201
|
Gafni RI, Weise M, Robrecht DT, Meyers JL, Barnes KM, De-Levi S, Baron J. Catch-up growth is associated with delayed senescence of the growth plate in rabbits. Pediatr Res 2001; 50:618-23. [PMID: 11641457 DOI: 10.1203/00006450-200111000-00014] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In mammals, release from growth-inhibiting conditions results in catch-up growth. To explain this phenomenon, we proposed the following model: 1) The normal senescent decline in growth plate function depends not on age per se, but on the cumulative number of replications that growth plate chondrocytes have undergone. 2) Conditions that suppress growth plate chondrocyte proliferation therefore slow senescence. 3) After transient growth inhibition, growth plates are thus less senescent and hence show a greater growth rate than expected for age, resulting in catch-up growth. To test this model, we administered dexamethasone to growing rabbits to suppress linear growth. After stopping dexamethasone, catch-up growth occurred. In distal femoral growth plates of untreated controls, we observed a senescent decline in the growth rate and in the heights of the proliferative zone, hypertrophic zone, and total growth plate. During the period of catch-up growth, in the animals previously treated with dexamethasone, the senescent decline in all these variables was delayed. Prior treatment with dexamethasone also delayed epiphyseal fusion. These findings support our model that linear catch-up growth is caused, at least in part, by a delay in growth plate senescence.
Collapse
Affiliation(s)
- R I Gafni
- Unit on Growth and Development, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Telomeres are the repetitive DNA sequences and specialized proteins that form the distinctive structure that caps the ends of linear chromosomes. Telomeres allow cells to distinguish the chromosome ends from double strand DNA breaks. The telomeric structure prevents the degradation or fusion of chromosome ends, and thus is essential for maintaining the integrity and stability of eukaryotic genomes. In addition, and perhaps less widely appreciated, telomeres may also indirectly influence gene expression. The length, structure and organization of telomeres are regulated by a host of telomere-associated proteins, and can be influenced by basic cellular processes such as cell proliferation, differentiation, and DNA damage. In mammalian cells, telomere length and/or telomere structure have been linked to both cancer and aging. Here, we briefly review what is known about mammalian telomeres and the proteins that associate with them, and discuss the cellular and organismal consequences of telomere dysfunction and the evidence that cells with dysfunctional telomeres can contribute to cancer and aging phenotypes.
Collapse
Affiliation(s)
- J Campisi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Mailstop 84-171, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
203
|
Sarraj S, Farb R, Martell RE. Reconstitution of dna synthetic capacity in senescent normal human fibroblasts by expressing cellular factors E2F and Mdm2. Exp Cell Res 2001; 270:268-76. [PMID: 11640890 DOI: 10.1006/excr.2001.5352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Unraveling the mechanisms underlying cellular senescence will contribute to the understanding of processes involved in aging and cancer. We sought to determine whether expression of cellular factors in senescent WI-38 human fibroblasts was sufficient to induce nuclear DNA synthesis. Expression by recombinant adenovirus of E2F1, E2F2, E2F3, cyclin E/cdk2, and Mdm2 individually resulted in DNA synthesis in 10-30% of cells. However, combination of Mdm2 with E2F or cyclin E/cdk2 resulted in 50 to 75% of cells synthesizing DNA. DNA synthesis occurred approximately 30 h following infection. We conclude that expression of normal cellular factors is sufficient to induce DNA synthesis in senescent normal human fibroblasts.
Collapse
Affiliation(s)
- S Sarraj
- Geriatric Research and Education Clinical Center, VA Medical Center, Durham, North Carolina 27705, USA
| | | | | |
Collapse
|
204
|
Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 2001; 98:12072-7. [PMID: 11593017 PMCID: PMC59769 DOI: 10.1073/pnas.211053698] [Citation(s) in RCA: 1254] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Indexed: 11/18/2022] Open
Abstract
Mammalian cells can respond to damage or stress by entering a state of arrested growth and altered function termed cellular senescence. Several lines of evidence suggest that the senescence response suppresses tumorigenesis. Cellular senescence is also thought to contribute to aging, but the mechanism is not well understood. We show that senescent human fibroblasts stimulate premalignant and malignant, but not normal, epithelial cells to proliferate in culture and form tumors in mice. In culture, the growth stimulation was evident when senescent cells comprised only 10% of the fibroblast population and was equally robust whether senescence was induced by replicative exhaustion, oncogenic RAS, p14(ARF), or hydrogen peroxide. Moreover, it was due at least in part to soluble and insoluble factors secreted by senescent cells. In mice, senescent, much more than presenescent, fibroblasts caused premalignant and malignant epithelial cells to form tumors. Our findings suggest that, although cellular senescence suppresses tumorigenesis early in life, it may promote cancer in aged organisms, suggesting it is an example of evolutionary antagonistic pleiotropy.
Collapse
Affiliation(s)
- A Krtolica
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
205
|
Abstract
Cells in the body grow and die, cells in lab dishes grow and die, and individual organisms grow and die. The parallels seem maddeningly obvious, but scores of scientists still labor to draw the correct connections, to uncover the mechanisms that underlie aging in cell culture flasks and in whole animals. Do our cells stop growing, quit working, cease dividing, or start dying as we age? Do we die when our cells do, or are we somehow more than the sum of our cells? For decades, scientists have searched for evidence that links changes in cell growth, cell function, cell division, and cell death to the phenomenon we call aging. Although definitive proof eludes them, researchers continue to conduct experiments in tissue culture and in animal models, amassing information that points us toward a greater understanding of what aging is--and is not.
Collapse
|
206
|
Wlaschek M, Tantcheva-Poór I, Naderi L, Ma W, Schneider LA, Razi-Wolf Z, Schüller J, Scharffetter-Kochanek K. Solar UV irradiation and dermal photoaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 63:41-51. [PMID: 11684450 DOI: 10.1016/s1011-1344(01)00201-9] [Citation(s) in RCA: 301] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The skin is increasingly exposed to ambient UV-irradiation thus increasing risks for photooxidative damage with long-term detrimental effects like photoaging, characterized by wrinkles, loss of skin tone and resilience. Photoaged skin displays alterations in the cellular component and extracellular matrix with accumulation of disorganized elastin and its microfibrillar component fibrillin in the deep dermis and a severe loss of interstitial collagens, the major structural proteins of the dermal connective tissue. The unifying pathogenic agents for these changes are UV-generated reactive oxygen species (ROS) which deplete and damage non-enzymatic and enzymatic antioxidant defense systems of the skin. As well as causing permanent genetic changes, ROS activate cytoplasmic signal transduction pathways in resident fibroblasts that are related to growth, differentiation, senescence and connective tissue degradation. This review focuses on the role of UV-induced ROS in the photodamage of the skin resulting in clinical and biochemical characteristics of photoaging. In addition, the relationship of photoaging to intrinsic aging of the skin will be briefly discussed. A decrease in the overall ROS load by efficient sunscreens or other protective agents may represent promising strategies to prevent or at least minimize ROS-induced photoaging.
