201
|
Haghighi M, Salehi I, Erfani P, Jahangard L, Bajoghli H, Holsboer-Trachsler E, Brand S. Additional ECT increases BDNF-levels in patients suffering from major depressive disorders compared to patients treated with citalopram only. J Psychiatr Res 2013; 47:908-15. [PMID: 23583029 DOI: 10.1016/j.jpsychires.2013.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND In patients suffering from major depressive disorders (MDD), improvements in MDD are related to increased activation of brain-derived neurotrophic factor (BDNF), an endogenous protein that facilitates neural functioning. To treat patients suffering from severe MDD, electroconvulsive therapy (ECT) is considered an efficacious and safe intervention, though the impact of ECT on plasma BDNF levels has thus far barely been investigated. The aim of the present study was therefore to assess plasma BDNF levels and depression of patients suffering from severe MDD treated with additional ECT compared to patients treated with citalopram only. METHODS A total of 40 patients (mean age: M = 31.45 years; females 30%) suffering from MDD and all receiving 40 mg/d citalopram were assigned either to a control group (N = 20), or to a target group (N = 20) undergoing additional 12 sessions of ECT. Plasma BDNF and symptom severity were assessed at baseline and four weeks later. RESULTS Plasma BDNF increased in both groups over time, though the significant Time by Group-interaction revealed an increase of 101% in the target group as compared to the control group. Symptom severity significantly decreased in both groups over time, though without being related to plasma BDNF levels. CONCLUSIONS Data from the present study suggest that, in patients suffering from severe MDD, treatment with citalopram was associated both with an increase of plasma BDNF and amelioration of depression, while additional ECT was associated with even higher plasma BDNF levels. Further studies should focus on possible cognitive and behavioral consequences.
Collapse
Affiliation(s)
- Mohammad Haghighi
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | | | | | | |
Collapse
|
202
|
Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication. Neural Plast 2013; 2013:537265. [PMID: 23862076 PMCID: PMC3703717 DOI: 10.1155/2013/537265] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022] Open
Abstract
It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies.
Collapse
|
203
|
Dwyer JM, Duman RS. Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biol Psychiatry 2013; 73:1189-98. [PMID: 23295207 PMCID: PMC3622786 DOI: 10.1016/j.biopsych.2012.11.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/05/2012] [Accepted: 11/18/2012] [Indexed: 01/01/2023]
Abstract
Antidepressants that produce rapid and robust effects, particularly for severely ill patients, represent one of the largest unmet medical needs for the treatment of depression. Currently available drugs that modulate monoamine neurotransmission provide relief for only a subset of patients, and this minimal efficacy requires several weeks of chronic treatment. The recent discovery that the glutamatergic agent ketamine produces rapid antidepressant responses within hours has opened a new area of research to explore the molecular mechanisms through which ketamine produces these surprising responses. Clinical and preclinical findings have exposed some of the unique actions of ketamine and identified a cell-signaling pathway known as the mammalian target of rapamycin. Activation of mammalian target of rapamycin and increased synaptogenesis in the prefrontal cortex are crucial in mediating the antidepressant effects of ketamine. Importantly, the synaptic actions of ketamine allow rapid recovery from the insults produced by exposure to repeated stress that cause neuronal atrophy and loss of synaptic connections. In the following review, we explore some of the clinical and preclinical findings that have thrust ketamine to the forefront of rapid antidepressant research and unveiled some of its unique molecular and cellular actions.
Collapse
Affiliation(s)
- Jason M Dwyer
- Laboratory of Molecular Psychiatry, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
204
|
Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res 2013; 354:171-8. [DOI: 10.1007/s00441-013-1654-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/03/2013] [Indexed: 12/24/2022]
|
205
|
Min JA, Lee HJ, Lee SH, Park YM, Kang SG, Chae JH. Gender-specific effects of brain-derived neurotrophic factor Val66Met polymorphism and childhood maltreatment on anxiety. Neuropsychobiology 2013; 67:6-13. [PMID: 23221871 DOI: 10.1159/000342384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/06/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is thought to play an important role in the pathophysiology of anxiety, studies on the association between the BDNF polymorphism and anxiety have reported inconsistent results. As possible confounders in determining anxiety, childhood maltreatment and gender as well as their interactions with BDNF polymorphism have been suggested. This study examined the effect of BDNF genotype, childhood maltreatment, and their interaction on anxiety levels by gender. METHODS A total of 206 unrelated Korean healthy young adults (108 were male and the mean age was 23.1 ± 3.2 years) were genotyped for the BDNFVal66Met polymorphism. Measures for anxiety and childhood maltreatment were completed. The main and interaction effects of BDNF polymorphism and childhood maltreatment on anxiety were analyzed by general linear models in all subjects and then in gender-stratified groups. RESULTS Gender-specific analyses revealed that the interaction effect was significant only in males (p = 0.014). Interestingly, male subjects with the Val/Met genotype tended to be resilient against the increased anxiety after childhood maltreatment. In females, the main effects of both BDNF genotype and childhood maltreatment were significant (p = 0.024 and p = 0.009, respectively) and post-hoc analysis revealed that the Val/Val genotype was associated with a higher anxiety than the Met/Met genotype (p = 0.004). CONCLUSIONS Our results support the interaction effect between the BDNFVal66Met polymorphism and childhood maltreatment in determining anxiety and further emphasize the possible moderating role of gender in this gene-environment interaction.
Collapse
Affiliation(s)
- Jung-Ah Min
- Department of Psychiatry, Seoul St. Mary's Hospital, Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
206
|
Ninan I. Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacology 2013; 76 Pt C:684-95. [PMID: 23747574 DOI: 10.1016/j.neuropharm.2013.04.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 12/23/2022]
Abstract
Brain derived neurotrophic factor (BDNF), a neurotrophin essential for nervous system development and synaptic plasticity, has been found to have a significant influence on affective behaviors. The notion that an impairment in BDNF signaling might be involved in affective disorders is originated primarily from the opposing effects of antidepressants and stress on BDNF signaling. Antidepressants enhance BDNF signaling and synaptic plasticity. On the other hand, negative environmental factors such as severe stress suppress BDNF signaling, impair synaptic activity and increase susceptibility to affective disorders. Postmortem studies provided strong support for decreased BDNF signaling in depressive disorders. Remarkably, studies in humans with a single nucleotide polymorphism in the BDNF gene, the BDNF Val66Met which affects regulated release of BDNF, showed profound deficits in hippocampal and prefrontal cortical (PFC) plasticity and cognitive behaviors. BDNF regulates synaptic mechanisms responsible for various cognitive processes including attenuation of aversive memories, a key process in the regulation of affective behaviors. The unique role of BDNF in cognitive and affective behaviors suggests that cognitive deficits due to altered BDNF signaling might underlie affective disorders. Understanding how BDNF modulates synapses in neural circuits relevant to affective behaviors, particularly the medial prefrontal cortical (mPFC)-hippocampus-amygdala pathway, and its interaction with development, sex, and environmental risk factors might shed light on potential therapeutic targets for affective disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Ipe Ninan
- Department of Psychiatry, NYU School of Medicine, SKI 5-3, 540 1st Ave, NY 10016, United States.
