201
|
Zhang X, Chiang HC, Wang Y, Zhang C, Smith S, Zhao X, Nair SJ, Michalek J, Jatoi I, Lautner M, Oliver B, Wang H, Petit A, Soler T, Brunet J, Mateo F, Angel Pujana M, Poggi E, Chaldekas K, Isaacs C, Peshkin BN, Ochoa O, Chedin F, Theoharis C, Sun LZ, Curiel TJ, Elledge R, Jin VX, Hu Y, Li R. Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis. Nat Commun 2017; 8:15908. [PMID: 28649985 PMCID: PMC5490191 DOI: 10.1038/ncomms15908] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/12/2017] [Indexed: 01/08/2023] Open
Abstract
Most BRCA1-associated breast tumours are basal-like yet originate from luminal progenitors. BRCA1 is best known for its functions in double-strand break repair and resolution of DNA replication stress. However, it is unclear whether loss of these ubiquitously important functions fully explains the cell lineage-specific tumorigenesis. In vitro studies implicate BRCA1 in elimination of R-loops, DNA-RNA hybrid structures involved in transcription and genetic instability. Here we show that R-loops accumulate preferentially in breast luminal epithelial cells, not in basal epithelial or stromal cells, of BRCA1 mutation carriers. Furthermore, R-loops are enriched at the 5' end of those genes with promoter-proximal RNA polymerase II (Pol II) pausing. Genetic ablation of Cobra1, which encodes a Pol II-pausing and BRCA1-binding protein, ameliorates R-loop accumulation and reduces tumorigenesis in Brca1-knockout mouse mammary epithelium. Our studies show that Pol II pausing is an important contributor to BRCA1-associated R-loop accumulation and breast cancer development.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Yao Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Chi Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Sabrina Smith
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Sreejith J. Nair
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Joel Michalek
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Ismail Jatoi
- Department of Surgery, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Meeghan Lautner
- Department of Surgery, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Boyce Oliver
- Department of Surgery, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Howard Wang
- Department of Surgery, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Anna Petit
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Teresa Soler
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona 17007, Spain
| | - Francesca Mateo
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miguel Angel Pujana
- Breast Cancer and Systems Biology Lab, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Elizabeth Poggi
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | - Krysta Chaldekas
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | - Beth N. Peshkin
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007, USA
| | - Oscar Ochoa
- PRMA Plastic Surgery, San Antonio, Texas 78240, USA
| | - Frederic Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Tyler J. Curiel
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Richard Elledge
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Victor X. Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, Texas 78229, USA
| |
Collapse
|
202
|
Shii L, Song L, Maurer K, Zhang Z, Sullivan KE. SERPINB2 is regulated by dynamic interactions with pause-release proteins and enhancer RNAs. Mol Immunol 2017; 88:20-31. [PMID: 28578223 DOI: 10.1016/j.molimm.2017.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023]
Abstract
The SERPINB2 gene is strongly upregulated in inflammatory states. In monocytes, it can constitute up to 1% of total cellular protein. It functions in protection from proteotoxic stress and plays a role in angioedema. The purpose of this study was to define the roles of enhancer RNAs embedded in the SERPIN gene complex. We found that the upstream enhancer RNAs upregulated SERPINB2 and the enhancer RNAs were expressed prior to those of SERPINB2 mRNA. Studies of the SERPINB2 promoter demonstrated the presence of an RNA polymerase II pause-inducing protein, NELF. Stimulation with LPS led to recruitment of the pause-releasing kinase P-TEFb and departure of the pause-inducing protein NELF. RNA immunoprecipitation revealed that NELF and the CDK9 component of P-TEFb bound to the enhancer RNAs after stimulation with distinct kinetics. Knock-down of the enhancer RNAs compromised stimulus induction of promoter and enhancer chromatin changes. Conversely, over-expression was associated with enhanced recruitment of c-JUN and increased expression of SERPINB2 mRNA expression. This study is the first to associate enhancer RNAs with SERPINB2 and is the first demonstration of acquisition of NELF binding by enhancer RNAs on chromatin.
Collapse
Affiliation(s)
- Lihua Shii
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Li Song
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Kelly Maurer
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| | - Zhe Zhang
- The Department of Biomedical and Health informatics at the Children's Hospital of Philadelphia, 3535 Market St., Philadelphia, PA 19104, USA.
| | - Kathleen E Sullivan
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
203
|
Zhou J, Gao G, Hou P, Li CM, Guo D. Regulation of the Alternative Splicing and Function of Cyclin T1 by the Serine-Arginine-Rich Protein ASF/SF2. J Cell Biochem 2017; 118:4020-4032. [PMID: 28422315 DOI: 10.1002/jcb.26058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
Abstract
Positive transcription elongation factor-b (P-TEFb) is required for the release of RNA polymerase II (RNAPII) from its pause near the gene promoters and thus for efficient proceeding to the transcription elongation. It consists of two core subunits-CDK9 and one of T-typed or K-typed cyclin, of which, cyclin T1/CDK9 is the major and most studied combination. We have previously identified a novel splice variant of cyclin T1, cyclin T1b, which negatively regulates the transcription elongation of HIV-1 genes as well as several host genes. In this study, we revealed the serine-arginine-rich protein, ASF/SF2, as a regulatory factor of the alternative splicing of cyclin T1 gene. ASF/SF2 promotes the production of cyclin T1b versus cyclin T1a and regulates the expression of cyclin T1-depedent genes at the transcription level. We further found that a cis-element on exon 8 is responsible for the skipping of exon 7 mediated by ASF/SF2. Collectively, ASF/SF2 is identified as a splicing regulator of cyclin T1, which contributes to the control of the subsequent transcription events. J. Cell. Biochem. 118: 4020-4032, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jieqiong Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guozhen Gao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Panpan Hou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chun-Mei Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Deyin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
204
|
Yang H, Basquin D, Pauli D, Oliver B. Drosophila melanogaster positive transcriptional elongation factors regulate metabolic and sex-biased expression in adults. BMC Genomics 2017; 18:384. [PMID: 28521739 PMCID: PMC5436443 DOI: 10.1186/s12864-017-3755-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptional elongation is a generic function, but is also regulated to allow rapid transcription responses. Following relatively long initiation and promoter clearance, RNA polymerase II can pause and then rapidly elongate following recruitment of positive elongation factors. Multiple elongation complexes exist, but the role of specific components in adult Drosophila is underexplored. Results We conducted RNA-seq experiments to analyze the effect of RNAi knockdown of Suppressor of Triplolethal and lilliputian. We similarly analyzed the effect of expressing a dominant negative Cyclin-dependent kinase 9 allele. We observed that almost half of the genes expressed in adults showed reduced expression, supporting a broad role for the three tested genes in steady-state transcript abundance. Expression profiles following lilliputian and Suppressor of Triplolethal RNAi were nearly identical raising the possibility that they are obligatory co-factors. Genes showing reduced expression due to these RNAi treatments were short and enriched for genes encoding metabolic or enzymatic functions. The dominant-negative Cyclin-dependent kinase 9 profiles showed both overlapping and specific differential expression, suggesting involvement in multiple complexes. We also observed hundreds of genes with sex-biased differential expression following treatment. Conclusion Transcriptional profiles suggest that Lilliputian and Suppressor of Triplolethal are obligatory cofactors in the adult and that they can also function with Cyclin-dependent kinase 9 at a subset of loci. Our results suggest that transcriptional elongation control is especially important for rapidly expressed genes to support digestion and metabolism, many of which have sex-biased function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3755-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiwang Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Denis Basquin
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Daniel Pauli
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
205
|
Abstract
Transcription is tightly regulated in response to DNA damage. Rapid and transient pausing of RNA polymerase II (RNAPII ) is indeed critical to restrict the production of aberrant transcripts from damaged loci and to prevent deleterious collisions between transcription and repair machineries. Yet, how DNA lesions signal to the transcription machinery to coordinate DNA repair with transcriptional silencing is not fully elucidated. In this issue of EMBO Reports , Awwad et al 1 bring a new piece to the puzzle by identifying the negative transcription elongation factor NELF as a critical player in this process. They demonstrate that NELF is recruited to DNA double‐strand breaks (DSB s) near transcriptionally active genes in a poly(ADP ‐ribose)‐ and RNAPII ‐dependent manner to promote transcriptional repression and facilitate DSB repair.