Collapse
Affiliation(s)
- M Wlaschek
- Department of Dermatology, University of Cologne, Joseph-Stelzmann-Strasse 9, 50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Ma W, Wlaschek M, Tantcheva-Poór I, Schneider LA, Naderi L, Razi-Wolf Z, Schüller J, Scharffetter-Kochanek K. Chronological ageing and photoageing of the fibroblasts and the dermal connective tissue. Clin Exp Dermatol 2001; 26:592-9. [PMID: 11696063 DOI: 10.1046/j.1365-2230.2001.00905.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, the exposure of human skin to environmental and artificial UV irradiation has increased dramatically. This is due not only to increased solar UV irradiation as a consequence of stratospheric ozone depletion, but also to inappropriate social behaviour with the use of tanning salons still being very popular in the public view. Besides this, leisure activities and a lifestyle that often includes travel to equatorial regions add to the individual annual UV load. In addition to the common long-term detrimental effects such as immunosuppression and skin cancer, the photo-oxidative damage due to energy absorption of UV photons in an oxygenized environment leads to quantitative and qualitative alterations of cells and structural macromolecules of the dermal connective tissue responsible for tensile strength, resilience and stability of the skin. The clinical manifestations of UV/reactive oxygen species (ROS)-induced disturbances result in photoaged skin with wrinkle formation, laxity, leathery appearance as well as fragility, impaired wound healing capacities and higher vulnerability. Strategies to prevent or at least minimize ROS-induced photo-ageing and intrinsic ageing of the skin necessarily include protection against UV irradiation and antioxidant homeostasis.
Collapse
Affiliation(s)
- W Ma
- Department of Dermatology, University of Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Santiago-Raber ML, Lawson BR, Dummer W, Barnhouse M, Koundouris S, Wilson CB, Kono DH, Theofilopoulos AN. Role of cyclin kinase inhibitor p21 in systemic autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4067-74. [PMID: 11564828 DOI: 10.4049/jimmunol.167.7.4067] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cyclin kinase inhibitor protein p21 affects multiple processes relevant to the immune system, including cell cycle progression, replicative senescence, hemopoietic stem cell quiescence, and apoptosis. Therefore, malfunction of this protein may be a contributor to the pathogenesis of systemic autoimmunity. Here, we report that mixed background p21-deficient 129/Sv x C57BL/6 mice showed increased in vitro and in vivo T cell cycling and activation, moderate hypergammaglobulinemia and, at low penetrance, anti-chromatin autoantibodies. Homeostatic anti-self MHC/peptide ligand-induced proliferation of p21-deficient T cells was also enhanced. However, lymphoid organ enlargement was very mild, presumably due to increased apoptosis of the rapidly dividing cells. Moreover, the older p21-deficient mice had kidney pathology representing a similar, but slightly more advanced, state than that seen in the control mice. The timing and severity of the above serologic, cellular, and histologic manifestations in p21-deficient mice were unaffected by gender. Thus, p21 deficiency significantly enhances T cell activation and homeostatic proliferation, and can induce mild autoimmune manifestations at a low incidence without gender bias, but does not in itself generate the full spectrum of lupus-like disease.
Collapse
Affiliation(s)
- M L Santiago-Raber
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
Increasing evidence suggests an important role of oxidant-induced damage in the progress of senescent changes, providing support for the free radical theory of aging proposed by Harman in 1956. However, considering that biological organisms continuously renew their structures, it is not clear why oxidative damage should accumulate with age. No strong evidence has been provided in favor of the concept of aging as an accumulation of synthetic errors (e.g. Orgel's 'error-catastrophe' theory and the somatic mutation theory). Rather, we believe that the process of aging may derive from imperfect clearance of oxidatively damaged, relatively indigestible material, the accumulation of which further hinders cellular catabolic and anabolic functions. From this perspective, it might be predicted that: (i) suppression of oxidative damage would enhance longevity; (ii) accumulation of incompletely digested material (e.g. lipofuscin pigment) would interfere with cellular functions and increase probability of death; (iii) rejuvenation during reproduction is mainly provided by dilution of undigested material associated with intensive growth of the developing organism; and (iv) age-related damage starts to accumulate substantially when development is complete, and mainly affects postmitotic, cells and extracellular matrix, not proliferating cells. There is abundant support for all these predictions.
Collapse
Affiliation(s)
- A Terman
- Department of Neuroscience and Locomotion, Faculty of Health Sciences, Linköping University, Sweden.
| |
Collapse
|
210
|
Abstract
Many normal cells respond to potentially oncogenic stimuli by undergoing cellular senescence, a state of irreversibly arrested proliferation and altered differentiated function. Cellular senescence very likely evolved to suppress tumorigenesis. In support of this idea, it is regulated by several tumor suppressor genes. At the heart of this regulation is p53. p53 is essential for the senescence response to short telomeres, DNA damage, oncogenes and supraphysiological mitogenic signals, and overexpression of certain tumor suppressor genes. Despite the well-documented central role for p53 in the senescence response, many questions remain regarding how p53 senses senescence-inducing stimuli and how it elicits the senescent phenotype.
Collapse
Affiliation(s)
- K Itahana
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
211
|
Theofilopoulos AN, Dummer W, Kono DH. T cell homeostasis and systemic autoimmunity. J Clin Invest 2001. [DOI: 10.1172/jci200112173] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
212
|
Lim CS, Campisi J. Recent advances in cellular senescence, cancer and aging. BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02931983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
213
|
Yudoh K, Matsuno H, Nakazawa F, Katayama R, Kimura T. Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res 2001; 16:1453-64. [PMID: 11499868 DOI: 10.1359/jbmr.2001.16.8.1453] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The rate of bone formation is largely determined by the number of osteoblasts, which in turn is determined by the rate of replication of progenitors and the life span of mature cells, reflecting the timing of death by apoptosis. However, the exact age-dependent changes of the cellular activity, replicative potential, and life span of osteoblasts have not been investigated to date. Here, we present evidence that the cellular activity, telomere lengths, and replicative life span of osteoblastic cells obtained from juxta-articular bone marrow gradually decrease with the advance of donor age. Recently, telomerase reverse transcriptase (hTERT) has been identified as a human telomerase catalytic subunit. We transfected the gene encoding hTERT into telomerase-negative human osteoblastic cells from donors and osteoblastic cell strain NHOst 54881 cells and showed that expression of hTERT induces telomerase activity in these osteoblastic cells. In contrast to telomerase-negative control cells, which exhibited telomere shortening and senescence after 10-15 population doublings, telomerase-expressing osteoblastic cells had elongated telomere lengths and showed continued alkaline phosphatase activity and procollagen I C-terminal propeptide (PICP) secretion for more than 30 population doublings. These results indicate that osteoblasts with forced expression of hTERT may be used in cell-based therapies such as ex vivo gene therapy, tissue engineering, and transplantation of osteoblasts to correct bone loss or osteopenia in age-related osteoporotic diseases.