| |
Collapse
|
207
|
Hughes CW, Barnes S, Barnes C, DeFina LF, Nakonezny P, Emslie GJ. Depressed Adolescents Treated with Exercise (DATE): A pilot randomized controlled trial to test feasibility and establish preliminary effect sizes. Ment Health Phys Act 2013; 6:10.1016/j.mhpa.2013.06.006. [PMID: 24244220 PMCID: PMC3827851 DOI: 10.1016/j.mhpa.2013.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Depressed Adolescents Treated with Exercise (DATE) study evaluated a standardized aerobic exercise protocol to treat nonmedicated adolescents that met DSM-IV-TR criteria for major depressive disorder. From an initial screen of 90 individuals, 30 adolescents aged 12-18 years were randomized to either vigorous exercise (EXER) (>12 kg/kcal/week [KKW]) or a control stretching (STRETCH) activity (< 4 KKW) for 12 weeks. The primary outcome measure was the blinded clinician rating of the Children's Depression Rating Scale - Revised (CDRS-R) to assess depression severity and Actical (KKW) accelerometry 24hr/7days a week to assess energy expenditure and adherence. Follow-up evaluations occurred at weeks 26 and 52. The EXER group averaged 77% adherence and the STRETCH group 81% for meeting weekly target goals for the 12 week intervention based on weekly sessions completed and meeting KKW requirements. There was a significant increase in overall weekly KKW expenditures (p < .001) for both groups with the EXER group doubling the STRETCH group in weekly energy expenditure. Depressive symptoms were significantly reduced from baseline for both groups with the EXER group improving more rapidly than STRETCH after six weeks (p < .016) and nine weeks (p < .001). Both groups continued to improve such that there were no group differences after 12 weeks (p = .07). By week 12, the exercise group had a 100% response rate (86% remission), whereas the stretch group response rate was 67% (50% remission) (p = .02). Both groups had improvements in multiple areas of psychosocial functioning related to school and relationships with parents and peers. Anthropometry reflected decreased waist, hip and thigh measurements (p = .02), more so for females than males (p = .05), but there were no weight changes for either gender. The EXER group sustained 100% remission at week 26 and 52. The STRETCH group had 80% response and 70% remission rates at week 26 and by week 52 only one had not fully responded. The study provides support for the use of exercise as a non-medication intervention for adolescents with major depressive disorders when good adherence and energy expenditure (KKW) are achieved.
Collapse
Affiliation(s)
- Carroll W. Hughes
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shauna Barnes
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | - Conrad Barnes
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Paul Nakonezny
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Clinical Sciences, Division of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Graham J. Emslie
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
208
|
Kandratavicius L, Ruggiero RN, Hallak JE, Garcia-Cairasco N, Leite JP. Pathophysiology of mood disorders in temporal lobe epilepsy. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 34 Suppl 2:S233-45. [PMID: 23429849 DOI: 10.1016/j.rbp.2012.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE There is accumulating evidence that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological, neurochemical and electrophysiological aspects might contribute to the development of psychiatric symptoms in TLE and the putative neurobiological mechanisms that cause mood disorders in this patient subgroup. METHODS In this review, clinical, experimental and neuropathological findings, as well as neurochemical features of the limbic system were examined together to enhance our understanding of the association between TLE and psychiatric comorbidities. Finally, the value of animal models in epilepsy and mood disorders was discussed. CONCLUSIONS TLE and psychiatric symptoms coexist more frequently than chance would predict. Alterations and neurotransmission disturbance among critical anatomical networks, and impaired or aberrant plastic changes might predispose patients with TLE to mood disorders. Clinical and experimental studies of the effects of seizures on behavior and electrophysiological patterns may offer a model of how limbic seizures increase the vulnerability of TLE patients to precipitants of psychiatric symptoms.
Collapse
Affiliation(s)
- Ludmyla Kandratavicius
- Department of Neurosciences and Behavior, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
209
|
Nowacka M, Obuchowicz E. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: An insight from experimental studies. Pharmacol Rep 2013; 65:535-46. [DOI: 10.1016/s1734-1140(13)71031-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/08/2013] [Indexed: 02/08/2023]
|
210
|
Dwivedi Y. Involvement of brain-derived neurotrophic factor in late-life depression. Am J Geriatr Psychiatry 2013; 21:433-49. [PMID: 23570887 PMCID: PMC3767381 DOI: 10.1016/j.jagp.2012.10.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 10/16/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hypothesis of depression. Late-life depression is associated with disturbances in structural and neural plasticity as well as impairments in cognitive behavior. Stress and aging also play a crucial role in late-life depression. Many recent studies have suggested that not only expression of BDNF is decreased in the serum/plasma of patients with late-life depression, but structural abnormalities in the brain of these patients may be associated with a polymorphism in the BDNF gene, and that there is a relationship between a BDNF polymorphism and antidepressant remission rates. This review provides a critical review of the involvement of BDNF in major depression, in general, and in late-life depression, in particular.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
211
|
Jiang WG, Li SX, Liu JF, Sun Y, Zhou SJ, Zhu WL, Shi J, Lu L. Hippocampal CLOCK protein participates in the persistence of depressive-like behavior induced by chronic unpredictable stress. Psychopharmacology (Berl) 2013; 227:79-92. [PMID: 23263459 DOI: 10.1007/s00213-012-2941-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023]
Abstract
RATIONALE Circadian disturbances are strongly linked with major depression. The circadian proteins CLOCK and BMAL1 are abundantly expressed but function differently in the suprachiasmatic nucleus (SCN) and hippocampus. However, their roles in depressive-like behavior are still poorly understood. OBJECTIVES To investigate the alterations of CLOCK and BMAL1 in the SCN and hippocampus in rats subjected to chronic unpredictable stress (CUS) and to explore the relationship of circadian protein and the depressive-like behavior. RESULTS Together with depressive-like behavior induced by CUS, CLOCK and BMAL1 in the SC were inhibited during the light period, and the peak expression of CLOCK in the hippocampus was shifted from the dark to light period. BMAL1 expression in the hippocampus was not significantly changed. Two weeks after the termination of CUS, abnormalities of CLOCK in the CA1 and CA3 endured, with unchanged depressive-like behavior, but the expression of CLOCK and BMAL1 in the SCN recovered to control levels. Knockdown of the Clock gene in CA1 induced depressive-like behavior in normal rats. CLOCK in the SCN and hippocampus may participate in the development of depressive-like behavior. However, CLOCK in the hippocampus but not SCN was involved in the long-lasting effects of CUS on depressive-like behavior. BMAL1 in the hippocampus appeared to be unrelated to the effects of CUS on depressive-like behavior. CONCLUSION CLOCK protein in the hippocampus but not SCN play an important role in the long-lasting depressive-like behavior induced by CUS. These findings suggest a novel therapeutic target in the development of new antidepressants focusing on the regulation of circadian rhythm.
Collapse
Affiliation(s)
- Wen-Gao Jiang
- National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
212
|
The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast 2013; 2013:805497. [PMID: 23691371 PMCID: PMC3649690 DOI: 10.1155/2013/805497] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023] Open
Abstract
Depression is a devastating and prevalent disease, with profound effects on neural structure and function; however the etiology and neuropathology of depression remain poorly understood. Though antidepressant drugs exist, they are not ideal, as only a segment of patients are effectively treated, therapeutic onset is delayed, and the exact mechanism of these drugs remains to be elucidated. Several theories of depression do exist, including modulation of monoaminergic neurotransmission, alterations in neurotrophic factors, and the upregulation of adult hippocampal neurogenesis, and are briefly mentioned in the review. However none of these theories sufficiently explains the pathology and treatment of depression unto itself. Recently, neural plasticity theories of depression have postulated that multiple aspects of brain plasticity, beyond neurogenesis, may bridge the prevailing theories. The term “neural plasticity” encompasses an array of mechanisms, from the birth, survival, migration, and integration of new neurons to neurite outgrowth, synaptogenesis, and the modulation of mature synapses. This review critically assesses the role of adult hippocampal neurogenesis and the cell adhesion molecule, PSA-NCAM (which is known to be involved in many facets of neural plasticity), in depression and antidepressant treatment.