Collapse
Affiliation(s)
- Sophie E Polo
- Epigenetics & Cell Fate CentreUMR7216 CNRSSorbonne Paris CitéParis Diderot UniversityParisFrance
| |
Collapse
|
206
|
Awwad SW, Abu-Zhayia ER, Guttmann-Raviv N, Ayoub N. NELF-E is recruited to DNA double-strand break sites to promote transcriptional repression and repair. EMBO Rep 2017; 18:745-764. [PMID: 28336775 PMCID: PMC5412775 DOI: 10.15252/embr.201643191] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/12/2023] Open
Abstract
Double-strand breaks (DSBs) trigger rapid and transient transcription pause to prevent collisions between repair and transcription machineries at damage sites. Little is known about the mechanisms that ensure transcriptional block after DNA damage. Here, we reveal a novel role of the negative elongation factor NELF in blocking transcription activity nearby DSBs. We show that NELF-E and NELF-A are rapidly recruited to DSB sites. Furthermore, NELF-E recruitment and its repressive activity are both required for switching off transcription at DSBs. Remarkably, using I-SceI endonuclease and CRISPR-Cas9 systems, we observe that NELF-E is preferentially recruited, in a PARP1-dependent manner, to DSBs induced upstream of transcriptionally active rather than inactive genes. Moreover, the presence of RNA polymerase II is a prerequisite for the preferential recruitment of NELF-E to DNA break sites. Additionally, we demonstrate that NELF-E is required for intact repair of DSBs. Altogether, our data identify the NELF complex as a new component in the DNA damage response.
Collapse
Affiliation(s)
- Samah W Awwad
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Enas R Abu-Zhayia
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noga Guttmann-Raviv
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
207
|
Boswell SA, Snavely A, Landry HM, Churchman LS, Gray JM, Springer M. Total RNA-seq to identify pharmacological effects on specific stages of mRNA synthesis. Nat Chem Biol 2017; 13:501-507. [PMID: 28263964 DOI: 10.1038/nchembio.2317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022]
Abstract
Pharmacological perturbation is a powerful tool for understanding mRNA synthesis, but identification of the specific steps of this multi-step process that are targeted by small molecules remains challenging. Here we applied strand-specific total RNA sequencing (RNA-seq) to identify and distinguish specific pharmacological effects on transcription and pre-mRNA processing in human cells. We found unexpectedly that the natural product isoginkgetin, previously described as a splicing inhibitor, inhibits transcription elongation. Compared to well-characterized elongation inhibitors that target CDK9, isoginkgetin caused RNA polymerase accumulation within a broader promoter-proximal band, indicating that elongation inhibition by isoginkgetin occurs after release from promoter-proximal pause. RNA-seq distinguished isoginkgetin and CDK9 inhibitors from topoisomerase I inhibition, which alters elongation across gene bodies. We were able to detect these and other specific defects in mRNA synthesis at low sequencing depth using simple metagene-based metrics. These metrics now enable total-RNA-seq-based screening for high-throughput identification of pharmacological effects on individual stages of mRNA synthesis.
Collapse
Affiliation(s)
- Sarah A Boswell
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Snavely
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Heather M Landry
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jesse M Gray
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Springer
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
208
|
Fuchs A, Torroba M, Kinkley S. PHF13: A new player involved in RNA polymerase II transcriptional regulation and co-transcriptional splicing. Transcription 2017; 8:106-112. [PMID: 28102760 DOI: 10.1080/21541264.2016.1274813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We recently identified PHF13 as an H3K4me2/3 chromatin reader and transcriptional co-regulator. We found that PHF13 interacts with RNAPIIS5P and PRC2 stabilizing their association with active and bivalent promoters. Furthermore, mass spectrometry analysis identified ∼50 spliceosomal proteins in PHF13s interactome. Here, we will discuss the potential role of PHF13 in RNAPII pausing and co-transcriptional splicing.
Collapse
Affiliation(s)
- Alisa Fuchs
- a Max Planck Institute for Molecular Genetics , Berlin , Germany
| | - Marcos Torroba
- a Max Planck Institute for Molecular Genetics , Berlin , Germany
| | - Sarah Kinkley
- a Max Planck Institute for Molecular Genetics , Berlin , Germany
| |
Collapse
|
209
|
Abstract
Transcription by RNA polymerase (RNAP) II is regulated at multiple steps by phosphorylation, catalyzed mainly by members of the cyclin-dependent kinase (CDK) family. The CDKs involved in transcription have overlapping substrate specificities, but play largely non-redundant roles in coordinating gene expression. Novel functions and targets of CDKs have recently emerged at the end of the transcription cycle, when the primary transcript is cleaved, and in most cases polyadenylated, and transcription is terminated by the action of the "torpedo" exonuclease Xrn2, which is a CDK substrate. Collectively, various functions have been ascribed to CDKs or CDK-mediated phosphorylation: recruiting cleavage and polyadenylation factors, preventing premature termination within gene bodies while promoting efficient termination of full-length transcripts, and preventing extensive readthrough transcription into intergenic regions or neighboring genes. The assignment of precise functions to specific CDKs is still in progress, but recent advances suggest ways in which the CDK network and RNAP II machinery might cooperate to ensure timely exit from the transcription cycle.
Collapse
Affiliation(s)
- Robert P Fisher
- a Department of Oncological Sciences , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
210
|
Singh SK, Qiao Z, Song L, Jani V, Rice W, Eng E, Coleman RA, Liu WL. Structural visualization of the p53/RNA polymerase II assembly. Genes Dev 2016; 30:2527-2537. [PMID: 27920087 PMCID: PMC5159667 DOI: 10.1101/gad.285692.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/18/2016] [Indexed: 01/03/2023]
Abstract
Singh et al. dissected the human p53/Pol II interaction via single-particle cryo-electron microscopy, structural docking, and biochemical analyses. These findings indicate that p53 may structurally regulate DNA-binding functions of Pol II via the clamp domain, thereby providing insights into p53-regulated Pol II transcription. The master tumor suppressor p53 activates transcription in response to various cellular stresses in part by facilitating recruitment of the transcription machinery to DNA. Recent studies have documented a direct yet poorly characterized interaction between p53 and RNA polymerase II (Pol II). Therefore, we dissected the human p53/Pol II interaction via single-particle cryo-electron microscopy, structural docking, and biochemical analyses. This study reveals that p53 binds Pol II via the Rpb1 and Rpb2 subunits, bridging the DNA-binding cleft of Pol II proximal to the upstream DNA entry site. In addition, the key DNA-binding surface of p53, frequently disrupted in various cancers, remains exposed within the assembly. Furthermore, the p53/Pol II cocomplex displays a closed conformation as defined by the position of the Pol II clamp domain. Notably, the interaction of p53 and Pol II leads to increased Pol II elongation activity. These findings indicate that p53 may structurally regulate DNA-binding functions of Pol II via the clamp domain, thereby providing insights into p53-regulated Pol II transcription.
