201
|
Laclef C, Anselme I, Besse L, Catala M, Palmyre A, Baas D, Paschaki M, Pedraza M, Métin C, Durand B, Schneider-Maunoury S. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor. Hum Mol Genet 2015; 24:4997-5014. [PMID: 26071364 DOI: 10.1093/hmg/ddv221] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Agenesis of the corpus callosum (AgCC) is a frequent brain disorder found in over 80 human congenital syndromes including ciliopathies. Here, we report a severe AgCC in Ftm/Rpgrip1l knockout mouse, which provides a valuable model for Meckel-Grüber syndrome. Rpgrip1l encodes a protein of the ciliary transition zone, which is essential for ciliogenesis in several cell types in mouse including neuroepithelial cells in the developing forebrain. We show that AgCC in Rpgrip1l(-/-) mouse is associated with a disturbed location of guidepost cells in the dorsomedial telencephalon. This mislocalization results from early patterning defects and abnormal cortico-septal boundary (CSB) formation in the medial telencephalon. We demonstrate that all these defects primarily result from altered GLI3 processing. Indeed, AgCC, together with patterning defects and mispositioning of guidepost cells, is rescued by overexpressing in Rpgrip1l(-/-) embryos, the short repressor form of the GLI3 transcription factor (GLI3R), provided by the Gli3(Δ699) allele. Furthermore, Gli3(Δ699) also rescues AgCC in Rfx3(-/-) embryos deficient for the ciliogenic RFX3 transcription factor that regulates the expression of several ciliary genes. These data demonstrate that GLI3 processing is a major outcome of primary cilia function in dorsal telencephalon morphogenesis. Rescuing CC formation in two independent ciliary mutants by GLI3(Δ699) highlights the crucial role of primary cilia in maintaining the proper level of GLI3R required for morphogenesis of the CC.
Collapse
Affiliation(s)
- Christine Laclef
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Isabelle Anselme
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Laurianne Besse
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Martin Catala
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and Fédération de Neurologie, Groupe hospitalier Pitié-Salpêtrière-APHP, F-75013 Paris, France
| | - Aurélien Palmyre
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| | - Dominique Baas
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Marie Paschaki
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Maria Pedraza
- Institut du Fer à Moulin, INSERM S839, F-75005 Paris, France, Sorbonne Université, UPMC Univ Paris 06, S839, Paris, France
| | - Christine Métin
- Institut du Fer à Moulin, INSERM S839, F-75005 Paris, France, Sorbonne Université, UPMC Univ Paris 06, S839, Paris, France
| | - Bénédicte Durand
- Université Claude Bernard Lyon 1 and CNRS, CGPhiMC-UMR5534, F-69622 Villeurbanne, France and
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, UPMC Univ Paris 06, UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS)-Developmental Biology Laboratory, UMR7622, INSERM, ERL1156 and
| |
Collapse
|
202
|
Harris J, Tomassy GS, Arlotta P. Building blocks of the cerebral cortex: from development to the dish. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:529-44. [PMID: 25926310 DOI: 10.1002/wdev.192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/19/2022]
Abstract
Since Ramon y Cajal's examination of the cellular makeup of the cerebral cortex, it has been appreciated that this tissue exhibits some of the greatest degrees of cellular heterogeneity in the entire nervous system. This intricate structure emerges during a well-choreographed developmental process. Here, we review current classifications of the cellular constituents of the cerebral cortex and examine how these building blocks are forged during development. We also look at how basic developmental features underlying cortex formation in vivo have been applied to protocols aimed at generating cortical tissue in vitro.
Collapse
Affiliation(s)
- James Harris
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Giulio Srubek Tomassy
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
203
|
CCN3 overexpression inhibits growth of callosal projections via upregulation of RAB25. Biochem Biophys Res Commun 2015; 461:456-62. [PMID: 25871796 DOI: 10.1016/j.bbrc.2015.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 12/28/2022]
Abstract
The cysteine-rich 61/connective tissue growth factor 3 (CCN3) is a member of the CCN family of secreted multifunctional proteins involved in a variety of cellular processes including migration, adhesion, and differentiation. Previous studies have shown that CCN3 is expressed in the developing rat central nervous system, and enhanced CCN3 expression is highly correlated with tumorigenesis. However, the expression pattern and influence of abnormal CCN3 expression during mouse cortical development remains to be elucidated. Here, we show that CCN3 expression in mice is first detectable at embryonic day 15 and increases until postnatal day 21. We overexpressed CCN3 in mouse cortical neurons using uni- and bilateral electroporation. Our in vivo overexpression experiments showed that elevated CCN3 expression inhibited the axonal outgrowth of callosal projection neurons. Moreover, we identified the small GTPase RAB25 as a downstream effector molecule of CCN3 using transcriptomic analysis with CCN3 overexpressed in cortical tissue. In vivo ectopic expression of RAB25 or the dominant-negative RAB25-T26N also revealed that the GTPase activity of RAB25 is involved in the CCN3-mediated regulation of neuronal outgrowth. Taken together, our results suggest that tight regulation of CCN3 expression is necessary for normal cortical neuronal connectivity during development, and RAB25 negatively regulates neuronal differentiation as a downstream effector of CCN3.
Collapse
|
204
|
Hoch RV, Clarke JA, Rubenstein JLR. Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Dev 2015; 10:8. [PMID: 25889070 PMCID: PMC4416298 DOI: 10.1186/s13064-015-0037-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/06/2015] [Indexed: 01/17/2023] Open
Abstract
Background The rostral patterning center (RPC) secretes multiple fibroblast growth factors (Fgfs) essential for telencephalon growth and patterning. Fgf expression patterns suggest that they mark functionally distinct RPC subdomains. We generated Fgf8CreER and Fgf17CreER mice and used them to analyze the lineages of Fgf8- versus Fgf17-expressing RPC cells. Results Both lineages contributed to medial structures of the rostroventral telencephalon structures including the septum and medial prefrontral cortex. In addition, RPC-derived progenitors were observed in other regions of the early telencephalic neuroepithelium and generated neurons in the olfactory bulb, neocortex, and basal ganglia. Surprisingly, Fgf8+ RPC progenitors generated the majority of basal ganglia cholinergic neurons. Compared to the Fgf8 lineage, the Fgf17 lineage was more restricted in its early dispersion and its contributions to the telencephalon. Mutant studies suggested that Fgf8 and Fgf17 restrict spread of RPC progenitor subpopulations. Conclusions We identified the RPC as an important source of progenitors that contribute broadly to the telencephalon and found that two molecularly distinct progenitor subtypes in the RPC make different contributions to the developing forebrain. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0037-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Renée V Hoch
- Department of Psychiatry, University of California, 1550 4th Street, UCSF MC 2611, San Francisco, CA, 94158, USA. .,Current address: PLOS, 1160 Battery Street, San Francisco, CA, 94111, USA.
| | - Jeffrey A Clarke
- Department of Psychiatry, University of California, 1550 4th Street, UCSF MC 2611, San Francisco, CA, 94158, USA.
| | - John L R Rubenstein
- Department of Psychiatry, University of California, 1550 4th Street, UCSF MC 2611, San Francisco, CA, 94158, USA.
| |
Collapse
|
205
|
Pulvers JN, Journiac N, Arai Y, Nardelli J. MCPH1: a window into brain development and evolution. Front Cell Neurosci 2015; 9:92. [PMID: 25870538 PMCID: PMC4376118 DOI: 10.3389/fncel.2015.00092] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/28/2015] [Indexed: 12/21/2022] Open
Abstract
The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.