Collapse
Affiliation(s)
- K Yudoh
- Department of Orthopedic Surgery, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | |
Collapse
|
214
|
Theofilopoulos AN, Dummer W, Kono DH. T cell homeostasis and systemic autoimmunity. J Clin Invest 2001; 108:335-40. [PMID: 11489923 PMCID: PMC209358 DOI: 10.1172/jci12173] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- A N Theofilopoulos
- The Scripps Research Institute, Department of Immunology, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
215
|
Alexander K, Hinds PW. Requirement for p27(KIP1) in retinoblastoma protein-mediated senescence. Mol Cell Biol 2001; 21:3616-31. [PMID: 11340156 PMCID: PMC86983 DOI: 10.1128/mcb.21.11.3616-3631.2001] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 03/14/2001] [Indexed: 01/21/2023] Open
Abstract
In vivo and in vitro evidence indicate that cells do not divide indefinitely but instead stop growing and undergo a process termed cellular proliferative senescence. Very little is known about how senescence occurs, but there are several indications that the retinoblastoma protein (pRb) is involved, the most striking being that reintroduction of RB into RB(-/-) tumor cell lines induces senescence. In investigating the mechanism by which pRb induces senescence, we have found that pRb causes a posttranscriptional accumulation of the cyclin-dependent kinase inhibitor p27(KIP1) that is accompanied by an increase in p27(KIP1) specifically bound to cyclin E and a concomitant decrease in cyclin E-associated kinase activity. In contrast, pRb-related proteins p107 and p130, which also decrease cyclin E-kinase activity, do not cause an accumulation of p27(KIP1) and induce senescence poorly. In addition, the use of pRb proteins mutated in the pocket domain demonstrates that pRb upregulation of p27(KIP1) and senescence induction do not require the interaction of pRb with E2F. Furthermore, ectopic expression of p21(CIP1) or p27(KIP1) induces senescence but not the morphology change associated with pRb-mediated senescence, uncoupling senescence from the morphological transformation. Finally, the ability of pRb to maintain cell cycle arrest and induce senescence is reversibly abrogated by ablation of p27(KIP1) expression. These findings suggest that prolonged cell cycle arrest through the persistent and specific inhibition of cdk2 activity by p27(KIP1) is critical for pRb-induced senescence.
Collapse
Affiliation(s)
- K Alexander
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
216
|
Stoeber K, Tlsty TD, Happerfield L, Thomas GA, Romanov S, Bobrow L, Williams ED, Williams GH. DNA replication licensing and human cell proliferation. J Cell Sci 2001; 114:2027-41. [PMID: 11493639 DOI: 10.1242/jcs.114.11.2027] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The convergence point of growth regulatory pathways that control cell proliferation is the initiation of genome replication, the core of which is the assembly of pre-replicative complexes resulting in chromatin being ‘licensed’ for DNA replication in the subsequent S phase. We have analysed regulation of the pre-replicative complex proteins ORC, Cdc6, and MCM in cycling and non-proliferating quiescent, differentiated and replicative senescent human cells. Moreover, a human cell-free DNA replication system has been exploited to study the replicative capacity of nuclei and cytosolic extracts prepared from these cells. These studies demonstrate that downregulation of the Cdc6 and MCM constituents of the replication initiation pathway is a common downstream mechanism for loss of proliferative capacity in human cells. Furthermore, analysis of MCM protein expression in self-renewing, stable and permanent human tissues shows that the three classes of tissue have developed very different growth control strategies with respect to replication licensing. Notably, in breast tissue we found striking differences between the proportion of mammary acinar cells that express MCM proteins and those labelled with conventional proliferation markers, raising the intriguing possibility that progenitor cells of some tissues are held in a prolonged G1 phase or ‘in-cycle arrest’. We conclude that biomarkers for replication-licensed cells detect, in addition to actively proliferating cells, cells with growth potential, a concept that has major implications for developmental and cancer biology.
Collapse
Affiliation(s)
- K Stoeber
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Chen QM, Prowse KR, Tu VC, Purdom S, Linskens MH. Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts. Exp Cell Res 2001; 265:294-303. [PMID: 11302695 DOI: 10.1006/excr.2001.5182] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Normal human cells have a limited replicative potential and inevitably reach replicative senescence in culture. Replicatively senescent cells show multiple molecular changes, some of which are related to the irreversible growth arrest in culture, whereas others resemble the changes occurring during the process of aging in vivo. Telomeres shorten as a result of cell replication and are thought to serve as a replicometer for senescence. Recent studies show that young cells can be induced to develop features of senescence prematurely by damaging agents, chromatin remodeling, and overexpression of ras or the E2F1 gene. Accelerated telomere shortening is thought to be a mechanism of premature senescence in some models. In this work, we test whether the acquisition of a senescent phenotype after mild-dose hydrogen peroxide (H(2)O(2)) exposure requires telomere shortening. Treating young HDFs with 150 microM H(2)O(2) once or 75 microM H(2)O(2) twice in 2 weeks causes long-term growth arrest, an enlarged morphology, activation of senescence-associated beta-galactosidase, and elevated expression of collagenase and clusterin mRNAs. No significant telomere shortening was observed with H(2)O(2) at doses ranging from 50 to 200 microM. Weekly treatment with 75 microM H(2)O(2) also failed to induce significant telomere shortening. Failure of telomere shortening correlated with an inability to elevate p16 protein or mRNA in H(2)O(2)-treated cells. In contrast, p21 mRNA was elevated over 40-fold and remained at this level for at least 2 weeks after a pulse treatment of H(2)O(2). The role of cell cycle checkpoints centered on p21 in premature senescence induced by H(2)O(2) is discussed here.