Collapse
|
213
|
Kosten TA, Huang W, Nielsen DA. Sex and litter effects on anxiety and DNA methylation levels of stress and neurotrophin genes in adolescent rats. Dev Psychobiol 2013; 56:392-406. [PMID: 23460384 DOI: 10.1002/dev.21106] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/04/2013] [Indexed: 12/12/2022]
Abstract
Maternal care variations associate with DNA methylation of the glucocorticoid receptor gene, Nr3c1, in hippocampus at a nerve-growth factor-inducible protein 1 binding site. Epigenetic regulation of brain-derived neurotrophin factor is affected by early stress. These systems contribute to anxiety and fear. Early stress has sex-dependent effects perhaps reflecting sex differences in maternal care. Altering litter gender composition affects maternal behavior and DNA methylation levels of another gene in hippocampus and nucleus accumbens (NAc). We now test if DNA methylation levels of Nr3c1, Egr1, and Bdnf differ by litter composition or sex. Rats from mixed- or single-sex litters were tested for anxiety and fear on postnatal day 35. Brain tissues were collected and analyzed using direct sequencing methods. Females showed hypermethylation of Nr3c1 of hippocampal DNA and litter composition modified sex effects on methylation of Egr1 in NAc. Few differences were seen for Bdnf. LGC modified some sex differences in behavior.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030; Michael E. DeBakey Veteran's Affairs Medical Center, 2002 Holcombe Blvd, Houston, TX 77030.
| | | | | |
Collapse
|
214
|
Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups J Med Sci 2013; 118:3-8. [PMID: 22970723 PMCID: PMC3572668 DOI: 10.3109/03009734.2012.724118] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Previous studies have shown that a single sub-anesthetic dose of ketamine exerts fast-acting antidepressant effects in patients and in animal models of depression. However, the underlying mechanisms are not totally understood. This study aims to investigate the effects of acute administration of different doses of ketamine on the immobility time of rats in the forced swimming test (FST) and to determine levels of hippocampal brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR). METHODS Forty male Wistar rats weighing 180-220 g were randomly divided into four groups (n = 10 each): group saline and groups ketamine 5, 10, and 15 mg/kg. On the first day, all animals were forced to swim for 15 min. On the second day ketamine (5, 10, and 15 mg/kg, respectively) was given intraperitoneally, at 30 min before the second episode of the forced swimming test. Immobility times of the rats during the forced swimming test were recorded. The animals were then decapitated. The hippocampus was harvested for determination of BDNF and mTOR levels. RESULTS Compared with group saline, administration of ketamine at a dose of 5, 10, and 15 mg/kg decreased the duration of immobility (P < 0.05 for all doses). Ketamine at doses of both 10 and 15 mg/kg showed a significant increase in the expression of hippocampal BDNF (P < 0.05 for both doses). Ketamine given at doses of 5, 10, and 15 mg/kg showed significant increases in relative levels of hippocampal p-mTOR (P < 0.05 for all doses) CONCLUSION The antidepressant effect of ketamine might be related to the increased expression of BDNF and mTOR in the hippocampus of rats.
Collapse
Affiliation(s)
- Chun Yang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, P. R. China
| | | | | | | | | |
Collapse
|
215
|
Electroconvulsive seizure, but not imipramine, rapidly up-regulates pro-BDNF and t-PA, leading to mature BDNF production, in the rat hippocampus. Int J Neuropsychopharmacol 2013; 16:339-50. [PMID: 22310305 DOI: 10.1017/s1461145712000053] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Electroconvulsive therapy is the most effective treatment for antidepressant-resistant depression, although its mechanism has not been fully elucidated. Previous studies have demonstrated that electroconvulsive seizures (ECS) induce expression of brain-derived neurotrophic factor (BDNF) in the rat hippocampus. However, in contrast with mature BDNF (mBDNF) known to have antidepressant effects, its precursor (pro-BDNF) has harmful effects on neurons. We therefore hypothesized that efficient processing of pro-BDNF is a critical requirement for the antidepressant effects of ECS. We found that single administration of ECS rapidly increased not only hippocampal levels of pro-BDNF but also those of prohormone convertase 1 (PC1) and tissue-plasminogen activator (t-PA), which are proteases involved in intra- and extracellular pro-BDNF processing, respectively. Interestingly, pro-BDNF and t-PA levels were increased in hippocampal synaptosomes after single ECS, suggesting their transport to secretory sites. In rats receiving 10-d repeated ECS, accumulation of pro-BDNF and a resultant increase in mBDNF levels were observed. While t-PA levels increased and accumulated following repeated ECS, PC1 levels did not, suggesting that intracellular processing capacity is limited. Finally, chronic administration of imipramine significantly increased mBDNF levels, but not pro-BDNF and protease levels, indicating that the therapeutic mechanism of imipramine differs from that of ECS. Taken together, these results suggest that, while intra- and extracellular proteases are involved in pro-BDNF processing in single ECS, t-PA plays a dominant role following repeated ECS. Such efficient pro-BDNF processing as well as strong induction of BDNF expression may contribute to the antidepressant effects of ECS.
Collapse
|
216
|
Kuwatsuka K, Hayashi H, Onoue Y, Miyazaki I, Koyama T, Asanuma M, Kitamura Y, Sendo T. The Mechanisms of Electroconvulsive Stimuli in BrdU-Positive Cells of the Dentate Gyrus in ACTH-Treated Rats. J Pharmacol Sci 2013; 122:34-41. [DOI: 10.1254/jphs.13015fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
217
|
MAKINO A, IINUMA M, FUKUMITSU H, SOUMIYA H, FURUKAWA Y, FURUKAWA S. Anxiolytic-like effect of trans-2-decenoic acid ethyl ester in stress-induced anxiety-like model mice. Biomed Res 2013; 34:259-67. [DOI: 10.2220/biomedres.34.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
218
|
[The development of depression: the role of brain-derived neurotrophic factor]. DER NERVENARZT 2012; 83:869-77. [PMID: 21947218 DOI: 10.1007/s00115-011-3374-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An association between the presence of psychosocial stress, its pathological processing and the development of depression is well documented. This review reports and discusses studies suggesting a reduced release of brain-derived neurotrophic factor (BDNF) under stress as a possible mechanism. The studies show a reduction of BDNF secretion in stressful situations, a decreased blood concentration in depression and a normalization of BDNF by successful antidepressant therapy. As a possible mechanism of BDNF action, a reactivation of neuroplasticity is being discussed, especially in hippocampal and cortical networks. On the other hand, methodological limitations, such as the impossibility of determining the cerebral BDNF concentration in vivo and ruling out a variety of possible confounders, may restrict the significance of the studies. The question of whether the ascertained changes of BDNF levels are causally involved in the pathophysiology of depression or whether they are just an epiphenomenal result of depression-induced stress is still under debate.
Collapse
|
219
|
Tramadol reinforces antidepressant effects of ketamine with increased levels of brain-derived neurotrophic factor and tropomyosin-related kinase B in rat hippocampus. Front Med 2012; 6:411-5. [PMID: 23124884 DOI: 10.1007/s11684-012-0226-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 09/18/2012] [Indexed: 01/09/2023]
Abstract
Ketamine exerts rapid and robust antidepressant properties in both animal models and depressed patients and tramadol possesses potential antidepressant effects. Brain-derived neurotrophic factor (BDNF) is an important biomarker for mood disorders and tropomyosin-related kinase B (TrkB) is a high affinity catalytic receptor for BDNF.We hypothesized that tramadol pretreatment might reinforce ketamine-elicited antidepressant effects with significant changes in hippocampal BDNF and TrkB levels in rats. Immobility time of rats receiving different treatment in the forced swimming test (FST) was observed. Levels of BDNF and TrkB in hippocampus were measured by enzyme linked immunosorbent assay. Results showed that tramadol (5 mg/kg) administrated alone neither elicited antidepressant effects nor altered BDNF or TrkB level. However, pretreatment with tramadol (5 mg/kg) enhanced the ketamine (10 mg/kg) -elicited antidepressant effects and upregulated the BDNF and TrkB levels in hippocampus. In conclusion, tramadol pretreatment reinforces the ketamine-elicited antidepressant effects, which is associated with the increased levels of BDNF and TrkB in rat hippocampus.
Collapse
|
220
|
Murphy ML, Carballedo A, Fagan AJ, Morris D, Fahey C, Meaney J, Frodl T. Neurotrophic tyrosine kinase polymorphism impacts white matter connections in patients with major depressive disorder. Biol Psychiatry 2012; 72:663-70. [PMID: 22609366 DOI: 10.1016/j.biopsych.2012.04.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/02/2012] [Accepted: 04/12/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND Polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and its receptor neurotrophic tyrosine kinase receptor type 2 (NTRK2) have been implicated in mood disorders. The aim of this study was to examine whether the NTRK2 and BDNF polymorphisms impact brain white matter connections in major depressive disorder and whether they may also have an interactive effect with environmental stress in the form of early life adversity. METHODS The study group comprised 45 depressed patients and 45 age- and gender-matched control subjects. High angular resolution diffusion images were obtained and analyzed using tract-based spatial statistics. Analysis of a single nucleotide polymorphism in the BDNF (rs6265/Valine66Methionine) and NTRK2 (rs11140714) genes was performed. RESULTS An interactive effect was found between NTRK2 and depression diagnosis maximally affecting the cingulum. Depressed patients homozygous for the A allele of NTRK2 showed significantly reduced fractional anisotropy compared with depressed patients with at least one copy of the G allele or control subjects with either the A/A or G carrier genotypes in the left and right corona radiata, left uncinate fasciculus, left inferior fronto-occipital fasciculus, left cerebral peduncle, posterior thalamic radiation, and middle cerebral peduncle. Significantly smaller gray matter volume was seen in frontal lobe regions in patients homozygous for the A allele. CONCLUSIONS Polymorphisms in NTRK2 gene increase risk of architectural changes in several brain regions involved in emotional regulation.