Collapse
Affiliation(s)
- Sameer K Singh
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Zhen Qiao
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lihua Song
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Vijay Jani
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - William Rice
- New York Structural Biology Center, Manhattan, New York 10027, USA
| | - Edward Eng
- New York Structural Biology Center, Manhattan, New York 10027, USA
| | - Robert A Coleman
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Wei-Li Liu
- Gruss-Lipper Biophotonics Center, Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
211
|
Taniguchi Y. The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins. Int J Mol Sci 2016; 17:ijms17111849. [PMID: 27827996 PMCID: PMC5133849 DOI: 10.3390/ijms17111849] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
The Bromodomain and Extra-Terminal Domain (BET) family of proteins is characterized by the presence of two tandem bromodomains and an extra-terminal domain. The mammalian BET family of proteins comprises BRD2, BRD3, BRD4, and BRDT, which are encoded by paralogous genes that may have been generated by repeated duplication of an ancestral gene during evolution. Bromodomains that can specifically bind acetylated lysine residues in histones serve as chromatin-targeting modules that decipher the histone acetylation code. BET proteins play a crucial role in regulating gene transcription through epigenetic interactions between bromodomains and acetylated histones during cellular proliferation and differentiation processes. On the other hand, BET proteins have been reported to mediate latent viral infection in host cells and be involved in oncogenesis. Human BRD4 is involved in multiple processes of the DNA virus life cycle, including viral replication, genome maintenance, and gene transcription through interaction with viral proteins. Aberrant BRD4 expression contributes to carcinogenesis by mediating hyperacetylation of the chromatin containing the cell proliferation-promoting genes. BET bromodomain blockade using small-molecule inhibitors gives rise to selective repression of the transcriptional network driven by c-MYC These inhibitors are expected to be potential therapeutic drugs for a wide range of cancers. This review presents an overview of the basic roles of BET proteins and highlights the pathological functions of BET and the recent developments in cancer therapy targeting BET proteins in animal models.
Collapse
Affiliation(s)
- Yasushi Taniguchi
- Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
212
|
Alternative Splicing of Toll-Like Receptor 9 Transcript in Teleost Fish Grouper Is Regulated by NF-κB Signaling via Phosphorylation of the C-Terminal Domain of the RPB1 Subunit of RNA Polymerase II. PLoS One 2016; 11:e0163415. [PMID: 27658294 PMCID: PMC5033454 DOI: 10.1371/journal.pone.0163415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/25/2016] [Indexed: 11/19/2022] Open
Abstract
Similar to its mammalian counterparts, teleost Toll-like receptor 9 (TLR9) recognizes unmethylated CpG DNA presented in the genome of bacteria or DNA viruses and initiates signaling pathway(s) for immune responses. We have previously shown that the TLR9 pathway in grouper, an economically important teleost, can be debilitated by an inhibitory gTLR9B isoform, whose production is mediated by RNA alternative splicing. However, how does grouper TLR9 (gTLR9) signaling impinge on the RNA splicing machinery to produce gTlr9B is unknown. Here we show that the gTlr9 alternative splicing is regulated through ligand-induced phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II). We first observed that ligand-activated NF- κB pathway biased the production of the gTlr9B isoform. Because NF- κB is known to recruit p-TEFb kinase, which phosphorylates the Pol II CTD at Ser2 residues, we examined p-TEFb’s role in alternative splicing. We found that promoting p-TEFb kinase activity significantly favored the production of the gTlr9B isoform, whereas inhibiting p-TEFb yielded an opposite result. We further showed that p-TEFb-mediated production of the gTlr9B isoform down-regulates its own immune responses, suggesting a self-limiting mechanism. Taken together, our data indicate a feedback mechanism of the gTLR9 signaling pathway to regulate the alternative splicing machinery, which in turn produces an inhibitor to the pathway.
Collapse
|
213
|
Abstract
Transcription and splicing are fundamental steps in gene expression. These processes have been studied intensively over the past four decades, and very recent findings are challenging some of the formerly established ideas. In particular, splicing was shown to occur much faster than previously thought, with the first spliced products observed as soon as splice junctions emerge from RNA polymerase II (Pol II). Splicing was also found coupled to a specific phosphorylation pattern of Pol II carboxyl-terminal domain (CTD), suggesting a new layer of complexity in the CTD code. Moreover, phosphorylation of the CTD may be scarcer than expected, and other post-translational modifications of the CTD are emerging with unanticipated roles in gene expression regulation.
Collapse
Affiliation(s)
- Noélia Custódio
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| | - Maria Carmo-Fonseca
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
214
|
Resto M, Kim BH, Fernandez AG, Abraham BJ, Zhao K, Lewis BA. O-GlcNAcase Is an RNA Polymerase II Elongation Factor Coupled to Pausing Factors SPT5 and TIF1β. J Biol Chem 2016; 291:22703-22713. [PMID: 27601472 DOI: 10.1074/jbc.m116.751420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
We describe here the identification and functional characterization of the enzyme O-GlcNAcase (OGA) as an RNA polymerase II elongation factor. Using in vitro transcription elongation assays, we show that OGA activity is required for elongation in a crude nuclear extract system, whereas in a purified system devoid of OGA the addition of rOGA inhibited elongation. Furthermore, OGA is physically associated with the known RNA polymerase II (pol II) pausing/elongation factors SPT5 and TRIM28-KAP1-TIF1β, and a purified OGA-SPT5-TIF1β complex has elongation properties. Lastly, ChIP-seq experiments show that OGA maps to the transcriptional start site/5' ends of genes, showing considerable overlap with RNA pol II, SPT5, TRIM28-KAP1-TIF1β, and O-GlcNAc itself. These data all point to OGA as a component of the RNA pol II elongation machinery regulating elongation genome-wide. Our results add a novel and unexpected dimension to the regulation of elongation by the insertion of O-GlcNAc cycling into the pol II elongation regulatory dynamics.
Collapse
Affiliation(s)
- Melissa Resto
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893
| | - Bong-Hyun Kim
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Alfonso G Fernandez
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893
| | - Brian J Abraham
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, and.,Laboratory of Epigenome Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Keji Zhao
- Laboratory of Epigenome Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Brian A Lewis
- From the Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 30893,
| |
Collapse
|
215
|
Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul 2016; 62:37-49. [PMID: 27220739 DOI: 10.1016/j.jbior.2016.05.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/03/2016] [Indexed: 05/13/2023]
Abstract
Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, without the need for de novo protein synthesis, and they are stimulated in response to both cell-extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, through receptors activating a chain of proteins in the cell, in particular extracellular-signal-regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These communicate through a signaling cascade by adding phosphate groups to neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and thereby induce gene expression. The gene activation also involves proximal and distal enhancers that interact with promoters to simulate gene expression. The immediate-early genes have essential biological roles, in particular in stress response, like the immune system, and in differentiation. Therefore they also have important roles in various diseases, including cancer development. In this paper we summarize some recent advances on key aspects of the activation and regulation of immediate-early genes.
