201
|
George UZ, Bokka KK, Warburton D, Lubkin SR. Quantifying stretch and secretion in the embryonic lung: Implications for morphogenesis. Mech Dev 2015; 138 Pt 3:356-63. [PMID: 26189687 DOI: 10.1016/j.mod.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022]
Abstract
Branching in the embryonic lung is controlled by a variety of morphogens. Mechanics is also believed to play a significant role in lung branching. The relative roles and interactions of these two broad factors are challenging to determine. We considered three hypotheses for explaining why tracheal occlusion triples branching with no overall increase in size. Both hypotheses are based on tracheal occlusion blocking the exit of secretions. (H1) Increased lumen pressure stretches tissues; stretch receptors at shoulders of growing tips increase local rate of branching. (H2) Blocking exit of secretions blocks advective transport of morphogens, leading to (H2a) increased overall concentration of morphogens or (H2b) increased flux of morphogens at specific locations. We constructed and analyzed computational models of tissue stretch and solute transport in a 3D lung geometry. Observed tissue stresses and stretches were predominantly in locations unrelated to subsequent branch locations, suggesting that tissue stretch (H1) is not the mechanism of enhancement of branching. Morphogen concentration in the mesenchyme (H2a) increased with tracheal occlusion, consistent with previously reported results. Morphogen flux at the epithelial surface (H2b) completely changed its distribution pattern when the trachea was occluded, tripling the number of locations at which it was elevated. Our results are consistent with the hypothesis that tracheal occlusion blocks outflow of secretions, leading to a higher number of high-flux locations at branching tips, in turn leading to a large increase in number of branching locations.
Collapse
Affiliation(s)
- Uduak Z George
- North Carolina State University, Raleigh, NC 27695-8205, USA
| | - Kishore K Bokka
- North Carolina State University, Raleigh, NC 27695-8205, USA
| | - David Warburton
- Saban Research Institute, 4650 Sunset Boulevard, MS# 35, Los Angeles, CA 90027, USA
| | - Sharon R Lubkin
- North Carolina State University, Raleigh, NC 27695-8205, USA.
| |
Collapse
|
202
|
Whitsett JA, Wert SE, Weaver TE. Diseases of pulmonary surfactant homeostasis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:371-93. [PMID: 25621661 DOI: 10.1146/annurev-pathol-012513-104644] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Divisions of Neonatology, Perinatal Biology, and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229; , ,
| | | | | |
Collapse
|
203
|
Samarasinghe TD, Sands SA, Skuza EM, Joshi MS, Nold-Petry CA, Berger PJ. The effect of prenatal maternal infection on respiratory function in mouse offspring: evidence for enhanced chemosensitivity. J Appl Physiol (1985) 2015; 119:299-307. [PMID: 26023231 DOI: 10.1152/japplphysiol.01105.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
Systemic maternal inflammation is implicated in preterm birth and bronchopulmonary dysplasia (BPD) and may induce morbidities including reduced pulmonary function, sleep-disordered breathing, and cardiovascular disorders. Here we test the hypothesis that antenatal maternal inflammation per se causes altered alveolar development and increased chemoreflex sensitivity that persists beyond infancy. Pregnant C57BL/6 mice were administered lipopolysaccharide (LPS) (150 μg/kg ip) to induce maternal inflammation or saline (SHAM) at embryonic day 16 (randomized). Pups were weighed daily. On days 7, 28, and 60 (D07, D28, and D60), unrestrained wholebody plethysmography quantified ventilation and chemoreflex responses to hypoxia (10%), hypercapnia (7%), and asphyxia (hypoxic hypercapnia). Lungs were harvested to quantify alveolar number, size, and septal thickness. LPS pups had reduced baseline ventilation per unit bodyweight (∼40%, P < 0.001) vs. SHAM. LPS increased ventilatory responses to hypoxia (D07: 66% vs. 28% increase in ventilation; P < 0.001) hypercapnia (170% vs. 88%; P < 0.001), and asphyxia (249% vs. 154%; P < 0.001); hypersensitive hypoxic responsiveness persisted until D60 (P < 0.001). LPS also increased apnea frequency (P < 0.01). LPS caused thicker alveolar septae (D07, P < 0.001), diminished alveolar number (D28, P < 0.001) vs. SHAM, but effects were minimal by D60. Pups delivered from mothers exposed to antenatal inflammation exhibit deficits in lung structure and hypersensitive responses to respiratory stimuli that persist beyond the newborn period. Antenatal inflammation may contribute to impaired gas exchange and unstable breathing in newborn infants and adversely affect long-term health.
Collapse
Affiliation(s)
| | - Scott A Sands
- Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Allergy Immunology and Respiratory Medicine and Central Clinical School, The Alfred and Monash University, Melbourne, Victoria, Australia; and
| | - Elizabeth M Skuza
- Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Mandar S Joshi
- Kentucky Children's Hospital/UK Healthcare, Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Claudia A Nold-Petry
- Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Philip J Berger
- Ritchie Centre, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia;
| |
Collapse
|
204
|
Albertine KH. Utility of large-animal models of BPD: chronically ventilated preterm lambs. Am J Physiol Lung Cell Mol Physiol 2015; 308:L983-L1001. [PMID: 25770179 PMCID: PMC4437012 DOI: 10.1152/ajplung.00178.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/19/2015] [Indexed: 11/22/2022] Open
Abstract
This paper is focused on unique insights provided by the preterm lamb physiological model of bronchopulmonary dysplasia (BPD). Connections are also made to insights provided by the former preterm baboon model of BPD, as well as to rodent models of lung injury to the immature, postnatal lung. The preterm lamb and baboon models recapitulate the clinical setting of preterm birth and respiratory failure that require prolonged ventilation support for days or weeks with oxygen-rich gas. An advantage of the preterm lamb model is the large size of preterm lambs, which facilitates physiological studies for days or weeks during the evolution of neonatal chronic lung disease (CLD). To this advantage is linked an integrated array of morphological, biochemical, and molecular analyses that are identifying the role of individual genes in the pathogenesis of neonatal CLD. Results indicate that the mode of ventilation, invasive mechanical ventilation vs. less invasive high-frequency nasal ventilation, is related to outcomes. Our approach also includes pharmacological interventions that test causality of specific molecular players, such as vitamin A supplementation in the pathogenesis of neonatal CLD. The new insights that are being gained from our preterm lamb model may have important translational implications about the pathogenesis and treatment of BPD in preterm human infants.
Collapse
Affiliation(s)
- Kurt H Albertine
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, Utah; Department of Medicine, University of Utah, School of Medicine, Salt Lake City, Utah; and Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah
| |
Collapse
|
205
|
Nelson DA, Larsen M. Heterotypic control of basement membrane dynamics during branching morphogenesis. Dev Biol 2015; 401:103-9. [PMID: 25527075 PMCID: PMC4465071 DOI: 10.1016/j.ydbio.2014.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Abstract
Many mammalian organs undergo branching morphogenesis to create highly arborized structures with maximized surface area for specialized organ function. Cooperative cell-cell and cell-matrix adhesions that sculpt the emerging tissue architecture are guided by dynamic basement membranes. Properties of the basement membrane are reciprocally controlled by the interacting epithelial and mesenchymal cell populations. Here we discuss how basement membrane remodeling is required for branching morphogenesis to regulate cell-matrix and cell-cell adhesions that are required for cell patterning during morphogenesis and how basement membrane impacts morphogenesis by stimulation of cell patterning, force generation, and mechanotransduction. We suggest that in addition to creating mature epithelial architecture, remodeling of the epithelial basement membrane during branching morphogenesis is also essential to promote maturation of the stromal mesenchyme to create mature organ structure. Recapitulation of developmental cell-matrix and cell-cell interactions are of critical importance in tissue engineering and regeneration strategies that seek to restore organ function.
Collapse
Affiliation(s)
- Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, 1400 Washington Ave, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, 1400 Washington Ave, Albany, NY 12222, USA.
| |
Collapse
|
206
|
Miskovic J, Brekalo Z, Vukojevic K, Miskovic HR, Kraljevic D, Todorovic J, Soljic V. Co-expression of TTF-1 and neuroendocrine markers in the human fetal lung and pulmonary neuroendocrine tumors. Acta Histochem 2015; 117:451-9. [PMID: 25722034 DOI: 10.1016/j.acthis.2015.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/04/2023]
Abstract
The expression pattern of thyroid transcription factor 1 (TTF-1) and neuroendocrine markers, neuron cell adhesion molecule (NCAM; CD56), chromogranin A (CgA) and synaptophysin (Syp), of different lung cell lineages was histologically analyzed in 15 normal human fetal lungs and 12 neuroendocrine tumors (NETs) using immunohistochemical methods. During pseudoglandular phase strong nuclear TTF-1 staining was detected in the columnar nonciliated epithelial cells, while NCAM, CgA and Syp had a moderate expression in the proximal airways and mild expression in the distal airways. Neuroendocrine cells (NECs) in proximal lung airway were co-localizing TTF-1 and other neuroendocrine markers while neuroendocrine bodies (NEBs) exhibit only staining with NCAM and Syp. In the canalicular phase TTF-1 nuclear staining was expressed only in several epithelial cells in proximal airways, while budding airways epithelium showed strong TTF-1 expression. Expression of NCAM, CgA and Syp in this phase equals the one in pseudoglandular phase. NEBs cells were co-localizing TTF-1 and NCAM in proximal airways and few NECs in distal airway were co-localizing TTF-1 and Syp. TTF-1 staining in the saccular phase was limited to subsets of epithelial cells in the proximal airways with stronger positivity in the distal airways. NCAM expression is moderate only in proximal airways, while Syp and CgA show mild expression in proximal and distal airways. NECs were co-localizing TTF-1 and NCAM in proximal lung airway. With regard to NECs, all small cell lung cancer (SCLC) cells had strong TTF-1, NCAM, Syp and CgA positivity and TTF-1 co-localized with other neuroendocrine markers. All pulmonary typical carcinoids were TTF-1 negative, while pulmonary atypical carcinoids were focal positive for TTF-1 and some neoplastic cells co-localized TTF-1 with neuroendocrine markers. Our results indicate that TTF-1 expression in NECs suggests a possible role in their normal development and differentiation. Our results also indicate that possible cell of origin for poorly differentiated SCLC and some atypical carcinoid could be a progenitor cell in neuroendocrine lineage while in typical carcinoids possible cell of origin is localized in terminally differentiated NECs.
