201
|
Bohrmann B, Adrian M, Dubochet J, Kuner P, Müller F, Huber W, Nordstedt C, Döbeli H. Self-assembly of beta-amyloid 42 is retarded by small molecular ligands at the stage of structural intermediates. J Struct Biol 2000; 130:232-46. [PMID: 10940228 DOI: 10.1006/jsbi.2000.4241] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Assemblyof the amyloid-beta peptide (Abeta) into fibrils and its deposition in distinct brain areas is considered responsible for the pathogenesis of Alzheimer's disease (AD). Thus, inhibition of fibril assembly is a potential strategy for therapeutic intervention. Electron cryomicroscopy was used to monitor the initial, native assembly structure of Abeta42. In addition to the known fibrillar intermediates, a nonfibrillar, polymeric sheet-like structure was identified. A temporary sequence of supramolecular structures was revealed with (i) polymeric Abeta42 sheets during the onset of assembly, inversely related to the appearance of (ii) fibril intermediates, which again are time-dependently replaced by (iii) mature fibrils. A cell-based primary screening assay was used to identify compounds that decrease Abeta42-induced toxicity. Hit compounds were further assayed for binding to Abeta42, radical scavenger activity, and their influence on the assembly structure of Abeta42. One compound, Ro 90-7501, was found to efficiently retard mature fibril formation, while extended polymeric Abeta42 sheets and fibrillar intermediates are accumulated. Ro 90-7501 may serve as a prototypic inhibitor for Abeta42 fibril formation and as a tool for studying the molecular mechanism of fibril assembly.
Collapse
Affiliation(s)
- B Bohrmann
- Pharma Division, F. Hoffmann-La Roche AG, Basel, CH-4070, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Serpell LC, Smith JM. Direct visualisation of the beta-sheet structure of synthetic Alzheimer's amyloid. J Mol Biol 2000; 299:225-31. [PMID: 10860734 DOI: 10.1006/jmbi.2000.3650] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amyloid fibrils are a major pathological feature of Alzheimer's disease as well as other amyloidoses including the prion diseases. They are an unusual phenomenon, being made up of different, normally soluble proteins which undergo a profound conformational change and assemble to form very stable, insoluble fibrils which accumulate in the extracellular spaces. In Alzheimer's disease the amyloid fibrils are composed of the A beta protein. Knowledge of the structure of amyloid is essential for understanding the abnormal assembly and deposition of these fibrils and could lead to the rational design of therapeutic agents for their prevention or disaggregation. Here we reveal the core structure of an Alzheimer's amyloid fibril by direct visualisation using cryo-electron microscopy. Synthetic amyloid fibrils composed of A beta residues 11 to 25 and 1 to 42 were examined. The A beta (11-25) fibrils are clearly composed of beta-sheet structure that is observable as striations across the fibres. The beta-strands run perpendicular to the fibre axis and the projections show that the fibres are composed of beta-sheets with the strands in direct register. This observation has implications not only for the further understanding of amyloid, but also for the development of cryo-electron microscopy for direct visualisation of secondary structure.
Collapse
Affiliation(s)
- L C Serpell
- Neurobiology Division, Medical Research Council Centre, Cambridge, UK.
| | | |
Collapse
|
203
|
Wilkins DK, Dobson CM, Gross M. Biophysical studies of the development of amyloid fibrils from a peptide fragment of cold shock protein B. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2609-16. [PMID: 10785381 DOI: 10.1046/j.1432-1327.2000.01270.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The peptide CspB-1, which represents residues 1-22 of the cold shock protein CspB from Bacillus subtilis, has been shown to form amyloid fibrils when solutions containing this peptide in aqueous (50%) acetonitrile are diluted in water [M. Gross et al. (1999) Protein Science 8, 1350-1357] We established conditions in which reproducible kinetic steps associated with the formation of these fibrils can be observed. Studies combining these conditions with a range of biophysical methods reveal that a variety of distinct events occurs during the process that results in amyloid fibrils. A CD spectrum indicative of beta structure is observed within 1 min of the solvent shift, and its intensity increases on a longer timescale in at least two kinetic phases. The characteristic wavelength shift of the amyloid-binding dye Congo Red is established within 30 min of the initiation of the aggregation process and corresponds to one of the phases observed by CD and to changes in the Fourier transform-infrared spectrum indicative of beta structure. Short fibrillar structures begin to be visible under the electron microscope after these events, and longer, well-defined amyloid fibrils are established on a timescale of hours. NMR spectroscopy shows that there are no significant changes in the concentration of monomeric species in solution during the events leading to fibril formation, but that soluble aggregates too large to be visible in NMR spectra are present throughout the process. A model for amyloid formation by this peptide is presented which is consistent with these kinetic data and with published work on a variety of disease-related systems. These findings support the concept that the ability to form amyloid fibrils is a generic property of polypeptide chains, and that the mechanism of their formation is similar for different peptides and proteins.