Collapse
Affiliation(s)
| | - Nathalie Journiac
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| | - Yoko Arai
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Jeannette Nardelli
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| |
Collapse
|
206
|
Demopoulos C, Yu N, Paul LK, Sherr EH, Marco EJ. Corpus callosum in cognitive and sensory processing: insights into autism. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.14.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Atypical corpus callosum size and functional connectivity have been repeatedly implicated in autism spectrum disorders (ASDs). Conversely, individuals with agenesis of the corpus callosum often present with diagnostic features characteristic of autism. An emerging literature has identified genetic and environmental factors which may contribute to both ASD symptomatology and the neuroanatomic finding of altered white matter in the corpus callosum. In this review, we consider what is known about the structure and function of the corpus callosum and provide an update on research identifying corpus callosum abnormalities in individuals with ASD. We also review the literature on behaviors characteristic of autism that are observed in individuals with agenesis of the corpus callosum in an effort to identify some of the neuropathology that is likely to be associated with these behaviors. Finally, we suggest a conceptual model of ‘sensory processing inefficiency’ for future research aimed at elucidating some of the phenotypic variation in individuals with social communication challenges.
Collapse
Affiliation(s)
- Carly Demopoulos
- Department of Radiology & Biomedical Imaging, University of California-San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143-0628, USA
| | - Nina Yu
- Department of Neurology, University of California-San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94143, USA
| | - Lynn K Paul
- Division of Humanities & Social Sciences, California Institute of Technology, Caltech MC 228-77, Pasadena, CA 91125, USA
| | - Elliott H Sherr
- Department of Neurology, University of California-San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California-San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Elysa J Marco
- Department of Neurology, University of California-San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94143, USA
- Department of Pediatrics, University of California-San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Psychiatry, University of California-San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
207
|
Vandenberg A, Piekarski DJ, Caporale N, Munoz-Cuevas FJ, Wilbrecht L. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent. Front Neural Circuits 2015; 9:5. [PMID: 25762898 PMCID: PMC4329800 DOI: 10.3389/fncir.2015.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/14/2015] [Indexed: 11/23/2022] Open
Abstract
The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs) in Layer 5 cell-types in the mouse anterior cingulate (Cg) across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral Cg and ipsilateral pons. We found that YFP− neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21–25). YFP− neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21–25 vs. P40–50), which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB) signaling during P23–50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs). Our data suggest that the maturation of inhibitory inputs onto Layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.
Collapse
Affiliation(s)
- Angela Vandenberg
- Neuroscience Graduate Program, University of California San Francisco, CA, USA
| | - David J Piekarski
- Department of Psychology, University of California Berkeley, CA, USA
| | - Natalia Caporale
- Department of Psychology, University of California Berkeley, CA, USA
| | | | - Linda Wilbrecht
- Department of Psychology, University of California Berkeley, CA, USA ; Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA
| |
Collapse
|
208
|
Lavado A, Ware M, Paré J, Cao X. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap. Development 2014; 141:4182-93. [PMID: 25336744 DOI: 10.1242/dev.111260] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development.
Collapse
Affiliation(s)
- Alfonso Lavado
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Ware
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joshua Paré
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
209
|
Pacheco SCDS, Queiroz APA, Niza NT, da Costa LMR, Ries LGK. [Pediatric neurofunctional intervention in agenesis of the corpus callosum: a case report]. REVISTA PAULISTA DE PEDIATRIA 2014; 32:252-6. [PMID: 25479858 PMCID: PMC4227349 DOI: 10.1590/0103-0582201432317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 11/23/2022]
Abstract
Objective: To describe a clinical report pre- and post-neurofunctional intervention in a case
of agenesis of the corpus callosum. Case description: Preterm infant with corpus callosum agenesis and hypoplasia of the cerebellum
vermis and lateral ventricles, who, at the age of two years, started the proposed
intervention. Functional performance tests were used such as the neurofunctional
evaluation, the Gross Motor Function Measure and the Gross Motor Function
Classification System. In the initial evaluation, absence of equilibrium
reactions, postural transfers, deficits in manual and trunk control were observed.
The intervention was conducted with a focus on function, prioritizing postural
control and guidance of the family to continue care in the home environment. After
the intervention, there was an improvement of body reactions, postural control and
movement acquisition of hands and limbs. The intervention also showed improvement
in functional performance. Comments: Postural control and transfers of positions were benefited by the neurofunction
intervention in this case of agenesis of the corpus callosum. The approach based
on function with activities that involve muscle strengthening and balance
reactions training, influenced the acquisition of a more selective motor
behavior.
Collapse
|
210
|
Fang WQ, Chen WW, Jiang L, Liu K, Yung WH, Fu AKY, Ip NY. Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell Rep 2014; 9:1635-1643. [PMID: 25466248 DOI: 10.1016/j.celrep.2014.11.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/26/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022] Open
Abstract
The functional integrity of the neocortex depends upon proper numbers of excitatory and inhibitory neurons; however, the consequences of dysregulated neuronal production during the development of the neocortex are unclear. As excess cortical neurons are linked to the neurodevelopmental disorder autism, we investigated whether the overproduction of neurons leads to neocortical malformation and malfunction in mice. We experimentally increased the number of pyramidal neurons in the upper neocortical layers by using the small molecule XAV939 to expand the intermediate progenitor population. The resultant overpopulation of neurons perturbs development of dendrites and spines of excitatory neurons and alters the laminar distribution of interneurons. Furthermore, these phenotypic changes are accompanied by dysregulated excitatory and inhibitory synaptic connection and balance. Importantly, these mice exhibit behavioral abnormalities resembling those of human autism. Thus, our findings collectively suggest a causal relationship between neuronal overproduction and autism-like features, providing developmental insights into the etiology of autism.
Collapse
Affiliation(s)
- Wei-Qun Fang
- Division of Life Science, Center for Stem Cell Research, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wei-Wei Chen
- Division of Life Science, Center for Stem Cell Research, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kai Liu
- Division of Life Science, Center for Stem Cell Research, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Amy K Y Fu
- Division of Life Science, Center for Stem Cell Research, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, Center for Stem Cell Research, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
211
|
Houlihan SL, Feng Y. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation. eLife 2014; 3:e03297. [PMID: 25245017 PMCID: PMC4170211 DOI: 10.7554/elife.03297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders.
Collapse
Affiliation(s)
- Shauna L Houlihan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
- Driskill Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Yuanyi Feng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
212
|
Abstract
The mammalian neocortex gives rise to a wide range of mental activities and consists of a constellation of interconnected areas that are built from a set of basic circuit templates. Major obstacles to understanding cortical architecture include the diversity of cell types, their highly recurrent local and global connectivity, dynamic circuit operations, and a convoluted developmental assembly process rooted in the genome. With our increasing knowledge of gene expression and developmental genetic principles, it is now feasible to launch a program of genetic dissection of cortical circuits through systematic targeting of cell types and fate mapping of neural progenitors. Strategic design of even a modest number of mouse driver lines will facilitate efforts to compile a cell type parts list, build a Cortical Cell Atlas, establish experimental access to modern tools, integrate studies across levels, and provide coordinates for tracing developmental trajectory from circuit assembly to functional operation.
Collapse
Affiliation(s)
- Z Josh Huang
- Cold Spring Harbor Laboratory, New York, NY 11724, USA.