Collapse
Affiliation(s)
- Josip Miskovic
- Department of Surgery, University Hospital in Mostar, KraljaTvrtka bb, 88000 Mostar, Bosnia and Herzegovina
| | - Zdrinko Brekalo
- Department of Surgery, University Hospital in Mostar, KraljaTvrtka bb, 88000 Mostar, Bosnia and Herzegovina
| | - Katarina Vukojevic
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Soltanska 2, 21000 Split, Croatia
| | - Helena Radic Miskovic
- Department of Neonatology, University Hospital in Mostar, Kralja Tvrtka bb, 88000 Mostar, Bosnia and Herzegovina
| | - Daniela Kraljevic
- Department of Pediatrics, University Hospital in Mostar, Kralja Tvrtka bb, 88000 Mostar, Bosnia and Herzegovina
| | - Jelena Todorovic
- Department of Pathology, Cytology and Forensic Medicine, University Hospital in Mostar, Kralja Tvrtka bb, 88000 Mostar, Bosnia and Herzegovina
| | - Violeta Soljic
- Department of Pathology, Cytology and Forensic Medicine, University Hospital in Mostar, Kralja Tvrtka bb, 88000 Mostar, Bosnia and Herzegovina; Department of Histology and Embryology, School of Medicine, University of Mostar, Bijeli brijeg bb, 88000 Mostar, Bosnia and Herzegovina.
| |
Collapse
|
207
|
Lin C, Yao E, Chuang PT. A conserved MST1/2-YAP axis mediates Hippo signaling during lung growth. Dev Biol 2015; 403:101-13. [PMID: 25912685 DOI: 10.1016/j.ydbio.2015.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/06/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
Hippo signaling is a critical player in controlling the growth of several tissues and organs in diverse species. The current model of Hippo signaling postulates a cascade of kinase activity initiated by the MST1/2 kinases in response to external stimuli. This leads to inactivation of the transcriptional coactivators, YAP/TAZ, due to their cytoplasmic retention and degradation that is correlated with YAP/TAZ phosphorylation. In most tissues examined, YAP plays a more dominant role than TAZ. Whether a conserved Hippo pathway is utilized during lung growth and development is unclear. In particular, the regulatory relationship between MST1/2 and YAP/TAZ in the lung remains controversial. By employing the Shh-Cre mouse line to efficiently inactivate genes in the lung epithelium, we show that loss of MST1/2 kinases in the epithelium can lead to neonatal lethality caused by lung defects. This is manifested by perturbation of lung epithelial cell proliferation and differentiation. These phenotypes are more severe than those produced by Nkx2.1-Cre, highlighting the effects of differential Cre activity on phenotypic outcomes. Importantly, expression of YAP targets is upregulated and the ratio of phospho-YAP to total YAP protein levels is reduced in Mst1/2-deficient lungs, all of which are consistent with a negative role of MST1/2 in controlling YAP function. This model gains further support from both in vivo and in vitro studies. Genetic removal of one allele of Yap or one copy of both Yap and Taz rescues neonatal lethality and lung phenotypes due to loss of Mst1/2. Moreover, knockdown of Yap in lung epithelial cell lines restores diminished alveolar marker expression caused by Mst1/2 inactivation. These results demonstrate that MST1/2 inhibit YAP/TAZ activity and establish a conserved MST1/2-YAP axis in coordinating lung growth during development.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, United States.
| |
Collapse
|
208
|
O'Leary C, Gilbert JL, O'Dea S, O'Brien FJ, Cryan SA. Respiratory Tissue Engineering: Current Status and Opportunities for the Future. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:323-44. [PMID: 25587703 DOI: 10.1089/ten.teb.2014.0525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, lung disease and major airway trauma constitute a major global healthcare burden with limited treatment options. Airway diseases such as chronic obstructive pulmonary disease and cystic fibrosis have been identified as the fifth highest cause of mortality worldwide and are estimated to rise to fourth place by 2030. Alternate approaches and therapeutic modalities are urgently needed to improve clinical outcomes for chronic lung disease. This can be achieved through tissue engineering of the respiratory tract. Interest is growing in the use of airway tissue-engineered constructs as both a research tool, to further our understanding of airway pathology, validate new drugs, and pave the way for novel drug therapies, and also as regenerative medical devices or as an alternative to transplant tissue. This review provides a concise summary of the field of respiratory tissue engineering to date. An initial overview of airway anatomy and physiology is given, followed by a description of the stem cell populations and signaling processes involved in parenchymal healing and tissue repair. We then focus on the different biomaterials and tissue-engineered systems employed in upper and lower respiratory tract engineering and give a final perspective of the opportunities and challenges facing the field of respiratory tissue engineering.
Collapse
Affiliation(s)
- Cian O'Leary
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 School of Pharmacy, Royal College of Surgeons in Ireland , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland
| | - Jennifer L Gilbert
- 4 Department of Biology, Institute of Immunology, University of Ireland , Maynooth, Ireland
| | - Shirley O'Dea
- 4 Department of Biology, Institute of Immunology, University of Ireland , Maynooth, Ireland
| | - Fergal J O'Brien
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,3 Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin , Dublin, Ireland .,5 Trinity Centre of Bioengineering, Trinity College Dublin , Dublin, Ireland
| | - Sally-Ann Cryan
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , Dublin, Ireland .,2 School of Pharmacy, Royal College of Surgeons in Ireland , Dublin, Ireland .,5 Trinity Centre of Bioengineering, Trinity College Dublin , Dublin, Ireland
| |
Collapse
|
209
|
Snoeck HW. Modeling human lung development and disease using pluripotent stem cells. Development 2015; 142:13-6. [PMID: 25516965 DOI: 10.1242/dev.115469] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) into mature cells, tissues and organs holds major promise for the development of novel approaches in regenerative medicine, and provides a unique tool for disease modeling and drug discovery. Sometimes underappreciated is the fact that directed differentiation of hPSCs also provides a unique model for human development, with a number of important advantages over model organisms. Here, I discuss the importance of using human stem cell models for understanding human lung development and disease.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA Department of Medicine, Columbia University Medical Center, New York, NY, USA Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
210
|
Carter E, Miron-Buchacra G, Goldoni S, Danahay H, Westwick J, Watson ML, Tosh D, Ward SG. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS One 2014; 9:e113555. [PMID: 25460003 PMCID: PMC4251986 DOI: 10.1371/journal.pone.0113555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/29/2014] [Indexed: 11/22/2022] Open
Abstract
Branching morphogenesis is a critical step in the development of many epithelial organs. The phosphoinositide-3-kinase (PI3K) pathway has been identified as a central component of this process but the precise role has not been fully established. Herein we sought to determine the role of PI3K in murine lung branching using a series of pharmacological inhibitors directed at this pathway. The pan-class I PI3K inhibitor ZSTK474 greatly enhanced the branching potential of whole murine lung explants as measured by an increase in the number of terminal branches compared with controls over 48 hours. This enhancement of branching was also observed following inhibition of the downstream signalling components of PI3K, Akt and mTOR. Isoform selective inhibitors of PI3K identified that the alpha isoform of PI3K is a key driver in branching morphogenesis. To determine if the effect of PI3K inhibition on branching was specific to the lung epithelium or secondary to an effect on the mesenchyme we assessed the impact of PI3K inhibition in cultures of mesenchyme-free lung epithelium. Isolated lung epithelium cultured with FGF7 formed large cyst-like structures, whereas co-culture with FGF7 and ZSTK474 induced the formation of defined branches with an intact lumen. Together these data suggest a novel role for PI3K in the branching program of the murine embryonic lung contradictory to that reported in other branching organs. Our observations also point towards PI3K acting as a morphogenic switch for FGF7 signalling.
Collapse
Affiliation(s)
- Edward Carter
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Gabriela Miron-Buchacra
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Silvia Goldoni
- Novartis Institute of Biomedical Research, Horsham, United Kingdom
| | - Henry Danahay
- Novartis Institute of Biomedical Research, Horsham, United Kingdom
| | - John Westwick
- Novartis Institute of Biomedical Research, Horsham, United Kingdom
| | - Malcolm L. Watson
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - David Tosh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Stephen G. Ward
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
211
|
Postnatal development and LPS responsiveness of pulmonary adenosine receptor expression and of adenosine-metabolizing enzymes in mice. Pediatr Res 2014; 76:515-21. [PMID: 25188742 DOI: 10.1038/pr.2014.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adenosine levels are regulated by ecto-5'-nucleotidase/CD73 and adenosine deaminase (ADA). Adenosine regulates endothelial permeability and anti-inflammatory responses via adenosine receptors. Here, the adenosine receptors and purine-converting enzymes were studied during postnatal development and inflammation. METHODS Newborn, 1-, 10-, 14-d-old and adult C57BL/6 mice were challenged intraperitoneally (i.p.) with lipopolysaccharide (LPS) for 6 h. The inflammatory response was evaluated by histochemistry. Expression levels of adenosine receptors (A1, A2A, A2B, and A3), CD73, and ADA were measured by quantitative reverse transcription polymerase chain reaction. A1 was studied by immunohistochemistry, and enzyme activities were analyzed by thin-layer chromatography. RESULTS LPS caused respiratory distress in newborns within 24 h. LPS induced neutrophils at the basal stage and alveolar congestion. Low activity and expression of CD73 increased after birth. Expression of ADA after LPS increased 16-fold in adults and 2-fold in newborns (P < 0.05). A1 expression was high in newborns and increased after LPS (P < 0.05). A1 was localized to endothelial membranes. A2A decreased after LPS in newborns and increased in adults (P < 0.05). The expression of A3 increased in newborns and adults after LPS. CONCLUSION Low pulmonary CD73 expression, LPS-induced suppression of A2A, LPS-induced increase of A1 expression, and severe respiratory distress were distinguishing responses in the newborns from those in the adults.