Collapse
Affiliation(s)
- D K Wilkins
- Oxford Centre for Molecular Sciences, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
204
|
MacPhee CE, Dobson CM. Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin. J Mol Biol 2000; 297:1203-15. [PMID: 10764584 DOI: 10.1006/jmbi.2000.3600] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the chemical dissection and subsequent reassembly of fibrils formed by a ten-residue peptide to probe the forces that drive the formation of amyloid. The peptide, TTR(10-19), encompasses the A strand of the inner beta-sheet structure that lines the thyroid hormone binding site of the human plasma protein transthyretin. When dissolved in water under low pH conditions the peptide readily forms amyloid fibrils. Electron microscopy of these fibrils indicates the presence of long (>1000 nm) rigid structures of uniform diameter (approximately 14 nm). Addition of urea (3 M) to preformed fibrils disrupts these rigid structures. The partially disrupted fibrils form flexible ribbon-like arrays, which are composed of a number of clearly visible protofilaments (3-4 nm diameter). These protofilaments are highly stable, and resist denaturation in 6 M urea at 75 degrees C over a period of hours. High concentrations (>50%, v/v) of 2,2,2-trifluoroethanol also dissociate TTR(10-19) fibrils to the constituent protofilaments, but these slowly dissociate to monomeric, soluble peptides with extensive alpha-helical structure. Dilution of the denaturant or co-solvent at the stage when dissociation to protofilaments has occurred results in the efficient reassembly of fibrils. These results indicate that assembly of fibrils from protofilaments involves relatively weak and predominantly hydrophobic interactions, whereas assembly of peptides into protofilaments involves both electrostatic and hydrophobic forces, resulting in a highly stable and compact structures.
Collapse
Affiliation(s)
- C E MacPhee
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX13QT, UK
| | | |
Collapse
|
205
|
Zambrzycka A, Strosznajder RP, Strosznajder JB. Aggregated beta amyloid peptide 1-40 decreases Ca2+- and cholinergic receptor-mediated phosphoinositide degradation by alteration of membrane and cytosolic phospholipase C in brain cortex. Neurochem Res 2000; 25:189-96. [PMID: 10786701 DOI: 10.1023/a:1007511217525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of full-length amyloid beta protein, A(beta) (1-40), on phosphoinositide-specific phospholipase C (PLC) were investigated in synaptic plasma membranes (SPM) and cytosol prepared from the cerebral cortex of adult rats. Moreover, the role of A(beta) (1-40) on the activation of lipid peroxidation was evaluated. The activity of phospholipase C (PLC) acting on phosphatidylinositol (PI) and phosphatidylinositol-4,5-bisphosphate (PIP2) was determined using exogenous labeled substrates. The subcellular fractions were the source of enzyme(s). The radioactivity of lipid messengers derived from degradation of [14C- arachidonoyl] PI was also determined. The stable aggregated form of beta-amyloid peptide (1-40) at 25 microM concentration exerted reproducible effects. The aggregated form of A(beta) (1-40) inhibited Ca(2+)-regulated PI and PIP2 degradation by SPM and cytosolic enzymes. Aggregated A(beta) also decreased significantly the level of diacylglycerol, the product of PLC. This additionally supports the inhibitory effect of A(beta) on membrane-bound and cytosolic PLC. Moreover, A(beta) (1-40) significantly decreased the basal activity of the PIP2-PLC in SPM and the enzyme activity regulated through cholinergic receptors. However, in spite of the lower enzyme activity, the percentage distribution of inositol (1,4,5) P3 radioactivity (IP3) in the total pool of inositol metabolites was not significantly changed. The aggregated neurotoxic fragment, A(beta) (25-35), mimicked the effect of full-length A(beta) (1-40). A(beta) (1-40) enhanced the level of malondialdehyde indicating an activation of free radical stimulated membrane lipid peroxidation that may be involved in alteration of phospholipase(s) activity. Our results indicated that aggregated A(beta) (1-40) alters Ca(2+)-dependent phosphoinositide degradation affecting synaptic plasma membrane and cytosolic phospholipase(s) activity. Moreover, this peptide significantly decreased the phosphoinositide-dependent signal transduction mediated by cholinergic receptors. The effect of aggregated A(beta) (1-40) is more pronounced than that of the neurotoxic fragment A(beta) (25-35). Our study suggests that the deposition of aggregated A(beta) may alter phosphoinositide signaling in brain.