Collapse
Affiliation(s)
- Melissa L Murphy
- Integrated Neuroimaging Group, Department of Psychiatry and Institute of Neuroscience, School of Medicine, Trinity College Dublin, University of Dublin, College Green, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
221
|
Markham JA, Greenough WT. Experience-driven brain plasticity: beyond the synapse. ACTA ACUST UNITED AC 2012; 1:351-63. [PMID: 16921405 PMCID: PMC1550735 DOI: 10.1017/s1740925x05000219] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The brain is remarkably responsive to its interactions with the environment, and its morphology is altered by experience in measurable ways. Histological examination of the brains of animals exposed to either a complex ('enriched') environment or learning paradigm, compared with appropriate controls, has illuminated the nature of experience-induced morphological plasticity in the brain. For example, this research reveals that changes in synapse number and morphology are associated with learning and are stable, in that they persist well beyond the period of exposure to the learning experience. In addition, other components of the nervous system also respond to experience: oligodendrocytes and axonal myelination might also be permanently altered, whereas changes in astrocytes and cerebrovasculature are more transient and appear to be activity- rather than learning-driven. Thus, experience induces multiple forms of plasticity in the brain that are apparently regulated, at least in part, by independent mechanisms.
Collapse
Affiliation(s)
- Julie A Markham
- Beckman Institute, University of Illinois, 405 N. Matthews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
222
|
Charney DS, Dejesus G, Manji HK. Cellular plasticity and resilience and the pathophysiology of severe mood disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033657 PMCID: PMC3181794 DOI: 10.31887/dcns.2004.6.2/dcharney] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent advances in the identification of the neural circuits, neurochemicals, and signal transduction mechanisms involved in the pathophysiology and treatment of mood disorders have led to much progress toward understanding the roles of genetic factors and psychosocial stressors. The monoaminergic neurotransmitter systems have received the most attention, partly because of the observation that effective antidepressant drugs exert their primary biochemical effects by regulating intrasynaptic concentrations of serotonin and norepinephrine. Furthermore, the monoaminergic systems are extensively distributed throughout the network of limbic, striatal, and prefrontal cortical neuronal circuits thought to support the behavioral and visceral manifestations of mood disorders. Increasing numbers of neuroimaging, neuropathological, and biochemical studies indicate impairments in cellular plasticity and resilience in patients who suffer from severe, recurrent mood disorders. In this paper, we describe studies identifying possible structural, functional, and cellular abnormalities associated with depressive disorders, which are potentially the cellular underpinnings of these diseases. We suggest that drugs designed to enhance cellular plasticity and resilience, and attenuate the activity of maladaptive stress-responsive systems, may be useful for the treatment of severe mood disorders.
Collapse
|
223
|
Duman RS. Neural plasticity: consequences of stress and actions of antidepressant treatment. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034207 PMCID: PMC3181800 DOI: 10.31887/dcns.2004.6.2/rduman] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural plasticity is emerging as a fundamental and critical mechanism of neuronal function, which allows the brain to receive information and make the appropriate adaptive responses to subsequent related stimuli. Elucidation of the molecular and cellular mechanisms underlying neural plasticity is a major goal of neuroscience research, and significant advances have been made in recent years. These mechanisms include regulation of signal transduction and gene expression, and also structural alterations of neuronal spines and processes, and even the birth of new neurons in the adult brain. Altered plasticity could thereby contribute to psychiatric and neurological disorders. This article revievi/s the literature demonstrating altered plasticity in response to stress, and evidence that chronic antidepressant treatment can reverse or block the effects, and even induce neural piasiicity-iike responses. Continued elucidation of the mechanisms underlying neural plasticity will lead to novel drug targets that could prove to be effective and rapidly acting therapeutic interventions.
Collapse
Affiliation(s)
- Ronald S Duman
- Division of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
224
|
Abstract
Major depression is a serious disorder of enormous sociological and clinical relevance. The discovery of antidepressant drugs in the 1950s led to the first biochemical hypothesis of depression, which suggested that an impairment in central monoaminergic function was the major lesion underlying the disorder. Basic research in all fields of neuroscience (including genetics) and the discovery of new antidepressant drugs have revolutionized our understanding of the mechanisms underlying depression and drug action. There is no doubt that the monoaminergic system is one of the cornerstones of these mechanisms, but multiple interactions with other brain systems and the regulation of central nervous system function must also be taken into account In spite of all the progress achieved so far, we must be aware that many open questions remain to be resolved in the future.
Collapse
Affiliation(s)
- Bondy Brigitta
- Psychiatric Clinic of University Munich, Department of Neurochemistry, Munich, Germany
| |
Collapse
|
225
|
A standardized chinese herbal decoction, kai-xin-san, restores decreased levels of neurotransmitters and neurotrophic factors in the brain of chronic stress-induced depressive rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:149256. [PMID: 22973399 PMCID: PMC3437946 DOI: 10.1155/2012/149256] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/16/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022]
Abstract
Kai-xin-san (KXS), a Chinese herbal decoction being prescribed by Sun Simiao in Beiji Qianjin Yaofang about 1400 years ago, contains Ginseng Radix et Rhizoma, Polygalae Radix, Acori tatarinowii Rhizoma, and Poria. KXS has been used to treat stress-related psychiatric disease with the symptoms of depression and forgetfulness in ancient China until today. However, the mechanism of its antidepression action is still unknown. Here, the chronic mild-stress-(CMS-) induced depressive rats were applied in exploring the action mechanisms of KXS treatment. Daily intragastric administration of KXS for four weeks significantly alleviated the CMS-induced depressive symptoms displayed by enhanced sucrose consumption. In addition, the expressions of those molecular bio-markers relating to depression in rat brains were altered by the treatment of KXS. These KXS-regulated brain biomarkers included: (i) the levels of dopamine, norepinephrine, and serotonin (ii) the transcript levels of proteins relating to neurotransmitter metabolism; (iii) the transcript levels of neurotrophic factors and their receptors. The results suggested that the anti-depressant-like action of KXS might be mediated by an increase of neurotransmitters and expression of neurotrophic factors and its corresponding receptors in the brain. Thus, KXS could serve as alternative medicine, or health food supplement, for patients suffering from depression.
Collapse
|
226
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
227
|
Hong CJ, Liou YJ, Tsai SJ. Reprint of: Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Res Bull 2012; 88:406-17. [PMID: 22677226 DOI: 10.1016/j.brainresbull.2012.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/22/2011] [Accepted: 08/31/2011] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF), the most abundant neurotrophin in the brain, serves an important role during brain development and in synaptic plasticity. Given its pleiotropic effects in the central nervous system, BDNF has been implicated in cognitive function and personality development as well as the pathogenesis of various psychiatric disorders. Thus, BDNF is considered an attractive candidate gene for the study of healthy and diseased brain function and behaviors. Over the past decade, many studies have tested BDNF genetic association, particularly its functional Val66Met polymorphism, with psychiatric diseases, personality disorders, and cognitive function. Although many reports indicated a possible role for BDNF genetic effects in mental problems or brain function, other reports were unable to replicate the findings. The conflicting results in BDNF genetic studies may result from confounding factors such as age, gender, other environmental factors, sample size, ethnicity and phenotype assessment. Future studies with more homogenous populations, well-controlled confounding factors, and well-defined phenotypes are needed to clarify the BDNF genetic effects on mental diseases and human behaviors.
