini E, Piarulli U, Luison E, Figini M, Tomassetti A, Civera M. Computational design of novel peptidomimetic inhibitors of cadherin homophilic interactions. Org Biomol Chem 2015; 13:2570-3. [PMID: 25614037 DOI: 10.1039/c4ob02538e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a first set of peptidomimetic ligands mimicking the adhesive interface identified by recent crystallographic structures of E- and N-cadherin. Compounds 2 and 3 inhibit adhesion of epithelial ovarian cancer (EOC) cells with improved efficacy compared to the ADH-1 peptide, a N-cadherin antagonist that is in early clinical trials in EOC patients.
Collapse
Affiliation(s)
- Fabio Doro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, I-20133, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
E-cadherin junction formation involves an active kinetic nucleation process. Proc Natl Acad Sci U S A 2015; 112:10932-7. [PMID: 26290581 DOI: 10.1073/pnas.1513775112] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial (E)-cadherin-mediated cell-cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.
Collapse
|
208
|
Chen CS, Hong S, Indra I, Sergeeva AP, Troyanovsky RB, Shapiro L, Honig B, Troyanovsky SM. α-Catenin-mediated cadherin clustering couples cadherin and actin dynamics. J Cell Biol 2015; 210:647-61. [PMID: 26261181 PMCID: PMC4539995 DOI: 10.1083/jcb.201412064] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/13/2015] [Indexed: 12/14/2022] Open
Abstract
The function of the actin-binding domain of α-catenin, αABD, including its possible role in the direct anchorage of the cadherin-catenin complex to the actin cytoskeleton, has remained uncertain. We identified two point mutations on the αABD surface that interfere with αABD binding to actin and used them to probe the role of α-catenin-actin interactions in adherens junctions. We found that the junctions directly bound to actin via αABD were more dynamic than the junctions bound to actin indirectly through vinculin and that recombinant αABD interacted with cortical actin but not with actin bundles. This interaction resulted in the formation of numerous short-lived cortex-bound αABD clusters. Our data suggest that αABD clustering drives the continuous assembly of transient, actin-associated cadherin-catenin clusters whose disassembly is maintained by actin depolymerization. It appears then that such actin-dependent αABD clustering is a unique molecular mechanism mediating both integrity and reassembly of the cell-cell adhesive interface formed through weak cis- and trans-intercadherin interactions.
Collapse
Affiliation(s)
- Chi-Shuo Chen
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Soonjin Hong
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alina P Sergeeva
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032 Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY 10032 Department of Systems Biology, Columbia University, New York, NY 10032
| | - Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032 Department of Systems Biology, Columbia University, New York, NY 10032
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032 Center for Computational Biology and Bioinformatics, Columbia University Medical Center, New York, NY 10032 Department of Systems Biology, Columbia University, New York, NY 10032 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
209
|
Mrozik KM, Cheong CM, Hewett D, Chow AWS, Blaschuk OW, Zannettino ACW, Vandyke K. Therapeutic targeting of N-cadherin is an effective treatment for multiple myeloma. Br J Haematol 2015; 171:387-99. [PMID: 26194766 DOI: 10.1111/bjh.13596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/14/2015] [Indexed: 12/13/2022]
Abstract
Elevated expression of the cell adhesion molecule N-cadherin (cadherin 2, type 1, N-cadherin (neuronal); CDH2) is associated with poor prognosis in newly-diagnosed multiple myeloma (MM) patients. In this study, we investigated whether targeting of N-cadherin represents a potential treatment for the ~50% of MM patients with elevated N-cadherin. Initially, we stably knocked-down N-cadherin in the mouse MM plasma cell (PC) line 5TGM1 to assess the functional role of N-cadherin in MM pathogenesis. When compared with 5TGM1-scramble-shRNA cells, 5TGM1-Cdh2-shRNA cells had significantly reduced adhesion to bone marrow endothelial cells. However, N-cadherin knock-down did not affect 5TGM1 cell proliferation or adhesion to bone marrow stromal cells. In the C57BL/KaLwRij murine MM model, mice intravenously inoculated with 5TGM1-Cdh2-shRNA cells showed significantly decreased tumour burden after 4 weeks, compared with animals bearing 5TGM1-scramble-shRNA cells. Finally, the N-cadherin antagonist ADH-1 had no effect on tumour burden in the established disease setting, whereas up-front ADH-1 treatment resulted in significantly reduced tumour burden after 4 weeks. Our findings demonstrate that N-cadherin may play a key role in the extravasation of circulating MM PCs promoting bone marrow homing. Moreover, these studies suggest that N-cadherin may represent a viable therapeutic target to prevent the dissemination of MM PCs and delay MM disease progression.
Collapse
Affiliation(s)
- Krzysztof M Mrozik
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Chee Man Cheong
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Duncan Hewett
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Annie W S Chow
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Orest W Blaschuk
- Division of Urology, Department of Surgery, McGill University, Montreal, Canada
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, Australia.,Centre for Cancer Biology and Hanson Institute, SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia.,Centre for Stem Cell Research, Robinson Institute, University of Adelaide, Adelaide, Australia.,Centre for Personalised Cancer Medicine, University of Adelaide, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, Australia.,Centre for Cancer Biology and Hanson Institute, SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
210
|
Abstract
Advances in cell and developmental biology have often been closely linked to advances in our ability to visualize structure and function at many length and time scales. In this review, we discuss how new imaging technologies and new reagents have provided novel insights into the biology of cadherin-based cell-cell junctions. We focus on three developments: the application of super-resolution optical technologies to characterize the nanoscale organization of cadherins at cell-cell contacts, new approaches to interrogate the mechanical forces that act upon junctions, and advances in electron microscopy which have the potential to transform our understanding of cell-cell junctions.
Collapse
Affiliation(s)
- Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Magdalene Michael
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Robert G Parton
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
211
|
Shashikanth N, Petrova YI, Park S, Chekan J, Maiden S, Spano M, Ha T, Gumbiner BM, Leckband DE. Allosteric Regulation of E-Cadherin Adhesion. J Biol Chem 2015; 290:21749-61. [PMID: 26175155 DOI: 10.1074/jbc.m115.657098] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 11/06/2022] Open
Abstract
Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation.
Collapse
Affiliation(s)
| | - Yuliya I Petrova
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | | | - Jillian Chekan
- Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois 61801
| | - Stephanie Maiden
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Martha Spano
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Taekjip Ha
- From the Departments of Biochemistry, Physics, and the Howard Hughes Medical Institute, Urbana, Illinois 61801
| | - Barry M Gumbiner
- the Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, and
| | - Deborah E Leckband
- From the Departments of Biochemistry, Chemical and Biomolecular Engineering, University of Illinois, Urbana-Champaign, Illinois 61801,
| |
Collapse
|
212
|
High B, Cole AA, Chen X, Reese TS. Electron microscopic tomography reveals discrete transcleft elements at excitatory and inhibitory synapses. Front Synaptic Neurosci 2015; 7:9. [PMID: 26113817 PMCID: PMC4461817 DOI: 10.3389/fnsyn.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
Electron microscopy has revealed an abundance of material in the clefts of synapses in the mammalian brain, and the biochemical and functional characteristics of proteins occupying synaptic clefts are well documented. However, the detailed spatial organization of the proteins in the synaptic clefts remains unclear. Electron microscope tomography provides a way to delineate and map the proteins spanning the synaptic cleft because freeze substitution preserves molecular details with sufficient contrast to visualize individual cleft proteins. Segmentation and rendering of electron dense material connected across the cleft reveals discrete structural elements that are readily classified into five types at excitatory synapses and four types at inhibitory synapses. Some transcleft elements resemble shapes and sizes of known proteins and could represent single dimers traversing the cleft. Some of the types of cleft elements at inhibitory synapses roughly matched the structure and proportional frequency of cleft elements at excitatory synapses, but the patterns of deployments in the cleft are quite different. Transcleft elements at excitatory synapses were often evenly dispersed in clefts of uniform (18 nm) width but some types show preference for the center or edges of the cleft. Transcleft elements at inhibitory synapses typically were confined to a peripheral region of the cleft where it narrowed to only 6 nm wide. Transcleft elements in both excitatory and inhibitory synapses typically avoid places where synaptic vesicles attach to the presynaptic membrane. These results illustrate that elements spanning synaptic clefts at excitatory and inhibitory synapses consist of distinct structures arranged by type in a specific but different manner at excitatory and inhibitory synapses.