Collapse
Affiliation(s)
- A Zambrzycka
- Polish Academy of Sciences, Medical Research Centre, Department of Cellular Signaling, Warsaw
| | | | | |
Collapse
|
206
|
George AR, Howlett DR. Computationally derived structural models of the beta-amyloid found in Alzheimer's disease plaques and the interaction with possible aggregation inhibitors. Biopolymers 1999; 50:733-41. [PMID: 10547528 DOI: 10.1002/(sici)1097-0282(199912)50:7<733::aid-bip6>3.0.co;2-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the modeling of and possible interactions within the solid beta-amyloid (ABeta) 1-43 fibril, the most fibrillogenic peptide known. All models proposed are consistent with the known experimental structural data, in terms of both secondary structure and packing motifs. The model containing antiparallel beta-sheets, and a beta-turn at G(25)S(26)N(27)K(28) has the lowest calculated packing energy. As such, it can be considered a reasonable model for solid beta-amyloid in Alzheimer's disease plaques. Interestingly, with the turn located at this position, the 1-43 structure is stabilized by a number of complementary intermolecular interactions between the beta-sheets. These well-defined interactions exist for the side-chain residues of 41, 42, and 43 with adjacent ABeta molecules. These interactions would not be conserved in the 1-40 peptide, and indeed, this enhanced interaction is proposed to give rise to the increased fibrillogenic nature of the ABeta 1-43 species over the 1-40 form. The models are used to explain the increased fibrillogenic nature of the Dutch family mutation of ABeta. These models are also employed to examine possible docking interactions of previously reported antiaggregation inhibitors, such as 4'-deoxy-4'-iododoxorubicin (IDOX) onto the theoretical growing surface. A docked structure of IDOX with the model of the solid fibril is described and a proposal for the mechanism of its antiaggregation properties is presented.
Collapse
Affiliation(s)
- A R George
- SmithKline Beecham, New Frontiers Science Park-N, Third Ave., Harlow, Essex CM19 5AW, United Kingdom
| | | |
Collapse
|
207
|
Zagorski MG, Yang J, Shao H, Ma K, Zeng H, Hong A. Methodological and chemical factors affecting amyloid beta peptide amyloidogenicity. Methods Enzymol 1999; 309:189-204. [PMID: 10507025 DOI: 10.1016/s0076-6879(99)09015-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- M G Zagorski
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA
| | | | | | | | | | | |
Collapse
|
208
|
Affiliation(s)
- L C Serpell
- Laboratory of Molecular Biology, Medical Research Council Centre, Cambridge, United Kingdom
| | | | | |
Collapse
|
209
|
Abstract
Improved specimen preparation methods, third generation synchrotron sources, new data processing algorithms and molecular dynamics refinement techniques are, together, allowing the high-resolution structure determination of larger and larger macromolecular complexes by fiber diffraction. New synchrotron sources are also making possible both time-resolved studies and studies of ordered fibers only a few microns in diameter.