Collapse
|
212
|
Schilders K, Ochieng JK, van de Ven CP, Gontan C, Tibboel D, Rottier RJ. Role of SOX2 in foregut development in relation to congenital abnormalities. World J Med Genet 2014; 4:94-104. [DOI: 10.5496/wjmg.v4.i4.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The uptake of the two essential ingredients for life, oxygen and nutrients, occurs primarily through the oral cavity, but these two lifelines need to be separated with high accuracy once inside the body. The two systems, the gas exchange pulmonary system and the gastro-intestinal feeding system, are derived from the same primitive embryonic structure during development, the foregut, which need to be separated before birth. In certain newborns, this separation occurs not or insufficiently, leading to life threatening conditions, sometimes incompatible with life. The development of the foregut, trachea and lungs is influenced and coordinated by a multitude of signaling cascades and transcription factors. In this review, we will highlight the development of the foregut and pulmonary system and focus on associated congenital abnormalities in light of known genetic alterations with specific attention to the transcription factor SOX2.
Collapse
|
213
|
Affiliation(s)
- Joo-Hyeon Lee
- Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carla F Kim
- Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
214
|
Bower DV, Lee HK, Lansford R, Zinn K, Warburton D, Fraser SE, Jesudason EC. Airway branching has conserved needs for local parasympathetic innervation but not neurotransmission. BMC Biol 2014; 12:92. [PMID: 25385196 PMCID: PMC4255442 DOI: 10.1186/s12915-014-0092-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/20/2014] [Indexed: 11/24/2022] Open
Abstract
Background Parasympathetic signaling has been inferred to regulate epithelial branching as well as organ regeneration and tumor development. However, the relative contribution of local nerve contact versus secreted signals remains unclear. Here, we show a conserved (vertebrates to invertebrates) requirement for intact local nerves in airway branching, persisting even when cholinergic neurotransmission is blocked. Results In the vertebrate lung, deleting enhanced green fluorescent protein (eGFP)-labeled intrinsic neurons using a two-photon laser leaves adjacent cells intact, but abolishes branching. Branching is unaffected by similar laser power delivered to the immediately adjacent non-neural mesodermal tissue, by blocking cholinergic receptors or by blocking synaptic transmission with botulinum toxin A. Because adjacent vasculature and epithelial proliferation also contribute to branching in the vertebrate lung, the direct dependence on nerves for airway branching was tested by deleting neurons in Drosophila embryos. A specific deletion of neurons in the Drosophila embryo by driving cell-autonomous RicinA under the pan-neuronal elav enhancer perturbed Drosophila airway development. This system confirmed that even in the absence of a vasculature or epithelial proliferation, airway branching is still disrupted by neural lesioning. Conclusions Together, this shows that airway morphogenesis requires local innervation in vertebrates and invertebrates, yet neurotransmission is dispensable. The need for innervation persists in the fly, wherein adjacent vasculature and epithelial proliferation are absent. Our novel, targeted laser ablation technique permitted the local function of parasympathetic innervation to be distinguished from neurotransmission. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0092-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle V Bower
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| | - Hyung-Kook Lee
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA.
| | - Rusty Lansford
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA.
| | - Kai Zinn
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA.
| | - David Warburton
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA.
| | - Scott E Fraser
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,Biological Sciences and Biomedical Engineering, University of Southern California, Los Angeles, USA. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| | - Edwin C Jesudason
- Division of Biological Sciences, California Institute of Technology, Pasadena, USA. .,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, USA. .,Division of Child Health, University of Liverpool, Liverpool, UK. .,Biological Imaging Center, California Institute of Technology, 1200 E. California Blvd, MC 139-74, Pasadena, CA, 91125, USA.
| |
Collapse
|
215
|
Greer RM, Miller JD, Okoh VO, Halloran BA, Prince LS. Epithelial-mesenchymal co-culture model for studying alveolar morphogenesis. Organogenesis 2014; 10:340-9. [PMID: 25482312 DOI: 10.4161/org.29198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Division of large, immature alveolar structures into smaller, more numerous alveoli increases the surface area available for gas exchange. Alveolar division requires precise epithelial-mesenchymal interactions. However, few experimental models exist for studying how these cell-cell interactions produce changes in 3-dimensional structure. Here we report an epithelial-mesenchymal cell co-culture model where 3-dimensional peaks form with similar cellular orientation as alveolar structures in vivo. Co-culturing fetal mouse lung mesenchyme with A549 epithelial cells produced tall peaks of cells covered by epithelia with cores of mesenchymal cells. These structures did not form when using adult lung fibroblasts. Peak formation did not require localized areas of cell proliferation or apoptosis. Mesenchymal cells co-cultured with epithelia adopted an elongated cell morphology closely resembling myofibroblasts within alveolar septa in vivo. Because inflammation inhibits alveolar formation, we tested the effects of E. coli lipopolysaccharide on 3-dimensional peak formation. Confocal and time-lapse imaging demonstrated that lipopolysaccharide reduced mesenchymal cell migration, resulting in fewer, shorter peaks with mesenchymal cells present predominantly at the base. This epithelial-mesenchymal co-culture model may therefore prove useful in future studies of mechanisms regulating alveolar morphogenesis.
Collapse
Key Words
- 3-D, 3-dimensional
- ATCC, American Type Culture Collection
- BALB/cJ, Bagg Albino
- BMP4, bone morphogenetic protein 4
- CO2, carbon dioxide
- DAPI, 4′, 6-Diamidino-2-Phenylindole, Dihydrochloride
- DEVD, acetyl-Asp-Glu-Val-Asp p-nitroanilide
- DMEM, Dulbecco's modified eagle medium
- DiI, 1, 1′-dioctadecyl-3, 3, 3′3′-tetramethylindocarbocyanine perchlorate
- E-cad, e-cadherin
- E. coli, Escherichia coli
- E15, embryonic day 15
- FBS, fetal bovine serum
- FGF, fibroblast growth factor
- LPS, lipopolysaccharide
- PDGF, platelet derived growth factor
- SHH, sonic hedgehog
- TGF-β, transforming growth factor beta
- TO-PRO-3, 4-[3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-1-[3-(trimethylammonio)propyl]-, diiodide
- VEGF, vascular endothelial growth factor
- Z-VAD-FMK, Z-Val-Ala-Asp-CH2F
- alveolarization
- bronchopulmonary dysplasia
- lung development
- myofibroblast
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Rachel M Greer
- a Department of Pediatrics ; University of California San Diego; Rady Children's Hospital, San Diego ; San Diego , CA USA
| | | | | | | | | |
Collapse
|
216
|
Abnormal Sonic hedgehog signaling in the lung of rats with esophageal atresia induced by adriamycin. Pediatr Res 2014; 76:355-62. [PMID: 25003913 DOI: 10.1038/pr.2014.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/17/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Abnormal lung development was recently described in the rat model of esophageal atresia and tracheoesophageal fistula (EA-TEF). Since in this condition the ventral-to-dorsal switch of Shh expression in the foregut is disturbed, the present study tested the hypothesis that this abnormal expression at the emergence of the tracheobronchial bud might be translated into the developing lung. METHODS Pregnant rats received either 1.75 mg/kg i.p. adriamycin or vehicle from E7 to E9. Three groups were studied: control and adriamycin-exposed with and without EA-TEF. Embryos were recovered and the lungs were harvested and processed for reverse transcription polymerase chain reaction and immunofluorescence analysis of the Shh signaling cascade. RESULTS Shh signaling was downregulated at the late embryonic stage of lung development (E13) in embryos with EA-TEF. Throughout the subsequent stages of development, the expression of both Shh and its downstream components increased significantly and remained upregulated throughout gestation. Immunofluorescent localization was consistent with these findings. CONCLUSION Defective Shh signaling environment in the foregut is present beyond the emergence of lung buds and probably impairs lung development. Later in gestation, lungs exhibited a remarkable ability to upregulate the Shh cascade, suggesting a compensatory response. These findings may be relevant to understand pulmonary disease suffered by children with EA-TEF.
Collapse
|
217
|
Moodley Y, Thompson P, Warburton D. Stem cells: a recapitulation of development. Respirology 2014; 18:1167-76. [PMID: 24033442 DOI: 10.1111/resp.12186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cells are cells that can differentiate into any tissue from all germ layers and include embryonic stem cells and induced pluripotent cells (iPS). Embryonic stem cells are derived from 8-day blastocysts obtained from unutilized embryos following in vitro fertilization, while iPS is obtained following transfection of dermal fibroblasts with pluripotent genes (sex determining region Y-binding, Kruppel-like factor 4, octamer-binding transcription factor 4 and c-Myc). The major challenge is to differentiate these cells into lung epithelium for therapeutic applications as well as to model lung diseases such as cystic fibrosis. In this review, the developmental pathways of the lung and how these pathways have been recapitulated in vitro to induce differentiation of pluripotent cells to lung epithelium were examined.