Collapse
Affiliation(s)
- Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
228
|
Mood disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
229
|
Hochstrasser T, Ehrlich D, Sperner-Unterweger B, Humpel C. Antidepressants and anti-inflammatory drugs differentially reduce the release of NGF and BDNF from rat platelets. PHARMACOPSYCHIATRY 2012; 46:29-34. [PMID: 22699957 DOI: 10.1055/s-0032-1314843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Platelets store serotonin and brain-derived neurotrophic factor (BDNF) as well as amyloid precursor protein and nerve growth factor (NGF), thus platelets are of special interest in depression and Alzheimer's disease, respectively. Both diseases are associated with inflammation and release of NGF or BDNF from platelets may play a potent role. METHODS Platelets were isolated from adult Sprague-Dawley rats and were incubated with anti-inflammatory drugs (ibuprofen and indomethacin) and antidepressants (citalopram, paroxetine and sertraline) (final concentration: 0.3 µM) with or without 2 mM calcium chloride. The release of NGF and BDNF was analyzed in comparison to serotonin release from rat platelets after 10 or 60 min. RESULTS Spontaneous release of serotonin and BDNF was approximately 10-15% of total serotonin or BDNF content in platelets, but nearly all NGF was released within 10 min. All antidepressants increased the serotonin release from rat platelets. NGF release was reduced by sertraline, paroxetine and ibuprofen, but only when calcium was present, except for sertraline after 10 min. BDNF release was only reduced by ibuprofen when calcium was added. CONCLUSION We conclude that antidepressants and anti-inflammatory drugs differentially influence the NGF and BDNF release, in a time-, dose- and calcium-specific pattern.
Collapse
Affiliation(s)
- T Hochstrasser
- Department of Psychiatry and Psychotherapy, Laboratory of Psychiatry and Exp. Alzheimer's Research, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
230
|
Berry A, Bellisario V, Capoccia S, Tirassa P, Calza A, Alleva E, Cirulli F. Social deprivation stress is a triggering factor for the emergence of anxiety- and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice. Psychoneuroendocrinology 2012; 37:762-72. [PMID: 21974975 DOI: 10.1016/j.psyneuen.2011.09.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/08/2011] [Accepted: 09/11/2011] [Indexed: 11/28/2022]
Abstract
Stress is a main risk factor that can trigger psychiatric disorders, including anxiety and major depression. Neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF), have been identified as neuroendocrine effectors involved in the response to stress and in the neurobehavioural changes associated with depression. Aim of this paper was to study the relationship between neuroendocrine activation (circulating corticosterone and brain BDNF levels) and a wide array of depression- and anxiety-like behaviours (anhedonia, behavioural despair, generalised and social anxiety) resulting from exposure to chronic stress. To this end, 3-month-old C57BL/6J male mice were exposed to either chronic disruption of the social structure (SS), to a stable social structure (SG) or to social deprivation (SD), a condition lacking social stimuli. Results show that, despite not developing anhedonia (decreased preference for a sucrose solution), SD mice were characterised by increased emotionality and hypothalamic-pituitary-adrenal axis reactivity in addition to reduced BDNF levels. By contrast, SG and SS mice showed increased anhedonia accompanied by no alterations in the behavioural and neuroendocrine profile. The results here reported indicate that mice exposed to different social housing conditions use different behavioural strategies to cope with external challenges. In addition they suggest that social deprivation might represent a stressful condition triggering the emergence of both anxiety- and depression-like behaviours and clearly indicate BDNF as a main neurobiological variable mediating these responses.
Collapse
Affiliation(s)
- Alessandra Berry
- Section of Behavioural Neuroscience, Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
231
|
Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci 2012; 50:10-20. [DOI: 10.1016/j.mcn.2012.03.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/09/2012] [Indexed: 01/21/2023] Open
|
232
|
Hill RA, Wu YWC, Kwek P, van den Buuse M. Modulatory effects of sex steroid hormones on brain-derived neurotrophic factor-tyrosine kinase B expression during adolescent development in C57Bl/6 mice. J Neuroendocrinol 2012; 24:774-88. [PMID: 22221196 DOI: 10.1111/j.1365-2826.2012.02277.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sex steroid hormones and neurotrophic factors are involved in pruning and shaping the adolescent brain and have been implicated in the pathogenesis of neurodevelopmental disorders, including mental illness. We aimed to determine the association between altered levels of sex steroid hormones during adolescent development and neurotrophic signalling in the C57Bl/6 mouse. We first performed a week by week analysis from pre-pubescence to adulthood in male and female C57Bl/6 mice, measuring serum levels of testosterone and oestradiol in conjunction with western blot analysis of neurotrophin expression in the forebrain and hippocampal regions. Second, we manipulated adolescent sex steroid hormone levels by gonadectomy and hormone replacement at the pre-pubescent age of 5 weeks. Young-adult forebrain and hippocampal neurotrophin expression was then determined. Male mice showed significant changes in brain-derived neurotrophic factor (BDNF) expression in the forebrain regions during weeks 7-10, which corresponded significantly with a surge in serum testosterone. Castration and testosterone or di-hydrotestosterone replacement experiments revealed an androgen receptor-dependent effect on BDNF-tyrosine kinase (Trk) B signalling in the forebrain and hippocampal regions during adolescence. Female mice showed changes in BDNF-TrkB signalling at a much earlier time point (weeks 4-8) in the forebrain and hippocampal regions and these did not correspond with changes in serum oestradiol. Ovariectomy actually increased BDNF expression but decreased TrkB phosphorylation in the forebrain regions. 17β-Oestradiol replacement had no effect, suggesting a role for other ovarian hormones in regulating BDNF-TrkB signalling in the adolescent female mouse brain. These results suggest the differential actions of sex steroid hormones in modulating BDNF-TrkB signalling during adolescence. These data provide insight into how the male and female brain changes in response to altered levels of circulating sex steroid hormones and could help to explain some of the developmental sex differences in the pathogenesis of neurodevelopmental disorders, including mental illness.
Collapse
Affiliation(s)
- R A Hill
- Behavioural Neuroscience Laboratory, Mental Health Research Institute, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
233
|
Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 2012; 212:1-18. [PMID: 22542678 DOI: 10.1016/j.neuroscience.2012.03.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in the development, maintenance, and plasticity of the mammalian forebrain. These functions include regulation of neuronal maturation and survival, axonal and dendritic arborization, synaptic efficacy, and modulation of complex behaviors including depression and spatial learning. Although analysis of mutant mice has helped establish essential developmental functions for BDNF, its requirement in the adult is less well documented. We have studied late-onset forebrain-specific BDNF knockout (CaMK-BDNF(KO)) mice, in which BDNF is lost primarily from the cortex and hippocampus in early adulthood, well after BDNF expression has begun in these structures. We found that although CaMK-BDNF(KO) mice grew at a normal rate and can survive more than a year, they had smaller brains than wild-type siblings. The CaMK-BDNF(KO) mice had generally normal behavior in tests for ataxia and anxiety, but displayed reduced spatial learning ability in the Morris water task and increased depression in the Porsolt swim test. These behavioral deficits were very similar to those we previously described in an early-onset forebrain-specific BDNF knockout. To identify an anatomical correlate of the abnormal behavior, we quantified dendritic spines in cortical neurons. The spine density of CaMK-BDNF(KO) mice was normal at P35, but by P84, there was a 30% reduction in spine density. The strong similarities we find between early- and late-onset BDNF knockouts suggest that BDNF signaling is required continuously in the CNS for the maintenance of some forebrain circuitry also affected by developmental BDNF depletion.
Collapse
|
234
|
Raivio N, Tiraboschi E, Saarikoski ST, Castrén E, Kiianmaa K. Brain-derived neurotrophic factor expression after acute administration of ethanol. Eur J Pharmacol 2012; 687:9-13. [PMID: 22546227 DOI: 10.1016/j.ejphar.2012.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/13/2012] [Indexed: 01/27/2023]
Abstract
Earlier findings suggest that, in addition to its well-known neurotrophic role, brain-derived neurotrophic factor (BDNF) is also involved in the rewarding and reinforcing effects of drugs of abuse. The purpose of the present study was to examine the effects of acute administration of ethanol (1.25 or 2.5 g/kg i.p.) on the expression profile of BDNF in the rat brain by determining the BDNF mRNA expression in the frontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area. Ethanol decreased BDNF mRNA levels dose-dependently in the hippocampus, and after the higher ethanol dose in the frontal cortex, nucleus accumbens and amygdala, while increasing them in the ventral tegmental area. Furthermore, BDNF mRNA expression was found to be regulated in a temporally different manner in all investigated brain areas. These data suggest that BDNF is involved in the acute effects of ethanol, but separate brain areas may be differentially engaged in the mediation of these effects.