Collapse
Affiliation(s)
- Brigit High
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| | - Andy A Cole
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA ; Department of Cell and Molecular Biology, Northwestern University Chicago, IL, USA
| | - Xiaobing Chen
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| | - Thomas S Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
213
|
Epithelial Cadherin Determines Resistance to Infectious Pancreatic Necrosis Virus in Atlantic Salmon. Genetics 2015; 200:1313-26. [PMID: 26041276 DOI: 10.1534/genetics.115.175406] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/15/2015] [Indexed: 01/12/2023] Open
Abstract
Infectious pancreatic necrosis virus (IPNV) is the cause of one of the most prevalent diseases in farmed Atlantic salmon (Salmo salar). A quantitative trait locus (QTL) has been found to be responsible for most of the genetic variation in resistance to the virus. Here we describe how a linkage disequilibrium-based test for deducing the QTL allele was developed, and how it was used to produce IPN-resistant salmon, leading to a 75% decrease in the number of IPN outbreaks in the salmon farming industry. Furthermore, we describe how whole-genome sequencing of individuals with deduced QTL genotypes was used to map the QTL down to a region containing an epithelial cadherin (cdh1) gene. In a coimmunoprecipitation assay, the Cdh1 protein was found to bind to IPNV virions, strongly indicating that the protein is part of the machinery used by the virus for internalization. Immunofluorescence revealed that the virus colocalizes with IPNV in the endosomes of homozygous susceptible individuals but not in the endosomes of homozygous resistant individuals. A putative causal single nucleotide polymorphism was found within the full-length cdh1 gene, in phase with the QTL in all observed haplotypes except one; the absence of a single, all-explaining DNA polymorphism indicates that an additional causative polymorphism may contribute to the observed QTL genotype patterns. Cdh1 has earlier been shown to be necessary for the internalization of certain bacteria and fungi, but this is the first time the protein is implicated in internalization of a virus.
Collapse
|
214
|
Ladoux B, Nelson WJ, Yan J, Mège RM. The mechanotransduction machinery at work at adherens junctions. Integr Biol (Camb) 2015; 7:1109-19. [PMID: 25968913 DOI: 10.1039/c5ib00070j] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The shaping of a multicellular body, and the maintenance and repair of adult tissues require fine-tuning of cell adhesion responses and the transmission of mechanical load between the cell, its neighbors and the underlying extracellular matrix. A growing field of research is focused on how single cells sense mechanical properties of their micro-environment (extracellular matrix, other cells), and on how mechanotransduction pathways affect cell shape, migration, survival as well as differentiation. Within multicellular assemblies, the mechanical load imposed by the physical properties of the environment is transmitted to neighboring cells. Force imbalance at cell-cell contacts induces essential morphogenetic processes such as cell-cell junction remodeling, cell polarization and migration, cell extrusion and cell intercalation. However, how cells respond and adapt to the mechanical properties of neighboring cells, transmit forces, and transform mechanical signals into chemical signals remain open questions. A defining feature of compact tissues is adhesion between cells at the specialized adherens junction (AJ) involving the cadherin super-family of Ca(2+)-dependent cell-cell adhesion proteins (e.g., E-cadherin in epithelia). Cadherins bind to the cytoplasmic protein β-catenin, which in turn binds to the filamentous (F)-actin binding adaptor protein α-catenin, which can also recruit vinculin, making the mechanical connection between cell-cell adhesion proteins and the contractile actomyosin cytoskeleton. The cadherin-catenin adhesion complex is a key component of the AJ, and contributes to cell assembly stability and dynamic cell movements. It has also emerged as the main route of propagation of forces within epithelial and non-epithelial tissues. Here, we discuss recent molecular studies that point toward force-dependent conformational changes in α-catenin that regulate protein interactions in the cadherin-catenin adhesion complex, and show that α-catenin is the core mechanosensor that allows cells to locally sense, transduce and adapt to environmental mechanical constrains.
Collapse
Affiliation(s)
- B Ladoux
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France.
| | | | | | | |
Collapse
|
215
|
Tariq H, Bella J, Jowitt TA, Holmes DF, Rouhi M, Nie Z, Baldock C, Garrod D, Tabernero L. Cadherin flexibility provides a key difference between desmosomes and adherens junctions. Proc Natl Acad Sci U S A 2015; 112:5395-400. [PMID: 25855637 PMCID: PMC4418904 DOI: 10.1073/pnas.1420508112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Desmosomes and adherens junctions are intercellular adhesive structures essential for the development and integrity of vertebrate tissue, including the epidermis and heart. Their cell adhesion molecules are cadherins: type 1 cadherins in adherens junctions and desmosomal cadherins in desmosomes. A fundamental difference is that desmosomes have a highly ordered structure in their extracellular region and exhibit calcium-independent hyperadhesion, whereas adherens junctions appear to lack such ordered arrays, and their adhesion is always calcium-dependent. We present here the structure of the entire ectodomain of desmosomal cadherin desmoglein 2 (Dsg2), using a combination of small-angle X-ray scattering, electron microscopy, and solution-based biophysical techniques. This structure reveals that the ectodomain of Dsg2 is flexible even in the calcium-bound state and, on average, is shorter than the type 1 cadherin crystal structures. The Dsg2 structure has an excellent fit with the electron tomography reconstructions of human desmosomes. This fit suggests an arrangement in which desmosomal cadherins form trans interactions but are too far apart to interact in cis, in agreement with previously reported observations. Cadherin flexibility may be key to explaining the plasticity of desmosomes that maintain tissue integrity in their hyperadhesive form, but can adopt a weaker, calcium-dependent adhesion during wound healing and early development.