Collapse
Affiliation(s)
- Yuben Moodley
- Lung Institute of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, Royal Perth Hospital, Perth, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | | |
Collapse
|
218
|
Ochieng JK, Schilders K, Kool H, Boerema-De Munck A, Buscop-Van Kempen M, Gontan C, Smits R, Grosveld FG, Wijnen RMH, Tibboel D, Rottier RJ. Sox2 regulates the emergence of lung basal cells by directly activating the transcription of Trp63. Am J Respir Cell Mol Biol 2014; 51:311-22. [PMID: 24669837 DOI: 10.1165/rcmb.2013-0419oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung development is determined by the coordinated expression of several key genes. Previously, we and others have shown the importance of the sex determining region Y-box 2 (Sox2) gene in lung development. Transgenic expression of Sox2 during lung development resulted in cystic airways, and here we show that modulating the timing of ectopic Sox2 expression in the branching regions of the developing lung results in variable cystic lesions resembling the spectrum of the human congenital disorder congenital cystic adenomatoid malformation (CCAM). Sox2 dominantly differentiated naive epithelial cells into the proximal lineage irrespective of the presence of Fgf10. Sox2 directly induced the expression of Trp63, the master switch toward the basal cell lineage and induced the expression of Gata6, a factor involved in the emergence of bronchoalveolar stem cells. We showed that SOX2 and TRP63 are coexpressed in the lungs of human patients with type II CCAM. The combination of premature differentiation toward the proximal cell lineage and the induction of proliferation resulted in the cyst-like structures. Thus, we show that Sox2 is directly responsible for the emergence of two lung progenitor cells: basal cells by regulating the master gene Trp63 and bronchoalveolar stem cells by regulating Gata6.
Collapse
Affiliation(s)
- Joshua K Ochieng
- Departments of 1 Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
El Agha E, Bellusci S. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury. SCIENTIFICA 2014; 2014:538379. [PMID: 25298902 PMCID: PMC4178922 DOI: 10.1155/2014/538379] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/07/2014] [Indexed: 06/04/2023]
Abstract
Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.
Collapse
Affiliation(s)
- Elie El Agha
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstraße 36, 35392 Giessen, Hessen, Germany
- Member of the German Center for Lung Research (DZL), 35392 Giessen, Hessen, Germany
- Developmental Biology and Regenerative Program of the Saban Research Institute at Childrens Hospital Los Angeles and University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
220
|
Marimuthu A, Huang TC, Selvan LDN, Renuse S, Nirujogi RS, Kumar P, Pinto SM, Rajagopalan S, Pandey A, Harsha H, Chatterjee A. Identification of targets of miR-200b by a SILAC-based quantitative proteomic approach. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
221
|
Berika M, Elgayyar ME, El-Hashash AHK. Asymmetric cell division of stem cells in the lung and other systems. Front Cell Dev Biol 2014; 2:33. [PMID: 25364740 PMCID: PMC4206988 DOI: 10.3389/fcell.2014.00033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/14/2014] [Indexed: 01/29/2023] Open
Abstract
New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms.
Collapse
Affiliation(s)
- Mohamed Berika
- Rehabilitation Science Department, College of Applied Medical Sciences, King Saud University, KSA and Anatomy Department, Faculty of Medicine, Mansoura University Mansoura, Egypt
| | - Marwa E Elgayyar
- Department of Pediatric and Neonatology, Benha Children Hospital Benha City, Egypt
| | - Ahmed H K El-Hashash
- Developmental Biology, Stem Cells and Regenerative Medicine Program, Keck School of Medicine and Ostrow School of Dentistry, Children's Hospital Los Angeles, University of Southern California Los Angeles, USA
| |
Collapse
|
222
|
Booth AJR, Blanchard GB, Adams RJ, Röper K. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev Cell 2014; 29:562-576. [PMID: 24914560 PMCID: PMC4064686 DOI: 10.1016/j.devcel.2014.03.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
Abstract
The cytoskeleton is a major determinant of cell-shape changes that drive the formation of complex tissues during development. Important roles for actomyosin during tissue morphogenesis have been identified, but the role of the microtubule cytoskeleton is less clear. Here, we show that during tubulogenesis of the salivary glands in the fly embryo, the microtubule cytoskeleton undergoes major rearrangements, including a 90° change in alignment relative to the apicobasal axis, loss of centrosomal attachment, and apical stabilization. Disruption of the microtubule cytoskeleton leads to failure of apical constriction in placodal cells fated to invaginate. We show that this failure is due to loss of an apical medial actomyosin network whose pulsatile behavior in wild-type embryos drives the apical constriction of the cells. The medial actomyosin network interacts with the minus ends of acentrosomal microtubule bundles through the cytolinker protein Shot, and disruption of Shot also impairs apical constriction. Large-scale rearrangement of microtubules accompanies early tube formation Loss of microtubules leads to loss of apical constriction during tube formation During tubulogenesis, apical constriction is driven by pulsatile medial actomyosin Microtubules and the cytolinker Shot stabilize the medial actomyosin
Collapse
Affiliation(s)
- Alexander J R Booth
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Richard J Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Katja Röper
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
223
|
Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia. BMC Genomics 2014; 15:587. [PMID: 25015185 PMCID: PMC4108790 DOI: 10.1186/1471-2164-15-587] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/27/2014] [Indexed: 12/20/2022] Open
Abstract
Background Tissue regeneration in the lungs is gaining increasing interest as a potential influenza management strategy. In this study, we explored the role of microRNAs, short non-coding RNAs involved in post-transcriptional regulation, during pulmonary regeneration after influenza infection. Results We profiled miRNA and mRNA expression levels following lung injury and tissue regeneration using a murine influenza pneumonia model. BALB/c mice were infected with a sub-lethal dose of influenza A/PR/8(H1N1) virus, and their lungs were harvested at 7 and 15 days post-infection to evaluate the expression of ~300 miRNAs along with ~36,000 genes using microarrays. A global network was constructed between differentially expressed miRNAs and their potential target genes with particular focus on the pulmonary repair and regeneration processes to elucidate the regulatory role of miRNAs in the lung repair pathways. The miRNA arrays revealed a global down-regulation of miRNAs. TargetScan analyses also revealed specific miRNAs highly involved in targeting relevant gene functions in repair such as miR-290 and miR-505 at 7 dpi; and let-7, miR-21 and miR-30 at 15 dpi. Conclusion The significantly differentially regulated miRNAs are implicated in the activation or suppression of cellular proliferation and stem cell maintenance, which are required during the repair of the damaged lungs. These findings provide opportunities in the development of novel repair strategies in influenza-induced pulmonary injury. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-587) contains supplementary material, which is available to authorized users.
Collapse
|
224
|
Mondrinos MJ, Jones PL, Finck CM, Lelkes PI. Engineering de novo assembly of fetal pulmonary organoids. Tissue Eng Part A 2014; 20:2892-907. [PMID: 24825442 DOI: 10.1089/ten.tea.2014.0085] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induction of morphogenesis by competent lung progenitor cells in a 3D environment is a central goal of pulmonary tissue engineering, yet little is known about the microenvironmental signals required to induce de novo assembly of alveolar-like tissue in vitro. In extending our previous reports of alveolar-like tissue formation by fetal pulmonary cells stimulated by exogenous fibroblast growth factors (FGFs), we identified some of the key endogenous mediators of FGF-driven morphogenesis (organoid assembly), for example, epithelial sacculation, endothelial network assembly, and epithelial-endothelial interfacing. Sequestration of endogenously secreted vascular endothelial growth factor-A (VEGF-A) potently inhibited endothelial network formation, with little or no effect on epithelial morphogenesis. Inhibition of endogenous sonic hedgehog (SHH) partially attenuated FGF-driven endothelial network formation, while the addition of exogenous SHH in the absence of FGFs was able to induce epithelial and endothelial morphogenesis, although with distinct morphological characteristics. Notably, SHH-induced endothelial networks exhibited fewer branch points, reduced sprouting behavior, and a periendothelial extracellular matrix (ECM) virtually devoid of tenascin-C (TN-C). By contrast, focal deposition of endogenous TN-C was observed in the ECM-surrounding endothelial networks of FGF-induced organoids, especially around sprouting tips. In the FGF-induced organoids, TN-C was also observed in the clefts of sacculated epithelium and at the epithelial-endothelial interface. In support of a critical role in the formation of alveolar-like tissue in vitro, TN-C blocking inhibited endothelial network formation and epithelial sacculation. Upon engraftment of in-vitro-generated pulmonary organoids beneath the renal capsule of syngeneic mice, robust neovascularization occurred in 5 days with a large contribution of patent vessels from engrafted organoids, providing proof of principle for exploring intrapulmonary engraftment of prevascularized hydrogel constructs. Expression of proSpC, VEGF-A, and TN-C following 1 week in vivo mirrored the patterns observed in vitro. Taken together, these findings advance our understanding of endogenous growth factor and ECM signals important for de novo formation of pulmonary tissue structures in vitro and demonstrate the potential of an organoid-based approach to lung tissue augmentation.