Collapse
Affiliation(s)
- G Stubbs
- Department of Molecular Biology, Vanderbilt University, Box 1820, Station B, Nashville, TN 37235, USA.
| |
Collapse
|
210
|
Ulrich AS, Tichelaar W, Förster G, Zschörnig O, Weinkauf S, Meyer HW. Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer. Biophys J 1999; 77:829-41. [PMID: 10423429 PMCID: PMC1300375 DOI: 10.1016/s0006-3495(99)76935-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn(2+), which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into beta-sheet amyloid fibrils, whereas in the presence of Zn(2+) it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn(2+) does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an alpha-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn(2+) is to promote this local helical structure in B18 and to prevent its inactivation as beta-sheet fibrils.
Collapse
Affiliation(s)
- A S Ulrich
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
211
|
Li L, Darden TA, Bartolotti L, Kominos D, Pedersen LG. An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Biophys J 1999; 76:2871-8. [PMID: 10354415 PMCID: PMC1300259 DOI: 10.1016/s0006-3495(99)77442-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Synchrotron x-ray studies on amyloid fibrils have suggested that the stacked pleated beta-sheets are twisted so that a repeating unit of 24 beta-strands forms a helical turn around the fibril axis (. J. Mol. Biol. 273:729-739). Based on this morphological study, we have constructed an atomic model for the twisted pleated beta-sheet of human Abeta amyloid protofilament. In the model, 48 monomers of Abeta 12-42 stack (four per layer) to form a helical turn of beta-sheet. Each monomer is in an antiparallel beta-sheet conformation with a turn located at residues 25-28. Residues 17-21 and 31-36 form a hydrophobic core along the fibril axis. The hydrophobic core should play a critical role in initializing Abeta aggregation and in stabilizing the aggregates. The model was tested using molecular dynamics simulations in explicit aqueous solution, with the particle mesh Ewald (PME) method employed to accommodate long-range electrostatic forces. Based on the molecular dynamics simulations, we hypothesize that an isolated protofilament, if it exists, may not be twisted, as it appears to be when in the fibril environment. The twisted nature of the protofilaments in amyloid fibrils is likely the result of stabilizing packing interactions of the protofilaments. The model also provides a binding mode for Congo red on Abeta amyloid fibrils. The model may be useful for the design of Abeta aggregation inhibitors.
Collapse
Affiliation(s)
- L Li
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505-2845, USA
| | | | | | | | | |
Collapse
|
212
|
Nybo M, Svehag SE, Holm Nielsen E. An ultrastructural study of amyloid intermediates in A beta1-42 fibrillogenesis. Scand J Immunol 1999; 49:219-23. [PMID: 10102637 DOI: 10.1046/j.1365-3083.1999.00526.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many attempts have been made to define early stages and intermediates in amyloid fibrillogenesis that may be susceptible to inhibition. We have developed an in vitro system, based on the use of A beta1-42 peptides, in which the development of prestages of protofilaments and protofilament and fibril formation could, for the first time, be followed by electron microscopy, supported by fluorescence spectrometry. The first recognizable ultrastructures after incubation of A beta1-42 peptides at 37 degrees C were globular subunits (4-5 nm in diameter) that gradually became organized into short protofilaments (30-100 nm), which in turn formed fibrils mainly by lateral association. At this stage, part of the protofilaments were seen first as collaterals protruding from the fibrils and then, as they were gradually incorporated, as buds on the fibril surface. A continuous growth of A beta1-42 fibrils was observed, seemingly originating from a nucleus, which appeared to consist of aggregates of amyloid intermediates. That protofilaments are intermediates also in the in vivo formation of amyloid was supported by the finding that AL fibrils isolated from amyloid tissues also exhibited radiating protofilaments. The demonstrated globular subunits and early formed protofilaments may be attractive targets for inhibition of fibril formation.