Collapse
Affiliation(s)
- Humera Tariq
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jordi Bella
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - David F Holmes
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mansour Rouhi
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Zhuxiang Nie
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Clair Baldock
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - David Garrod
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Lydia Tabernero
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
216
|
Lam KH, Jin R. Architecture of the botulinum neurotoxin complex: a molecular machine for protection and delivery. Curr Opin Struct Biol 2015; 31:89-95. [PMID: 25889616 DOI: 10.1016/j.sbi.2015.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 01/22/2023]
Abstract
Botulinum neurotoxins (BoNTs) are extremely poisonous protein toxins that cause the fatal paralytic disease botulism. They are naturally produced in bacteria with several nontoxic neurotoxin-associated proteins (NAPs) and together they form a progenitor toxin complex (PTC), the largest bacterial toxin complex known. In foodborne botulism, the PTC functions as a molecular machine that helps BoNT breach the host defense in the gut. Here, we discuss the substantial recent advance in elucidating the atomic structures and assembly of the 14-subunit PTC, including structures of BoNT and four NAPs. These structural studies shed light on the molecular mechanisms by which BoNT is protected against the acidic environment and proteolytic destruction in the gastrointestinal tract, and how it is delivered across the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
217
|
Doro F, Saladino G, Belvisi L, Civera M, Gervasio FL. New Insights into the Molecular Mechanism of E-Cadherin-Mediated Cell Adhesion by Free Energy Calculations. J Chem Theory Comput 2015; 11:1354-9. [PMID: 26574347 DOI: 10.1021/ct5010164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three-dimensional domain swapping is an important mode of protein association leading to the formation of stable dimers. Monomers associating via this mechanism mutually exchange a domain to form a homodimer. Classical cadherins, an increasingly important target for anticancer therapy, use domain swapping to mediate cell adhesion. However, despite its importance, the molecular mechanism of domain swapping is still debated. Here, we study the conformational changes that lead to activation and dimerization via domain swapping of E-cadherin. Using state-of-the-art enhanced sampling atomistic simulations, we reconstruct its conformational free energy landscape, obtaining the free energy profile connecting the inactive and active form. Our simulations predict that the E-cadherin monomer populates the open and closed forms almost equally, which is in agreement with the proposed "selected fit" mechanism in which monomers in an active conformational state bind to form a homodimer, analogous to the conformational selection mechanism often observed in ligand-target binding. Moreover, we find that the open state population is increased in the presence of calcium ions at the extracellular boundary, suggesting their possible role as allosteric activators of the conformational change.
Collapse
Affiliation(s)
- Fabio Doro
- Department of Chemistry, University of Milan , Via Camillo Golgi 19, Milan I-20133, Italy
| | - Giorgio Saladino
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Laura Belvisi
- Department of Chemistry, University of Milan , Via Camillo Golgi 19, Milan I-20133, Italy
| | - Monica Civera
- Department of Chemistry, University of Milan , Via Camillo Golgi 19, Milan I-20133, Italy
| | - Francesco L Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
218
|
Abstract
During brain development, billions of neurons organize into highly specific circuits. To form specific circuits, neurons must build the appropriate types of synapses with appropriate types of synaptic partners while avoiding incorrect partners in a dense cellular environment. Defining the cellular and molecular rules that govern specific circuit formation has significant scientific and clinical relevance because fine scale connectivity defects are thought to underlie many cognitive and psychiatric disorders. Organizing specific neural circuits is an enormously complicated developmental process that requires the concerted action of many molecules, neural activity, and temporal events. This review focuses on one class of molecules postulated to play an important role in target selection and specific synapse formation: the classic cadherins. Cadherins have a well-established role in epithelial cell adhesion, and although it has long been appreciated that most cadherins are expressed in the brain, their role in synaptic specificity is just beginning to be unraveled. Here, we review past and present studies implicating cadherins as active participants in the formation, function, and dysfunction of specific neural circuits and pose some of the major remaining questions.
Collapse
Affiliation(s)
- Raunak Basu
- a Department of Neurobiology and Anatomy ; University of Utah ; Salt Lake City , UT USA
| | | | | |
Collapse
|
219
|
Dalle Vedove A, Lucarelli AP, Nardone V, Matino A, Parisini E. The X-ray structure of human P-cadherin EC1-EC2 in a closed conformation provides insight into the type I cadherin dimerization pathway. Acta Crystallogr F Struct Biol Commun 2015; 71:371-80. [PMID: 25849494 PMCID: PMC4388168 DOI: 10.1107/s2053230x15003878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 01/19/2023] Open
Abstract
Cadherins are a large family of calcium-dependent proteins that mediate cellular adherens junction formation and tissue morphogenesis. To date, the most studied cadherins are those classified as classical, which are further divided into type I or type II depending on selected sequence features. Unlike other members of the classical cadherin family, a detailed structural characterization of P-cadherin has not yet been fully obtained. Here, the high-resolution crystal structure determination of the closed form of human P-cadherin EC1-EC2 is reported. The structure shows a novel, monomeric packing arrangement that provides a further snapshot in the yet-to-be-achieved complete description of the highly dynamic cadherin dimerization pathway. Moreover, this is the first multidomain cadherin fragment to be crystallized and structurally characterized in its closed conformation that does not carry any extra N-terminal residues before the naturally occurring aspartic acid at position 1. Finally, two clear alternate conformations are observed for the critical Trp2 residue, suggestive of a transient, metastable state. The P-cadherin structure and packing arrangement shown here provide new and valuable information towards the complete structural characterization of the still largely elusive cadherin dimerization pathway.
Collapse
Affiliation(s)
- Andrea Dalle Vedove
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milan, Italy
- Department of Chemistry, Material and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Anna Paola Lucarelli
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milan, Italy
| | - Valentina Nardone
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milan, Italy
- Department of Chemistry, Material and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Angelica Matino
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milan, Italy
- Department of Chemistry, Material and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milan, Italy
| |
Collapse
|
220
|
Daneshjou N, Sieracki N, van Nieuw Amerongen GP, Conway DE, Schwartz MA, Komarova YA, Malik AB. Rac1 functions as a reversible tension modulator to stabilize VE-cadherin trans-interaction. ACTA ACUST UNITED AC 2015; 208:23-32. [PMID: 25559184 PMCID: PMC4284224 DOI: 10.1083/jcb.201409108] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of the RhoGTPase Rac1 in stabilizing mature endothelial adherens junctions (AJs) is not well understood. In this paper, using a photoactivatable probe to control Rac1 activity at AJs, we addressed the relationship between Rac1 and the dynamics of vascular endothelial cadherin (VE-cadherin). We demonstrated that Rac1 activation reduced the rate of VE-cadherin dissociation, leading to increased density of VE-cadherin at AJs. This response was coupled to a reduction in actomyosin-dependent tension across VE-cadherin adhesion sites. We observed that inhibiting myosin II directly or through photo-release of the caged Rho kinase inhibitor also reduced the rate of VE-cadherin dissociation. Thus, Rac1 functions by stabilizing VE-cadherin trans-dimers in mature AJs by counteracting the actomyosin tension. The results suggest a new model of VE-cadherin adhesive interaction mediated by Rac1-induced reduction of mechanical tension at AJs, resulting in the stabilization of VE-cadherin adhesions.
Collapse
Affiliation(s)
- Nazila Daneshjou
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Nathan Sieracki
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, Vrije University of Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Daniel E Conway
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Martin A Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Yulia A Komarova
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| | - Asrar B Malik
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
221
|
Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell 2015; 158:1045-1059. [PMID: 25171406 DOI: 10.1016/j.cell.2014.07.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/18/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
Individual mammalian neurons stochastically express distinct repertoires of α, β, and γ protocadherin (Pcdh) proteins, which function in neural circuit assembly. We report that all three subfamilies of clustered Pcdhs can engage in specific homophilic interactions, that cell surface delivery of Pcdhα isoforms requires cis interactions with other Pcdhs, and that the extracellular cadherin domain EC6 plays a critical role in this process. Examination of homophilic interactions between specific combinations of multiple Pcdh isoforms revealed that Pcdh combinatorial recognition specificities depend on the identity of all of the expressed isoforms. A single mismatched Pcdh isoform can interfere with these combinatorial homophilic interactions. A theoretical analysis reveals that assembly of Pcdh isoforms into multimeric recognition units and the observed tolerance for mismatched isoforms can generate cell surface diversity sufficient for single-cell identity. However, the competing demands of nonself discrimination and self-recognition place limitations on the mechanisms by which homophilic recognition units can function.