Collapse
Affiliation(s)
- Noora Raivio
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | |
Collapse
|
235
|
Kotan Z, Sarandöl E, Kırhan E, Ozkaya G, Kırlı S. Serum brain-derived neurotrophic factor, vascular endothelial growth factor and leptin levels in patients with a diagnosis of severe major depressive disorder with melancholic features. Ther Adv Psychopharmacol 2012; 2:65-74. [PMID: 23983958 PMCID: PMC3736932 DOI: 10.1177/2045125312436572] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF) and leptin have been hypothesized to be involved in the neurobiology of depression. The aim of this study was to investigate BDNF, VEGF and leptin levels in patients with severe melancholic depression. METHODS A total of 40 drug-free patients with major depressive disorder (MDD) with melancholic features and 40 healthy controls were included in the study. Demographic information, psychiatric evaluation and physical examination were documented for both groups. Serum BDNF, VEGF levels were determined by enzyme-linked immunosorbent assay and leptin with radioimmunoassay methods. The Hamilton Depression Rating Scale and Hamilton Anxiety Rating Scale were applied to the patients. RESULTS There were no significant differences in serum BDNF, VEGF and leptin levels between the patient and control groups. There was a negative correlation between BDNF levels and the number of depressive episodes. It was noted that VEGF levels decreased with increasing severity of depression. CONCLUSIONS These findings suggest that BDNF levels might be associated with the recurrence of depression and VEGF levels might be a determinant of the severity of depression.
Collapse
|
236
|
Bath KG, Jing DQ, Dincheva I, Neeb CC, Pattwell SS, Chao MV, Lee FS, Ninan I. BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity. Neuropsychopharmacology 2012; 37:1297-304. [PMID: 22218094 PMCID: PMC3306891 DOI: 10.1038/npp.2011.318] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, a single-nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene (BDNF Val66Met) has been linked to the development of multiple forms of neuropsychiatric illness. This SNP, when genetically introduced into mice, recapitulates core phenotypes identified in human BDNF Val66Met carriers. In mice, this SNP also leads to elevated expression of anxiety-like behaviors that are not rescued with the prototypic selective serotonin reuptake inhibitor (SSRI), fluoxetine. A prominent hypothesis is that SSRI-induced augmentation of BDNF protein expression and the beneficial trophic effects of BDNF on neural plasticity are critical components for drug response. Thus, these mice represent a potential model to study the biological mechanism underlying treatment-resistant forms of affective disorders. To test whether the BDNF Val66Met SNP alters SSRI-induced changes in neural plasticity, we used wild-type (BDNF(Val/Val)) mice, and mice homozygous for the BDNF Val66Met SNP (BDNF(Met/Met)). We assessed hippocampal BDNF protein levels, survival rates of adult born cells, and synaptic plasticity (long-term potentiation, LTP) in the dentate gyrus either with or without chronic (28-day) fluoxetine treatment. BDNF(Met/Met) mice had decreased basal BDNF protein levels in the hippocampus that did not significantly increase following fluoxetine treatment. BDNF(Met/Met) mice had impaired survival of newly born cells and LTP in the dentate gyrus; the LTP effects remained blunted following fluoxetine treatment. The observed effects of the BDNF Val66Met SNP on hippocampal BDNF expression and synaptic plasticity provide a possible mechanistic basis by which this common BDNF SNP may impair efficacy of SSRI drug treatment.
Collapse
Affiliation(s)
- Kevin G Bath
- Department of Psychiatry, Weill Medical College of Cornell, New York, NY 10021, USA.
| | - Deqiang Q Jing
- Department of Psychiatry, Weill Medical College of Cornell, New York, NY, USA
| | - Iva Dincheva
- Department of Psychiatry, Weill Medical College of Cornell, New York, NY, USA
| | - Christine C Neeb
- Department of Psychiatry, Weill Medical College of Cornell, New York, NY, USA
| | - Siobhan S Pattwell
- Department of Psychiatry, Weill Medical College of Cornell, New York, NY, USA
| | - Moses V Chao
- Department of Cell Biology, Physiology and Neuroscience, and Psychiatry, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell, New York, NY, USA,Department of Pharmacology, Weill Medical College of Cornell, New York, NY, USA,Department of Psychiatry, Weill Medical College of Cornell University, Weill Cornell Medical College, 1300 York Avenue (LC-905), Box 244, New York, NY 10021, USA, Tel: +1 212 746 5403, Fax: +1 212 746 8529, E-mail:
| | - Ipe Ninan
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA,Department of Psychiatry, New York University School of Medicine, 540 1Ave, SKI 5-3, New York NY 10016, USA, Tel: +1 347 535 0710, Fax: +1 212 263 0723, E-mail:
| |
Collapse
|
237
|
Wagner AK, Zitelli KT. A Rehabilomics focused perspective on molecular mechanisms underlying neurological injury, complications, and recovery after severe TBI. ACTA ACUST UNITED AC 2012; 20:39-48. [PMID: 22444246 DOI: 10.1016/j.pathophys.2012.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The molecular mechanisms underlying TBI pathophysiology and recovery are both complex and varied. Further, the pathology underlying many of the clinical sequelae observed in this population evolve over the acute injury period and encompass the subacute and chronic phases of recovery, supporting the contemporary concept that TBI is a chronic disease rather than a static insult from which limited recovery occurs. TBI related complications can also span from acute care to the very chronic stages of recovery that occur years after the initial trauma. Despite ongoing neurodegeneration, the TBI recovery period is also characterized by a propensity for neuroplasticity and rewiring through multiple mechanisms. This review summarizes key elements of acute pathophysiology, how they link to structural damage and ongoing degeneration, and how this process coincides with a permissive neuroplastic environment. The pathophysiology of selected TBI related complications is also discussed. Each of these concepts is studied through the lens of Rehabilomics, wherein an emphasis is placed on biomarker studies characterizing these pathophysiological mechanisms, and biomarker profiles are assessed in relation to multi-modal outcomes and susceptibility to rehabilitation relevant complications. In reviewing these concepts, implications for future research and theranostic principles for patient care are presented.
Collapse
Affiliation(s)
- Amy K Wagner
- Department of Physical Medicine and Rehabilitation, United States; Safar Center for Resuscitation Research, United States; Center for Neuroscience University of Pittsburgh, United States.
| | | |
Collapse
|
238
|
The responsiveness of TrkB to BDNF and antidepressant drugs is differentially regulated during mouse development. PLoS One 2012; 7:e32869. [PMID: 22396798 PMCID: PMC3292581 DOI: 10.1371/journal.pone.0032869] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/01/2012] [Indexed: 12/27/2022] Open
Abstract
Background Previous studies suggest that the responsiveness of TrkB receptor to BDNF is developmentally regulated in rats. Antidepressant drugs (AD) have been shown to increase TrkB signalling in the adult rodent brain, and recent findings implicate a BDNF-independent mechanism behind this phenomenon. When administered during early postnatal life, ADs produce long-lasting biochemical and behavioural alterations that are observed in adult animals. Methodology We have here examined the responsiveness of brain TrkB receptors to BDNF and ADs during early postnatal life of mouse, measured as autophosphorylation of TrkB (pTrkB). Principal Findings We found that ADs fail to induce TrkB signalling before postnatal day 12 (P12) after which an adult response of TrkB to ADs was observed. Interestingly, there was a temporally inverse correlation between the appearance of the responsiveness of TrkB to systemic ADs and the marked developmental reduction of BDNF-induced TrkB in brain microslices ex vivo. Basal p-TrkB status in the brain of BDNF deficient mice was significantly reduced only during early postnatal period. Enhancing cAMP (cyclic adenosine monophosphate) signalling failed to facilitate TrkB responsiveness to BDNF. Reduced responsiveness of TrkB to BDNF was not produced by the developmental increase in the expression of dominant-negative truncated TrkB.T1 because this reduction was similarly observed in the brain microslices of trkB.T1−/− mice. Moreover, postnatal AD administration produced long-lasting behavioural alterations observable in adult mice, but the responses were different when mice were treated during the time when ADs did not (P4-9) or did (P16-21) activate TrkB. Conclusions We have found that ADs induce the activation of TrkB only in mice older than 2 weeks and that responsiveness of brain microslices to BDNF is reduced during the same time period. Exposure to ADs before and after the age when ADs activate TrkB produces differential long-term behavioural responses in adult mice.