Collapse
Affiliation(s)
- Q M Chen
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724-5050, USA.
| | | | | | | | | |
Collapse
|
218
|
Rapid senescence induced by overexpression of p53 in NIH3T3 cells. CHINESE SCIENCE BULLETIN-CHINESE 2001. [DOI: 10.1007/bf03182827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
219
|
Abstract
The majority of studies of neoplastic transformation have focused attention on events that occur within transformed cells. These cell autonomous events result in the disruption of molecular pathways that regulate basic activities of the cells such as proliferation, death, movement and genomic integrity. Other studies have addressed the microenvironment of tumor cells and documented its importance in supporting tumor progression. Recent work has begun to expand on these initial studies of tumor microenvironment and now provide novel insights into the possible initiation and progression of malignant cells. This review will address the transforming effect of stromal cells on epithelial components.
Collapse
Affiliation(s)
- T D Tlsty
- Department of Pathology, UCSF Comprehensive Cancer Center, University of California, San Francisco 94143-0506, USA.
| |
Collapse
|
220
|
Abstract
Can studying cultured cells inform us about the biology of aging? The idea that this may be was stimulated by the first formal description of replicative senescence. Replicative senescence limits the proliferation of normal human cells in culture, causing them to irreversibly arrest growth and adopt striking changes in cell function. We now know that telomere shortening, which occurs in most somatic cells as a consequence of DNA replication, drives replicative senescence in human cells. However, rodent cells also undergo replicative senescence, despite very long telomeres, and DNA damage, the action of certain oncogenes and changes in chromatin induce a phenotype similar to that of replicatively senescent cells. Thus, replicative senescence is an example of the more general process of cellular senescence, indicating that the telomere hypothesis of aging is a misnomer, Cellular senescence appears to be a response to potentially oncogenic insults, including oxidative stress. The growth arrest almost certainly suppresses tumorigenesis, at least in young organisms, whereas the functional changes may contribute to aging, although this has yet to be critically tested. Thus, cellular senescence may be an example of antagonistic pleiotropy. Cross-species comparisons suggest there is a relationship between the senescence of cells in culture and organismal life span, but the relationship is neither quantitative nor direct.
Collapse
Affiliation(s)
- J Campisi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Mailstop 84-171, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
221
|
Abstract
With the ample gene sequence information that has become available with the human genome project virtually completed, it has become possible to identify functional gene variants and their frequencies in elderly populations with different aging-related characteristics. Such a genetic epidemiological approach could lead to new insights with respect to the basic mechanisms of aging and longevity as well as the identification of new targets to prevent or retard some of the late-age adverse effects. Using our recently developed two-dimensional gene scanning (TDGS) technology platform we demonstrate the feasibility of this approach by screening two different populations of centenarians for polymorphic variation in the BRCA1 breast cancer susceptibility gene, one of the many genes involved in genome maintenance. The initial results obtained with this approach suggest differences in BRCA1 genotype frequencies between the centenarian populations and controls.
Collapse
Affiliation(s)
- J Vijg
- University of Texas Health Science Center, San Antonio 78245, USA.
| | | | | | | |
Collapse
|
222
|
Kim H, You S, Foster LK, Farris J, Choi YJ, Foster DN. Differential expression of chicken dimerization cofactor of hepatocyte nuclear factor-1 (DcoH) and its novel counterpart, DcoHalpha. Biochem J 2001; 354:645-53. [PMID: 11237869 PMCID: PMC1221696 DOI: 10.1042/0264-6021:3540645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have used differential display PCR to study altered gene expression in immortalized chicken embryo fibroblasts (CEFs) that have been established in our laboratory. This technique resulted in the cloning of a novel counterpart of the previously cloned chicken dimerization cofactor of hepatocyte nuclear factor (HNF)-1 (cDcoH), which was identified as cDcoHalpha. The steady-state mRNA levels of cDcoHalpha were up-regulated in all immortal CEFs tested compared with primary CEF cells. cDcoH and cDcoHalpha showed opposite patterns of mRNA expression due to differential regulation of transcription rates, but not mRNA half-lives, in primary and immortal CEFs. Expression of cDcoHalpha increased in the late G1 and early S phases of the cell cycle, while cDcoH mRNA increased in the late S and G2/M phases. In contrast with consistent expression of both genes in primary quiescent cells, cDcoH mRNA, but not cDcoHalpha mRNA, was dramatically decreased in primary senescent cells. The highest levels of cDcoHalpha mRNA were found in the kidney, liver, heart and ovarian follicles, while the major tissues expressing cDcoH were hypothalamus, kidney and liver. cDcoH and cDcoHalpha probes did not cross-hybridize to human hepatocyte mRNA. When transfected into human HepG2 cells, both cDcoH and cDcoHalpha showed similar functional activity as measured by increased expression of a reporter gene, as well as alpha-fetoprotein and albumin genes that both contain HNF-1 binding elements in their promoters. Our results suggest that the novel chicken DcoHalpha might function as a transcriptional cofactor for HNF-1 in specific cellular-environmental states.
Collapse
Affiliation(s)
- H Kim
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
223
|
Althaus HH, Mursch K, Klöppner S. Differential response of mature TrkA/p75(NTR) expressing human and pig oligodendrocytes: aging, does it matter? Microsc Res Tech 2001; 52:689-99. [PMID: 11276121 DOI: 10.1002/jemt.1053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A differential morphological response of mature oligodendrocytes (OL) isolated from human and pig brains to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and to the nerve growth factor (NGF) was observed. In both cases, OL regenerate their processes; however, the rate and the extension of the process formation of human OL were behind that of pig OL. Presumably, the advanced age of the human tissue in these experiments might have contributed to this decrease in process formation, an effect that was already observed for rat OL [Yong et al. (1991) J Neurosci Res 29:87-99]. The less effectivity of NGF via TrkA, which was immunocytochemically shown in human OL, and of TPA via the protein kinase C (PKC) pathway, may have its common focus on the mitogen-activated protein kinase (MAPK) cascade. In this context, it was noted that only a few studies on aging of mature OL are available. It is conceivable that age-related changes in the properties of OL could be an important factor for their cellular responsiveness during longer lasting demyelinating diseases such as multiple sclerosis. Hence, this review would like to provide a basis for future investigations on the aging of mature OL. The data presently available suggest a preliminary classification of mature OL into three categories.