| |
Collapse
|
213
|
Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T. Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circuits 2014; 8:110. [PMID: 25278843 PMCID: PMC4166322 DOI: 10.3389/fncir.2014.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 11/21/2022] Open
Abstract
Here we present a novel tracing technique to stain projection neurons in Golgi-like detail by double viral infection. We used retrograde lentiviral vectors and adeno-associated viral vectors (AAV) to drive “TET-ON/TET-OFF system” in neurons connecting two regions. Using this method, we successfully labeled the corticothalamic (CT) cells of the mouse somatosensory barrel field (S1BF) and motor cortex (M1) in their entirety. We also labeled contra- and ipsilaterally-projecting corticocortical (CC) cells of M1 by targeting contralateral M1 or ipsilateral S1 for retrograde infection. The strength of this method is that we can observe the morphology of specific projection neuron subtypes en masse. We found that the group of CT cells extends their dendrites and intrinsic axons extensively below but not within the thalamorecipient layer in both S1BF and M1, suggesting that the primary target of this cell type is not layer 4. We also found that both ipsi- and contralateral targeting CC cells in M1 commonly exhibit widespread collateral extensions to contralateral M1 (layers 1–6), bilateral S1 and S2 (layers 1, 5 and 6), perirhinal cortex (layers 1, 2/3, 5, and 6), striatum and claustrum. These findings not only strengthened the previous findings of single cell tracings but also extended them by enabling cross-area comparison of CT cells or comparison of CC cells of two different labeling.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Sonoko Ohsawa
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Ryosuke Matsui
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Dai Watanabe
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| |
Collapse
|
214
|
Wu KY, He M, Hou QQ, Sheng AL, Yuan L, Liu F, Liu WW, Li G, Jiang XY, Luo ZG. Semaphorin 3A activates the guanosine triphosphatase Rab5 to promote growth cone collapse and organize callosal axon projections. Sci Signal 2014; 7:ra81. [PMID: 25161316 DOI: 10.1126/scisignal.2005334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon guidance (pathfinding) wires the brain during development and is regulated by various attractive and repulsive cues. Semaphorin 3A (Sema3A) is a repulsive cue, inducing the collapse of axon growth cones. In the mammalian forebrain, the corpus callosum is the major commissure that transmits information flow between the two hemispheres, and contralateral axons assemble into well-defined tracts. We found that the patterning of callosal axon projections in rodent layer II and III (L2/3) cortical neurons in response to Sema3A was mediated by the activation of Rab5, a small guanosine triphosphatase (GTPase) that mediates endocytosis, through the membrane fusion protein Rabaptin-5 and the Rab5 guanine nucleotide exchange factor (GEF) Rabex-5. Rabaptin-5 bound directly to Plexin-A1 in the Sema3A receptor complex [an obligate heterodimer formed by Plexin-A1 and neuropilin 1 (NP1)]; Sema3A enhanced this interaction in cultured neurons. Rabaptin-5 bridged the interaction between Rab5 and Plexin-A1. Sema3A stimulated endocytosis from the cell surface of callosal axon growth cones. In utero electroporation to reduce Rab5 or Rabaptin-5 impaired axon fasciculation or caused mistargeting of L2/3 callosal projections in rats. Overexpression of Rabaptin-5 or Rab5 rescued the defective callosal axon fasciculation or mistargeting of callosal axons caused by the loss of Sema3A-Plexin-A1 signaling in rats expressing dominant-negative Plexin-A1 or in NP1-deficient mice. Thus, our findings suggest that Rab5, its effector Rabaptin-5, and its regulator Rabex-5 mediate Sema3A-induced axon guidance during brain development.
Collapse
Affiliation(s)
- Kong-Yan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Miao He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qiong-Qiong Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ai-Li Sheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Lei Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Fei Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Wen-Wen Liu
- Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhong Guan Cun, Beijing 100190, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xing-Yu Jiang
- Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhong Guan Cun, Beijing 100190, China
| | - Zhen-Ge Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| |
Collapse
|
215
|
Kuric E, Ruscher K. Dynamics of major histocompatibility complex class II-positive cells in the postischemic brain--influence of levodopa treatment. J Neuroinflammation 2014; 11:145. [PMID: 25178113 PMCID: PMC4149192 DOI: 10.1186/s12974-014-0145-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/31/2014] [Indexed: 01/27/2023] Open
Abstract
Background Cerebral ischemia activates both the innate and the adaptive immune response, the latter being activated within days after the stroke onset and triggered by the recognition of foreign antigens. Methods In this study we have investigated the phenotype of antigen presenting cells and the levels of associated major histocompatibility complex class II (MHC II) molecules in the postischemic brain after transient occlusion of the middle cerebral artery (tMCAO) followed by levodopa/benserazide treatment. Male Sprague Dawley rats were subjected to tMCAO for 105 minutes and received levodopa (20 mg/kg)/benserazide (15 mg/kg) for 5 days starting on day 2 after tMCAO. Thereafter, immune cells were isolated from the ischemic and contralateral hemisphere and analyzed by flow cytometry. Complementarily, the spatiotemporal profile of MHC II-positive (MHC II+) cells was studied in the ischemic brain during the first 30 days after tMCAO; protein levels of MHC II and the levels of inflammation associated cytokines were determined in the ischemic hemisphere. Results We found that microglia/macrophages represent the main MHC II expressing cell in the postischemic brain one week after tMCAO. No differences in absolute cell numbers were found between levodopa/benserazide and vehicle-treated animals. In contrast, MHC II protein levels were significant downregulated in the ischemic infarct core by levodopa/benserazide treatment. This reduction was accompanied by reduced levels of IFN-γ, TNF-α and IL-4 in the ischemic hemisphere. In the contralateral hemisphere, we exclusively detected MHC II+ cells in the corpus callosum. Interestingly, the number of cells was increased by treatment with levodopa/benserazide independent from the infarct size 14 days after tMCAO. Conclusions Results suggest that dopamine signaling is involved in the adaptive immune response after stroke and involves microglia/macrophages.
Collapse
Affiliation(s)
- Enida Kuric
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, BMC A13, Lund, S-22184, Sweden.
| | | |
Collapse
|
216
|
Cubelos B, Briz CG, Esteban-Ortega GM, Nieto M. Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II-III cortical neurons. Dev Neurobiol 2014; 75:163-72. [PMID: 25059644 DOI: 10.1002/dneu.22215] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 01/19/2023]
Abstract
A number of recent reports implicate the differential regulation of apical and basal dendrites in autism disorders and in the higher functions of the human brain. They show that apical and basal dendrites are functionally specialized and that mechanisms regulating their development have important consequences for neuron function. The molecular identity of layer II-III neurons of the cerebral cortex is determined by the overlapping expression of Cux1 and Cux2. We previously showed that both Cux1 and Cux2 are necessary and nonredundant for normal dendrite development of layer II-III neurons. Loss of function of either gene reduced dendrite arbors, while overexpression increased dendritic complexity and suggested additive functions. We herein characterize the function of Cux1 and Cux2 in the development of apical and basal dendrites. By in vivo loss and gain of function analysis, we show that while the expression level of either Cux1 or Cux2 influences both apical and basal dendrites, they have distinct effects. Changes in Cux1 result in a marked effect on the development of the basal compartment whereas modulation of Cux2 has a stronger influence on the apical compartment. These distinct effects of Cux genes might account for the functional diversification of layer II-III neurons into different subpopulations, possibly with distinct connectivity patterns and modes of neuron response. Our data suggest that by their differential effects on basal and apical dendrites, Cux1 and Cux2 can promote the integration of layer II-III neurons in the intracortical networks in highly specific ways.
Collapse
Affiliation(s)
- Beatriz Cubelos
- Departamento de Biología Molecular, Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, UAM-CSIC, Nicolás Cabrera, 1, Madrid, 28049, Spain
| | | | | | | |
Collapse
|
217
|
Leone DP, Heavner WE, Ferenczi EA, Dobreva G, Huguenard JR, Grosschedl R, McConnell SK. Satb2 Regulates the Differentiation of Both Callosal and Subcerebral Projection Neurons in the Developing Cerebral Cortex. Cereb Cortex 2014; 25:3406-19. [PMID: 25037921 DOI: 10.1093/cercor/bhu156] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The chromatin-remodeling protein Satb2 plays a role in the generation of distinct subtypes of neocortical pyramidal neurons. Previous studies have shown that Satb2 is required for normal development of callosal projection neurons (CPNs), which fail to extend axons callosally in the absence of Satb2 and instead project subcortically. Here we conditionally delete Satb2 from the developing neocortex and find that neurons in the upper layers adopt some electrophysiological properties characteristic of deep layer neurons, but projections from the superficial layers do not contribute to the aberrant subcortical projections seen in Satb2 mutants. Instead, axons from deep layer CPNs descend subcortically in the absence of Satb2. These data demonstrate distinct developmental roles of Satb2 in regulating the fates of upper and deep layer neurons. Unexpectedly, Satb2 mutant brains also display changes in gene expression by subcerebral projection neurons (SCPNs), accompanied by a failure of corticospinal tract (CST) formation. Altering the timing of Satb2 ablation reveals that SCPNs require an early expression of Satb2 for differentiation and extension of the CST, suggesting that early transient expression of Satb2 in these cells plays an essential role in development. Collectively these data show that Satb2 is required by both CPNs and SCPNs for proper differentiation and axon pathfinding.