Collapse
Affiliation(s)
- Mark J Mondrinos
- 1 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
225
|
Treps L, Le Guelte A, Gavard J. Emerging roles of Semaphorins in the regulation of epithelial and endothelial junctions. Tissue Barriers 2014; 1:e23272. [PMID: 24665374 PMCID: PMC3879177 DOI: 10.4161/tisb.23272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
Tissue barriers maintain homeostasis, protect underlying tissues, are remodeled during organogenesis and injury and limit aberrant proliferation and dissemination. In this context, endothelial and epithelial intercellular junctions are the primary targets of various cues. This cellular adaptation requires plasticity and dynamics of adhesion molecules and the associated cytoskeleton, as well as the adhesive-linked signaling platforms. It is therefore not surprising that the guidance molecules from the Semaphorin family arise as novel modifiers of epithelia and endothelia in development and diseases. This review will focus on the actions of Semaphorins, and their cognate receptors, Plexins and Neuropilins, on epithelial and endothelial barrier properties.
Collapse
Affiliation(s)
- Lucas Treps
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Armelle Le Guelte
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| | - Julie Gavard
- CNRS; UMR8104; Paris, France ; Inserm; U1016; Paris, France ; Université Paris Descartes; Sorbonne Paris Cite; Paris, France
| |
Collapse
|
226
|
Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat Commun 2014; 5:3923. [PMID: 24879355 PMCID: PMC4115076 DOI: 10.1038/ncomms4923] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/19/2014] [Indexed: 01/05/2023] Open
Abstract
The lung is a branched tubular network with two distinct compartments — the proximal conducting airways and the peripheral gas exchange region — separated by a discrete boundary termed the bronchoalveolar duct junction (BADJ). Here we image the developing mouse lung in three dimensions and show that two nested developmental waves demarcate the BADJ under the control of a global hormonal signal. A first wave of branching morphogenesis progresses throughout embryonic development, generating branches for both compartments. A second wave of conducting airway differentiation follows the first wave but terminates earlier, specifying the proximal compartment and setting the BADJ. The second wave is terminated by a glucocorticoid signaling: premature activation or loss of glucocorticoid signaling causes a proximal or distal shift, respectively, in BADJ location. The results demonstrate a novel mechanism of boundary formation in complex, three-dimensional organs and provide new insights into glucocorticoid therapies for lung defects in premature birth.
Collapse
|
227
|
Kaisani A, Delgado O, Fasciani G, Kim SB, Wright WE, Minna JD, Shay JW. Branching morphogenesis of immortalized human bronchial epithelial cells in three-dimensional culture. Differentiation 2014; 87:119-26. [PMID: 24830354 DOI: 10.1016/j.diff.2014.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
While mouse models have contributed in our understanding of lung development, repair and regeneration, inherent differences between the murine and human airways requires the development of new models using human airway epithelial cells. In this study, we describe a three-dimensional model system using human bronchial epithelial cells (HBECs) cultured on reconstituted basement membrane. HBECs form complex budding and branching structures on reconstituted basement membrane when co-cultured with human lung fetal fibroblasts. These structures are reminiscent of the branching epithelia during lung development. The HBECs also retain markers indicative of epithelial cell types from both the central and distal airways suggesting their multipotent potential. In addition, we illustrate how the model can be utilized to understand respiratory diseases such as lung cancer. The 3D novel cell culture system recapitulates stromal-epithelial interactions in vitro that can be utilized to understand important aspects of lung development and diseases.
Collapse
Affiliation(s)
- Aadil Kaisani
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Oliver Delgado
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Gail Fasciani
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Sang Bum Kim
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
228
|
Papamatheakis DG, Blood AB, Kim JH, Wilson SM. Antenatal hypoxia and pulmonary vascular function and remodeling. Curr Vasc Pharmacol 2014; 11:616-40. [PMID: 24063380 DOI: 10.2174/1570161111311050006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/12/2012] [Indexed: 01/02/2023]
Abstract
This review provides evidence that antenatal hypoxia, which represents a significant and worldwide problem, causes prenatal programming of the lung. A general overview of lung development is provided along with some background regarding transcriptional and signaling systems of the lung. The review illustrates that antenatal hypoxic stress can induce a continuum of responses depending on the species examined. Fetuses and newborns of certain species and specific human populations are well acclimated to antenatal hypoxia. However, antenatal hypoxia causes pulmonary vascular disease in fetuses and newborns of most mammalian species and humans. Disease can range from mild pulmonary hypertension, to severe vascular remodeling and dangerous elevations in pressure. The timing, length, and magnitude of the intrauterine hypoxic stress are important to disease development, however there is also a genetic-environmental relationship that is not yet completely understood. Determining the origins of pulmonary vascular remodeling and pulmonary hypertension and their associated effects is a challenging task, but is necessary in order to develop targeted therapies for pulmonary hypertension in the newborn due to antenatal hypoxia that can both treat the symptoms and curtail or reverse disease progression.
Collapse
Affiliation(s)
- Demosthenes G Papamatheakis
- Center for Perinatal Biology, Loma Linda University School of Medicine, 11234 Anderson Street, Loma Linda, 92350 CA, USA.
| | | | | | | |
Collapse
|
229
|
Ruchonnet-Metrailler I, Bessieres B, Bonnet D, Vibhushan S, Delacourt C. Pulmonary hypoplasia associated with congenital heart diseases: a fetal study. PLoS One 2014; 9:e93557. [PMID: 24699523 PMCID: PMC3974773 DOI: 10.1371/journal.pone.0093557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Abnormalities of the fetal pulmonary vasculature may affect lung morphogenesis. Postnatal studies have suggested that pulmonary hypoplasia (PH) may be associated with congenital heart diseases (CHDs). Objective To determine the prevalence of PH associated with CHDs, and to evaluate whether CHDs with right outflow obstruction were associated with the highest risk of lung growth impairment. Methods Between January 2006 and December 2010, fetuses with CHD obtained following the termination of pregnancies due to fetal abnormalities were examined in a prospective manner for the detection of heart and lung defects. CHDs were classified into five pathophysiological groups. Lung weight (LW), body weight (BW), and LW/BW ratio were analyzed for each case. The expression of CD31 and VEGF in the lung was evaluated by immunohistochemistry. Results Fetuses with CHDs and right outflow obstruction had significantly lower LW for a given BW, and significantly lower LW/BW ratios for a given gestational age. When defining PH as a fetal LW/BW ratio <0.015 before 28 weeks, and <0.012 after 28 weeks, PH was detected in 15 of the 119 fetuses analyzed (13%). It was significantly associated with CHD with right outflow obstruction, independently of chromosomal abnormalities and associated extracardiac abnormalities (p<0.03). Right outflow obstruction was detected in 60% of the fetuses with CHD and PH, but in only 32% of those with CHD but no PH. In fetuses with right outflow obstruction, no difference was observed between those with PH and those without PH, in terms of the ratio of pulmonary artery diameter to aortic diameter, lung CD31 expression, or lung VEGF expression. Conclusion CHDs with right outflow obstruction are a significant risk factor for prenatally acquired PH. The occurrence of fetal PH is not correlated with abnormalities of the pulmonary vasculature, suggesting the involvement of perfusion-independent mechanisms.
Collapse
Affiliation(s)
- Isabelle Ruchonnet-Metrailler
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l’Enfant, Paris, France
| | - Bettina Bessieres
- AP-HP, Hôpital Necker-Enfants Malades, Service Histo-Embryologie et Cytogénétique, Paris, France
- INSERM UMR 781, Paris, France
| | - Damien Bonnet
- AP-HP, Hôpital Necker-Enfants Malades, Cardiologie Pédiatrique, M3C-Centre de Référence pour les Malformations Cardiaques Congénitales Complexes Paris, France
- Université Paris-Descartes, Paris, France
| | | | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l’Enfant, Paris, France
- INSERM UMR 781, Paris, France
- Université Paris-Descartes, Paris, France
- * E-mail:
| |
Collapse
|
230
|
Sharma S, Chhabra D, Kho AT, Hayden LP, Tantisira KG, Weiss ST. The genomic origins of asthma. Thorax 2014; 69:481-7. [PMID: 24668408 DOI: 10.1136/thoraxjnl-2014-205166] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lung function tracks from the earliest age that it can be reliably measured. Genome wide association studies suggest that most variants identified for common complex traits are regulatory in function and active during fetal development. Fetal programming of gene expression during development is critical to the formation of a normal lung. An understanding of how fetal developmental genes related to diseases of the lungs and airways is a critical area for research. This review article considers the developmental origins hypothesis, the stages of normal lung development and a variety of environmental exposures that might influence the developmental process: in utero cigarette smoke exposure, vitamin D and folate. We conclude with some information on developmental genes and asthma.
Collapse
Affiliation(s)
- Sunita Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, , Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
231
|
Tibboel J, Reiss I, de Jongste JC, Post M. Sphingolipids in lung growth and repair. Chest 2014; 145:120-128. [PMID: 24394822 DOI: 10.1378/chest.13-0967] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids comprise a class of bioactive lipids that are involved in a variety of pathophysiologic processes, including cell death and survival. Ceramide and sphingosine-1-phosphate (S1P) form the center of sphingolipid metabolism and determine proapoptotic and antiapoptotic balance. Findings in animal models suggest a possible pathophysiologic role of ceramide and S1P in COPD, cystic fibrosis, and asthma. Sphingolipid research is now focusing on the role of ceramides during lung inflammation and its regulation by sphingomyelinases. Recently, sphingolipids have been shown to play a role in the pathogenesis of bronchopulmonary dysplasia (BPD). Ceramide upregulation was linked with vascular endothelial growth factor suppression and decreased surfactant protein B levels, pathways important for the development of BPD. In a murine model of BPD, intervention with an S1P analog had a favorable effect on histologic abnormalities and ceramide levels. Ceramides and S1P also regulate endothelial permeability through cortical actin cytoskeletal rearrangement, which is relevant for the pathogenesis of ARDS. On the basis of these observations, the feasibility of pharmacologic intervention in the sphingolipid pathway to influence disease development and progression is presently explored, with promising early results. The prospect of new strategies to prevent and repair lung disease by interfering with sphingolipid metabolism is exciting and could potentially reduce morbidity and mortality in patients with severe lung disorders.