Collapse
Affiliation(s)
- H H Althaus
- Max-Planck-Institute for Experimental Medicine, AG Neural Regeneration, H-Reinstr. 3, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
224
|
Xin B, He Z, Yang X, Chan CP, Ng MH, Cao L. TRADD domain of Epstein-Barr virus transforming protein LMP1 is essential for inducing immortalization and suppressing senescence of primary rodent fibroblasts. J Virol 2001; 75:3010-5. [PMID: 11222727 PMCID: PMC115928 DOI: 10.1128/jvi.75.6.3010-3015.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutation analysis of latent membrane protein 1 (LMP1) in Epstein-Barr virus (EBV)-induced B-cell immortalization revealed two transformation effector sites, TES1 and TES2. TES2 mediates the interaction with tumor necrosis factor receptor-associated death domain protein (TRADD) and plays a key role in transactivating NF-kappa B and AP-1. Recombinant EBV containing LMP1 with TES2 deleted induces a limited proliferation of B cells. The present study shows that a mutant with an LMP1 site-specific mutation at TES2, LMP1(TRADD), initially stimulates cell growth and significantly extends the life span of MEF. However, it is not sufficient for the immortalization of MEF, and MEF-LMP1(TRADD) cells eventually enter growth arrest. Further analysis reveals that although LMP1(TRADD) promotes cell growth, it does not prevent the eventual onset of senescence and the expression of tumor suppressor p16(Ink4a).
Collapse
Affiliation(s)
- B Xin
- Department of Microbiology, The University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | | | |
Collapse
|
225
|
Seluanov A, Gorbunova V, Falcovitz A, Sigal A, Milyavsky M, Zurer I, Shohat G, Goldfinger N, Rotter V. Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. Mol Cell Biol 2001; 21:1552-64. [PMID: 11238892 PMCID: PMC86701 DOI: 10.1128/mcb.21.5.1552-1564.2001] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular function of p53 is complex. It is well known that p53 plays a key role in cellular response to DNA damage. Moreover, p53 was implicated in cellular senescence, and it was demonstrated that p53 undergoes modification in senescent cells. However, it is not known how these modifications affect the ability of senescent cells to respond to DNA damage. To address this question, we studied the responses of cultured young and old normal diploid human fibroblasts to a variety of genotoxic stresses. Young fibroblasts were able to undergo p53-dependent and p53-independent apoptosis. In contrast, senescent fibroblasts were unable to undergo p53-dependent apoptosis, whereas p53-independent apoptosis was only slightly reduced. Interestingly, instead of undergoing p53-dependent apoptosis, senescent fibroblasts underwent necrosis. Furthermore, we found that old cells were unable to stabilize p53 in response to DNA damage. Exogenous expression or stabilization of p53 with proteasome inhibitors in old fibroblasts restored their ability to undergo apoptosis. Our results suggest that stabilization of p53 in response to DNA damage is impaired in old fibroblasts, resulting in induction of necrosis. The role of this phenomenon in normal aging and anticancer therapy is discussed.
Collapse
Affiliation(s)
- A Seluanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Ding G, Franki N, Kapasi AA, Reddy K, Gibbons N, Singhal PC. Tubular cell senescence and expression of TGF-beta1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. Exp Mol Pathol 2001; 70:43-53. [PMID: 11170790 DOI: 10.1006/exmp.2000.2346] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Kidney aging has been recognized as a chronic process of compromised renal function and structural changes in the tubulointerstitium and glomerulus. Cell senescence is associated with alterations in cell structure and function, including expression of cytokines and structural and regulatory components of extracellular matrix proteins. In this investigation, we tested the hypothesis that senescent renal cells may accumulate in vivo with advancing age. We also evaluated the expression of transforming growth factor (TGF)-beta1 and p21WAF1/CIP1 in aging kidneys. Sprague-Dawley rats at the ages of 3, 12, and 24 months were used for this study. Renal tissues were processed for morphometric and senescence analysis. Expression of TGF-beta1 and p21WAF1/CIP1 was evaluated by Northern or Western blot analysis and immunohistochemistry. Substantial tubulointerstitial injury occurred at the age of 12 months, but significant glomerular structure alteration was observed at the age of 24 months. Tubular cells developed senescence, which was detected by beta-galactosidase staining. This staining increased in frequency and intensity with age. Renal cortices showed a significant increase in the mRNA expression for TGF-beta1 and protein level for p21WAF1/CIP1. The enhanced expression of TGF-beta1 and p21WAF1/CIP1 was localized in the tubulointersititial cells. These data suggest that tubular cells undergo senescence and express increased TGF-beta1 and p21WAF1/CIP1 with advancing age. These age-related cellular and molecular alterations may play an important role in the initiation and/or progression of tubulointerstitial fibrosis and glomerulosclerosis in aging.
Collapse
Affiliation(s)
- G Ding
- Section of Molecular Biology and Experimental Pathology, Long Island Jewish Medical Center, New Hyde Park, New York 11040, USA
| | | | | | | | | | | |
Collapse
|
227
|
Nishida K, Seto M, Ishida R. Different susceptibilities of postmitotic checkpoint-proficient and -deficient Balb / 3T3 cells to ICRF-193, a catalytic inhibitor of DNA topoisomerase II. Jpn J Cancer Res 2001; 92:193-202. [PMID: 11223549 PMCID: PMC5926697 DOI: 10.1111/j.1349-7006.2001.tb01082.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Two distinct types of Balb / 3T3 cells were isolated which exhibit either 4 N DNA or both 4 N and 8 N DNA after exposure to colcemid for 48 h. They were found to differ with respect to the postmitotic checkpoint, but not the mitotic checkpoint. Firstly, the checkpoint-proficient and -deficient cells exhibited the same accumulation and subsequent decrease in the number of mitotic cells following exposure to microtubule inhibitors. Secondly, after exit from abnormal mitosis in the presence of ICRF (Imperial Cancer Research Fund)-193, the checkpoint-proficient cells were arrested in the next cycle G1, while the checkpoint-deficient cells progressed into S and G2 phase. When either mitotic or asynchronous cells were exposed to ICRF-193, the checkpoint-proficient cells proved more sensitive to the cytotoxic effect of this agent than the checkpoint-deficient cells. The different susceptibilities of the two types of cells to ICRF-193 were not caused by variation in topoisomerase (topo) II function since both the biochemical activity of this enzyme and chromosome segregation were inhibited by similar concentrations of ICRF-193 in both checkpoint-proficient and -deficient cells. We propose that the inhibition of chromosome segregation by ICRF-193 is monitored by the next G1 checkpoint, resulting in an irreversible G1 block in the case of postmitotic checkpoint-proficient cells. As the checkpoint-deficient cells can escape this G1 block, these cells have an increased survival capacity. In summary, ICRF-193 may prove to be a very useful drug for examination of the postmitotic checkpoint.