Collapse
Affiliation(s)
- Dino P Leone
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Emily A Ferenczi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gergana Dobreva
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | |
Collapse
|
218
|
Kumamoto T, Hanashima C. Neuronal subtype specification in establishing mammalian neocortical circuits. Neurosci Res 2014; 86:37-49. [PMID: 25019611 DOI: 10.1016/j.neures.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022]
Abstract
The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
219
|
Mita S, de Monasterio-Schrader P, Fünfschilling U, Kawasaki T, Mizuno H, Iwasato T, Nave KA, Werner HB, Hirata T. Transcallosal Projections Require Glycoprotein M6-Dependent Neurite Growth and Guidance. Cereb Cortex 2014; 25:4111-25. [PMID: 24917275 DOI: 10.1093/cercor/bhu129] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The function of mature neurons critically relies on the developmental outgrowth and projection of their cellular processes. It has long been postulated that the neuronal glycoproteins M6a and M6b are involved in axon growth because these four-transmembrane domain-proteins of the proteolipid protein family are highly enriched on growth cones, but in vivo evidence has been lacking. Here, we report that the function of M6 proteins is required for normal axonal extension and guidance in vivo. In mice lacking both M6a and M6b, a severe hypoplasia of axon tracts was manifested. Most strikingly, the corpus callosum was reduced in thickness despite normal densities of cortical projection neurons. In single neuron tracing, many axons appeared shorter and disorganized in the double-mutant cortex, and some of them were even misdirected laterally toward the subcortex. Probst bundles were not observed. Upon culturing, double-mutant cortical and cerebellar neurons displayed impaired neurite outgrowth, indicating a cell-intrinsic function of M6 proteins. A rescue experiment showed that the intracellular loop of M6a is essential for the support of neurite extension. We propose that M6 proteins are required for proper extension and guidance of callosal axons that follow one of the most complex trajectories in the mammalian nervous system.
Collapse
Affiliation(s)
- Sakura Mita
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | | | - Ursula Fünfschilling
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Takahiko Kawasaki
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Hidenobu Mizuno
- Division of Neurogenetics, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, D-37075 Goettingen, Germany
| | - Tatsumi Hirata
- Division of Brain Function, National Institute of Genetics, Graduate University for Advanced Studies (Sokendai), Mishima 411-8540, Japan
| |
Collapse
|
220
|
Dembrow N, Johnston D. Subcircuit-specific neuromodulation in the prefrontal cortex. Front Neural Circuits 2014; 8:54. [PMID: 24926234 PMCID: PMC4046580 DOI: 10.3389/fncir.2014.00054] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/05/2014] [Indexed: 11/13/2022] Open
Abstract
During goal-directed behavior, the prefrontal cortex (PFC) exerts top-down control over numerous cortical and subcortical regions. PFC dysfunction has been linked to many disorders that involve deficits in cognitive performance, attention, motivation, and/or impulse control. A common theme among these disorders is that neuromodulation of the PFC is disrupted. Anatomically, the PFC is reciprocally connected with virtually all neuromodulatory centers. Recent studies of PFC neurons, both in vivo and ex vivo, have found that subpopulations of prefrontal projection neurons can be segregated into distinct subcircuits based on their long-range projection targets. These subpopulations differ in their connectivity, intrinsic properties, and responses to neuromodulators. In this review we outline the evidence for subcircuit-specific neuromodulation in the PFC, and describe some of the functional consequences of selective neuromodulation on behavioral states during goal-directed behavior.
Collapse
Affiliation(s)
- Nikolai Dembrow
- Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA
| | - Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
221
|
Pérez-Brangulí F, Mishra HK, Prots I, Havlicek S, Kohl Z, Saul D, Rummel C, Dorca-Arevalo J, Regensburger M, Graef D, Sock E, Blasi J, Groemer TW, Schlötzer-Schrehardt U, Winkler J, Winner B. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet 2014; 23:4859-74. [PMID: 24794856 PMCID: PMC4140466 DOI: 10.1093/hmg/ddu200] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hereditary spastic paraplegias are a group of inherited motor neuron diseases characterized by progressive paraparesis and spasticity. Mutations in the spastic paraplegia gene SPG11, encoding spatacsin, cause an autosomal-recessive disease trait; however, the precise knowledge about the role of spatacsin in neurons is very limited. We for the first time analyzed the expression and function of spatacsin in human forebrain neurons derived from human pluripotent stem cells including lines from two SPG11 patients and two controls. SPG11 patients'-derived neurons exhibited downregulation of specific axonal-related genes, decreased neurite complexity and accumulation of membranous bodies within axonal processes. Altogether, these data point towards axonal pathologies in human neurons with SPG11 mutations. To further corroborate spatacsin function, we investigated human pluripotent stem cell-derived neurons and mouse cortical neurons. In these cells, spatacsin was located in axons and dendrites. It colocalized with cytoskeletal and synaptic vesicle (SV) markers and was present in synaptosomes. Knockdown of spatacsin in mouse cortical neurons evidenced that the loss of function of spatacsin leads to axonal instability by downregulation of acetylated tubulin. Finally, time-lapse assays performed in SPG11 patients'-derived neurons and spatacsin-silenced mouse neurons highlighted a reduction in the anterograde vesicle trafficking indicative of impaired axonal transport. By employing SPG11 patient-derived forebrain neurons and mouse cortical neurons, this study provides the first evidence that SPG11 is implicated in axonal maintenance and cargo trafficking. Understanding the cellular functions of spatacsin will allow deciphering mechanisms of motor cortex dysfunction in autosomal-recessive hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Francesc Pérez-Brangulí
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Himanshu K Mishra
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Iryna Prots
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Steven Havlicek
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | | | - Domenica Saul
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Christine Rummel
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Jonatan Dorca-Arevalo
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona (UB)-Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martin Regensburger
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Daniela Graef
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| | - Elisabeth Sock
- Institute of Biochemistry Emil-Fischer Zentrum, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Fahrstrasse 17, Erlangen 91054, Germany
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Universitat de Barcelona (UB)-Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Schwabachanlage 6, Erlangen 91054, Germany
| | | | - Beate Winner
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Glueckstrasse 6, Erlangen 91054, Germany
| |
Collapse
|
222
|
Abstract
Axon development and elongation require strictly controlled new membrane addition. Previously, we have shown the involvement of Rab10 in directional membrane insertion of plasmalemmal precursor vesicles (PPVs) during neuronal polarization and axonal growth. However, the mechanism responsible for PPV transportation remains unclear. Here we show that c-Jun N-terminal kinase-interacting protein 1 (JIP1) interacts with GTP-locked active form of Rab10 and directly connects Rab10 to kinesin-1 light chain (KLC). The kinesin-1/JIP1/Rab10 complex is required for anterograde transport of PPVs during axonal growth. Downregulation of JIP1 or KLC or disrupting the formation of this complex reduces anterograde transport of PPVs in developing axons and causes neuronal polarity defect. Furthermore, this complex plays an important role in neocortical neuronal polarization of rats in vivo. Thus, this study has demonstrated a mechanism underlying directional membrane trafficking involved in axon development.