Collapse
Affiliation(s)
- Jeroen Tibboel
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Irwin Reiss
- Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martin Post
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
232
|
Jones TA, Nikolova LS, Schjelderup A, Metzstein MM. Exocyst-mediated membrane trafficking is required for branch outgrowth in Drosophila tracheal terminal cells. Dev Biol 2014; 390:41-50. [PMID: 24607370 DOI: 10.1016/j.ydbio.2014.02.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/16/2022]
Abstract
Branching morphogenesis, the process by which cells or tissues generate tree-like networks that function to increase surface area or in contacting multiple targets, is a common developmental motif in multicellular organisms. We use Drosophila tracheal terminal cells, a component of the insect respiratory system, to investigate branching morphogenesis that occurs at the single cell level. Here, we show that the exocyst, a conserved protein complex that facilitates docking and tethering of vesicles at the plasma membrane, is required for terminal cell branch outgrowth. We find that exocyst-deficient terminal cells have highly truncated branches and show an accumulation of vesicles within their cytoplasm and are also defective in subcellular lumen formation. We also show that vesicle trafficking pathways mediated by the Rab GTPases Rab10 and Rab11 are redundantly required for branch outgrowth. In terminal cells, the PAR-polarity complex is required for branching, and we find that the PAR complex is required for proper membrane localization of the exocyst, thus identifying a molecular link between the branching and outgrowth programs. Together, our results suggest a model where exocyst mediated vesicle trafficking facilitates branch outgrowth, while de novo branching requires cooperation between the PAR and exocyst complexes.
Collapse
Affiliation(s)
- Tiffani A Jones
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Linda S Nikolova
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Ani Schjelderup
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark M Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
233
|
Anyanwu AC, Bentley JK, Popova AP, Malas O, Alghanem H, Goldsmith AM, Hershenson MB, Pinsky DJ. Suppression of inflammatory cell trafficking and alveolar simplification by the heme oxygenase-1 product carbon monoxide. Am J Physiol Lung Cell Mol Physiol 2014; 306:L749-63. [PMID: 24532288 DOI: 10.1152/ajplung.00236.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD), a lung disease of prematurely born infants, is characterized in part by arrested development of pulmonary alveolae. We hypothesized that heme oxygenase (HO-1) and its byproduct carbon monoxide (CO), which are thought to be cytoprotective against redox stress, mitigate lung injury and alveolar simplification in hyperoxia-exposed neonatal mice, a model of BPD. Three-day-old C57BL/6J mice were exposed to air or hyperoxia (FiO2, 75%) in the presence or absence of inhaled CO (250 ppm for 1 h twice daily) for 21 days. Hyperoxic exposure increased mean linear intercept, a measure of alveolar simplification, whereas CO treatment attenuated hypoalveolarization, yielding a normal-appearing lung. Conversely, HO-1-null mice showed exaggerated hyperoxia-induced hypoalveolarization. CO also inhibited hyperoxia-induced pulmonary accumulation of F4/80+, CD11c+, and CD11b+ monocytes and Gr-1+ neutrophils. Furthermore, CO attenuated lung mRNA and protein expression of proinflammatory cytokines, including the monocyte chemoattractant CCL2 in vivo, and decreased hyperoxia-induced type I alveolar epithelial cell CCL2 production in vitro. Hyperoxia-exposed CCL2-null mice, like CO-treated mice, showed attenuated alveolar simplification and lung infiltration of CD11b+ monocytes, consistent with the notion that CO blocks lung epithelial cell cytokine production. We conclude that, in hyperoxia-exposed neonatal mice, inhalation of CO suppresses inflammation and alveolar simplification.
Collapse
Affiliation(s)
- Anuli C Anyanwu
- Univ. of Michigan, 7220 C, Medical Science Research Bldg. III, 1150 West Medical Center Dr., Ann Arbor, MI 48109-0644 (e-mail address:
| | | | | | | | | | | | | | | |
Collapse
|
234
|
Abstract
Branched structures are ubiquitous in nature, both in living and non-living systems. While the functional benefits of branching organogenesis are straightforward, the developmental mechanisms leading to the repeated branching of epithelia in surrounding mesoderm remain unclear. Both molecular and physical aspects of growth control seem to play a critical role in shape emergence and maintenance. On the molecular side, the existence of a gradient of growth-promoting ligand between epithelial tips and distal mesenchyme seems to be common to branched organs. On the physical side, the branching process seems to require a mechanism of real-time adaptation to local geometry, as suggested by the self-avoiding nature of branching events. In this paper, we investigate the outcomes of a general three-dimensional growth model, in which epithelial growth is implemented as a function of ligand income, while the mesenchyme is considered as a proliferating viscous medium. Our results suggest that the existence of a gradient of growth-promoting ligand between distal and proximal mesenchyme implies a growth instability of the epithelial sheet, resulting in spontaneous self-avoiding branching morphogenesis. While the general nature of the model prevents one from fitting the development of specific organs, it suggests that few ingredients are actually required to achieve branching organogenesis.
Collapse
Affiliation(s)
- Raphaël Clément
- Laboratoire J-A Dieudonné - UMR CNRS 7531, Parc Valrose - University Nice Sophia Antipolis, F-06100 Nice, France
| | | |
Collapse
|
235
|
Chen F, Marquez H, Kim YK, Qian J, Shao F, Fine A, Cruikshank WW, Quadro L, Cardoso WV. Prenatal retinoid deficiency leads to airway hyperresponsiveness in adult mice. J Clin Invest 2014; 124:801-11. [PMID: 24401276 DOI: 10.1172/jci70291] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/30/2013] [Indexed: 01/02/2023] Open
Abstract
There is increasing evidence that vitamin A deficiency in utero correlates with abnormal airway smooth muscle (SM) function in postnatal life. The bioactive vitamin A metabolite retinoic acid (RA) is essential for formation of the lung primordium; however, little is known about the impact of early fetal RA deficiency on postnatal lung structure and function. Here, we provide evidence that during murine lung development, endogenous RA has a key role in restricting the airway SM differentiation program during airway formation. Using murine models of pharmacological, genetic, and dietary vitamin A/RA deficiency, we found that disruption of RA signaling during embryonic development consistently resulted in an altered airway SM phenotype with markedly increased expression of SM markers. The aberrant phenotype persisted postnatally regardless of the adult vitamin A status and manifested as structural changes in the bronchial SM and hyperresponsiveness of the airway without evidence of inflammation. Our data reveal a role for endogenous RA signaling in restricting SM differentiation and preventing precocious and excessive SM differentiation when airways are forming.
Collapse
|
236
|
Witsch TJ, Turowski P, Sakkas E, Niess G, Becker S, Herold S, Mayer K, Vadász I, Roberts JD, Seeger W, Morty RE. Deregulation of the lysyl hydroxylase matrix cross-linking system in experimental and clinical bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 306:L246-59. [PMID: 24285264 DOI: 10.1152/ajplung.00109.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common and serious complication of premature birth, characterized by a pronounced arrest of alveolar development. The underlying pathophysiological mechanisms are poorly understood although perturbations to the maturation and remodeling of the extracellular matrix (ECM) are emerging as candidate disease pathomechanisms. In this study, the expression and regulation of three members of the lysyl hydroxylase family of ECM remodeling enzymes (Plod1, Plod2, and Plod3) in clinical BPD, as well as in an experimental animal model of BPD, were addressed. All three enzymes were localized to the septal walls in developing mouse lungs, with Plod1 also expressed in the vessel walls of the developing lung and Plod3 expressed uniquely at the base of developing septa. The expression of plod1, plod2, and plod3 was upregulated in the lungs of mouse pups exposed to 85% O2, an experimental animal model of BPD. Transforming growth factor (TGF)-β increased plod2 mRNA levels and activated the plod2 promoter in vitro in lung epithelial cells and in lung fibroblasts. Using in vivo neutralization of TGF-β signaling in the experimental animal model of BPD, TGF-β was identified as the regulator of aberrant plod2 expression. PLOD2 mRNA expression was also elevated in human neonates who died with BPD or at risk for BPD, compared with neonates matched for gestational age at birth or chronological age at death. These data point to potential roles for lysyl hydroxylases in normal lung development, as well as in perturbed late lung development associated with BPD.
Collapse
Affiliation(s)
- Thilo J Witsch
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Turcatel G, Rubin N, Menke DB, Martin G, Shi W, Warburton D. Lung mesenchymal expression of Sox9 plays a critical role in tracheal development. BMC Biol 2013; 11:117. [PMID: 24274029 PMCID: PMC4222279 DOI: 10.1186/1741-7007-11-117] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 12/01/2022] Open
Abstract
Background Embryonic lung development is instructed by crosstalk between mesenchyme and epithelia, which results in activation of transcriptional factors, such as Sox9, in a temporospatial manner. Sox9 is expressed in both distal lung epithelium and proximal lung mesenchyme. Here, we investigated the effect of lung mesenchyme-specific inducible deletion of Sox9 during murine lung development. Results Transgenic mice lacking Sox9 expression were unable to breathe and died at birth, with noticeable tracheal defects. Cartilage rings were missing, and the tracheal lumen was collapsed in the mutant trachea. In situ hybridization showed an altered expression pattern of Tbx4, Tbx5 and Fgf10 genes and marked reduction of Collagen2 expression in the tracheal mesenchyme. The tracheal phenotype was increasingly severe, with longer duration of deletion. Lymphatic vasculature was underdeveloped in the mutant trachea: Prox1, Lyve1, and Vegfr3 were decreased after Sox9 knockout. We also found that compared with normal tracheal epithelium, the mutant tracheal epithelium had an altered morphology with fewer P63-positive cells and more CC10-positive cells, fewer goblet cells, and downregulation of surfactant proteins A and C. Conclusion The appropriate temporospatial expression of Sox9 in lung mesenchyme is necessary for appropriate tracheal cartilage formation, lymphatic vasculature system development, and epithelial differentiation. We uncovered a novel mechanism of lung epithelium differentiation: tracheal cartilage rings instruct the tracheal epithelium to differentiate properly during embryonic development. Thus, besides having a mechanical function, tracheal cartilage also appears to be a local signaling structure in the embryonic lung.