Collapse
Affiliation(s)
- Chan Aye Thu
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Rotem Rubinstein
- Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute
| | - Maxime Chevee
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA
| | - Holly N Wolcott
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA
| | - Klara O Felsovalyi
- Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute
| | - Juan Carlos Tapia
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Pavilion, New York, NY 10032, USA; Center for Computational Biology and Bioinformatics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of System Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Howard Hughes Medical Institute.
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA.
| |
Collapse
|
222
|
Wu Y, Kanchanawong P, Zaidel-Bar R. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev Cell 2015; 32:139-54. [PMID: 25600236 DOI: 10.1016/j.devcel.2014.12.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/20/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
E-cadherin is the major adhesion receptor in epithelial adherens junctions, which connect cells to form tissues and are essential for morphogenesis and homeostasis. The mechanism by which E-cadherin monomers cluster and become organized in adherens junctions remains poorly understood. Here, using superresolution microscopy techniques in combination with structure-informed functional mutations, we found that loosely organized clusters of approximately five E-cadherin molecules that form independently of cis or trans interactions, and that are delimited by the cortical F-actin meshwork, are the precursors of trans-ligated adhesive clusters that make up the adherens junction. The density of E-cadherin clusters was wide ranged, and notably, we could detect densities consistent with the crystal lattice structure at the core of adhesive clusters, which were dependent on extracellular domain interactions. Thus, our results elucidate the nanoscale architecture of adherens junctions, as well as the molecular mechanisms driving its assembly.
Collapse
Affiliation(s)
- Yao Wu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore.
| |
Collapse
|
223
|
Lindén S, Singh MK, Wegner KD, Regairaz M, Dautry F, Treussart F, Hildebrandt N. Terbium-based time-gated Förster resonance energy transfer imaging for evaluating protein–protein interactions on cell membranes. Dalton Trans 2015; 44:4994-5003. [DOI: 10.1039/c4dt02884h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Time-gated Tb-to-dye FRET imaging for the investigation of E- and N-cadherin expression on different model cell lines.
Collapse
Affiliation(s)
- Stina Lindén
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- Orsay
- France
| | - Manish Kumar Singh
- Laboratoire Aimé Cotton
- UMR 9188 CNRS
- Université Paris-Sud and ENS Cachan
- 91405 Orsay
- France
| | - K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- Orsay
- France
| | - Marie Regairaz
- Laboratoire de Biologie et de Pharmacologie Appliquée
- UMR 8113 CNRS and ENS Cachan
- 94235 Cachan
- France
| | - François Dautry
- Laboratoire de Biologie et de Pharmacologie Appliquée
- UMR 8113 CNRS and ENS Cachan
- 94235 Cachan
- France
| | - François Treussart
- Laboratoire Aimé Cotton
- UMR 9188 CNRS
- Université Paris-Sud and ENS Cachan
- 91405 Orsay
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- Orsay
- France
| |
Collapse
|
224
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
225
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
226
|
Guo Z, Neilson LJ, Zhong H, Murray PS, Zanivan S, Zaidel-Bar R. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci Signal 2014; 7:rs7. [PMID: 25468996 PMCID: PMC4972397 DOI: 10.1126/scisignal.2005473] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
E-cadherin-mediated cell-cell adhesion and signaling plays an essential role in development and maintenance of healthy epithelial tissues. Adhesiveness mediated by E-cadherin is conferred by its extracellular cadherin domains and is regulated by an assembly of intracellular adaptors and enzymes associated with its cytoplasmic tail. We used proximity biotinylation and quantitative proteomics to identify 561 proteins in the vicinity of the cytoplasmic tail of E-cadherin. In addition, we used proteomics to identify proteins associated with E-cadherin-containing adhesion plaques from a cell-glass interface, which enabled the assignment of cellular localization to putative E-cadherin-interacting proteins. Moreover, by tagging identified proteins with GFP (green fluorescent protein), we determined the subcellular localization of 83 putative E-cadherin-proximal proteins and identified 24 proteins that were previously uncharacterized as part of adherens junctions. We constructed and characterized a comprehensive E-cadherin interaction network of 79 published and 394 previously uncharacterized proteins using a structure-informed database of protein-protein interactions. Finally, we found that calcium chelation, which disrupts the interaction of the extracellular E-cadherin domains, did not disrupt most intracellular protein interactions with E-cadherin, suggesting that the E-cadherin intracellular interactome is predominantly independent of cell-cell adhesion.
Collapse
Affiliation(s)
- Zhenhuan Guo
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411, Singapore
| | - Lisa J Neilson
- Vascular Proteomics Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Hang Zhong
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411, Singapore
| | - Paul S Murray
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, and Center of Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | - Sara Zanivan
- Vascular Proteomics Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Ronen Zaidel-Bar
- Mechanobiology Institute of Singapore, National University of Singapore, Singapore 117411, Singapore. Department of Biomedical Engineering, National University of Singapore, Singapore 117575, Singapore.
| |
Collapse
|
227
|
Um JW, Kim KH, Park BS, Choi Y, Kim D, Kim CY, Kim SJ, Kim M, Ko JS, Lee SG, Choii G, Nam J, Heo WD, Kim E, Lee JO, Ko J, Kim HM. Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion. Nat Commun 2014; 5:5423. [PMID: 25394468 DOI: 10.1038/ncomms6423] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 09/29/2014] [Indexed: 01/08/2023] Open
Abstract
Synaptic adhesion molecules orchestrate synaptogenesis. The presynaptic leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) regulate synapse development by interacting with postsynaptic Slit- and Trk-like family proteins (Slitrks), which harbour two extracellular leucine-rich repeats (LRR1 and LRR2). Here we identify the minimal regions of the LAR-RPTPs and Slitrks, LAR-RPTPs Ig1-3 and Slitrks LRR1, for their interaction and synaptogenic function. Subsequent crystallographic and structure-guided functional analyses reveal that the splicing inserts in LAR-RPTPs are key molecular determinants for Slitrk binding and synapse formation. Moreover, structural comparison of the two Slitrk1 LRRs reveal that unique properties on the concave surface of Slitrk1 LRR1 render its specific binding to LAR-RPTPs. Finally, we demonstrate that lateral interactions between adjacent trans-synaptic LAR-RPTPs/Slitrks complexes observed in crystal lattices are critical for Slitrk1-induced lateral assembly and synaptogenic activity. Thus, we propose a model in which Slitrks mediate synaptogenic functions through direct binding to LAR-RPTPs and the subsequent lateral assembly of LAR-RPTPs/Slitrks complexes.
Collapse
Affiliation(s)
- Ji Won Um
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Kee Hun Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Beom Seok Park
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam 461-713, Korea
| | - Yeonsoo Choi
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea [2] Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Cha Yeon Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Soo Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Minhye Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Seung Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Gayoung Choii
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Jungyong Nam
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea [2] Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Won Do Heo
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea [2] Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Eunjoon Kim
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea [2] Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Jie-Oh Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jaewon Ko
- 1] Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea [2] Department of Psychiatry, Yonsei University College of Medicine, Seoul 120-751, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| |
Collapse
|
228
|
Abstract
Vertebrate adherens junctions mediate cell–cell adhesion via a “classical” cadherin–catenin “core” complex, which is associated with and regulated by a functional network of proteins, collectively named the cadherin adhesome (“cadhesome”). The most basal metazoans have been shown to conserve the cadherin–catenin “core”, but little is known about the evolution of the cadhesome. Using a bioinformatics approach based on both sequence and structural analysis, we have traced the evolution of this larger network in 26 organisms, from the uni-cellular ancestors of metazoans, through basal metazoans, to vertebrates. Surprisingly, we show that approximately 70% of the cadhesome, including proteins with similarity to the catenins, predate metazoans. We found that the transition to multicellularity was accompanied by the appearance of a small number of adaptor proteins, and we show how these proteins may have helped to integrate pre-metazoan sub-networks via PDZ domain–peptide interactions. Finally, we found the increase in network complexity in higher metazoans to have been driven primarily by expansion of paralogs. In summary, our analysis helps to explain how the complex protein network associated with cadherin at adherens junctions first came together in the first metazoan and how it evolved into the even more complex mammalian cadhesome.