Collapse
|
223
|
Heparan sulfotransferases Hs6st1 and Hs2st keep Erk in check for mouse corpus callosum development. J Neurosci 2014; 34:2389-401. [PMID: 24501377 DOI: 10.1523/jneurosci.3157-13.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The corpus callosum (CC) connects the left and right cerebral hemispheres in mammals and its development requires intercellular communication at the telencephalic midline mediated by signaling proteins. Heparan sulfate (HS) is a sulfated polysaccharide that decorates cell surface and extracellular matrix proteins and regulates the biological activity of numerous signaling proteins via sugar-protein interactions. HS is subject to regulated enzymatic sulfation and desulfation and an attractive, although not proven, hypothesis is that the biological activity of HS is regulated by a sugar sulfate code. Mutant mouse embryos lacking the heparan sulfotransferases Hs2st or Hs6st1 have severe CC phenotypes and form Probst bundles of noncrossing axons flanking large tangles of midline glial processes. Here, we identify a precocious accumulation of Sox9-expressing glial cells in the indusium griseum region and a corresponding depletion at the glial wedge associated with the formation of Probst bundles along the rostrocaudal axis in both mutants. Molecularly, we found a surprising hyperactivation of Erk signaling in Hs2st(-/-) (2-fold) and Hs6st1(-/-) (6-fold) embryonic telencephalon that was most striking at the midline, where Erk signaling is lowest in wild-types, and a 2-fold increase in Fgf8 protein levels in Hs6st1(-/-) embryos that could underpin Erk hyperactivation and excessive glial movement to the indusium griseum. The tightly linked Hs6st1(-/-) CC glial and axonal phenotypes can be rescued by genetic or pharmacological suppression of Fgf8/Erk axis components. Overall, our data fit a model in which Hs2st and Hs6st1 normally generate conditions conducive to CC development by generating an HS-containing environment that keeps Erk signaling in check.
Collapse
|
224
|
Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 2014; 35:4769-81. [PMID: 24636215 DOI: 10.1016/j.biomaterials.2014.02.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/22/2014] [Indexed: 12/23/2022]
Abstract
Regenerative medicine strategies to promote recovery following traumatic brain injuries are currently focused on the use of biomaterials as delivery systems for cells or bioactive molecules. This study shows that cell-free biomimetic scaffolds consisting of radially aligned electrospun poly-l/dl lactic acid (PLA70/30) nanofibers release L-lactate and reproduce the 3D organization and supportive function of radial glia embryonic neural stem cells. The topology of PLA nanofibers supports neuronal migration while L-lactate released during PLA degradation acts as an alternative fuel for neurons and is required for progenitor maintenance. Radial scaffolds implanted into cavities made in the postnatal mouse brain fostered complete implant vascularization, sustained neurogenesis, and allowed the long-term survival and integration of the newly generated neurons. Our results suggest that the endogenous central nervous system is capable of regeneration through the in vivo dedifferentiation induced by biophysical and metabolic cues, with no need for exogenous cells, growth factors, or genetic manipulation.
Collapse
|
225
|
Pont-Lezica L, Beumer W, Colasse S, Drexhage H, Versnel M, Bessis A. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur J Neurosci 2014; 39:1551-7. [DOI: 10.1111/ejn.12508] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Lorena Pont-Lezica
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche; Paris France
| | - Wouter Beumer
- Department of Immunology; Erasmus MC; Rotterdam The Netherlands
| | - Sabrina Colasse
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche; Paris France
| | - Hemmo Drexhage
- Department of Immunology; Erasmus MC; Rotterdam The Netherlands
| | - Marjan Versnel
- Department of Immunology; Erasmus MC; Rotterdam The Netherlands
| | - Alain Bessis
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale; Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche; Paris France
| |
Collapse
|
226
|
Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat Rev Neurosci 2014; 15:7-18. [PMID: 24356070 DOI: 10.1038/nrn3650] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The remarkable ability of a single axon to extend multiple branches and form terminal arbors enables vertebrate neurons to integrate information from divergent regions of the nervous system. Axons select appropriate pathways during development, but it is the branches that extend interstitially from the axon shaft and arborize at specific targets that are responsible for virtually all of the synaptic connectivity in the vertebrate CNS. How do axons form branches at specific target regions? Recent studies have identified molecular cues that activate intracellular signalling pathways in axons and mediate dynamic reorganization of the cytoskeleton to promote the formation of axon branches.
Collapse
|
227
|
Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. ACTA ACUST UNITED AC 2014; 137:1579-613. [PMID: 24477430 DOI: 10.1093/brain/awt358] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field.
Collapse
Affiliation(s)
- Timothy J Edwards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia2 Departments of Neurology and Pediatrics, The University of California and the Benioff Children's Hospital, CA, 94158, USA
| | - Elliott H Sherr
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA
| | - A James Barkovich
- 3 Departments of Pediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California Children's Hospital, CA 94143, USA4 Departments of Paediatrics and Neurosurgery, Radiology and Biomedical Imaging, The University of California San Francisco and The Benioff Children's Hospital, CA 94143-0628 USA
| | - Linda J Richards
- 1 Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia5 School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
228
|
van Luijtelaar G, Behr C, Avoli M. Is there such a thing as "generalized" epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:81-91. [PMID: 25012369 DOI: 10.1007/978-94-017-8914-1_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The distinction between generalized and partial epilepsies is probably one, if not the most, pregnant assertions in modern epileptology. Both absence and generalized tonic-clonic seizures, the prototypic seizures found in generalized epilepsies, are classically seen as the result of a rapid, synchronous recruitment of neuronal networks resulting in impairment of consciousness and/or convulsive semiology. The term generalized also refers to electroencephalographic presentation, with bilateral, synchronous activity, such as the classical 3 Hz spike and wave discharges of typical absence epilepsy. However, findings obtained from electrophysiological and functional imaging studies over the last few years, contradict this view, showing a rather focal onset for most of the so-called generalized seizure types. Therefore, we ask here the question whether "generalized epilepsy" does indeed exist.
Collapse
Affiliation(s)
- Gilles van Luijtelaar
- Donders Centre for Cognition, Radboud University Nijmegen, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands
| | | | | |
Collapse
|
229
|
Stereotypical alterations in cortical patterning are associated with maternal illness-induced placental dysfunction. J Neurosci 2013; 33:16874-88. [PMID: 24155294 DOI: 10.1523/jneurosci.4654-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have previously shown in mice that cytokine-mediated damage to the placenta can temporarily limit the flow of nutrients and oxygen to the fetus. The placental vulnerability is pronounced before embryonic day 11, when even mild immune challenge results in fetal loss. As gestation progresses, the placenta becomes increasingly resilient to maternal inflammation, but there is a narrow window in gestation when the placenta is still vulnerable to immune challenge yet resistant enough to allow for fetal survival. This gestational window correlates with early cortical neurogenesis in the fetal brain. Here, we show that maternal illness during this period selectively alters the abundance and laminar positioning of neuronal subtypes influenced by the Tbr1, Satb2, and Ctip2/Fezf2 patterning axis. The disturbances also lead to a laminar imbalance in the proportions of projection neurons and interneurons in the adult and are sufficient to cause changes in social behavior and cognition. These data illustrate how the timing of an illness-related placental vulnerability causes developmental alterations in neuroanatomical systems and behaviors that are relevant to autism spectrum disorders.
Collapse
|
230
|
Moroni RF, Inverardi F, Regondi MC, Pennacchio P, Spreafico R, Frassoni C. Genesis of heterotopia in BCNU model of cortical dysplasia, detected by means of in utero electroporation. Dev Neurosci 2013; 35:516-26. [PMID: 24246662 DOI: 10.1159/000355392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Derangements of cortical development can cause a wide spectrum of malformations, generally termed 'cortical dysplasia' (CD), which are frequently associated with drug-resistant epilepsy and other neurological and mental disorders. 1,3-Bis-chloroethyl-nitrosurea (BCNU)-treated rats represent a model of CD due to the presence of histological alterations similar to those observed in human CD. BCNU is an alkylating agent that, administered at embryonic day 15 (E15), causes the loss of many cells destined to cortical layers; this results in cortical thinning but also in histological alterations imputable to migration defects, such as laminar disorganization and cortical and periventricular heterotopia. In the present study we investigated the genesis of heterotopia in BCNU-treated rats by labeling cortical ventricular zone (VZ) cells with a green fluorescent protein (GFP) expression vector by means of in utero electroporation. Here, we compared the migratory pattern and subsequent distribution of the GFP-labeled cells in the developing somatosensory cortex of control and BCNU-treated animals. To this aim, we investigated the expression of a panel of developmental marker genes which identified radial glia cells (Pax6), intermediate precursors cells (Tbr2), and postmitotic neurons destined to infragranular (Tbr1) or supragranular layers (Satb2). The VZ of BCNU-treated rats appeared disorganized since E18 and at E21 the embryos showed an altered migratory pattern: migration of superficial layers appeared delayed, with a number of migrating cells in the intermediate zone and some neurons destined to superficial layers arrested in the VZ, thus forming periventricular heterotopia. Moreover, neurons that reached their correct position did not extend their axons through the corpus callosum in the contralateral hemisphere as in the control, but toward the ipsilateral cingulated cortex. Our analysis sheds light on how a malformed cortex develops after a temporally discrete environmental insult.