Collapse
|
239
|
Arida RM, Cavalheiro EA, Scorza FA. From depressive symptoms to depression in people with epilepsy: Contribution of physical exercise to improve this picture. Epilepsy Res 2012; 99:1-13. [DOI: 10.1016/j.eplepsyres.2011.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/17/2011] [Accepted: 10/09/2011] [Indexed: 10/15/2022]
|
240
|
Mao QQ, Huang Z, Ip SP, Xian YF, Che CT. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats. Behav Brain Res 2012; 227:305-9. [DOI: 10.1016/j.bbr.2011.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/08/2011] [Accepted: 11/12/2011] [Indexed: 12/30/2022]
|
241
|
Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats. Brain Res 2012; 1443:52-63. [PMID: 22305146 DOI: 10.1016/j.brainres.2012.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/13/2011] [Accepted: 01/07/2012] [Indexed: 12/25/2022]
Abstract
Perinatal choline supplementation in rats is neuroprotective against insults such as fetal alcohol exposure, seizures, and advanced age. In the present study we explored whether dietary choline supplementation may also confer protection from psychological challenges, like stress, and act as a natural buffer against stress-linked psychological disorders, like depression. We previously found that choline supplementation increased adult hippocampal neurogenesis, a function compromised by stress, lowered in depression, and boosted by antidepressants; and increased levels of growth factors linked to depression, like brain-derived neurotrophic factor. Together, these were compelling reasons to study the role of choline in depressed mood. To do this, we treated rats with a choline supplemented diet (5 mg/kg choline chloride in AIN76A) prenatally on embryonic days 10-22, on postnatal days (PD) 25-50, or as adults from PD75 onward. Outside of these treatment periods rats were fed a standard diet (1.1 mg/kg choline chloride in AIN76A); control rats consumed only this diet throughout the study. Starting on PD100 rats' anxiety-like responses to an open field, learning in a water maze, and reactivity to forced swimming were assessed. Rats given choline supplementation during pre- or post-natal development, but not adult-treated rats, were less anxious in the open field and less immobile in the forced swim test than control rats. These effects were not mediated by a learning deficit as all groups performed comparably and well in the water maze. Thus, we offer compelling support for the hypothesis that supplemental dietary choline, at least when given during development, may inoculate an individual against stress and major psychological disorders, like depression.
Collapse
|
242
|
Lakshminarasimhan H, Chattarji S. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One 2012; 7:e30481. [PMID: 22272355 PMCID: PMC3260293 DOI: 10.1371/journal.pone.0030481] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/16/2011] [Indexed: 11/19/2022] Open
Abstract
Recent findings on stress induced structural plasticity in rodents have identified important differences between the hippocampus and amygdala. The same chronic immobilization stress (CIS, 2h/day) causes growth of dendrites and spines in the basolateral amygdala (BLA), but dendritic atrophy in hippocampal area CA3. CIS induced morphological changes also differ in their temporal longevity- BLA hypertrophy, unlike CA3 atrophy, persists even after 21 days of stress-free recovery. Furthermore, a single session of acute immobilization stress (AIS, 2h) leads to a significant increase in spine density 10 days, but not 1 day, later in the BLA. However, little is known about the molecular correlates of the differential effects of chronic and acute stress. Because BDNF is known to be a key regulator of dendritic architecture and spines, we investigated if the levels of BDNF expression reflect the divergent effects of stress on the hippocampus and amygdala. CIS reduces BDNF in area CA3, while it increases it in the BLA of male Wistar rats. CIS-induced increase in BDNF expression lasts for at least 21 days after the end of CIS in the BLA. But CIS-induced decrease in area CA3 BDNF levels, reverses to normal levels within the same period. Finally, BDNF is up regulated in the BLA 1 day after AIS and this increase persists even 10 days later. In contrast, AIS fails to elicit any significant change in area CA3 at either time points. Together, these findings demonstrate that both acute and chronic stress trigger opposite effects on BDNF levels in the BLA versus area CA3, and these divergent changes also follow distinct temporal profiles. These results point to a role for BDNF in stress-induced structural plasticity across both hippocampus and amygdala, two brain areas that have also been implicated in the cognitive and affective symptoms of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Harini Lakshminarasimhan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
243
|
Bipolarity and inadequate response to antidepressant drugs: clinical and psychopharmacological perspective. J Affect Disord 2012; 136:e13-e19. [PMID: 21621266 DOI: 10.1016/j.jad.2011.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 04/28/2011] [Accepted: 05/08/2011] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The reason why depression may respond poorly to treatment with antidepressant drugs may be connected with the features of bipolarity. Evidence to this effect has accumulated in recent studies of various kinds of depression in mood disorders. Additional evidence for such a connection may be the efficacy of mood-stabilizing drugs in the augmentation of antidepressants in treatment-resistant depression. METHODS This review is based on clinical and psychopharmacological research performed over the past five years. The clinical investigation was based on the response to antidepressants of bipolar depression or to symptoms of hypomania, assessed mainly by the Mood Disorder Questionnaire (MDQ) and the Hypomania Checklist-32 (HCL-32). The psychopharmacological research tested the efficacy of augmentation of antidepressants in treatment-resistant depression by mood-stabilizing drugs of the 1st and 2nd generations. RESULTS A number of studies have pointed to an association between bipolar depression, or symptoms of hypomania and an inadequate response to antidepressants. Such a connection was also found in the Polish TRES-DEP study which included 1051 depressed patients. Pharmacological studies have demonstrated the efficacy of first generation mood-stabilizing drugs (lithium, carbamazepine) and second generation drugs (quetiapine, olanzapine, risperidone, ziprasidone, lamotrigine) for augmentation of antidepressants in treatment-resistant depression. Some evidence has been presented that mixed depressive episodes may also belong to this category. CONCLUSIONS The results of these clinical and psychopharmacological studies appear to confirm an association between bipolarity and a poor response of depression to treatment with antidepressant drugs.
Collapse
|
244
|
Mohajeri MH, Giese KP. Two selected models of missense mutations in mice for the study of learning behaviour. Brain Res Bull 2011; 88:429-33. [PMID: 22214603 DOI: 10.1016/j.brainresbull.2011.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/01/2011] [Accepted: 12/17/2011] [Indexed: 01/19/2023]
Abstract
A large number of genome-wide association studies have linked missense mutations, mutations altering the amino acid sequence of proteins, with cognitive impairment in humans. However, these studies are correlative. As there may be multiple mutations for one particular patient, it is essential to address the functional impact of a missense mutation in a model system. The most suitable model system is the generation of knock-in mice with the homologous missense mutation followed by behavioural phenotyping. Here, we review selected mutants demonstrating an impact of single mutations on learning and memory in mice and discuss the relevance of such studies for understanding the role of these polymorphisms in human behaviour. We conclude that using these animal models has been instrumental in decoding the mechanisms underlying behaviour, and assists the design of therapeutic strategies for humans.