Collapse
Affiliation(s)
- Paul S Murray
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA Center of Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, Irving Cancer Research Center, New York, NY 10032, USA
| | - Ronen Zaidel-Bar
- Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411 Department of Biomedical Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
229
|
Troyanovsky RB, Indra I, Chen CS, Hong S, Troyanovsky SM. Cadherin controls nectin recruitment into adherens junctions by remodeling the actin cytoskeleton. J Cell Sci 2014; 128:140-9. [PMID: 25395582 DOI: 10.1242/jcs.161588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanism that coordinates activities of different adhesion receptors is poorly understood. We investigated this mechanism by focusing on the nectin-2 and E-cadherin adherens junction receptors. We found that, cadherin was not required for the basic process of nectin junction formation because nectin-2 formed junctions in cadherin-deficient A431D cells. Formation of nectin-2 junctions in these cells, however, became regulated by cadherin as soon as E-cadherin was re-expressed. E-cadherin recruited nectin-2 into adherens junctions, where both proteins formed distinct but tightly associated clusters. Live-cell imaging showed that the appearance of E-cadherin clusters often preceded that of nectin-2 clusters at sites of junction assembly. Inactivation of E-cadherin clustering by different strategies concomitantly suppressed the formation of nectin clusters. Furthermore, cadherin significantly increased the stability of nectin clusters, thereby making them resistant to the BC-12 antibody, which targets the nectin-2 adhesion interface. By testing different E-cadherin-α-catenin chimeras, we showed that the recruitment of nectin into chimera junctions is mediated by the actin-binding domain of α-catenin. Our data suggests that E-cadherin regulates assembly of nectin junctions through α-catenin-induced remodeling of the actin cytoskeleton around the cadherin clusters.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chi-Shuo Chen
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Soonjin Hong
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
230
|
Giant cadherins Fat and Dachsous self-bend to organize properly spaced intercellular junctions. Proc Natl Acad Sci U S A 2014; 111:16011-6. [PMID: 25355906 DOI: 10.1073/pnas.1418990111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cadherins Fat and Dachsous regulate cell polarity and proliferation via their heterophilic interactions at intercellular junctions. Their ectodomains are unusually large because of repetitive extracellular cadherin (EC) domains, which raises the question of how they fit in regular intercellular spaces. Cadherins typically exhibit a linear topology through the binding of Ca(2+) to the linker between the EC domains. Our electron-microscopic observations of mammalian Fat4 and Dachsous1 ectodomains, however, revealed that, although their N-terminal regions exhibit a linear configuration, the C-terminal regions are kinked with multiple hairpin-like bends. Notably, certain EC-EC linkers in Fat4 and Dachsous1 lost Ca(2+)-binding amino acids. When such non-Ca(2+)-binding linkers were substituted for a normal linker in E-cadherin, the mutant E-cadherins deformed more extensively than the wild-type molecule. To simulate cadherin structures with non-Ca(2+)-binding linkers, we used an elastic network model and confirmed that bent configurations can be generated by deformation of non-Ca(2+)-binding linkers. These findings suggest that Fat and Dachsous self-bend due to the loss of Ca(2+)-binding amino acids from specific EC-EC linkers, and can therefore adapt to confined spaces.
Collapse
|
231
|
Sugawara Y, Yutani M, Amatsu S, Matsumura T, Fujinaga Y. Functional dissection of the Clostridium botulinum type B hemagglutinin complex: identification of the carbohydrate and E-cadherin binding sites. PLoS One 2014; 9:e111170. [PMID: 25340348 PMCID: PMC4207779 DOI: 10.1371/journal.pone.0111170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022] Open
Abstract
Botulinum neurotoxin (BoNT) inhibits neurotransmitter release in motor nerve endings, causing botulism, a condition often resulting from ingestion of the toxin or toxin-producing bacteria. BoNTs are always produced as large protein complexes by associating with a non-toxic protein, non-toxic non-hemagglutinin (NTNH), and some toxin complexes contain another non-toxic protein, hemagglutinin (HA), in addition to NTNH. These accessory proteins are known to increase the oral toxicity of the toxin dramatically. NTNH has a protective role against the harsh conditions in the digestive tract, while HA is considered to facilitate intestinal absorption of the toxin by intestinal binding and disruption of the epithelial barrier. Two specific activities of HA, carbohydrate and E-cadherin binding, appear to be involved in these processes; however, the exact roles of these activities in the pathogenesis of botulism remain unclear. The toxin is conventionally divided into seven serotypes, designated A through G. In this study, we identified the amino acid residues critical for carbohydrate and E-cadherin binding in serotype B HA. We constructed mutants defective in each of these two activities and examined the relationship of these activities using an in vitro intestinal cell culture model. Our results show that the carbohydrate and E-cadherin binding activities are functionally and structurally independent. Carbohydrate binding potentiates the epithelial barrier-disrupting activity by enhancing cell surface binding, while E-cadherin binding is essential for the barrier disruption.
Collapse
Affiliation(s)
- Yo Sugawara
- Laboratory of Infection Cell Biology, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Masahiro Yutani
- Laboratory of Infection Cell Biology, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Sho Amatsu
- Laboratory of Infection Cell Biology, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Takuhiro Matsumura
- Laboratory of Infection Cell Biology, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Yukako Fujinaga
- Laboratory of Infection Cell Biology, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
232
|
Cell surface N-glycans influence the level of functional E-cadherin at the cell-cell border. FEBS Open Bio 2014; 4:892-7. [PMID: 25379387 PMCID: PMC4215119 DOI: 10.1016/j.fob.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 11/23/2022] Open
Abstract
Cell surface N-glycans impact E-cadherin placement at the cell–cell border. E-cadherin retention at the cell–cell border is affected by cell surface N-glycans. Cell surface N-glycans influence E-cadherin-mediated cell–cell adhesion. N-glycans outside the cell contribute to plasma membrane structure.
E-cadherin is crucial for adhesion of cells to each other and thereby development and maintenance of tissue. While it is has been established that N-glycans inside the cell impact the level of E-cadherin at the cell surface of epithelial-derived cells, it is unclear whether N-glycans outside the cell control the clustering of E-cadherin at the cell–cell border. Here, we demonstrate reduction of N-glycans at the cell surface weakened the recruitment and retention of E-cadherin at the cell–cell border, and consequently reduced the strength of cell–cell interactions. We conclude that N-glycans at the cell surface are tightly linked to the placement of E-cadherin at the cell–cell border and thereby control E-cadherin mediated cell–cell adhesion.