Collapse
Affiliation(s)
- Ramona Frida Moroni
- Unit of Clinical Epileptology and Experimental Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | |
Collapse
|
231
|
Ueta Y, Hirai Y, Otsuka T, Kawaguchi Y. Direction- and distance-dependent interareal connectivity of pyramidal cell subpopulations in the rat frontal cortex. Front Neural Circuits 2013; 7:164. [PMID: 24137111 PMCID: PMC3797542 DOI: 10.3389/fncir.2013.00164] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022] Open
Abstract
The frontal cortex plays an important role in the initiation and execution of movements via widespread projections to various cortical and subcortical areas. Layer 2/3 (L2/3) pyramidal cells in the frontal cortex send axons mainly to other ipsilateral/contralateral cortical areas. Subpopulations of layer 5 (L5) pyramidal cells that selectively project to the pontine nuclei or to the contralateral cortex [commissural (COM) cells] also target diverse and sometimes overlapping ipsilateral cortical areas. However, little is known about target area-dependent participation in ipsilateral corticocortical (iCC) connections by subclasses of L2/3 and L5 projection neurons. To better understand the functional hierarchy between cortical areas, we compared iCC connectivity between the secondary motor cortex (M2) and adjacent areas, such as the orbitofrontal and primary motor cortices, and distant non-frontal areas, such as the perirhinal and posterior parietal cortices. We particularly assessed the laminar distribution of iCC cells and fibers, and identified the subtypes of pyramidal cells participating in those projections. For connections between M2 and frontal areas, L2/3 and L5 cells in both areas contributed to reciprocal projections, which can be viewed as “bottom-up” or “top-down” on the basis of their differential targeting of cortical lamina. In connections between M2 and non-frontal areas, neurons participating in bottom-up and top-down projections were segregated into the different layers: bottom-up projections arose primarily from L2/3 cells, while top-down projections were dominated by L5 COM cells. These findings suggest that selective participation in iCC connections by pyramidal cell subtypes lead to directional connectivity between M2 and other cortical areas. Based on these findings, we propose a provisional unified framework of interareal hierarchy within the frontal cortex, and discuss the interaction of local circuits with long-range interareal connections.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Cerebral Circuitry, National Institute for Physiological Sciences Okazaki, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Tokyo, Japan
| | | | | | | |
Collapse
|
232
|
Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD. Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 2013; 14:755-69. [PMID: 24105342 DOI: 10.1038/nrn3586] [Citation(s) in RCA: 594] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sophisticated circuitry of the neocortex is assembled from a diverse repertoire of neuronal subtypes generated during development under precise molecular regulation. In recent years, several key controls over the specification and differentiation of neocortical projection neurons have been identified. This work provides substantial insight into the 'molecular logic' underlying cortical development and increasingly supports a model in which individual progenitor-stage and postmitotic regulators are embedded within highly interconnected networks that gate sequential developmental decisions. Here, we provide an integrative account of the molecular controls that direct the progressive development and delineation of subtype and area identity of neocortical projection neurons.
Collapse
|
233
|
Zikopoulos B, Barbas H. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism. Front Hum Neurosci 2013; 7:609. [PMID: 24098278 PMCID: PMC3784686 DOI: 10.3389/fnhum.2013.00609] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022] Open
Abstract
Converging evidence from diverse studies suggests that atypical brain connectivity in autism affects in distinct ways short- and long-range cortical pathways, disrupting neural communication and the balance of excitation and inhibition. This hypothesis is based mostly on functional non-invasive studies that show atypical synchronization and connectivity patterns between cortical areas in children and adults with autism. Indirect methods to study the course and integrity of major brain pathways at low resolution show changes in fractional anisotropy (FA) or diffusivity of the white matter in autism. Findings in post-mortem brains of adults with autism provide evidence of changes in the fine structure of axons below prefrontal cortices, which communicate over short- or long-range pathways with other cortices and subcortical structures. Here we focus on evidence of cellular and axon features that likely underlie the changes in short- and long-range communication in autism. We review recent findings of changes in the shape, thickness, and volume of brain areas, cytoarchitecture, neuronal morphology, cellular elements, and structural and neurochemical features of individual axons in the white matter, where pathology is evident even in gross images. We relate cellular and molecular features to imaging and genetic studies that highlight a variety of polymorphisms and epigenetic factors that primarily affect neurite growth and synapse formation and function in autism. We report preliminary findings of changes in autism in the ratio of distinct types of inhibitory neurons in prefrontal cortex, known to shape network dynamics and the balance of excitation and inhibition. Finally we present a model that synthesizes diverse findings by relating them to developmental events, with a goal to identify common processes that perturb development in autism and affect neural communication, reflected in altered patterns of attention, social interactions, and language.
Collapse
Affiliation(s)
- Basilis Zikopoulos
- Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| | | |
Collapse
|
234
|
Asante CO, Martin JH. Differential joint-specific corticospinal tract projections within the cervical enlargement. PLoS One 2013; 8:e74454. [PMID: 24058570 PMCID: PMC3776849 DOI: 10.1371/journal.pone.0074454] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/31/2013] [Indexed: 12/20/2022] Open
Abstract
The motor cortex represents muscle and joint control and projects to spinal cord interneurons and-in many primates, including humans-motoneurons, via the corticospinal tract (CST). To examine these spinal CST anatomical mechanisms, we determined if motor cortex sites controlling individual forelimb joints project differentially to distinct cervical spinal cord territories, defined regionally and by the locations of putative last-order interneurons that were transneuronally labeled by intramuscular injection of pseudorabies virus. Motor cortex joint-specific sites were identified using intracortical-microstimulation. CST segmental termination fields from joint-specific sites, determined using anterograde tracers, comprised a high density core of terminations that was consistent between animals and a surrounding lower density projection that was more variable. Core terminations from shoulder, elbow, and wrist control sites overlapped in the medial dorsal horn and intermediate zone at C5/C6 but were separated at C7/C8. Shoulder sites preferentially terminated dorsally, in the dorsal horn; wrist/digit sites, more ventrally in the intermediate zone; and elbow sites, medially in the dorsal horn and intermediate zone. Pseudorabies virus injected in shoulder, elbow, or wrist muscles labeled overlapping populations of predominantly muscle-specific putative premotor interneurons, at a survival time for disynaptic transfer from muscle. At C5/C6, CST core projections from all joint zones were located medial to regions of densely labeled last-order interneurons, irrespective of injected muscle. At C7/C8 wrist CST core projections overlapped the densest interneuron territory, which was located in the lateral intermediate zone. In contrast, elbow CST core projections were located medial to the densest interneuron territories, and shoulder CST core projections were located dorsally and only partially overlapped the densest interneuron territory. Our findings show a surprising fractionation of CST terminations in the caudal cervical enlargement that may be organized to engage different spinal premotor circuits for distal and proximal joint control.