Collapse
Affiliation(s)
- Shahram Bahrami
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
216
|
Zhao Y, Liu Q, Acharya P, Stengel KR, Sheng Q, Zhou X, Kwak H, Fischer MA, Bradner JE, Strickland SA, Mohan SR, Savona MR, Venters BJ, Zhou MM, Lis JT, Hiebert SW. High-Resolution Mapping of RNA Polymerases Identifies Mechanisms of Sensitivity and Resistance to BET Inhibitors in t(8;21) AML. Cell Rep 2016; 16:2003-16. [PMID: 27498870 PMCID: PMC4996374 DOI: 10.1016/j.celrep.2016.07.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/17/2015] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Bromodomain and extra-terminal domain (BET) family inhibitors offer an approach to treating hematological malignancies. We used precision nuclear run-on transcription sequencing (PRO-seq) to create high-resolution maps of active RNA polymerases across the genome in t(8;21) acute myeloid leukemia (AML), as these polymerases are exceptionally sensitive to BET inhibitors. PRO-seq identified over 1,400 genes showing impaired release of promoter-proximal paused RNA polymerases, including the stem cell factor receptor tyrosine kinase KIT that is mutated in t(8;21) AML. PRO-seq also identified an enhancer 3' to KIT. Chromosome conformation capture confirmed contacts between this enhancer and the KIT promoter, while CRISPRi-mediated repression of this enhancer impaired cell growth. PRO-seq also identified microRNAs, including MIR29C and MIR29B2, that target the anti-apoptotic factor MCL1 and were repressed by BET inhibitors. MCL1 protein was upregulated, and inhibition of BET proteins sensitized t(8:21)-containing cells to MCL1 inhibition, suggesting a potential mechanism of resistance to BET-inhibitor-induced cell death.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Azepines/pharmacology
- Cell Line, Tumor
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Clustered Regularly Interspaced Short Palindromic Repeats
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic
- Gene Expression Regulation, Leukemic
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Multigene Family
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Promoter Regions, Genetic
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Proteins/antagonists & inhibitors
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
- Transcription, Genetic
- Translocation, Genetic
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Yue Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pankaj Acharya
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristy R Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Quanhu Sheng
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37212, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Melissa A Fischer
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stephen A Strickland
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sanjay R Mohan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Bryan J Venters
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
217
|
Sharma N. Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease. IUBMB Life 2016; 68:709-16. [DOI: 10.1002/iub.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University; Dwarka New Delhi 110078 India
| |
Collapse
|
218
|
Tsai SY, Chang YL, Swamy KBS, Chiang RL, Huang DH. GAGA factor, a positive regulator of global gene expression, modulates transcriptional pausing and organization of upstream nucleosomes. Epigenetics Chromatin 2016; 9:32. [PMID: 27468311 PMCID: PMC4962548 DOI: 10.1186/s13072-016-0082-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide studies in higher eukaryotes have revealed the presence of paused RNA polymerase II (RNA-Pol) at about 30-50 bp downstream of the transcription start site of genes involved in developmental control, cell proliferation and intercellular signaling. Promoter-proximal pausing is believed to represent a critical step in transcriptional regulation. GAGA sequence motifs have frequently been found in the upstream region of paused genes in Drosophila, implicating a prevalent binding factor, GAF, in transcriptional pausing. RESULTS Using newly isolated mutants that retain only ~3 % normal GAF level, we analyzed its impacts on transcriptional regulation in whole animals. We first examined the abundance of three major isoforms of RNA-Pol on Hsp70 during heat shock. By cytogenetic analyses on polytene chromosomes and chromatin immunoprecipitation (ChIP), we show that paused RNA-Pol of Hsp70 is substantially reduced in mutants. Conversely, a global increase in paused RNA-Pol is observed when GAF is over-expressed. Coupled analyses of transcriptome and GAF genomic distribution show that 269 genes enriched for upstream GAF binding are down-regulated in mutants. Interestingly, ~15 % of them encode transcriptional factors, which might control ~2000 additional genes down-regulated in mutants. Further examination of RNA-Pol distribution in GAF targets reveals that a positive correlation exists between promoter-proximal RNA-Pol density and GAF occupancy in WT, but not in mutants. Comparison of nucleosome profiles indicates that nucleosome occupancy is preferentially attenuated by GAF in the upstream region that strongly favors nucleosome assembly. Using a dominant eye phenotype caused by GAF over-expression, we detect significant genetic interactions between GAF and the nucleosome remodeler NURF, the pausing factor NELF, and BAB1 whose binding sites are enriched specifically in genes displaying GAF-dependent pausing. CONCLUSION Our results provide direct evidence to support a critical role of GAF in global gene expression, transcriptional pausing and upstream nucleosome organization of a group of genes. By cooperating with factors acting at different levels, GAF orchestrates a series of events from local nucleosome displacement to paused transcription. The use of whole animals containing broad tissue types attests the physiological relevance of this regulatory network.
Collapse
Affiliation(s)
- Shih-Ying Tsai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC ; Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yuh-Long Chang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC
| | - Krishna B S Swamy
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC
| | - Ruei-Lin Chiang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC
| | - Der-Hwa Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei Taiwan, ROC
| |
Collapse
|
219
|
Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. Bioessays 2016; 38 Suppl 1:S75-85. [DOI: 10.1002/bies.201670912] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/31/2023]
Affiliation(s)
| | - Nur F. Isa
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
- Department of Biotechnology; Kulliyyah of Science, IIUM; Kuantan Pahang Malaysia
| | - Shona Murphy
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
| |
Collapse
|
220
|
C Quaresma AJ, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res 2016; 44:7527-39. [PMID: 27369380 PMCID: PMC5027500 DOI: 10.1093/nar/gkw585] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023] Open
Abstract
Release of RNA polymerase II (Pol II) from promoter-proximal pausing has emerged as a critical step regulating gene expression in multicellular organisms. The transition of Pol II into productive elongation requires the kinase activity of positive transcription elongation factor b (P-TEFb), which is itself under a stringent control by the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP) complex. Here, we provide an overview on stimulating Pol II pause release by P-TEFb and on sequestering P-TEFb into 7SK snRNP. Furthermore, we highlight mechanisms that govern anchoring of 7SK snRNP to chromatin as well as means that release P-TEFb from the inhibitory complex, and propose a unifying model of P-TEFb activation on chromatin. Collectively, these studies shine a spotlight on the central role of RNA binding proteins (RBPs) in directing the inhibition and activation of P-TEFb, providing a compelling paradigm for controlling Pol II transcription with a non-coding RNA.
Collapse
Affiliation(s)
- Alexandre J C Quaresma
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Andrii Bugai
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| | - Matjaz Barboric
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki FIN-00014, Finland
| |
Collapse
|
221
|
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 2016; 5:e16691. [PMID: 27336723 DOI: 10.7554/elife.16691.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 05/21/2023] Open
Abstract
In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8(-) Mediator, during memory, Cdk8(+) Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism.
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, United States
| | - Jessica Marone
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, United States
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
222
|
D'Urso A, Takahashi YH, Xiong B, Marone J, Coukos R, Randise-Hinchliff C, Wang JP, Shilatifard A, Brickner JH. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 2016; 5. [PMID: 27336723 PMCID: PMC4951200 DOI: 10.7554/elife.16691] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 12/17/2022] Open
Abstract
In yeast and humans, previous experiences can lead to epigenetic transcriptional memory: repressed genes that exhibit mitotically heritable changes in chromatin structure and promoter recruitment of poised RNA polymerase II preinitiation complex (RNAPII PIC), which enhances future reactivation. Here, we show that INO1 memory in yeast is initiated by binding of the Sfl1 transcription factor to the cis-acting Memory Recruitment Sequence, targeting INO1 to the nuclear periphery. Memory requires a remodeled form of the Set1/COMPASS methyltransferase lacking Spp1, which dimethylates histone H3 lysine 4 (H3K4me2). H3K4me2 recruits the SET3C complex, which plays an essential role in maintaining this mark. Finally, while active INO1 is associated with Cdk8- Mediator, during memory, Cdk8+ Mediator recruits poised RNAPII PIC lacking the Kin28 CTD kinase. Aspects of this mechanism are generalizable to yeast and conserved in human cells. Thus, COMPASS and Mediator are repurposed to promote epigenetic transcriptional poising by a highly conserved mechanism. DOI:http://dx.doi.org/10.7554/eLife.16691.001 Cells respond to stressful conditions by changing which of their genes are switched on. Such stress-specific genes are typically switched off again when the conditions improve, but can remain primed and ready to be switched on again when needed. This phenomenon is known as “epigenetic transcriptional memory” and allows for a faster or stronger response to the same stress in the future. In fact, these memories can last for a long time, even after the cell divides many times. Inside cells, most of the DNA is wrapped tightly around proteins called histones. To activate – or transcribe – a gene, the DNA must be re-packaged to allow better access for specific proteins including the enzyme called RNA polymerase II. This repackaging involves a number of changes including chemical modification of the histone proteins. Genes that have been previously transcribed under stress are packaged in a different way so that they are poised and ready for the next time they are needed. However, the details of this process were not clear. Using yeast as a model, D'Urso et al. have dissected the changes that are responsible for priming genes to respond to future events. The yeast gene INO1, which shows transcriptional memory, was studied in cells by characterizing the proteins bound at and around the gene and the histone modifications in the region. D'Urso et al. found that a protein called SfI1 bound to this gene only during transcriptional memory and that this binding was critical to start the phenomenon. Further experiments showed that transcriptional memory also required altering two protein complexes that normally bind to genes when they are switched on. One complex, which includes an enzyme that modifies histones, was altered so that the histones at the INO1 gene were marked in a unique way. The other complex was responsible for recruiting an inactive, poised form of RNA polymerase II to the gene, which allowed the gene to be activated when needed. In addition, D'Urso found that other genes that show transcriptional memory in yeast, as well as such genes in human cells, were also marked in the same ways. A future challenge will be to understand how different conditions in different organisms can lead to transcriptional memory. Further studies could also explore how this memory phenomenon is inherited and how it influences an organism’s fitness. DOI:http://dx.doi.org/10.7554/eLife.16691.002
Collapse
Affiliation(s)
- Agustina D'Urso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Yoh-Hei Takahashi
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Bin Xiong
- Department of Statistics, Northwestern University, Evanston, United States
| | - Jessica Marone
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Ji-Ping Wang
- Department of Statistics, Northwestern University, Evanston, United States
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
223
|
Hatch VL, Marin-Barba M, Moxon S, Ford CT, Ward NJ, Tomlinson ML, Desanlis I, Hendry AE, Hontelez S, van Kruijsbergen I, Veenstra GJC, Münsterberg AE, Wheeler GN. The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification. Dev Biol 2016; 416:361-72. [PMID: 27343897 DOI: 10.1016/j.ydbio.2016.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/06/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022]
Abstract
Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a 'gate-keeper' for the correct temporal and spatial development of the neural crest.