Collapse
|
233
|
Affiliation(s)
- D.E. Leckband
- Departments of Chemical and Biomolecular Engineering, Chemistry, and Biochemistry, University of Illinois, Urbana, Illinois 61801;
| | - J. de Rooij
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands;
| |
Collapse
|
234
|
Structural and energetic determinants of adhesive binding specificity in type I cadherins. Proc Natl Acad Sci U S A 2014; 111:E4175-84. [PMID: 25253890 DOI: 10.1073/pnas.1416737111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type I cadherin cell-adhesion proteins are similar in sequence and structure and yet are different enough to mediate highly specific cell-cell recognition phenomena. It has previously been shown that small differences in the homophilic and heterophilic binding affinities of different type I family members can account for the differential cell-sorting behavior. Here we use a combination of X-ray crystallography, analytical ultracentrifugation, surface plasmon resonance and double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy to identify the molecular determinants of type I cadherin dimerization affinities. Small changes in sequence are found to produce subtle structural and dynamical changes that impact relative affinities, in part via electrostatic and hydrophobic interactions, and in part through entropic effects because of increased conformational heterogeneity in the bound states as revealed by DEER distance mapping in the dimers. These findings highlight the remarkable ability of evolution to exploit a wide range of molecular properties to produce closely related members of the same protein family that have affinity differences finely tuned to mediate their biological roles.
Collapse
|
235
|
Miyaguchi K. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol Cell 2014; 106:323-45. [PMID: 25040059 DOI: 10.1111/boc.201300081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.
Collapse
Affiliation(s)
- Katsuyuki Miyaguchi
- Shinsapporokeiaikai Hospital, 5-5-35 Ooyachihigashi, Atsubetsuku, Sapporo, 004-0041, Japan
| |
Collapse
|
236
|
Pirolli D, Sciandra F, Bozzi M, Giardina B, Brancaccio A, De Rosa MC. Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS One 2014; 9:e103866. [PMID: 25078606 PMCID: PMC4117597 DOI: 10.1371/journal.pone.0103866] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies.
Collapse
Affiliation(s)
- Davide Pirolli
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bruno Giardina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Cristina De Rosa
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
237
|
Computational modeling of the interplay between cadherin-mediated cell adhesion and Wnt signaling pathway. PLoS One 2014; 9:e100702. [PMID: 24967587 PMCID: PMC4072676 DOI: 10.1371/journal.pone.0100702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022] Open
Abstract
Wnt signaling and cadherin-mediated adhesion have been implicated in both processes of embryonic development and the progression of carcinomas. Recent experimental studies revealed that Wnt signaling and cadherin-mediated cell adhesion have close crosstalk with each other. A comprehensive model that investigates the dynamic balance of β-catenins in Wnt signaling and cell adhesion will improve our understanding to embryonic development and carcinomas. We constructed a network model to evaluate the dynamic interplay between adhesion and Wnt signaling. The network is decomposed into three interdependent modules: the cell adhesion, the degradation circle and the transcriptional regulation. In the cell adhesion module, we consider the effect of cadherin’s lateral clustering. We found adhesion negatively contributes to Wnt signaling through competition for cytoplasmic β-catenins. In the network of degradation circle, we incorporated features from various existing models. Our simulations reproduced the most recent experimental phenomena with semi-quantitative accuracy. Finally, in the transcriptional regulation module, we developed a function selection strategy to analyze the outcomes of genetic feedback loops in modulating the gene expression of Wnt targets. The specific cellular phenomena such as cadherin switch and Axin oscillation were archived and their biological insights were discussed. Our model provides the theoretical basis of how spatial organization regulates the dynamics of cellular signaling pathways. We suggest that cell adhesion affects Wnt signaling in both negative and positive ways. Cadherins can inhibit Wnt signaling not only in a way as a stoichiometric binding partner of β-catenins that sequesters them from signaling, but also in a way through their clustering to impacts the rate at which β-catenins are involved in the destruction loop. Additionally, cadherin clustering increases the phosphorylation rate of β-catenins and promotes its signaling in nucleus.
Collapse
|
238
|
Lee K, Zhong X, Gu S, Kruel AM, Dorner MB, Perry K, Rummel A, Dong M, Jin R. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex. Science 2014; 344:1405-10. [PMID: 24948737 PMCID: PMC4164303 DOI: 10.1126/science.1253823] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
How botulinum neurotoxins (BoNTs) cross the host intestinal epithelial barrier in foodborne botulism is poorly understood. Here, we present the crystal structure of a clostridial hemagglutinin (HA) complex of serotype BoNT/A bound to the cell adhesion protein E-cadherin at 2.4 angstroms. The HA complex recognizes E-cadherin with high specificity involving extensive intermolecular interactions and also binds to carbohydrates on the cell surface. Binding of the HA complex sequesters E-cadherin in the monomeric state, compromising the E-cadherin-mediated intercellular barrier and facilitating paracellular absorption of BoNT/A. We reconstituted the complete 14-subunit BoNT/A complex using recombinantly produced components and demonstrated that abolishing either E-cadherin- or carbohydrate-binding of the HA complex drastically reduces oral toxicity of BoNT/A complex in vivo. Together, these studies establish the molecular mechanism of how HAs contribute to the oral toxicity of BoNT/A.
Collapse
Affiliation(s)
- Kwangkook Lee
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Xiaofen Zhong
- Department of Microbiology and Immunobiology, Harvard Medical School, Division of Neuroscience, New England Primate Research Center, Southborough, MA 01772, USA
| | - Shenyan Gu
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Anna Magdalena Kruel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Martin B Dorner
- Centre for Biological Threats and Special Pathogens-Biological Toxins (ZBS3), Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Kay Perry
- Northeastern Collaborative Access Team (NE-CAT) and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Min Dong
- Department of Microbiology and Immunobiology, Harvard Medical School, Division of Neuroscience, New England Primate Research Center, Southborough, MA 01772, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
239
|
Engl W, Arasi B, Yap LL, Thiery JP, Viasnoff V. Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adherens junctions. Nat Cell Biol 2014; 16:587-94. [DOI: 10.1038/ncb2973] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/24/2014] [Indexed: 02/06/2023]
|
240
|
Takeichi M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 2014; 15:397-410. [PMID: 24824068 DOI: 10.1038/nrm3802] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial cells display dynamic behaviours, such as rearrangement, movement and shape changes, particularly during embryonic development and in equivalent processes in adults. Accumulating evidence suggests that the remodelling of cell junctions, especially adherens junctions (AJs), has major roles in controlling these behaviours. AJs comprise cadherin adhesion receptors and cytoplasmic proteins that associate with them, including catenins and actin filaments, and exhibit various forms, such as linear or punctate. Remodelling of AJs induces epithelial reshaping in various ways, including by planar-polarized apical constriction that is driven by the contraction of AJ-associated actomyosin and that occurs during neural plate bending and germband extension. RHO GTPases and their effectors regulate actin polymerization and actomyosin contraction at AJs during the epithelial reshaping processes.
Collapse
Affiliation(s)
- Masatoshi Takeichi
- RIKEN Center for Developmental Biology, 2-2-3 Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
241
|
Sotomayor M, Gaudet R, Corey DP. Sorting out a promiscuous superfamily: towards cadherin connectomics. Trends Cell Biol 2014; 24:524-36. [PMID: 24794279 DOI: 10.1016/j.tcb.2014.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 12/21/2022]
Abstract
Members of the cadherin superfamily of proteins are involved in diverse biological processes such as morphogenesis, sound transduction, and neuronal connectivity. Key to cadherin function is their extracellular domain containing cadherin repeats, which can mediate interactions involved in adhesion and cell signaling. Recent cellular, biochemical, and structural studies have revealed that physical interaction among cadherins is more complex than originally thought. Here we review work on new cadherin complexes and discuss how the classification of the mammalian family can be used to search for additional cadherin-interacting partners. We also highlight some of the challenges in cadherin research; namely, the characterization of a cadherin connectome in biochemical and structural terms, as well as the elucidation of molecular mechanisms underlying the functional diversity of nonclassical cadherins in vivo.