Collapse
Affiliation(s)
- K Nishida
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | |
Collapse
|
228
|
Kveiborg M, Rattan SI, Clark BF, Eriksen EF, Kassem M. Treatment with 1,25-dihydroxyvitamin D3 reduces impairment of human osteoblast functions during cellular aging in culture. J Cell Physiol 2001; 186:298-306. [PMID: 11169466 DOI: 10.1002/1097-4652(200002)186:2<298::aid-jcp1030>3.0.co;2-h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adequate responses to various hormones, such as 1,25-dihydroxyvitamin D(3) (calcitriol) are a prerequisite for optimal osteoblast functions. We have previously characterized several human diploid osteoblastic cell lines that exhibit typical in vitro aging characteristics during long-term subculturing. In order to study in vitro age-related changes in osteoblast functions, we compared constitutive mRNA levels of osteoblast-specific genes in early-passage (< 50% lifespan completed) with those of late-passage cells (> 90% lifespan completed). We found a significant reduction in mRNA levels of alkaline phosphatase (AP: 68%), osteocalcin (OC: 67%), and collagen type I (ColI: 76%) in in vitro senescent late-passage cells compared to early-passage cells, suggesting an in vitro age-related impairment of osteoblast functions. We hypothesized that decreased osteoblast functions with in vitro aging is due to impaired responsiveness to calcitriol known to be important for the regulation of biological activities of the osteoblasts. Thus, we examined changes in vitamin D receptor (VDR) system and the osteoblastic responses to calcitriol treatment during in vitro osteoblast aging. We found no change in the amount of VDR at either steady state mRNA level or protein level with increasing in vitro osteoblast age and examination of VDR localization, nuclear translocation and DNA binding activity revealed no in vitro age-related changes. Furthermore, calcitriol (10(-8)M) treatment of early-passage osteoblastic cells inhibited their proliferation by 57 +/- 1% and stimulated steady state mRNA levels of AP (1.7 +/- 0.1-fold) and OC (1.8 +/- 0.2-fold). Similarly, calcitriol treatment increased mRNA levels of AP (1.7 +/- 0.2-fold) and OC (3.0 +/- 0.3-fold) in late-passage osteoblastic cells. Thus, in vitro senescent osteoblastic cells maintain their responsiveness to calcitriol and some of the observed in vitro age-related decreases in biological markers of osteoblast functions can be reverted by calcitriol treatment.
Collapse
Affiliation(s)
- M Kveiborg
- University Department of Endocrinology and Metabolism, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
229
|
Fenton M, Barker S, Kurz DJ, Erusalimsky JD. Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol 2001; 21:220-6. [PMID: 11156856 DOI: 10.1161/01.atv.21.2.220] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hypothesis that increased cellular proliferation in the vasculature may lead to replicative senescence has been tested in a model of neointima formation. We have used a biomarker of replicative senescence, senescence-associated beta-galactosidase (SA-beta-gal), to detect senescence in rabbit carotid arteries subjected to single and double balloon denudations. We found an accumulation of senescent cells in the neointima and media of all injured vessels, in contrast to the near absence of such cells in control vessels. The relative area occupied by SA-beta-gal-positive cells was higher in vessels subjected to double denudation than in those subjected to single denudation, both in the neointima (0.99% versus 0.06%, respectively; P:<0.001) and in the media (0.11% versus 0.01%, respectively; P:<0.02). The majority of SA-beta-gal-positive cells were vascular smooth muscle cells, and a minority were endothelial cells. SA-beta-gal-positive cells showed no evidence of apoptosis by use of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling. Our results indicate that the proliferative response that follows intraluminal injury to the artery leads to the emergence of senescent endothelial and smooth muscle cells. The demonstration that vascular cell senescence can occur in vivo suggests that this process may be involved in cardiovascular pathologies that have a proliferative component.
Collapse
Affiliation(s)
- M Fenton
- Cell Biology Group, Centre for Cardiovascular Biology and Medicine, Department of Medicine, Royal Free and University College Medical School, University College London, London, UK
| | | | | | | |
Collapse
|
230
|
|
231
|
Chen QM, Tu VC, Catania J, Burton M, Toussaint O, Dilley T. Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent morphogenesis induced by hydrogen peroxide. J Cell Sci 2000; 113 ( Pt 22):4087-97. [PMID: 11058095 DOI: 10.1242/jcs.113.22.4087] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Early passage human diploid fibroblasts develop senescent morphology prematurely within a week after a 2-hour pulse treatment with low or mild dose H(2)O(2). We test here the role of cell cycle checkpoints, cytoskeletal proteins and de novo protein synthesis in senescent morphogenesis following H(2)O(2) treatment. H(2)O(2) treatment causes transient elevation of p53 protein and prolonged inhibition of Rb hyperphosphorylation. Expression of human papillomaviral E6 gene prevented elevation of p53 but did not affect senescent morphogenesis. Expression of human papillomaviral E7 gene reduced the level of Rb protein and prevented induction of senescent morphology by H(2)O(2). The mutants of the E7 gene, in which the Rb family protein binding site was destroyed, could not reduce Rb protein or prevent H(2)O(2) from inducing senescent morphology. Senescent-like cells showed enhanced actin stress fibers. In untreated cells, vinculin and paxillin preferentially distributed along the edge of the cells. In contrast, vinculin and paxillin distributed randomly and sporadically throughout senescent-like cells. E7 expression prevented enhancement of actin filament formation and redistribution of vinculin or paxillin. Neither wild-type nor E7 cells showed changes in the protein level of actin, vinculin or paxillin measured by western blot after H(2)O(2) treatment. Finally, depletion of methionine in the culture medium after H(2)O(2) treatment prevented senescent morphogenesis without affecting dephosphorylation of Rb protein. Our results suggest that senescent morphology likely develops by a program involving activated Rb family proteins, enhancement of actin stress fibers, redistribution of focal adhesion proteins and de novo protein synthesis.