Collapse
Affiliation(s)
- Victoria L Hatch
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Marta Marin-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Christopher T Ford
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nicole J Ward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Matthew L Tomlinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ines Desanlis
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Adam E Hendry
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Saartje Hontelez
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ila van Kruijsbergen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Andrea E Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
224
|
Vos SM, Pöllmann D, Caizzi L, Hofmann KB, Rombaut P, Zimniak T, Herzog F, Cramer P. Architecture and RNA binding of the human negative elongation factor. eLife 2016; 5. [PMID: 27282391 PMCID: PMC4940160 DOI: 10.7554/elife.14981] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022] Open
Abstract
Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF. DOI:http://dx.doi.org/10.7554/eLife.14981.001
Collapse
Affiliation(s)
- Seychelle M Vos
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - David Pöllmann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Livia Caizzi
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Katharina B Hofmann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Pascaline Rombaut
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tomasz Zimniak
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franz Herzog
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
225
|
Jeronimo C, Collin P, Robert F. The RNA Polymerase II CTD: The Increasing Complexity of a Low-Complexity Protein Domain. J Mol Biol 2016; 428:2607-2622. [DOI: 10.1016/j.jmb.2016.02.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
|
226
|
Diamant G, Bahat A, Dikstein R. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes. Nat Commun 2016; 7:11547. [PMID: 27180651 PMCID: PMC4873663 DOI: 10.1038/ncomms11547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/07/2016] [Indexed: 12/11/2022] Open
Abstract
A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5'-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID-promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID-promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes.
Collapse
Affiliation(s)
- Gil Diamant
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7600, Israel
| | - Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7600, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7600, Israel
| |
Collapse
|
227
|
McNamara RP, Bacon CW, D'Orso I. Transcription elongation control by the 7SK snRNP complex: Releasing the pause. Cell Cycle 2016; 15:2115-2123. [PMID: 27152730 DOI: 10.1080/15384101.2016.1181241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability for the eukaryotic cell to transcriptionally respond to various stimuli is critical for the overall homeostasis of the cell, and in turn, the organism. The human RNA polymerase II complex (Pol II), which is responsible for the transcription of protein-encoding genes and non-coding RNAs, is paused at promoter-proximal regions to ensure their rapid activation. In response to stimulation, Pol II pause release is facilitated by the action of positive transcription elongation factors such as the P-TEFb kinase. However, the majority of P-TEFb is held in a catalytically inactivate state, assembled into the 7SK small nuclear ribonucleoprotein (snRNP) complex, and must be dislodged to become catalytically active. In this review, we discuss mechanisms of 7SK snRNP recruitment to promoter-proximal regions and P-TEFb disassembly from the inhibitory snRNP to regulate 'on site' kinase activation and Pol II pause release.
Collapse
Affiliation(s)
- Ryan P McNamara
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Curtis W Bacon
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Iván D'Orso
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
228
|
Pance A. Oct-1, to go or not to go? That is the PolII question. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:820-4. [PMID: 27063953 DOI: 10.1016/j.bbagrm.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
The Oct transcription factors recognise an octamer DNA element from which they regulate transcription of specific target genes. Oct-1 is the only member of the subfamily that is ubiquitously expressed and has a wide role in transcriptional control. Through interaction with various partner proteins, Oct-1 can modulate accessibility to the chromatin to recruit the transcription machinery and form the pre-initiation complex. The recruited PolII is induced to initiate transcription and stalled until elongation is triggered on interaction with signalling transcription factors. In this way, Oct-1 can fulfil general roles in transcription by opening the chromatin as well as transduce extracellular signals by relaying activation through various interacting partners. The emerging picture of Oct-1 is that of a complex and versatile transcription factor with fundamental functions in cell homeostasis and signal response in general as well as cell specific contexts. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Alena Pance
- The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK.
| |
Collapse
|
229
|
Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-Resistant Prostate Cancer. Cell Rep 2016; 15:599-610. [PMID: 27068475 DOI: 10.1016/j.celrep.2016.03.038] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/15/2015] [Accepted: 03/09/2016] [Indexed: 11/20/2022] Open
Abstract
The androgen receptor (AR) is required for castration-resistant prostate cancer (CRPC) progression, but the function and disease relevance of AR-bound enhancers remain unclear. Here, we identify a group of AR-regulated enhancer RNAs (e.g., PSA eRNA) that are upregulated in CRPC cells, patient-derived xenografts (PDXs), and patient tissues. PSA eRNA binds to CYCLIN T1, activates P-TEFb, and promotes cis and trans target gene transcription by increasing serine-2 phosphorylation of RNA polymerase II (Pol II-Ser2p). We define an HIV-1 TAR RNA-like (TAR-L) motif in PSA eRNA that is required for CYCLIN T1 binding. Using TALEN-mediated gene editing we further demonstrate that this motif is essential for increased Pol II-Ser2p occupancy levels and CRPC cell growth. We have uncovered a P-TEFb activation mechanism and reveal altered eRNA expression that is related to abnormal AR function and may potentially be a therapeutic target in CRPC.
Collapse
|
230
|
Nair SJ, Zhang X, Chiang HC, Jahid MJ, Wang Y, Garza P, April C, Salathia N, Banerjee T, Alenazi FS, Ruan J, Fan JB, Parvin JD, Jin VX, Hu Y, Li R. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun 2016; 7:10913. [PMID: 26941120 PMCID: PMC4785232 DOI: 10.1038/ncomms10913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
The breast cancer susceptibility gene BRCA1 is well known for its function in double-strand break (DSB) DNA repair. While BRCA1 is also implicated in transcriptional regulation, the physiological significance remains unclear. COBRA1 (also known as NELF-B) is a BRCA1-binding protein that regulates RNA polymerase II (RNAPII) pausing and transcription elongation. Here we interrogate functional interaction between BRCA1 and COBRA1 during mouse mammary gland development. Tissue-specific deletion of Cobra1 reduces mammary epithelial compartments and blocks ductal morphogenesis, alveologenesis and lactogenesis, demonstrating a pivotal role of COBRA1 in adult tissue development. Remarkably, these developmental deficiencies due to Cobra1 knockout are largely rescued by additional loss of full-length Brca1. Furthermore, Brca1/Cobra1 double knockout restores developmental transcription at puberty, alters luminal epithelial homoeostasis, yet remains deficient in homologous recombination-based DSB repair. Thus our genetic suppression analysis uncovers a previously unappreciated, DNA repair-independent function of BRCA1 in antagonizing COBRA1-dependent transcription programme during mammary gland development. COBRA1 is a BRCA1-binding protein and, as part of the negative elongation factor, regulates RNA polymerase II pausing and transcription elongation. Here, the authors show that tissue-specific deletion of mouse Cobra1 inhibits postnatal mammary gland development and that the mammary defects can be rescued by additional deletion of Brca1 in a DNA repair-independent manner.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Md Jamiul Jahid
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yao Wang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Paula Garza
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Craig April
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Neeraj Salathia
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fahad S Alenazi
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jian-Bing Fan
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Victor X Jin
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Yanfen Hu
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
231
|
Crickard JB, Fu J, Reese JC. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. J Biol Chem 2016; 291:9853-70. [PMID: 26945063 DOI: 10.1074/jbc.m116.716001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) undergoes structural changes during the transitions from initiation, elongation, and termination, which are aided by a collection of proteins called elongation factors. NusG/Spt5 is the only elongation factor conserved in all domains of life. Although much information exists about the interactions between NusG/Spt5 and RNA polymerase in prokaryotes, little is known about how the binding of eukaryotic Spt4/5 affects the biochemical activities of RNAPII. We characterized the activities of Spt4/5 and interrogated the structural features of Spt5 required for it to interact with elongation complexes, bind nucleic acids, and promote transcription elongation. The eukaryotic specific regions of Spt5 containing the Kyrpides, Ouzounis, Woese domains are involved in stabilizing the association with the RNAPII elongation complex, which also requires the presence of the nascent transcript. Interestingly, we identify a region within the conserved NusG N-terminal (NGN) domain of Spt5 that contacts the non-template strand of DNA both upstream of RNAPII and in the transcription bubble. Mutating charged residues in this region of Spt5 did not prevent Spt4/5 binding to elongation complexes, but abrogated the cross-linking of Spt5 to DNA and the anti-arrest properties of Spt4/5, thus suggesting that contact between Spt5 (NGN) and DNA is required for Spt4/5 to promote elongation. We propose that the mechanism of how Spt5/NGN promotes elongation is fundamentally conserved; however, the eukaryotic specific regions of the protein evolved so that it can serve as a platform for other elongation factors and maintain its association with RNAPII as it navigates genomes packaged into chromatin.