Collapse
Affiliation(s)
| | | | | | | | | | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and Ostrow School of Dentistry, University of Southern California, 4661 Sunset Boulevard, Los Angeles, CA 90027, USA.
| |
Collapse
|
238
|
Brennan SC, Finney BA, Lazarou M, Rosser AE, Scherf C, Adriaensen D, Kemp PJ, Riccardi D. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels. PLoS One 2013; 8:e80294. [PMID: 24282533 PMCID: PMC3840017 DOI: 10.1371/journal.pone.0080294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9–17 of human gestation, embryonic days (E)11.5–16.5 in mouse) in a hypercalcaemic environment (∼1.7 in the fetus vs. ∼1.1–1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca2+ channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match growth and distension within the developing lung.
Collapse
Affiliation(s)
- Sarah C Brennan
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Guo Y, Chen TH, Zeng X, Warburton D, Boström KI, Ho CM, Zhao X, Garfinkel A. Branching patterns emerge in a mathematical model of the dynamics of lung development. J Physiol 2013; 592:313-24. [PMID: 24247979 DOI: 10.1113/jphysiol.2013.261099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent experimental work has described an elegant pattern of branching in the development of the lung. Multiple forms of branching have been identified, including side branching and tip bifurcation. A particularly interesting feature is the phenomenon of 'orthogonal rotation of the branching plane'. The lung must fill 3D space with the essentially 2D phenomenon of branching. It accomplishes this by rotating the branching plane by 90° with each generation. The mechanisms underlying this rotation are not understood. In general, the programmes that underlie branching have been hypothetically attributed to genetic 'subroutines' under the control of a 'global master routine' to invoke particular subroutines at the proper time and location, but the mechanisms of these routines are not known. Here, we demonstrate that fundamental mechanisms, the reaction and diffusion of biochemical morphogens, can create these patterns. We used a partial differential equation model that postulates three morphogens, which we identify with specific molecules in lung development. We found that cascades of branching events, including side branching, tip splitting and orthogonal rotation of the branching plane, all emerge immediately from the model, without further assumptions. In addition, we found that one branching mode can be easily switched to another, by increasing or decreasing the values of key parameters. This shows how a 'global master routine' could work by the alteration of a single parameter. Being able to simulate cascades of branching events is necessary to understand the critical features of branching, such as orthogonal rotation of the branching plane between successive generations, and branching mode switch during lung development. Thus, our model provides a paradigm for how genes could possibly act to produce these spatial structures. Our low-dimensional model gives a qualitative understanding of how generic physiological mechanisms can produce branching phenomena, and how the system can switch from one branching pattern to another using low-dimensional 'control knobs'. The model provides a number of testable predictions, some of which have already been observed (though not explained) in experimental work.
Collapse
Affiliation(s)
- Yina Guo
- Department of Medicine, A2-237 Center for Health Sciences, Los Angeles, California, USA 90095-1679. . X. Zhao: Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Zhang W, Menke DB, Jiang M, Chen H, Warburton D, Turcatel G, Lu CH, Xu W, Luo Y, Shi W. Spatial-temporal targeting of lung-specific mesenchyme by a Tbx4 enhancer. BMC Biol 2013; 11:111. [PMID: 24225400 PMCID: PMC3907025 DOI: 10.1186/1741-7007-11-111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
Background Reciprocal interactions between lung mesenchymal and epithelial cells play essential roles in lung organogenesis and homeostasis. Although the molecular markers and related animal models that target lung epithelial cells are relatively well studied, molecular markers of lung mesenchymal cells and the genetic tools to target and/or manipulate gene expression in a lung mesenchyme-specific manner are not available, which becomes a critical barrier to the study of lung mesenchymal biology and the related pulmonary diseases. Results We have identified a mouse Tbx4 gene enhancer that contains conserved DNA sequences across many vertebrate species with lung or lung-like gas exchange organ. We then generate a mouse line to express rtTA/LacZ under the control of the Tbx4 lung enhancer, and therefore a Tet-On inducible transgenic system to target lung mesenchymal cells at different developmental stages. By combining a Tbx4-rtTA driven Tet-On inducible Cre expression mouse line with a Cre reporter mouse line, the spatial-temporal patterns of Tbx4 lung enhancer targeted lung mesenchymal cells were defined. Pulmonary endothelial cells and vascular smooth muscle cells were targeted by the Tbx4-rtTA driver line prior to E11.5 and E15.5, respectively, while other subtypes of lung mesenchymal cells including airway smooth muscle cells, fibroblasts, pericytes could be targeted during the entire developmental stage. Conclusions Developmental lung mesenchymal cells can be specifically marked by Tbx4 lung enhancer activity. With our newly created Tbx4 lung enhancer-driven Tet-On inducible system, lung mesenchymal cells can be specifically and differentially targeted in vivo for the first time by controlling the doxycycline induction time window. This novel system provides a unique tool to study lung mesenchymal cell lineages and gene functions in lung mesenchymal development, injury repair, and regeneration in mice.
Collapse
Affiliation(s)
- Wenming Zhang
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd,, MS 35, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Madurga A, Mizíková I, Ruiz-Camp J, Morty RE. Recent advances in late lung development and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2013; 305:L893-905. [PMID: 24213917 DOI: 10.1152/ajplung.00267.2013] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In contrast to early lung development, a process exemplified by the branching of the developing airways, the later development of the immature lung remains very poorly understood. A key event in late lung development is secondary septation, in which secondary septa arise from primary septa, creating a greater number of alveoli of a smaller size, which dramatically expands the surface area over which gas exchange can take place. Secondary septation, together with architectural changes to the vascular structure of the lung that minimize the distance between the inspired air and the blood, are the objectives of late lung development. The process of late lung development is disturbed in bronchopulmonary dysplasia (BPD), a disease of prematurely born infants in which the structural development of the alveoli is blunted as a consequence of inflammation, volutrauma, and oxygen toxicity. This review aims to highlight notable recent developments in our understanding of late lung development and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Alicia Madurga
- Dept. of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, D-61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|
242
|
Nigam SK. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs? Stem Cells Transl Med 2013; 2:993-1000. [PMID: 24191267 DOI: 10.5966/sctm.2013-0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Branching morphogenesis is critical to the development of organs such as kidney, lung, mammary gland, prostate, pancreas, and salivary gland. Essentially, an epithelial bud becomes an iterative tip-stalk generator (ITSG) able to form a tree of branching ducts and/or tubules. In different organs, branching morphogenesis is governed by similar sets of genes. Epithelial branching has been recapitulated in vitro (or ex vivo) using three-dimensional cell culture and partial organ culture systems, and several such systems relevant to kidney tissue engineering are discussed here. By adapting systems like these it may be possible to harness the power inherent in the ITSG program to propagate and engineer epithelial tissues and organs. It is also possible to conceive of a universal ITSG capable of propagation that may, by recombination with organ-specific mesenchymal cells, be used for engineering many organ-like tissues similar to the organ from which the mesenchyme cells were derived, or toward which they are differentiated (from stem cells). The three-dimensional (3D) branched epithelial structure could act as a dynamic branching cellular scaffold to establish the architecture for the rest of the tissue. Another strategy-that of recombining propagated organ-specific ITSGs in 3D culture with undifferentiated mesenchymal stem cells-is also worth exploring. If feasible, such engineered tissues may be useful for the ex vivo study of drug toxicity, developmental biology, and physiology in the laboratory. Over the long term, they have potential clinical applications in the general fields of transplantation, regenerative medicine, and bioartificial medical devices to aid in the treatment of chronic kidney disease, diabetes, and other diseases.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, and Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
243
|
Haaning AM, Quinn ME, Ware SM. Heterotaxy-spectrum heart defects in Zic3 hypomorphic mice. Pediatr Res 2013; 74:494-502. [PMID: 23999067 PMCID: PMC4176930 DOI: 10.1038/pr.2013.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/08/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mutations in Zinc Finger Protein of the Cerebellum 3 (ZIC3) cause X-linked heterotaxy and isolated cardiovascular malformations. Recent data suggest a potential cell-autonomous role for Zic3 in myocardium via regulation of Nppa and Tbx5. We sought to develop a hypomorphic Zic3 mouse to model human heterotaxy and investigate developmental mechanisms underlying variability in cardiac phenotypes. METHODS Zic3 hypomorphic mice were created by targeted insertion of a neomycin cassette and investigated by gross, histologic, and molecular methods. RESULTS Low-level Zic3 expression is sufficient for partial rescue of viability as compared with Zic3 null mice. Concordance of early left-right molecular marker abnormalities and later anatomic abnormalities suggests that the primary effect of Zic3 in heart development occurs during left-right patterning. Cardiac-specific gene expression of Nppa (atrial natriuretic factor) and Tbx5 marked the proper morphological locations in the heart regardless of looping abnormalities. CONCLUSION Zic3 hypomorphic mice are useful models to investigate the variable cardiac defects resulting from a single genetic defect. Low-level Zic3 expression rescues the left pulmonary isomerism identified in Zic3 null embryos. Our data do not support a direct role for Zic3 in the myocardium via regulation of Nppa and Tbx5 and suggest that the primary effect of Zic3 on cardiac development occurs during left-right patterning.