Collapse
Affiliation(s)
- Curtis O. Asante
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, New York, New York, United States of America
| | - John H. Martin
- Department of Physiology, Pharmacology, and Neuroscience, City College of the City University of New York, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
235
|
Leyva-Díaz E, López-Bendito G. In and out from the cortex: development of major forebrain connections. Neuroscience 2013; 254:26-44. [PMID: 24042037 DOI: 10.1016/j.neuroscience.2013.08.070] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
In this review we discuss recent advances in the understanding of the development of forebrain projections attending to their origin, fate determination, and axon guidance. Major forebrain connections include callosal, corticospinal, corticothalamic and thalamocortical projections. Although distinct transcriptional programs specify these subpopulations of projecting neurons, the mechanisms involved in their axonal development are similar. Guidance by short- and long-range molecular cues, interaction with intermediate target populations and activity-dependent mechanisms contribute to their development. Moreover, some of these connections interact with each other showing that the development of these axonal tracts is a well-orchestrated event. Finally, we will recapitulate recent discoveries that challenge the field of neural wiring that show that these forebrain connections can be changed once formed. The field of reprogramming has arrived to postmitotic cortical neurons and has showed us that forebrain connectivity is not immutable and might be changed by manipulations in the transcriptional program of matured cells.
Collapse
Affiliation(s)
- E Leyva-Díaz
- Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
236
|
Demyelination in mild cognitive impairment suggests progression path to Alzheimer's disease. PLoS One 2013; 8:e72759. [PMID: 24023644 PMCID: PMC3758332 DOI: 10.1371/journal.pone.0072759] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/16/2013] [Indexed: 12/03/2022] Open
Abstract
The preclinical Alzheimer's disease (AD) - amnestic mild cognitive impairment (MCI) - is manifested by phenotypes classified into exclusively memory (single-domain) MCI (sMCI) and multiple-domain MCI (mMCI). We suggest that typical MCI-to-AD progression occurs through the sMCI-to-mMCI sequence as a result of the extension of initial pathological processes. To support this hypothesis, we assess myelin content with a Magnetization Transfer Ratio (MTR) in 21 sMCI and 21 mMCI patients and in 42 age-, sex-, and education-matched controls. A conjunction analysis revealed MTR reduction shared by sMCI and mMCI groups in the medial temporal lobe and posterior structures including white matter (WM: splenium, posterior corona radiata) and gray matter (GM: hippocampus; parahippocampal and lingual gyri). A disjunction analysis showed the spread of demyelination to prefrontal WM and insula GM in executive mMCI. Our findings suggest that demyelination starts in the structures affected by neurofibrillary pathology; its presence correlates with the clinical picture and indicates the method of MCI-to-AD progression. In vivo staging of preclinical AD can be developed in terms of WM/GM demyelination.
Collapse
|
237
|
Gao P, Sultan KT, Zhang XJ, Shi SH. Lineage-dependent circuit assembly in the neocortex. Development 2013; 140:2645-55. [PMID: 23757410 DOI: 10.1242/dev.087668] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neocortex plays a key role in higher-order brain functions, such as perception, language and decision-making. Since the groundbreaking work of Ramón y Cajal over a century ago, defining the neural circuits underlying brain functions has been a field of intense study. Here, we review recent findings on the formation of neocortical circuits, which have taken advantage of improvements to mouse genetics and circuit-mapping tools. These findings are beginning to reveal how individual components of circuits are generated and assembled during development, and how early developmental processes, such as neurogenesis and neuronal migration, guide precise circuit assembly.
Collapse
Affiliation(s)
- Peng Gao
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|
238
|
Axon position within the corpus callosum determines contralateral cortical projection. Proc Natl Acad Sci U S A 2013; 110:E2714-23. [PMID: 23812756 DOI: 10.1073/pnas.1310233110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions. The normal axonal order within the CC was grossly disturbed when semaphorin3A/neuropilin-1 signaling was disrupted. However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex.
Collapse
|
239
|
Abstract
Commissural circuits are brain and spinal cord connections which interconnect the two sides of the central nervous system (CNS). They play essential roles in brain and spinal cord processing, ensuring left-right coordination and synchronization of information and commands. During the formation of neuronal circuits, all commissural neurons of the central nervous system must accomplish a common task, which is to project their axon onto the other side of the nervous system, across the midline that delineates the two halves of the CNS. How this task is accomplished has been the topic of extensive studies over the last past 20 years and remains one of the best models to investigate axon guidance mechanisms. In the first part of this review, I will introduce the commissural circuits, their general role in the physiology of the nervous system, and their recognized or suspected pathogenic properties in human diseases. In the second part of the review, I will concentrate on two commissural circuits, the spinal commissures and the corpus callosum, to detail the cellular and molecular mechanisms governing their formation, mostly during their navigation at the midline.
Collapse
|
240
|
Abstract
Corticostriatal projections are essential components of forebrain circuits and are widely involved in motivated behaviour. These axonal projections are formed by two distinct classes of cortical neurons, intratelencephalic (IT) and pyramidal tract (PT) neurons. Convergent evidence points to IT versus PT differentiation of the corticostriatal system at all levels of functional organization, from cellular signalling mechanisms to circuit topology. There is also growing evidence for IT/PT imbalance as an aetiological factor in neurodevelopmental, neuropsychiatric and movement disorders - autism, amyotrophic lateral sclerosis, obsessive-compulsive disorder, schizophrenia, Huntington's and Parkinson's diseases and major depression are highlighted here.
Collapse
Affiliation(s)
- Gordon M. G. Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
241
|
Kumamoto T, Toma KI, Gunadi, McKenna WL, Kasukawa T, Katzman S, Chen B, Hanashima C. Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep 2013; 3:931-45. [PMID: 23523356 DOI: 10.1016/j.celrep.2013.02.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/08/2012] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
The specification of neuronal subtypes in the cerebral cortex proceeds in a temporal manner; however, the regulation of the transitions between the sequentially generated subtypes is poorly understood. Here, we report that the forkhead box transcription factor Foxg1 coordinates the production of neocortical projection neurons through the global repression of a default gene program. The delayed activation of Foxg1 was necessary and sufficient to induce deep-layer neurogenesis, followed by a sequential wave of upper-layer neurogenesis. A genome-wide analysis revealed that Foxg1 binds to mammalian-specific noncoding sequences to repress over 12 transcription factors expressed in early progenitors, including Ebf2/3, Dmrt3, Dmrta1, and Eya2. These findings reveal an unexpected prolonged competence of progenitors to initiate corticogenesis at a progressed stage during development and identify Foxg1 as a critical initiator of neocorticogenesis through spatiotemporal repression, a system that balances the production of nonradially and radially migrating glutamatergic subtypes during mammalian cortical expansion.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Franco SJ, Müller U. Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron 2013; 77:19-34. [PMID: 23312513 DOI: 10.1016/j.neuron.2012.12.022] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
Abstract
The neural circuits of the mammalian neocortex are crucial for perception, complex thought, cognition, and consciousness. This circuitry is assembled from many different neuronal subtypes with divergent properties and functions. Here, we review recent studies that have begun to clarify the mechanisms of cell-type specification in the neocortex, focusing on the lineage relationships between neocortical progenitors and subclasses of excitatory projection neurons. These studies reveal an unanticipated diversity in the progenitor pool that requires a revised view of prevailing models of cell-type specification in the neocortex. We propose a "sequential progenitor-diversification model" that integrates current knowledge to explain how projection neuron diversity is achieved by mechanisms acting on proliferating progenitors and their postmitotic offspring. We discuss the implications of this model for our understanding of brain evolution and pathological states of the neocortex.
Collapse
Affiliation(s)
- Santos J Franco
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
243
|
Axon guidance mechanisms for establishment of callosal connections. Neural Plast 2013; 2013:149060. [PMID: 23533817 PMCID: PMC3595665 DOI: 10.1155/2013/149060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 12/30/2012] [Accepted: 01/21/2013] [Indexed: 01/03/2023] Open
Abstract
Numerous studies have investigated the formation of interhemispheric connections which are involved in high-ordered functions of the cerebral cortex in eutherian animals, including humans. The development of callosal axons, which transfer and integrate information between the right/left hemispheres and represent the most prominent commissural system, must be strictly regulated. From the beginning of their growth, until reaching their targets in the contralateral cortex, the callosal axons are guided mainly by two environmental cues: (1) the midline structures and (2) neighboring? axons. Recent studies have shown the importance of axona guidance by such cues and the underlying molecular mechanisms. In this paper, we review these guidance mechanisms during the development of the callosal neurons. Midline populations express and secrete guidance molecules, and "pioneer" axons as well as interactions between the medial and lateral axons are also involved in the axon pathfinding of the callosal neurons. Finally, we describe callosal dysgenesis in humans and mice, that results from a disruption of these navigational mechanisms.