Collapse
Affiliation(s)
- J Brooks Crickard
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| | - Jianhua Fu
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph C Reese
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
232
|
Nagarajan S, Benito E, Fischer A, Johnsen SA. H4K12ac is regulated by estrogen receptor-alpha and is associated with BRD4 function and inducible transcription. Oncotarget 2016; 6:7305-17. [PMID: 25788266 PMCID: PMC4466686 DOI: 10.18632/oncotarget.3439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/28/2015] [Indexed: 11/25/2022] Open
Abstract
Hormone-dependent gene expression requires dynamic and coordinated epigenetic changes. Estrogen receptor-positive (ER+) breast cancer is particularly dependent upon extensive chromatin remodeling and changes in histone modifications for the induction of hormone-responsive gene expression. Our previous studies established an important role of bromodomain-containing protein-4 (BRD4) in promoting estrogen-regulated transcription and proliferation of ER+ breast cancer cells. Here, we investigated the association between genome-wide occupancy of histone H4 acetylation at lysine 12 (H4K12ac) and BRD4 in the context of estrogen-induced transcription. Similar to BRD4, we observed that H4K12ac occupancy increases near the transcription start sites (TSS) of estrogen-induced genes as well as at distal ERα binding sites in an estrogen-dependent manner. Interestingly, H4K12ac occupancy highly correlates with BRD4 binding and enhancer RNA production on ERα-positive enhancers. Consistent with an importance in estrogen-induced gene transcription, H4K12ac occupancy globally increased in ER-positive cells relative to ER-negative cells and these levels were further increased by estrogen treatment in an ERα-dependent manner. Together, these findings reveal a strong correlation between H4K12ac and BRD4 occupancy with estrogen-dependent gene transcription and further suggest that modulators of H4K12ac and BRD4 may serve as new therapeutic targets for hormone-dependent cancers.
Collapse
Affiliation(s)
- Sankari Nagarajan
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Benito
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
233
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
234
|
Gordon GM, LaGier AJ, Ponchel C, Bauskar A, Itakura T, Jeong S, Patel N, Fini ME. A cell-based screening assay to identify pharmaceutical compounds that enhance the regenerative quality of corneal repair. Wound Repair Regen 2016; 24:89-99. [PMID: 26646714 DOI: 10.1111/wrr.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/27/2015] [Indexed: 01/21/2023]
Abstract
The goal of this study was to develop and validate a simple but quantitative cell-based assay to identify compounds that might be used pharmaceutically to give tissue repair a more regenerative character. The cornea was used as the model, and some specific aspects of repair in this organ were incorporated into assay design. A quantitative cell-based assay was developed based on transcriptional promoter activity of fibrotic marker genes ACT2A and TGFB2. Immortalized corneal stromal cells (HTK) or corneal epithelial cells (HCLE) were tested and compared to primary corneal stromal cells. Cells were transiently transfected with constructs containing the firefly luciferase reporter gene driven by transcriptional promoters for the selected fibrotic marker genes. A selected panel of seven chemical test compounds was used, containing three known fibrosis inhibitors: lovastatin (LOV), tyrphostin AG 1296 (6,7-dimethoxy-3-phenylquinoxaline) and SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole), and four potential fibrosis inhibitors: 5-iodotubercidin (4-amino-5-iodo-7-(β-D-ribofuranosyl)-pyrrolo(2,3-d)pyrimidine), anisomycin, DRB (5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole) and latrunculin B. Transfected cells were treated with TGFB2 in the presence or absence of one of the test compounds. To validate the assay, compounds were tested for their direct effects on gene expression in the immortalized cell lines and primary human corneal keratocytes using RT-PCR and immunohistochemistry. Three "hits" were validated LOV, SB203580 and anisomycin. This assay, which can be applied in a high throughput format to screen large libraries of uncharacterized compounds, or known compounds that might be repurposed, offers a valuable tool for identifying new treatments to address a major unmet medical need. Anisomycin has not previously been characterized as antifibrotic, thus, this is a novel finding of the study.
Collapse
Affiliation(s)
- Gabriel M Gordon
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California.,Department of Ophthalmology and Graduate Program in Molecular Cell and Developmental Biology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Adriana J LaGier
- Department of Biology, Grand View University, Des Moines, Iowa.,Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Corinne Ponchel
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Aditi Bauskar
- USC Institute for Genetic Medicine and Graduate Program in Integrative Biology of Disease, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Tatsuo Itakura
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - Shinwu Jeong
- Department of Ophthalmology, USC Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nitin Patel
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| | - M Elizabeth Fini
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.,Department of Cell and Neurobiology and Department of Ophthalmology, USC Institute for Genetic Medicine, USC Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
235
|
Bastide MF, Bido S, Duteil N, Bézard E. Striatal NELF-mediated RNA polymerase II stalling controls l -dopa induced dyskinesia. Neurobiol Dis 2016; 85:93-98. [DOI: 10.1016/j.nbd.2015.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023] Open
|
236
|
KAP1 Recruitment of the 7SK snRNP Complex to Promoters Enables Transcription Elongation by RNA Polymerase II. Mol Cell 2015; 61:39-53. [PMID: 26725010 DOI: 10.1016/j.molcel.2015.11.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Abstract
The transition from transcription initiation to elongation at promoters of primary response genes (PRGs) in metazoan cells is controlled by inducible transcription factors, which utilize P-TEFb to phosphorylate RNA polymerase II (Pol II) in response to stimuli. Prior to stimulation, a fraction of P-TEFb is recruited to promoter-proximal regions in a catalytically inactive state bound to the 7SK small nuclear ribonucleoprotein (snRNP) complex. However, it remains unclear how and why the 7SK snRNP is assembled at these sites. Here we report that the transcriptional regulator KAP1 continuously tethers the 7SK snRNP to PRG promoters to facilitate P-TEFb recruitment and productive elongation in response to stimulation. Remarkably, besides PRGs, genome-wide studies revealed that KAP1 and 7SK snRNP co-occupy most promoter-proximal regions containing paused Pol II. Collectively, we provide evidence of an unprecedented mechanism controlling 7SK snRNP delivery to promoter-proximal regions to facilitate "on-site" P-TEFb activation and Pol II elongation.
Collapse
|
237
|
Miozzo F, Sabéran-Djoneidi D, Mezger V. HSFs, Stress Sensors and Sculptors of Transcription Compartments and Epigenetic Landscapes. J Mol Biol 2015; 427:3793-816. [DOI: 10.1016/j.jmb.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
|
238
|
Zaborowska J, Isa NF, Murphy S. P-TEFb goes viral. ACTA ACUST UNITED AC 2015; 1:106-116. [PMID: 27398404 PMCID: PMC4863834 DOI: 10.1002/icl3.1037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/30/2023]
Abstract
Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents.