Collapse
Affiliation(s)
- Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus OH 43210, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - David P Corey
- Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
242
|
Indra I, Troyanovsky R, Troyanovsky SM. Afadin controls cadherin cluster stability using clathrin-independent mechanism. Tissue Barriers 2014; 2:e28687. [PMID: 25045601 PMCID: PMC4092309 DOI: 10.4161/tisb.28687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/23/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
Afadin is an actin-binding protein that interacts with the intracellular region of the transmembrane proteins, nectins. In collaboration with other transmembrane proteins, cadherins, nectins form adherens junctions, a major type of cell-cell adhesive structures in the multicellular organisms. To elucidate the afadin function, we studied adherens junction defects induced by afadin depletion in epithelial A431 cells. We have found that the cells lacking afadin exhibit no abnormalities in morphology or in general dynamics of adherens junctions in the confluent cell cultures. The only observed difference is a slight increase in the rate of cadherin turnover in these junctions. However, afadin depletion strongly affects the assembly of new adherens junctions immediately after two cells touch one another: initiation of new junctions is significantly delayed, the growth of the nascent junctions stagnates, and their lifetime shortens. As a result, the afadin-depleted cells need much more time to establish the mature junctional structures. This defect is not caused by the clathrin-dependent endocytosis of cadherin clusters that was monitored using live-cell imaging of A431 cells co-expressing GFP-tagged E-cadherin and mCherry-tagged clathrin light chain. Taken together our data show that afadin reinforces adherens junctions and that this process is crucial for the fast formation of adherens junctions at the sites of new cell-cell contacts.
Collapse
Affiliation(s)
- Indrajyoti Indra
- Department of Dermatology; The Feinberg School of Medicine; Chicago, Illinois
| | - Regina Troyanovsky
- Department of Dermatology; The Feinberg School of Medicine; Chicago, Illinois
| | | |
Collapse
|
243
|
Lee YS, Cho YS, Lee GK, Lee S, Kim YW, Jho S, Kim HM, Hong SH, Hwang JA, Kim SY, Hong D, Choi IJ, Kim BC, Kim BC, Kim CH, Choi H, Kim Y, Kim KW, Kong G, Kim HL, Bhak J, Lee SH, Lee JS. Genomic profile analysis of diffuse-type gastric cancers. Genome Biol 2014; 15:R55. [PMID: 24690483 PMCID: PMC4056347 DOI: 10.1186/gb-2014-15-4-r55] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 04/01/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stomach cancer is the third deadliest among all cancers worldwide. Although incidence of the intestinal-type gastric cancer has decreased, the incidence of diffuse-type is still increasing and its progression is notoriously aggressive. There is insufficient information on genome variations of diffuse-type gastric cancer because its cells are usually mixed with normal cells, and this low cellularity has made it difficult to analyze the genome. RESULTS We analyze whole genomes and corresponding exomes of diffuse-type gastric cancer, using matched tumor and normal samples from 14 diffuse-type and five intestinal-type gastric cancer patients. Somatic variations found in the diffuse-type gastric cancer are compared to those of the intestinal-type and to previously reported variants. We determine the average exonic somatic mutation rate of the two types. We find associated candidate driver genes, and identify seven novel somatic mutations in CDH1, which is a well-known gastric cancer-associated gene. Three-dimensional structure analysis of the mutated E-cadherin protein suggests that these new somatic mutations could cause significant functional perturbations of critical calcium-binding sites in the EC1-2 junction. Chromosomal instability analysis shows that the MDM2 gene is amplified. After thorough structural analysis, a novel fusion gene TSC2-RNF216 is identified, which may simultaneously disrupt tumor-suppressive pathways and activate tumorigenesis. CONCLUSIONS We report the genomic profile of diffuse-type gastric cancers including new somatic variations, a novel fusion gene, and amplification and deletion of certain chromosomal regions that contain oncogenes and tumor suppressors.
Collapse
Affiliation(s)
- Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yun Sung Cho
- Personal Genomics Institute, Genome Research Foundation, 443-270 Suwon, Republic of Korea
| | - Geon Kook Lee
- Department of Pathology and Tumor Tissue Bank, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sunghoon Lee
- Personal Genomics Institute, Genome Research Foundation, 443-270 Suwon, Republic of Korea
| | - Young-Woo Kim
- Gastric Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sungwoong Jho
- Personal Genomics Institute, Genome Research Foundation, 443-270 Suwon, Republic of Korea
| | - Hak-Min Kim
- Personal Genomics Institute, Genome Research Foundation, 443-270 Suwon, Republic of Korea
| | - Seung-Hyun Hong
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jung-Ah Hwang
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sook-young Kim
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Dongwan Hong
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Il Ju Choi
- Gastric Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byung Chul Kim
- Personal Genomics Institute, Genome Research Foundation, 443-270 Suwon, Republic of Korea
- Theragen BiO Institute, TheragenEtex, 443-270 Suwon, Republic of Korea
| | - Byoung-Chul Kim
- Personal Genomics Institute, Genome Research Foundation, 443-270 Suwon, Republic of Korea
| | - Chul Hong Kim
- Theragen BiO Institute, TheragenEtex, 443-270 Suwon, Republic of Korea
| | - Hansol Choi
- Personal Genomics Institute, Genome Research Foundation, 443-270 Suwon, Republic of Korea
| | - Youngju Kim
- Department of Pathology and Tumor Tissue Bank, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung Wook Kim
- Department of Pathology and Tumor Tissue Bank, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyung Lae Kim
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, 443-270 Suwon, Republic of Korea
- Theragen BiO Institute, TheragenEtex, 443-270 Suwon, Republic of Korea
- Program in Nano Science and Technology, Department of Transdisciplinary Studies, Seoul National University, Suwon 443-270, Republic of Korea
- Advanced Institutes of Convergence Technology Nano Science and Technology, Suwon 443-270, Republic of Korea
| | - Seung Hoon Lee
- Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jin Soo Lee
- Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
244
|
Perkovic M, Kunz M, Endesfelder U, Bunse S, Wigge C, Yu Z, Hodirnau VV, Scheffer MP, Seybert A, Malkusch S, Schuman EM, Heilemann M, Frangakis AS. Correlative light- and electron microscopy with chemical tags. J Struct Biol 2014; 186:205-13. [PMID: 24698954 DOI: 10.1016/j.jsb.2014.03.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Correlative microscopy incorporates the specificity of fluorescent protein labeling into high-resolution electron micrographs. Several approaches exist for correlative microscopy, most of which have used the green fluorescent protein (GFP) as the label for light microscopy. Here we use chemical tagging and synthetic fluorophores instead, in order to achieve protein-specific labeling, and to perform multicolor imaging. We show that synthetic fluorophores preserve their post-embedding fluorescence in the presence of uranyl acetate. Post-embedding fluorescence is of such quality that the specimen can be prepared with identical protocols for scanning electron microscopy (SEM) and transmission electron microscopy (TEM); this is particularly valuable when singular or otherwise difficult samples are examined. We show that synthetic fluorophores give bright, well-resolved signals in super-resolution light microscopy, enabling us to superimpose light microscopic images with a precision of up to 25 nm in the x-y plane on electron micrographs. To exemplify the preservation quality of our new method we visualize the molecular arrangement of cadherins in adherens junctions of mouse epithelial cells.