Collapse
Affiliation(s)
- Q M Chen
- Department of Pharmacology, University of Arizona, Skaggs Pharmaceutical Science Building, Tucson, AZ 85721, USA.
| | | | | | | | | | | |
Collapse
|
232
|
Sandhu C, Donovan J, Bhattacharya N, Stampfer M, Worland P, Slingerland J. Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 2000; 19:5314-23. [PMID: 11103932 DOI: 10.1038/sj.onc.1203908] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replicative senescence may be an important tumor suppressive mechanism for human cells. We investigated the mechanism of cell cycle arrest at senescence in human mammary epithelial cells (HMECs) that have undergone a period of 'self-selection', and as a consequence exhibit diminished p16INK4A levels. As HMECs approached senescence, the proportion of cells with a 2N DNA content increased and that in S phase decreased progressively. Cyclin D1-cdk4, cyclin E-cdk2 and cyclin A-cdk2 activities were not abruptly inhibited, but rather diminished steadily with increasing population age. In contrast to observations in fibroblast, p21Cip1 was not increased at senescence in HMECs. There was no increase in p27Kip1 levels nor in KIP association with targets cdks. While p15INK4B and its binding to both cdk4 and cdk6 increased with increasing passage, some cyclin D1-bound cdk4 and cdk6 persisted in senescent cells, whose inhibition could not be attributed to p15INK4B. The inhibition of cyclin E-cdk2 in senescent HMECs was accompanied by increased inhibitory phosphorylation of cdk2, in association with a progressive loss of Cdc25A. Recombinant Cdc25A strongly reactivated cyclin E-cdk2 from senescent HMECs suggesting that reduction of Cdc25A contributes to cyclin E-cdk2 inhibition and G1 arrest at senescence. Although ectopic expression of Cdc25A failed to extend the lifespan of HMECs, the exogenous Cdc25A appeared to lack activity in these cells, since it neither shortened the G1-to-S phase interval nor activated cyclin E-cdk2. In contrast, in the breast cancer-derived MCF-7 line, Cdc25A overexpression increased both cyclin E-cdk2 activity and the S phase fraction. Thus, mechanisms leading to HMEC immortalization may involve not only the re-induction of Cdc25A expression, but also activation of this phosphatase.
Collapse
Affiliation(s)
- C Sandhu
- Cancer Research, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
233
|
Kurz DJ, Decary S, Hong Y, Erusalimsky JD. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 2000; 113 ( Pt 20):3613-22. [PMID: 11017877 DOI: 10.1242/jcs.113.20.3613] [Citation(s) in RCA: 542] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Senescence-associated (beta)-galactosidase is widely used as a biomarker of replicative senescence. However, it remains unknown whether this is a distinct enzyme active at pH 6, and differentially expressed in senescence, or a manifestation of an increase in the classic acid lysosomal (beta)-galactosidase. Here we have investigated the origin of senescence-associated-(beta)-galactosidase activity by modifying the intracellular and lysosomal pH of young and senescent human umbilical vein endothelial cells and examining the effect of these manipulations on the levels of activity, using a flow cytometric assay. Lysosomal alkalinisation with chloroquine or bafilomycin A(1), as well as equilibration of the intracellular milieu to pH 6 with nigericin, caused a profound (92-99%) inhibition of the total intracellular (beta)-galactosidase activity. However, independent of pH alterations, senescent cells showed levels of (beta)-galactosidase activity three- to sixfold higher than young cells. This increase in activity occurred in parallel to an increase in (beta)-galactosidase protein levels. Acridine Orange staining revealed an increase in lysosomal content with replicative age, which correlated with the increase in (beta)-galactosidase. These findings demonstrate that senescence-associated (beta)-galactosidase is a manifestation of residual lysosomal activity at a suboptimal pH, which becomes detectable due to the increased lysosomal content in senescent cells.
Collapse
Affiliation(s)
- D J Kurz
- Cell Biology Group, Centre for Cardiovascular Biology and Medicine, Department of Medicine, Royal Free and University College Medical School, University College London, London WC1E 6JJ, UK.
| | | | | | | |
Collapse
|
234
|
Duque G. Apoptosis in Cardiovascular Aging Research: Future Directions. THE AMERICAN JOURNAL OF GERIATRIC CARDIOLOGY 2000; 9:263-264. [PMID: 11416577 DOI: 10.1111/j.1076-7460.2000.80048.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apoptosis is the process by which cells are induced to activate their own suicide. Programmed cell death occurs in a wide variety of cell types, including cardiovascular tissues. There is increasing evidence of a relationship between apoptosis and cardiovascular disease, particularly ischemic heart disease and congestive heart failure, the most frequent heart diseases in the older population. Research directed to the treatment and possible prevention of apoptosis may provide a means of decreasing the incidence of cardiac failure and increasing the survival of endothelial and smooth muscle cells in the elderly. (c) 2000 by CVRR, Inc.
Collapse
Affiliation(s)
- Gustavo Duque
- Division of Geriatric Medicine and Calcium Research Laboratory, McGill University, Montreal, Canada
| |
Collapse
|
235
|
Yudoh K, Matsuno H, Osada R, Nakazawa F, Katayama R, Kimura T. Decreased cellular activity and replicative capacity of osteoblastic cells isolated from the periarticular bone of rheumatoid arthritis patients compared with osteoarthritis patients. ARTHRITIS AND RHEUMATISM 2000; 43:2178-88. [PMID: 11037877 DOI: 10.1002/1529-0131(200010)43:10<2178::aid-anr5>3.0.co;2-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Periarticular osteopenia is frequently observed in rheumatoid arthritis (RA). Bone loss has been considered to be at least partly due to inadequate bone formation, which in turn, is largely dependent on the number of osteoblasts and the osteoblastic activity. Normal human somatic cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that the telomere, the terminal sequence of chromosomes, is the mitotic clock that triggers senescence. In the present study, we sought to clarify the relationship between periarticular osteopenia and osteoblast replicative senescence in RA. METHODS We examined age-related changes in cellular activity (alkaline phosphatase activity, osteocalcin and C-terminal type I procollagen secretion, and cAMP response to parathyroid hormone), replicative capacity, and senescent cell expression in osteoblasts from periarticular bone samples obtained from 15 patients with RA and 15 age-matched patients with osteoarthritis (OA). Cellular replicative capacity was analyzed by the mean telomere length and in vitro remaining replicative lifespan of the cells. RESULTS In both OA and RA groups, the cell proliferation rate, the levels of osteoblastic markers, mean telomere length, and replicative lifespan in osteoblastic cells gradually decreased with the increasing age of the donor. The percentage of senescent osteoblastic cells in the periarticular bone increased with age in both groups, and the rate of expression of senescent cells was higher in RA patients than in age-matched OA patients. The osteoblastic activities and replicative capacity of osteoblastic cells from RA patients were lower than those from OA patients at any donor age. The age-related decreases in the osteoblastic activity and replicative capacity of osteoblastic cells from periarticular bone were greater in RA patients than in OA patients. CONCLUSION Our results suggest that osteoblast replicative senescence in periarticular bones occurs more rapidly with aging in RA than in OA patients and contributes to periarticular osteopenia in RA.