Collapse
Affiliation(s)
- Allison M. Haaning
- Cincinnati Children’s Hospital Medical Center, Division of Molecular Cardiovascular Biology, Cincinnati, OH
| | - Malgorzata E. Quinn
- Cincinnati Children’s Hospital Medical Center, Division of Molecular Cardiovascular Biology, Cincinnati, OH
| | - Stephanie M. Ware
- Cincinnati Children’s Hospital Medical Center, Division of Molecular Cardiovascular Biology, Cincinnati, OH
| |
Collapse
|
244
|
Zhang S, Zhou X, Chen T, Shang Y, Lu R, Yin D, Liu J, Xu H, Mo X. Single primary fetal lung cells generate alveolar structures in vitro. In Vitro Cell Dev Biol Anim 2013; 50:87-93. [PMID: 24092015 DOI: 10.1007/s11626-013-9657-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/26/2013] [Indexed: 02/05/2023]
Abstract
Organ morphogenesis, including lung morphogenesis, involves a series of cellular behaviors that are difficult to observe and document in vivo due to current limitations in imaging techniques. Therefore, in vitro models are necessary to study these cellular behaviors as well as basic developmental processes relevant to in vivo morphogenesis. Here, we describe a novel in vitro three-dimensional (3D) culture system for assessing mouse lung alveolar morphogenesis using primary fetal mouse lung cells cultured in Matrigel supplemented with fibroblast growth factor 10 and hepatocyte growth factor. In our in vitro 3D culture system, single primary mouse fetal lung cells successfully grew, developed lumen, and formed multivesicular epithelial structures, resulting in a morphology that was highly similar to that of lung alveoli. This culture system is a useful tool for investigating the cellular and molecular mechanisms involved in lung alveolar morphogenesis.
Collapse
Affiliation(s)
- Shengliang Zhang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Girard ED, Jensen TJ, Vadasz SD, Blanchette AE, Zhang F, Moncada C, Weiss DJ, Finck CM. Automated procedure for biomimetic de-cellularized lung scaffold supporting alveolar epithelial transdifferentiation. Biomaterials 2013; 34:10043-55. [PMID: 24095252 DOI: 10.1016/j.biomaterials.2013.09.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/16/2013] [Indexed: 12/19/2022]
Abstract
The optimal method for creating a de-cellularized lung scaffold that is devoid of cells and cell debris, immunologically inert, and retains necessary extracellular matrix (ECM) has yet to be identified. Herein, we compare automated detergent-based de-cellularization approaches utilizing either constant pressure (CP) or constant flow (CF), to previously published protocols utilizing manual pressure (MP) to instill and rinse out the de-cellularization agents. De-cellularized lungs resulting from each method were evaluated for presence of remaining ECM proteins and immunostimulatory material such as nucleic acids and intracellular material. Our results demonstrate that the CP and MP approaches more effectively remove cellular materials but differentially retain ECM proteins. The CP method has the added benefit of being a faster, reproducible de-cellularization process. To assess the functional ability of the de-cellularized scaffolds to maintain epithelial cells, intra-tracheal inoculation with GFP expressing C10 alveolar epithelial cells (AEC) was performed. Notably, the CP de-cellularized lungs were able to support growth and spontaneous differentiation of C10-GFP cells from a type II-like phenotype to a type I-like phenotype.
Collapse
Affiliation(s)
- Eric D Girard
- Department of Surgery, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06106, USA; Department of Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue, MC3501, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Lung epithelial branching program antagonizes alveolar differentiation. Proc Natl Acad Sci U S A 2013; 110:18042-51. [PMID: 24058167 DOI: 10.1073/pnas.1311760110] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian organs, including the lung and kidney, often adopt a branched structure to achieve high efficiency and capacity of their physiological functions. Formation of a functional lung requires two developmental processes: branching morphogenesis, which builds a tree-like tubular network, and alveolar differentiation, which generates specialized epithelial cells for gas exchange. Much progress has been made to understand each of the two processes individually; however, it is not clear whether the two processes are coordinated and how they are deployed at the correct time and location. Here we show that an epithelial branching morphogenesis program antagonizes alveolar differentiation in the mouse lung. We find a negative correlation between branching morphogenesis and alveolar differentiation temporally, spatially, and evolutionarily. Gain-of-function experiments show that hyperactive small GTPase Kras expands the branching program and also suppresses molecular and cellular differentiation of alveolar cells. Loss-of-function experiments show that SRY-box containing gene 9 (Sox9) functions downstream of Fibroblast growth factor (Fgf)/Kras to promote branching and also suppresses premature initiation of alveolar differentiation. We thus propose that lung epithelial progenitors continuously balance between branching morphogenesis and alveolar differentiation, and such a balance is mediated by dual-function regulators, including Kras and Sox9. The resulting temporal delay of differentiation by the branching program may provide new insights to lung immaturity in preterm neonates and the increase in organ complexity during evolution.
Collapse
|
247
|
Abstract
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| | - Denis Menshykau
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
| |
Collapse
|
248
|
Abrogation of Eya1/Six1 disrupts the saccular phase of lung morphogenesis and causes remodeling. Dev Biol 2013; 382:110-23. [PMID: 23895934 DOI: 10.1016/j.ydbio.2013.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
The Eya1 gene encodes a transcriptional co-activator that acts with Six1 to control the development of different organs. However, Six1-Eya1 interactions and functional roles in mesenchymal cell proliferation and differentiation as well as alveolarization during the saccular stage of lung development are still unknown. Herein, we provide the first evidence that Six1 and Eya1 act together to regulate mesenchymal development as well as alveolarization during the saccular phase of lung morphogenesis. Deletion of either or both Six1 and Eya1 genes results in a severe saccular phenotype, including defects of mesenchymal cell development and remodeling of the distal lung septae and arteries. Mutant lung histology at the saccular phase shows mesenchymal and saccular wall thickening, and abnormal proliferation of α-smooth muscle actin-positive cells, as well as increased mesenchymal/fibroblast cell differentiation, which become more sever when deleting both genes. Our study indicates that SHH but not TGF-β signaling pathway is a central mediator for the histologic alterations described in the saccular phenotype of Eya1(-/-) or Six1(-/-) lungs. Indeed, genetic reduction of SHH activity in vivo or inhibition of its activity in vitro substantially rescues lung mesenchymal and alveolar phenotype of mutant mice at the saccular phase. These findings uncover novel functions for Six1-Eya1-SHH pathway during the saccular phase of lung morphogenesis, providing a conceptual framework for future mechanistic and translational studies in this area.
Collapse
|
249
|
Riccardi D, Brennan SC, Chang W. The extracellular calcium-sensing receptor, CaSR, in fetal development. Best Pract Res Clin Endocrinol Metab 2013; 27:443-53. [PMID: 23856271 PMCID: PMC4462341 DOI: 10.1016/j.beem.2013.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In fetal mammals, serum levels of both total and ionized calcium significantly exceed those in the adult. This relative fetal hypercalcemia is crucial for skeletal development and is maintained irrespectively of maternal serum calcium levels. Elegant studies by Kovacs and Kronenberg have previously addressed the role of the CaSR in creating and maintaining this relative fetal hypercalcemia, through the regulation of parathyroid hormone-related peptide secretion. More recently we have shown that the CaSR is widely distributed throughout the developing fetus, where the receptor plays major, unexpected roles in ensuring growth and maturation of several organs. In this article, we present evidence for a role of the CaSR in the control of skeletal development, and how fetal hypercalcemia, acting through the CaSR, regulates lung development.
Collapse
Affiliation(s)
- Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Sarah C Brennan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Wenhan Chang
- University of California San Francisco, California, USA
| |
Collapse
|
250
|
Nakayama KH, Lee CCI, Batchelder CA, Tarantal AF. Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds. PLoS One 2013; 8:e64134. [PMID: 23717553 PMCID: PMC3661477 DOI: 10.1371/journal.pone.0064134] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/11/2013] [Indexed: 12/20/2022] Open
Abstract
Initial steps in establishing an optimal strategy for functional bioengineered tissues is generation of three-dimensional constructs containing cells with the appropriate organization and phenotype. To effectively utilize rhesus monkey decellularized kidney scaffolds, these studies evaluated two key parameters: (1) residual scaffold components after decellularization including proteomics analysis, and (2) the use of undifferentiated human embryonic stem cells (hESCs) for recellularization in order to explore cellular differentiation in a tissue-specific manner. Sections of kidney and lung were selected for a comparative evaluation because of their similar pattern of organogenesis. Proteomics analysis revealed the presence of growth factors and antimicrobial proteins as well as stress proteins and complement components. Immunohistochemistry of recellularized kidney scaffolds showed the generation of Cytokeratin+ epithelial tubule phenotypes throughout the scaffold that demonstrated a statistically significant increase in expression of kidney-associated genes compared to baseline hESC gene expression. Recellularization of lung scaffolds showed that cells lined the alveolar spaces and demonstrated statistically significant upregulation of key lung-associated genes. However, overall expression of kidney and lung-associated markers was not statistically different when the kidney and lung recellularized scaffolds were compared. These results suggest that decellularized scaffolds have an intrinsic spatial ability to influence hESC differentiation by physically shaping cells into tissue-appropriate structures and phenotypes, and that additional approaches may be needed to ensure consistent recellularization throughout the matrix.
Collapse
Affiliation(s)
- Karina H. Nakayama
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - C. Chang I. Lee
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Cynthia A. Batchelder
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Alice F. Tarantal
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|