Collapse
Affiliation(s)
| | - Nur F Isa
- Sir William Dunn School of Pathology University of Oxford Oxford UK; Department of Biotechnology Kulliyyah of Science, IIUM Kuantan Pahang Malaysia
| | - Shona Murphy
- Sir William Dunn School of Pathology University of Oxford Oxford UK
| |
Collapse
|
239
|
Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, Kim TH. Histone Deacetylases Positively Regulate Transcription through the Elongation Machinery. Cell Rep 2015; 13:1444-1455. [PMID: 26549458 DOI: 10.1016/j.celrep.2015.10.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/26/2015] [Accepted: 10/06/2015] [Indexed: 01/10/2023] Open
Abstract
Transcription elongation regulates the expression of many genes, including oncogenes. Histone deacetylase (HDAC) inhibitors (HDACIs) block elongation, suggesting that HDACs are involved in gene activation. To understand this, we analyzed nascent transcription and elongation factor binding genome-wide after perturbation of elongation with small molecule inhibitors. We found that HDACI-mediated repression requires heat shock protein 90 (HSP90) activity. HDACIs promote the association of RNA polymerase II (RNAP2) and negative elongation factor (NELF), a complex stabilized by HSP90, at the same genomic sites. Additionally, HDACIs redistribute bromodomain-containing protein 4 (BRD4), a key elongation factor involved in enhancer activity. BRD4 binds to newly acetylated sites, and its occupancy at promoters and enhancers is reduced. Furthermore, HDACIs reduce enhancer activity, as measured by enhancer RNA production. Therefore, HDACs are required for limiting acetylation in gene bodies and intergenic regions. This facilitates the binding of elongation factors to properly acetylated promoters and enhancers for efficient elongation.
Collapse
Affiliation(s)
- Celeste B Greer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics and Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yoon Jung Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Peng Xie
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael Q Zhang
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - In-Hyun Park
- Department of Genetics and Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
240
|
Laitem C, Zaborowska J, Tellier M, Yamaguchi Y, Cao Q, Egloff S, Handa H, Murphy S. CTCF regulates NELF, DSIF and P-TEFb recruitment during transcription. Transcription 2015; 6:79-90. [PMID: 26399478 PMCID: PMC4802788 DOI: 10.1080/21541264.2015.1095269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CTCF is a versatile transcription factor with well-established roles in chromatin organization and insulator function. Recent findings also implicate CTCF in the control of elongation by RNA polymerase (RNAP) II. Here we show that CTCF knockdown abrogates RNAP II pausing at the early elongation checkpoint of c-myc by affecting recruitment of DRB-sensitivity-inducing factor (DSIF). CTCF knockdown also causes a termination defect on the U2 snRNA genes (U2), by affecting recruitment of negative elongation factor (NELF). In addition, CTCF is required for recruitment of positive elongation factor b (P-TEFb), which phosphorylates NELF, DSIF, and Ser2 of the RNAP II CTD to activate elongation of transcription of c-myc and recognition of the snRNA gene-specific 3' box RNA processing signal. These findings implicate CTCF in a complex network of protein:protein/protein:DNA interactions and assign a key role to CTCF in controlling RNAP II transcription through the elongation checkpoint of the protein-coding c-myc and the termination site of the non-coding U2, by regulating the recruitment and/or activity of key players in these processes.
Collapse
Affiliation(s)
- Clélia Laitem
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK.,e Current address: Immunocore Limited; Milton Park , Abingdon , Oxon , UK
| | - Justyna Zaborowska
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| | - Michael Tellier
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| | - Yuki Yamaguchi
- b Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology ; Yokohama , Japan
| | - Qingfu Cao
- b Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology ; Yokohama , Japan
| | - Sylvain Egloff
- c Université de Toulouse; UPS; Laboratoire de Biologie Moléculaire Eucaryote ; Toulouse , France
| | - Hiroshi Handa
- d Department of Nanoparticle Translational Research ; Tokyo Medical University ; Tokyo , Japan
| | - Shona Murphy
- a Sir William Dunn School of Pathology; University of Oxford ; Oxford , UK
| |
Collapse
|
241
|
Scheidegger A, Nechaev S. RNA polymerase II pausing as a context-dependent reader of the genome. Biochem Cell Biol 2015; 94:82-92. [PMID: 26555214 DOI: 10.1139/bcb-2015-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Sergei Nechaev
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| |
Collapse
|
242
|
Chen FX, Woodfin AR, Gardini A, Rickels RA, Marshall SA, Smith ER, Shiekhattar R, Shilatifard A. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell 2015; 162:1003-15. [PMID: 26279188 DOI: 10.1016/j.cell.2015.07.042] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/16/2015] [Accepted: 07/02/2015] [Indexed: 10/25/2022]
Abstract
The control of promoter-proximal pausing and the release of RNA polymerase II (Pol II) is a widely used mechanism for regulating gene expression in metazoans, especially for genes that respond to environmental and developmental cues. Here, we identify that Pol-II-associated factor 1 (PAF1) possesses an evolutionarily conserved function in metazoans in the regulation of promoter-proximal pausing. Reduction in PAF1 levels leads to an increased release of paused Pol II into gene bodies at thousands of genes. PAF1 depletion results in increased nascent and mature transcripts and increased levels of phosphorylation of Pol II's C-terminal domain on serine 2 (Ser2P). These changes can be explained by the recruitment of the Ser2P kinase super elongation complex (SEC) effecting increased release of paused Pol II into productive elongation, thus establishing PAF1 as a regulator of promoter-proximal pausing by Pol II.
Collapse
Affiliation(s)
- Fei Xavier Chen
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Ashley R Woodfin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Alessandro Gardini
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ryan A Rickels
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Stacy A Marshall
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Edwin R Smith
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA
| | - Ramin Shiekhattar
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1501 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Chicago, IL 60611, USA; Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
243
|
Werner MS, Ruthenburg AJ. Nuclear Fractionation Reveals Thousands of Chromatin-Tethered Noncoding RNAs Adjacent to Active Genes. Cell Rep 2015; 12:1089-98. [PMID: 26257179 DOI: 10.1016/j.celrep.2015.07.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023] Open
Abstract
A number of long noncoding RNAs (lncRNAs) have been reported to regulate transcription via recruitment of chromatin modifiers or bridging distal enhancer elements to gene promoters. However, the generality of these modes of regulation and the mechanisms of chromatin attachment for thousands of unstudied human lncRNAs remain unclear. To address these questions, we performed stringent nuclear fractionation coupled to RNA sequencing. We provide genome-wide identification of human chromatin-associated lncRNAs and demonstrate tethering of RNA to chromatin by RNAPII is a pervasive mechanism of attachment. We also uncovered thousands of chromatin-enriched RNAs (cheRNAs) that share molecular properties with known lncRNAs. Although distinct from eRNAs derived from active prototypical enhancers, the production of cheRNAs is strongly correlated with the expression of neighboring protein-coding genes. This work provides an updated framework for nuclear RNA organization that includes a large chromatin-associated transcript population correlated with active genes and may prove useful in de novo enhancer annotation.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
244
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
245
|
Characterization of the Human Transcription Elongation Factor Rtf1: Evidence for Nonoverlapping Functions of Rtf1 and the Paf1 Complex. Mol Cell Biol 2015. [PMID: 26217014 DOI: 10.1128/mcb.00601-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Restores TBP function 1 (Rtf1) is generally considered to be a subunit of the Paf1 complex (PAF1C), a multifunctional protein complex involved in histone modification and transcriptional or posttranscriptional regulation. Rtf1, however, is not stably associated with the PAF1C in most species except Saccharomyces cerevisiae, and its biochemical functions are not well understood. Here, we show that human Rtf1 is a transcription elongation factor that may function independently of the PAF1C. Rtf1 requires "Rtf1 coactivator" activity, which is most likely unrelated to the PAF1C or DSIF, for transcriptional activation in vitro. A mutational study revealed that the Plus3 domain of human Rtf1 is critical for its coactivator-dependent function. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation studies in HeLa cells showed that Rtf1 and the PAF1C play distinct roles in regulating the expression of a subset of genes. Moreover, contrary to the finding in S. cerevisiae, the PAF1C was apparently recruited to the genes examined in an Rtf1-independent manner. The present study establishes a role for human Rtf1 as a transcription elongation factor and highlights the similarities and differences between the S. cerevisiae and human Rtf1 proteins.