Collapse
Affiliation(s)
- M Hasan Mohajeri
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Basel, Switzerland.
| | | |
Collapse
|
245
|
Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 2011; 36:764-85. [PMID: 22197082 DOI: 10.1016/j.neubiorev.2011.12.005] [Citation(s) in RCA: 597] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/24/2011] [Accepted: 12/10/2011] [Indexed: 12/17/2022]
Abstract
This paper reviews that cell-mediated-immune (CMI) activation and inflammation contribute to depressive symptoms, including anhedonia; anxiety-like behaviors; fatigue and somatic symptoms, e.g. illness behavior or malaise; and mild cognitive impairment (MCI). These effects are in part mediated by increased levels of pro-inflammatory cytokines (PICs), e.g. interleukin-1 (IL-1), IL-6 and tumor necrosis factor (TNF)α, and Th-1-derived cytokines, such as IL-2 and interferon (IFN)γ. Moreover, new pathways, i.e. concomitants and sequels of CMI activation and inflammation, were detected in depression: (1) Induction of indoleamine 2,3-dioxygenase (IDO) by IFNγ and some PICs is associated with depleted plasma tryptophan, which may interfere with brain 5-HT synthesis, and increased production of anxiogenic and depressogenic tryptophan catabolites. (2) Increased bacterial translocation may cause depression-like behaviors by activating the cytokine network, oxidative and nitrosative stress (O&NS) pathways and IDO. (3) Induction of O&NS causes damage to membrane ω3 PUFAs, functional proteins, DNA and mitochondria, and autoimmune responses directed against intracellular molecules that may cause dysfunctions in intracellular signaling. (4) Decreased levels of ω3 PUFAs and antioxidants, such as coenzyme Q10, glutathione peroxidase or zinc, are associated with an increased inflammatory potential; more oxidative damage; the onset of specific symptoms; and changes in the expression or functions of brain 5-HT and N-methyl-d-aspartate receptors. (5) All abovementioned factors cause neuroprogression, that is a combination of neurodegeneration, neuronal apoptosis, and lowered neurogenesis and neuroplasticity. It is concluded that depression may be the consequence of a complex interplay between CMI activation and inflammation and their sequels/concomitants which all together cause neuroprogression that further shapes the depression phenotype. Future research should employ high throughput technologies to collect genetic and gene expression and protein data from patients with depression and analyze these data by means of systems biology methods to define the dynamic interactions between the different cell signaling networks and O&NS pathways that cause depression.
Collapse
Affiliation(s)
- Brian Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
246
|
Duric V, McCarson KE. Hippocampal Mechanisms Linking Chronic Pain and Depression. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/j426v02n04_03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
247
|
Postpartum depressive symptoms and the BDNF Val66Met functional polymorphism: effect of season of delivery. Arch Womens Ment Health 2011; 14:453-63. [PMID: 21997575 DOI: 10.1007/s00737-011-0239-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 09/25/2011] [Indexed: 12/26/2022]
Abstract
Postpartum depression (PPD) is an often underdiagnosed and undertreated mood disorder, with negative impact on the mother's and infant's health. Seasonal variation has been discussed as a risk factor for PPD. Candidate genes, such as those encoding for the brain-derived neurotrophic factor (BDNF), serotonin transporter (5-HTT), and Period2 (PER2), have been associated with depression and seasonal disorders. The present study is aimed to examine whether functional polymorphic variants, BDNF Val66Met, 5-HTTLPR, or PER2 SNP 10870, are associated with PPD symptoms and whether these genetic polymorphisms interact with season in predicting PPD symptoms. This case-control study comprised of 275 women from a population-based cohort of delivering women in Sweden, who completed a questionnaire containing the Edinburgh postnatal depression scale (EPDS) at 6 weeks and 6 months postpartum. Stressful life events (SLEs) and maternity stressors were also assessed. The results did not reveal any statistically significant overall association between the studied genetic polymorphisms and PPD symptoms. However, a significant association between BDNF Met66 carrier status and development of PPD symptoms at 6 weeks postpartum, even when controlling for prepartum and postpartum environmental risk factors, was evident among mothers delivering during autumn/winter. No gene-gene interactions were found but a cumulative effect was detected with carriers of a greater number of 5-HTTLPR S and BDNFVal66Met Met alleles reporting higher EPDS scores, if delivered during autumn/winter. Our findings propose a role of the BDNF gene in the development of PPD symptoms, potentially mediated by season of delivery.
Collapse
|
248
|
Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ. DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness. ACS Chem Neurosci 2011; 2:609-632. [PMID: 22116789 PMCID: PMC3222219 DOI: 10.1021/cn200062k] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023] Open
Abstract
![]()
Disrupted in schizophrenia 1 (DISC1) is well established
as a genetic risk factor across a spectrum of psychiatric disorders,
a role supported by a growing body of biological studies, making the
DISC1 protein interaction network an attractive therapeutic target.
By contrast, there is a relative deficit of structural information
to relate to the myriad biological functions of DISC1. Here, we critically
appraise the available bioinformatics and biochemical analyses on
DISC1 and key interacting proteins, and integrate this with the genetic
and biological data. We review, analyze, and make predictions regarding
the secondary structure and propensity for disordered regions within
DISC1, its protein-interaction domains, subcellular localization motifs,
and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We
discuss signaling pathways of high pharmacological potential wherein
DISC1 participates, including those involving phosphodiesterase 4
(PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and
priority areas can inform future research in the translational and
potentially guide the therapeutic processes.
Collapse
Affiliation(s)
- Dinesh C. Soares
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Becky C. Carlyle
- Department of Psychiatry, Yale University School of Medicine, 300 George Street,
Suite 901, New Haven, Connecticut 06511, United States
| | - Nicholas J. Bradshaw
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - David J. Porteous
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
249
|
Schmidt HD, Shelton RC, Duman RS. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 2011; 36:2375-94. [PMID: 21814182 PMCID: PMC3194084 DOI: 10.1038/npp.2011.151] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Major depressive disorder (MDD) is a heterogeneous illness for which there are currently no effective methods to objectively assess severity, endophenotypes, or response to treatment. Increasing evidence suggests that circulating levels of peripheral/serum growth factors and cytokines are altered in patients with MDD, and that antidepressant treatments reverse or normalize these effects. Furthermore, there is a large body of literature demonstrating that MDD is associated with changes in endocrine and metabolic factors. Here we provide a brief overview of the evidence that peripheral growth factors, pro-inflammatory cytokines, endocrine factors, and metabolic markers contribute to the pathophysiology of MDD and antidepressant response. Recent preclinical studies demonstrating that peripheral growth factors and cytokines influence brain function and behavior are also discussed along with their implications for diagnosing and treating patients with MDD. Together, these studies highlight the need to develop a biomarker panel for depression that aims to profile diverse peripheral factors that together provide a biological signature of MDD subtypes as well as treatment response.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
250
|
Zhang XB, Wang X, Sha WW, Zhou HH, Zhang YM. Val66Met polymorphism and serum brain-derived neurotrophic factor concentration in depressed patients. Acta Neuropsychiatr 2011; 23:229-34. [PMID: 25379894 DOI: 10.1111/j.1601-5215.2011.00560.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zhang X, Wang X, Sha W, Zhou H, Zhang Y. Val66Met polymorphism and serum brain-derived neurotrophic factor concentration in depressed patients.Objective: Accumulating evidence has suggested a pathophysiological role for brain-derived neurotrophic factor (BDNF) in major depressive disorder (MDD). The present study evaluated serum levels of BDNF and explored whether Val66Met BDNF gene polymorphism is correlated with changes in circulating BDNF levels in patients with MDD and control subjects.Methods: Subjects were 76 patients with MDD and 50 controls. Diagnosis of MDD was determined by the use of a structured clinical interview according to Diagnostic and Statistical Manual of Mental Disorder-IV (DSM-IV) criteria. The concentrations of BDNF were measured by using the enzyme-linked immunosorbent assay. The Val66Met BDNF gene polymorphism was examined by the polymerase chain reaction technique.Results: Serum BDNF was significantly lower in MDD patients than in normal control subjects (p < 0.001). There were no significant differences either in allele or genotype in the Val66Met polymorphism between the MDD and control groups. Moreover, genotype did not significantly correlate with the BDNF serum levels in the MDD or control groups.Conclusions: Our study suggests that there is a decrease in serum BDNF levels in untreated MDD patients. However, serum BDNF levels were not associated with the Val66Met polymorphism.
Collapse
Affiliation(s)
- Xiao-Bin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, P.R. China
| | - Xin Wang
- Department of Tradition Chinese and Western medicine, Nanjing University of Chinese Medicine, Nanjing 210009, P.R. China
| | - Wei-Wei Sha
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, P.R. China
| | - Hong-Hui Zhou
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, P.R. China
| | - Yu-Mei Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, P.R. China
| |
Collapse
|