Collapse
|
244
|
Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 2013; 15:214-21. [PMID: 23334497 DOI: 10.1038/ncb2660] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/26/2012] [Indexed: 12/11/2022]
Abstract
Once programmed to acquire a specific identity and function, cells rarely change in vivo. Neurons of the mammalian central nervous system (CNS) in particular are a classic example of a stable, terminally differentiated cell type. With the exception of the adult neurogenic niches, where a limited set of neuronal subtypes continue to be generated throughout life, CNS neurons are born only during embryonic and early postnatal development. Once generated, neurons become permanently post-mitotic and do not change their identity for the lifespan of the organism. Here, we have investigated whether excitatory neurons of the neocortex can be instructed to directly reprogram their identity post-mitotically from one subtype into another, in vivo. We show that embryonic and early postnatal callosal projection neurons of layer II/III can be post-mitotically lineage reprogrammed into layer-V/VI corticofugal projection neurons following expression of the transcription factor encoded by Fezf2. Reprogrammed callosal neurons acquire molecular properties of corticofugal projection neurons and change their axonal connectivity from interhemispheric, intracortical projections to corticofugal projections directed below the cortex. The data indicate that during a window of post-mitotic development neurons can change their identity, acquiring critical features of alternative neuronal lineages.
Collapse
|
245
|
Nomura T, Kawaguchi M, Ono K, Murakami Y. Reptiles: a new model for brain evo-devo research. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:57-73. [PMID: 23319423 DOI: 10.1002/jez.b.22484] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/05/2012] [Accepted: 10/13/2012] [Indexed: 12/24/2022]
Abstract
Vertebrate brains exhibit vast amounts of anatomical diversity. In particular, the elaborate and complex nervous system of amniotes is correlated with the size of their behavioral repertoire. However, the evolutionary mechanisms underlying species-specific brain morphogenesis remain elusive. In this review we introduce reptiles as a new model organism for understanding brain evolution. These animal groups inherited ancestral traits of brain architectures. We will describe several unique aspects of the reptilian nervous system with a special focus on the telencephalon, and discuss the genetic mechanisms underlying reptile-specific brain morphology. The establishment of experimental evo-devo approaches to studying reptiles will help to shed light on the origin of the amniote brains.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Taisyogun, Kitaku, Kyoto, Japan.
| | | | | | | |
Collapse
|
246
|
Activity-dependent callosal axon projections in neonatal mouse cerebral cortex. Neural Plast 2012; 2012:797295. [PMID: 23213574 PMCID: PMC3507157 DOI: 10.1155/2012/797295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/21/2012] [Indexed: 12/18/2022] Open
Abstract
Callosal axon projections are among the major long-range axonal projections in the mammalian brain. They are formed during the prenatal and early postnatal periods in the mouse, and their development relies on both activity-independent and -dependent mechanisms. In this paper, we review recent findings about the roles of neuronal activity in callosal axon projections. In addition to the well-documented role of sensory-driven neuronal activity, recent studies using in utero electroporation demonstrated an essential role of spontaneous neuronal activity generated in neonatal cortical circuits. Both presynaptic and postsynaptic neuronal activities are critically involved in the axon development. Studies have begun to reveal intracellular signaling pathway which works downstream of neuronal activity. We also review several distinct patterns of neuronal activity observed in the developing cerebral cortex, which might play roles in activity-dependent circuit construction. Such neuronal activity during the neonatal period can be disrupted by genetic factors, such as mutations in ion channels. It has been speculated that abnormal activity caused by such factors may affect activity-dependent circuit construction, leading to some developmental disorders. We discuss a possibility that genetic mutation in ion channels may impair callosal axon projections through an activity-dependent mechanism.
Collapse
|
247
|
Sohur US, Padmanabhan HK, Kotchetkov IS, Menezes JRL, Macklis JD. Anatomic and molecular development of corticostriatal projection neurons in mice. ACTA ACUST UNITED AC 2012; 24:293-303. [PMID: 23118198 DOI: 10.1093/cercor/bhs342] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Corticostriatal projection neurons (CStrPN) project from the neocortex to ipsilateral and contralateral striata to control and coordinate motor programs and movement. They are clinically important as the predominant cortical population that degenerates in Huntington's disease and corticobasal ganglionic degeneration, and their injury contributes to multiple forms of cerebral palsy. Together with their well-studied functions in motor control, these clinical connections make them a functionally, behaviorally, and clinically important population of neocortical neurons. Little is known about their development. "Intratelencephalic" CStrPN (CStrPNi), projecting to the contralateral striatum, with their axons fully within the telencephalon (intratelencephalic), are a major population of CStrPN. CStrPNi are of particular interest developmentally because they share hodological and axon guidance characteristics of both callosal projection neurons (CPN) and corticofugal projection neurons (CFuPN); CStrPNi send axons contralaterally before descending into the contralateral striatum. The relationship of CStrPNi development to that of broader CPN and CFuPN populations remains unclear; evidence suggests that CStrPNi might be evolutionary "hybrids" between CFuPN and deep layer CPN-in a sense "chimeric" with both callosal and corticofugal features. Here, we investigated the development of CStrPNi in mice-their birth, maturation, projections, and expression of molecular developmental controls over projection neuron subtype identity.
Collapse
Affiliation(s)
- U Shivraj Sohur
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
248
|
Rouaux C, Bhai S, Arlotta P. Programming and reprogramming neuronal subtypes in the central nervous system. Dev Neurobiol 2012; 72:1085-98. [PMID: 22378700 DOI: 10.1002/dneu.22018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent discoveries in nuclear reprogramming have challenged the dogma that the identity of terminally differentiated cells cannot be changed. The identification of molecular mechanisms that reprogram differentiated cells to a new identity carries profound implications for regenerative medicine across organ systems. The central nervous system (CNS) has historically been considered to be largely immutable. However, recent studies indicate that even the adult CNS is imparted with the potential to change under the appropriate stimuli. Here, we review current knowledge regarding the capability of distinct cells within the CNS to reprogram their identity and consider the role of developmental signals in directing these cell fate decisions. Finally, we discuss the progress and current challenges of using developmental signals to precisely direct the generation of individual neuronal subtypes in the postnatal CNS and in the dish.
Collapse
Affiliation(s)
- Caroline Rouaux
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
249
|
Frederiksen KS, Waldemar G. Corpus callosum in aging and neurodegenerative diseases. Neurodegener Dis Manag 2012. [DOI: 10.2217/nmt.12.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
SUMMARY The corpus callosum (CC) is a major white matter bundle that connects primarily homologous areas of the cortex. The structure may be involved in interhemispheric communication and enable the lateralization of certain cerebral functions. Despite its possible role as the main conduit for interhemispheric communication, interest from researchers has, at times, been sparse. Renewed interest has led to research that has shown that the CC may play a role in both cognitive aging and neurodegenerative diseases including Alzheimer´s disease and frontotemporal dementia. Studies employing structural MRI and diffusion-weighted MRI have found distinct subregional patterns of callosal atrophy in aging, Alzheimer´s disease and frontotemporal dementia. Furthermore, imaging studies may help to elucidate the underlying pathological mechanisms of callosal atrophy. The present review aims to provide an overview of the current knowledge of the structure and function of the CC and its role in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Kristian Steen Frederiksen
- Memory Disorders Research Group, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Gunhild Waldemar
- Memory Disorders Research Group, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
250
|
Huang CY, Chu D, Hwang WC, Tsaur ML. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain. J Comp Neurol 2012; 520:3650-72. [DOI: 10.1002/cne.23119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|