Collapse
Affiliation(s)
- M Nybo
- Department of Medical Microbiology, Odense University, Denmark
| | | | | |
Collapse
|
213
|
Jiménez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J 1999; 18:815-21. [PMID: 10022824 PMCID: PMC1171174 DOI: 10.1093/emboj/18.4.815] [Citation(s) in RCA: 422] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Amyloid fibrils are assemblies of misfolded proteins and are associated with pathological conditions such as Alzheimer's disease and the spongiform encephalopathies. In the amyloid diseases, a diverse group of normally soluble proteins self-assemble to form insoluble fibrils. X-ray fibre diffraction studies have shown that the protofilament cores of fibrils formed from the various proteins all contain a cross-beta-scaffold, with beta-strands perpendicular and beta-sheets parallel to the fibre axis. We have determined the threedimensional structure of an amyloid fibril, formed by the SH3 domain of phosphatidylinositol-3'-kinase, using cryo-electron microscopy and image processing at 25 A resolution. The structure is a double helix of two protofilament pairs wound around a hollow core, with a helical crossover repeat of approximately 600 A and an axial subunit repeat of approximately 27 A. The native SH3 domain is too compact to fit into the fibril density, and must unfold to adopt a longer, thinner shape in the amyloid form. The 20x40-A protofilaments can only accommodate one pair of flat beta-sheets stacked against each other, with very little inter-strand twist. We propose a model for the polypeptide packing as a basis for understanding the structure of amyloid fibrils in general.
Collapse
Affiliation(s)
- J L Jiménez
- Department of Crystallography, Birkbeck College, Malet Street, London, WC1E 7HX
| | | | | | | | | | | | | |
Collapse
|
214
|
Shao H, Jao S, Ma K, Zagorski MG. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease. J Mol Biol 1999; 285:755-73. [PMID: 9878442 DOI: 10.1006/jmbi.1998.2348] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amyloid beta-peptide is the major protein constituent of neuritic plaques in Alzheimer's disease. The beta-peptide varies slightly in length and exists in two predominant forms: (1) the shorter, 40 residue beta-(1-40), found mainly in cerebrovascular amyloid; and (2) the longer, 42 residue beta-(1-42), which is the major component in amyloid plaque core deposits. We report here that the sodium dodecyl sulphate (SDS) micelle, a membrane-mimicking system for biophysical studies, prevents aggregation of the beta-(1-40) and the beta-(1-42) into the neurotoxic amyloid-like, beta-pleated sheet structure, and instead encourages folding into predominantly alpha-helical structures at pH 7.2. Analysis of the nuclear Overhauser enhancement (NOE) and the alphaH NMR chemical shift data revealed no significant structural differences between the beta-(1-40) and the beta-(1-42). The NMR-derived, three-dimensional structure of the beta-(1-42) consists of an extended chain (Asp1-Gly9), two alpha-helices (Tyr10-Val24 and Lys28-Ala42), and a looped region (Gly25-Ser26-Asn27). The most stable alpha-helical regions reside at Gln15-Val24 and Lys28-Val36. The majority of the amide (NH) temperature coefficients were less than 5, indicative of predominately strong NH backbone bonding. The lack of a persistent region with consistently low NH coefficients, together with the rapid NH exchange rates in deuterated water and spin-labeled studies, suggests that the beta-peptide is located at the lipid-water interface of the micelle and does not become inbedded within the hydrophobic interior. This result has implications for the circulation of membrane-bound beta-peptide in biological fluids, and may also facilitate the design of amyloid inhibitors to prevent an alpha-helix-->beta-sheet conversion in Alzheimer's disease.