Collapse
|
246
|
Fufa TD, Byun JS, Wakano C, Fernandez AG, Pise-Masison CA, Gardner K. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription. Biochem Biophys Res Commun 2015; 465:5-11. [PMID: 26188510 DOI: 10.1016/j.bbrc.2015.07.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
The eleven-nineteen lysine-rich leukemia protein (ELL) is a key regulator of RNA polymerase II mediated transcription. ELL facilitates RNA polymerase II transcription pause site entry and release by dynamically interacting with p300 and the positive transcription elongation factor b (P-TEFb). In this study, we investigated the role of ELL during the HTLV-1 Tax oncogene induced transactivation. We show that ectopic expression of Tax enhances ELL incorporation into p300 and P-TEFb containing transcriptional complexes and the subsequent recruitment of these complexes to target genes in vivo. Depletion of ELL abrogates Tax induced transactivation of the immediate early genes Fos, Egr2 and NF-kB, suggesting that ELL is an essential cellular cofactor of the Tax oncogene. Thus, our study identifies a novel mechanism of ELL-dependent transactivation of immediate early genes by Tax and provides the rational for further defining the genome-wide targets of Tax and ELL.
Collapse
Affiliation(s)
| | - Jung S Byun
- National Cancer Institute, Bethesda, MD 20892, USA
| | - Clay Wakano
- National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
247
|
Pan H, Zhao X, Zhang X, Abouelsoud M, Sun J, April C, Amleh A, Fan JB, Hu Y, Li R. Translational Initiation at a Non-AUG Start Codon for Human and Mouse Negative Elongation Factor-B. PLoS One 2015; 10:e0127422. [PMID: 26010750 PMCID: PMC4444357 DOI: 10.1371/journal.pone.0127422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/15/2015] [Indexed: 12/24/2022] Open
Abstract
Negative elongation factor (NELF), a four-subunit protein complex in metazoan, plays an important role in regulating promoter-proximal pausing of RNA polymerase II (RNAPII). Genetic studies demonstrate that the B subunit of mouse NELF (NELF-B) is critical for embryonic development and homeostasis in adult tissue. We report here that both human and mouse NELF-B proteins are translated from a non-AUG codon upstream of the annotated AUG. This non-AUG codon sequence is conserved in mammalian NELF-B but not NELF-B orthologs of lower metazoan. The full-length and a truncated NELF-B that starts at the first AUG codon both interact with the other three NELF subunits. Furthermore, these two forms of NELF-B have a similar impact on the transcriptomics and proliferation of mouse embryonic fibroblasts. These results strongly suggest that additional amino acid sequence upstream of the annotated AUG is dispensable for the essential NELF function in supporting cell growth in vitro. The majority of mouse adult tissues surveyed express the full-length NELF-B protein, and some contain a truncated NELF-B protein with the same apparent size as the AUG-initiated version. This result raises the distinct possibility that translational initiation of mouse NELF-B is regulated in a tissue-dependent manner.
Collapse
Affiliation(s)
- Haihui Pan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Mohamed Abouelsoud
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jianlong Sun
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Craig April
- Illumina, Inc., San Diego, CA, 92121, United States of America
| | - Asma Amleh
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Jian-Bing Fan
- Illumina, Inc., San Diego, CA, 92121, United States of America
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| |
Collapse
|
248
|
Parp3 negatively regulates immunoglobulin class switch recombination. PLoS Genet 2015; 11:e1005240. [PMID: 26000965 PMCID: PMC4441492 DOI: 10.1371/journal.pgen.1005240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/26/2015] [Indexed: 12/11/2022] Open
Abstract
To generate highly specific and adapted immune responses, B cells diversify their antibody repertoire through mechanisms involving the generation of programmed DNA damage. Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by the recruitment of activation-induced cytidine deaminase (AID) to immunoglobulin loci and by the subsequent generation of DNA lesions, which are differentially processed to mutations during SHM or to double-stranded DNA break intermediates during CSR. The latter activate the DNA damage response and mobilize multiple DNA repair factors, including Parp1 and Parp2, to promote DNA repair and long-range recombination. We examined the contribution of Parp3 in CSR and SHM. We find that deficiency in Parp3 results in enhanced CSR, while SHM remains unaffected. Mechanistically, this is due to increased occupancy of AID at the donor (Sμ) switch region. We also find evidence of increased levels of DNA damage at switch region junctions and a bias towards alternative end joining in the absence of Parp3. We propose that Parp3 plays a CSR-specific role by controlling AID levels at switch regions during CSR. During infections, B cells diversify the antibodies they produce by two mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM mutates the regions encoding the antigen-binding site, generating high-affinity antibodies. CSR allows B cells to switch the class of antibody they produce (from IgM to IgA, IgG or IgE), providing novel effector functions. Together, SHM and CSR establish highly specific and pathogen-adapted antibody responses. SHM and CSR are initiated by the recruitment of the activation-induced cytidine deaminase (AID) enzyme to antibody genes. Once recruited, AID induces DNA lesions that are processed into mutations during SHM or chromosomal DNA breaks during CSR. These breaks activate multiple DNA repair proteins and are resolved by replacing the IgM gene segments by those encoding IgA, IgG or IgE. AID carries a significant oncogenic potential that needs to be controlled to preserve genome integrity. Nevertheless, the underlying mechanisms remain poorly understood. Here we show that Poly(ADP)ribose polymerase 3 (Parp3), an enzyme recently implicated in DNA repair, contributes to antibody diversification by negatively regulating CSR without affecting SHM. We show that Parp3 facilitates the repair of AID-induced DNA damage and controls AID levels on chromatin. We propose that Parp3 protects antibody genes from sustained AID-dependent DNA damage.
Collapse
|
249
|
Imashimizu M, Takahashi H, Oshima T, McIntosh C, Bubunenko M, Court DL, Kashlev M. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo. Genome Biol 2015; 16:98. [PMID: 25976475 PMCID: PMC4457086 DOI: 10.1186/s13059-015-0666-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transcription elongation is frequently interrupted by pausing signals in DNA, with downstream effects on gene expression. Transcription errors also induce prolonged pausing, which can lead to a destabilized genome by interfering with DNA replication. Mechanisms of pausing associated with translocation blocks and misincorporation have been characterized in vitro, but not in vivo. RESULTS We investigate the pausing pattern of RNA polymerase (RNAP) in Escherichia coli by a novel approach, combining native elongating transcript sequencing (NET-seq) with RNase footprinting of the transcripts (RNET-seq). We reveal that the G-dC base pair at the 5' end of the RNA-DNA hybrid interferes with RNAP translocation. The distance between the 5' G-dC base pair and the 3' end of RNA fluctuates over a three-nucleotide width. Thus, the G-dC base pair can induce pausing in post-translocated, pre-translocated, and backtracked states of RNAP. Additionally, a CpG sequence of the template DNA strand spanning the active site of RNAP inhibits elongation and induces G-to-A errors, which leads to backtracking of RNAP. Gre factors efficiently proofread the errors and rescue the backtracked complexes. We also find that pausing events are enriched in the 5' untranslated region and antisense transcription of mRNA genes and are reduced in rRNA genes. CONCLUSIONS In E. coli, robust transcriptional pausing involves RNAP interaction with G-dC at the upstream end of the RNA-DNA hybrid, which interferes with translocation. CpG DNA sequences induce transcriptional pausing and G-to-A errors.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| | - Taku Oshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Ikoma, Nara, 630-0192, Japan.
| | - Carl McIntosh
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Bubunenko
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Mikhail Kashlev
- Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
250
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|