Collapse
Affiliation(s)
- Mario Perkovic
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - Michael Kunz
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - Ulrike Endesfelder
- Goethe University Frankfurt, Institute for Physical and Theoretical Chemistry, Max-von-Laue Str. 13, 60438 Frankfurt am Main, Germany
| | - Stefanie Bunse
- Max-Planck-Institute for Brain Research, Max-von-Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Christoph Wigge
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - Zhou Yu
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - Victor-Valentin Hodirnau
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - Margot P Scheffer
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - Anja Seybert
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - Sebastian Malkusch
- Goethe University Frankfurt, Institute for Physical and Theoretical Chemistry, Max-von-Laue Str. 13, 60438 Frankfurt am Main, Germany
| | - Erin M Schuman
- Max-Planck-Institute for Brain Research, Max-von-Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Mike Heilemann
- Goethe University Frankfurt, Institute for Physical and Theoretical Chemistry, Max-von-Laue Str. 13, 60438 Frankfurt am Main, Germany
| | - Achilleas S Frangakis
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences and Institute for Biophysics, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
245
|
Fichtner D, Lorenz B, Engin S, Deichmann C, Oelkers M, Janshoff A, Menke A, Wedlich D, Franz CM. Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy. PLoS One 2014; 9:e93123. [PMID: 24675966 PMCID: PMC3968077 DOI: 10.1371/journal.pone.0093123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/02/2014] [Indexed: 11/18/2022] Open
Abstract
E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC) fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM) of thiols carrying benzylguanine (BG) head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF) and single-molecule (SMSF) force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2) is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5) efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5–11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.
Collapse
Affiliation(s)
- Dagmar Fichtner
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Bärbel Lorenz
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Sinem Engin
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Christina Deichmann
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Marieelen Oelkers
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- University of Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andre Menke
- Justus-Liebig-University Gieβen, Molecular Oncology of Solid Tumors, Gieβen, Germany
| | - Doris Wedlich
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - Clemens M. Franz
- Karlsruhe Institute of Technology (KIT), DFG-Center for Functional Nanostructures, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
246
|
Affiliation(s)
- Ronen Zaidel-Bar
- Mechanobiology Institute Singapore and Department of Bioengineering, National University of Singapore, Singapore 117411.
| |
Collapse
|
247
|
Geletu M, Guy S, Arulanandam R, Feracci H, Raptis L. Engaged for survival: From cadherin ligation to STAT3 activation. JAKSTAT 2013; 2:e27363. [PMID: 24470979 DOI: 10.4161/jkst.27363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/15/2022] Open
Abstract
In normal tissues or tumors, cells have extensive opportunities for adhesion to their neighbors. This state is mimicked by dense cell cultures. In this review, we integrate some recent findings on a key signal transducer, STAT3 (signal transducer and activator of transcription-3), whose activity is dramatically increased following cadherin-mediated cell to cell adhesion. Cadherin engagement, favored in dense cell cultures, causes a dramatic increase in total Rac/Cdc42 protein levels through inhibition of proteasomal degradation, which is followed by activation of IL-6 and STAT3. The cadherin/Rac/IL-6/STAT3 axis offers a potent survival signal that is a prerequisite for neoplastic transformation, as well as normal tissue function.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Pathology; Queen's University; Kingston, ON Canada
| | - Stephanie Guy
- Department of Pathology; Queen's University; Kingston, ON Canada
| | | | - Hélène Feracci
- Université Bordeaux 1; Centre de Recherche Paul Pascal; CNRS UPR 8641; Pessac, France
| | - Leda Raptis
- Department of Pathology; Queen's University; Kingston, ON Canada ; Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
248
|
Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci U S A 2013; 110:21024-9. [PMID: 24297939 DOI: 10.1073/pnas.1316753110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years protein O-mannosylation has become a focus of attention as a pathomechanism underlying severe congenital muscular dystrophies associated with neuronal migration defects. A key feature of these disorders is the lack of O-mannosyl glycans on α-dystroglycan, resulting in abnormal basement membrane formation. Additional functions of O-mannosylation are still largely unknown. Here, we identify the essential cell-cell adhesion glycoprotein epithelial (E)-cadherin as an O-mannosylated protein and establish a functional link between O-mannosyl glycans and cadherin-mediated cell-cell adhesion. By genetically and pharmacologically blocking protein O-mannosyltransferases, we found that this posttranslational modification is essential for preimplantation development of the mouse embryo. O-mannosylation-deficient embryos failed to proceed from the morula to the blastocyst stage because of defects in the molecular architecture of cell-cell contact sites, including the adherens and tight junctions. Using mass spectrometry, we demonstrate that O-mannosyl glycans are present on E-cadherin, the major cell-adhesion molecule of blastomeres, and present evidence that this modification is generally conserved in cadherins. Further, the use of newly raised antibodies specific for an O-mannosyl-conjugated epitope revealed that these glycans are present on early mouse embryos. Finally, our cell-aggregation assays demonstrated that O-mannosyl glycans are crucial for cadherin-based cell adhesion. Our results redefine the significance of O-mannosylation in humans and other mammals, showing the immense impact of cadherins on normal as well as pathogenic cell behavior.
Collapse
|
249
|
Bunse S, Garg S, Junek S, Vogel D, Ansari N, Stelzer EHK, Schuman E. Role of N-cadherin cis and trans interfaces in the dynamics of adherens junctions in living cells. PLoS One 2013; 8:e81517. [PMID: 24312555 PMCID: PMC3847041 DOI: 10.1371/journal.pone.0081517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 12/03/2022] Open
Abstract
Cadherins, Ca2+-dependent adhesion molecules, are crucial for cell-cell junctions and remodeling. Cadherins form inter-junctional lattices by the formation of both cis and trans dimers. Here, we directly visualize and quantify the spatiotemporal dynamics of wild-type and dimer mutant N-cadherin interactions using time-lapse imaging of junction assembly, disassembly and a FRET reporter to assess Ca2+-dependent interactions. A trans dimer mutant (W2A) and a cis mutant (V81D/V174D) exhibited an increased Ca2+-sensitivity for the disassembly of trans dimers compared to the WT, while another mutant (R14E) was insensitive to Ca2+-chelation. Time-lapse imaging of junction assembly and disassembly, monitored in 2D and 3D (using cellular spheroids), revealed kinetic differences in the different mutants as well as different behaviors in the 2D and 3D environment. Taken together, these data provide new insights into the role that the cis and trans dimers play in the dynamic interactions of cadherins.
Collapse
Affiliation(s)
- Stefanie Bunse
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Sakshi Garg
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Stephan Junek
- Department of Neural Systems, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Dirk Vogel
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität, Frankfurt am Main, Frankfurt am Main, Germany
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität, Frankfurt am Main, Frankfurt am Main, Germany
| | - Erin Schuman
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
250
|
Wu SK, Yap AS. Patterns in space: coordinating adhesion and actomyosin contractility at E-cadherin junctions. ACTA ACUST UNITED AC 2013; 20:201-12. [PMID: 24205985 DOI: 10.3109/15419061.2013.856889] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cadherin adhesion receptors are fundamental determinants of tissue organization in health and disease. Increasingly, we have come to appreciate that classical cadherins exert their biological actions through active cooperation with the contractile actin cytoskeleton. Rather than being passive resistors of detachment forces, cadherins can regulate the assembly and mechanics of the contractile apparatus itself. Moreover, coordinate spatial patterning of adhesion and contractility is emerging as a determinant of morphogenesis. Here we review recent developments in cadherins and actin cytoskeleton cooperativity, by focusing on E-cadherin adhesive patterning in the epithelia. Next, we discuss the underlying principles of cellular rearrangement during Drosophila germband extension and epithelial cell extrusion, as models of how planar and apical-lateral patterns of contractility organize tissue architecture.
Collapse
Affiliation(s)
- Selwin Kaixiang Wu
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Queensland , Australia
| | | |
Collapse
|