Collapse
Affiliation(s)
- H Shao
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | | |
Collapse
|
215
|
Chapter 3. β-Amyloid as a Target for Alzheimer's Disease Therapy. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1999. [DOI: 10.1016/s0065-7743(08)60565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
216
|
Kirschner DA, Elliott-Bryant R, Szumowski KE, Gonnerman WA, Kindy MS, Sipe JD, Cathcart ES. In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice. J Struct Biol 1998; 124:88-98. [PMID: 9931277 DOI: 10.1006/jsbi.1998.4047] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific proteins of the apolipoprotein serum amyloid (apoSAA) family that are synthesized in large quantities during the acute, early phase of inflammation can serve as the proteinaceous precursors for amyloid fibrils. To model fibrillogenesis in such inflammatory diseases, we have used electron microscopy and X-ray diffraction to examine the structures formed by synthetic peptides corresponding in sequence to the 11 amino-terminal amino acids of murine apoSAA1, apoSAAcej, and apoSAA2 and to the 15 amino-terminal amino acids of apoSAA2. This region is reported to be the major fibrillogenic determinant of apoSAA isoforms. Both in 1 mM Tris buffer and in 35% acetonitrile, 0.1% trifluoracetic acid (ACN/TFA), all of the peptides formed macromolecular assemblies consisting of twisted, approximately 40- to 60-A-thick ribbons, which varied in width from around 40-70 A (for 11-mer apoSAA2 in Tris) up to 900 A (for the other peptides). X-ray diffraction patterns recorded from lyophilized peptides, vapor-hydrated samples, and solubilized/dried samples showed hydrogen bonding and intersheet reflections typical of a beta-pleated sheet conformation. The coherent lengths measured from the breadths of the X-ray reflections indicated that with hydration the growth of the assemblies in the intersheet stacking direction was comparable to that in the hydrogen-bonding direction, and analysis of oriented samples showed that the beta-strands were oriented perpendicular to both the long axis and the face of the assemblies. These X-ray results are consistent with the ribbon- or plate-like morphology of the individual aggregates and emphasize the polymorphic nature of amyloidogenic peptides. Our findings demonstrate that X-ray diffraction measurements on vapor-hydrated or solubilized/dried versus lyophilized, amyloidogenic peptides are a good indicator of their fibrillogenic potential. For example, from the highest to the lowest potential, the peptides examined here were ranked as: Abeta1-28 > Abeta1-40 > apoSAA1 approximately apoSAAcej > apoSAA2 > Abeta17-42. Experiments in which the three different 11-mer apoSAA isoforms were solubilized in ACN/TFA and then combined as binary mixtures showed that the ribbon morphology was not affected but that the extent of hydrogen bonding in the assemblies was substantially reduced. Our observations on the in vitro assembly of apoSAA analogs emphasize that amyloid fibril formation and morphology depend on primary sequence, length of polypeptide chain, the presence of additional fibrillogenic polypeptides, and solvent conditions.
Collapse
Affiliation(s)
- D A Kirschner
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, 02467-3811, USA
| | | | | | | | | | | | | |
Collapse
|
217
|
Burkoth TS, Benzinger TLS, Jones DNM, Hallenga K, Meredith SC, Lynn DG. C-Terminal PEG Blocks the Irreversible Step in β-Amyloid(10-35) Fibrillogenesis. J Am Chem Soc 1998. [DOI: 10.1021/ja980566b] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy S. Burkoth
- Departments of Chemistry, Pathology, Radiology, and Biochemistry and Molecular Biology The University of Chicago, Chicago, Illinois 60637
| | - Tammie L. S. Benzinger
- Departments of Chemistry, Pathology, Radiology, and Biochemistry and Molecular Biology The University of Chicago, Chicago, Illinois 60637
| | - David N. M. Jones
- Departments of Chemistry, Pathology, Radiology, and Biochemistry and Molecular Biology The University of Chicago, Chicago, Illinois 60637
| | - Klaas Hallenga
- Departments of Chemistry, Pathology, Radiology, and Biochemistry and Molecular Biology The University of Chicago, Chicago, Illinois 60637
| | - Stephen C. Meredith
- Departments of Chemistry, Pathology, Radiology, and Biochemistry and Molecular Biology The University of Chicago, Chicago, Illinois 60637
| | - David G. Lynn
- Departments of Chemistry, Pathology, Radiology, and Biochemistry and Molecular Biology The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
218
|
Abstract
Alzheimer's disease (AD) is an archetype of a class of diseases characterized by abnormal protein deposition. In each case, deposition manifests itself in the form of amyloid deposits composed of fibrils of otherwise normal, soluble proteins or peptides. An ever-increasing body of genetic, physiologic, and biochemical data supports the hypothesis that fibrillogenesis of the amyloid beta-protein is a seminal event in Alzheimer's disease. Inhibiting A beta fibrillogenesis is thus an important strategy for AD therapy. However, before this strategy can be implemented, a mechanistic understanding of the fibrillogenesis process must be achieved and appropriate steps selected as therapeutic targets. Following a brief introduction to AD, I review here the current state of knowledge of A beta fibrillogenesis. Special emphasis is placed on the morphologic, structural, and kinetic aspects of this complex process.
Collapse
Affiliation(s)
- D B Teplow
- Department of Neurology (Neuroscience), Harvard Medical School Boston, MA, USA.
| |
Collapse
|