Collapse
Affiliation(s)
- K Yudoh
- Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|
236
|
Kveiborg M, Flyvbjerg A, Rattan SI, Kassem M. Changes in the insulin-like growth factor-system may contribute to in vitro age-related impaired osteoblast functions. Exp Gerontol 2000; 35:1061-74. [PMID: 11121690 DOI: 10.1016/s0531-5565(00)00125-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Age-related bone loss is thought to be due to impaired osteoblast functions. Insulin-like growth factors (IGFs) have been shown to be important stimulators of bone formation and osteoblast activities in vitro and in vivo. We tested the hypothesis that in vitro osteoblast senescence is associated with changes in components of the IGF-system including IGF-I, IGF-II, IGF-binding proteins (IGFBPs) and IGFBP-specific proteases. We employed a human diploid osteoblast cell line obtained from trabecular bone explants and that exhibit typical characteristics of in vitro senescence during serial subculturing. Using a non-competitive reverse-transcriptase polymerase-chain reaction (RT-PCR) assay, we found that the constitutive level of IGF-I mRNA decreased progressively to 49.9 +/- 4.9% in old osteoblasts as compared to the levels found in the young cells. No age-related change was found in IGF-II steady-state mRNA levels. Changes in IGFBPs gene expression and protein production were assessed using Northern blot analysis and Western ligand blotting (WLB), respectively. IGFBP-3 mRNA levels decreased to 30% and protein production to 16% in aged osteoblasts as compared to levels found in young cells. We also found age-related decreases in mRNA levels of both IGFBP-4 and IGFBP-5 to 70% and 60% in aged osteoblasts, respectively, compared to young cells. While IGFBP-5 protein was not detected by WLB, IGFBP-4 protein production showed a biphasic change with 50% decrease in middle-aged cells and a subsequent increase in aged osteoblasts to levels similar to those in young osteoblasts. We found an age-related increase in the immunoreactive levels of IGFBP-4 protease, however, no detectable IGFBP-4 or IGFBP-3 protease activities in conditioned media from osteoblast cultures were observed. Our findings demonstrate that osteoblast aging is associated with impaired production of the stimulatory components of the IGF-system, that may be a mechanism contributing to age-related decline in osteoblast functions.
Collapse
Affiliation(s)
- M Kveiborg
- University Department of Endocrinology and Metabolism, Aarhus Amtssygehus, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
237
|
Van Zant G. Stem cells and genetics in the study of development, aging, and longevity. Results Probl Cell Differ 2000; 29:203-35. [PMID: 10838702 DOI: 10.1007/978-3-540-48003-7_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- G Van Zant
- Blood and Marrow Transplant Program, Lucille P. Markey Cancer Center, University of Kentucky Medical Center, Lexington 40536-0093, USA
| |
Collapse
|
238
|
Coljee VW, Rotenberg MO, Tresini M, Francis MK, Cristofalo VJ, Sell C. Regulation of EPC-1/PEDF in normal human fibroblasts is posttranscriptional. J Cell Biochem 2000; 79:442-52. [PMID: 10972981 DOI: 10.1002/1097-4644(20001201)79:3<442::aid-jcb90>3.0.co;2-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The EPC-1 (early population doubling level cDNA-1) gene, also known as pigment epithelium-derived factor, encodes a protein belonging to the serine protease inhibitor (serpin) superfamily that has been reported to inhibit angiogenesis and proliferation of several cell types. We have previously reported that the EPC-1 mRNA and the secreted EPC-1 protein are expressed at levels more than 100-fold higher in early passage, G(0), WI-38 cells compared to either proliferating or senescent WI-38 fibroblasts. To examine the molecular mechanisms that regulate changes in EPC-1 gene expression in WI-38 cells, we isolated and characterized the human EPC-1 gene and determined the mRNA cap site. Transcriptional assays showed no change in the transcription rates of EPC-1 between young proliferating, quiescent, and senescent WI-38 cells. These results suggest posttranscriptional regulation of the EPC-1 gene. Reverse transcriptase polymerase chain reaction measurements (of hnRNA) indicate regulation at the hnRNA level. The regulation of the EPC-1 gene at the level of hnRNA can explain the observed slow increase in the steady-state EPC-1 mRNA levels when cells become quiescent. The reduction of EPC-1 mRNA levels that occurs when cells exit G(0) and are induced to proliferate can be accounted for by a reduction of the EPC-1 mRNA stability in stimulated cells as compared to quiescent cells.
Collapse
Affiliation(s)
- V W Coljee
- Center for Gerontological Research, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | |
Collapse
|
239
|
Machwe A, Orren DK, Bohr VA. Accelerated methylation of ribosomal RNA genes during the cellular senescence of Werner syndrome fibroblasts. FASEB J 2000; 14:1715-24. [PMID: 10973920 DOI: 10.1096/fj.99-0926com] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ribosomal DNA (rDNA) metabolism has been implicated in cellular and organismal aging. The role of rDNA in premature and normal human aging was investigated by measuring rDNA gene copy number, the level of rDNA methylation, and rRNA expression during the in vitro senescence of primary fibroblasts from normal (young and old) donors and from Werner syndrome (WS) patients. In comparison to their normal counterparts, WS fibroblasts grew slowly and reached senescence after fewer doublings. The rDNA copy number did not change significantly throughout the life span of both normal and WS fibroblasts. However, in senescent WS and normal old fibroblasts, we detected rDNA species with unusually slow electrophoretic mobility. Cellular aging in Saccharomyces cerevisiae is accompanied by the formation and accumulation of rDNA circles. Our analysis revealed that the rDNA species observed in this study were longer, linear rDNA molecules attributable to the inhibition of ECO:RI cleavage by methylation. Furthermore, isoschizomeric restriction analysis confirmed that in vitro senescence of fibroblasts is accompanied by significant increases in cytosine methylation within rDNA genes. This increased methylation is maximal during the abbreviated life span of WS fibroblasts. Despite increased methylation of rDNA in senescent cells, the steady-state levels of 28S rRNA remained constant over the life span of both normal and WS fibroblasts.
Collapse
Affiliation(s)
- A Machwe
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
240
|
Kyrylenko S, Korhonen P, Kyrylenko O, Roschier M, Salminen A. Expression of transcriptional repressor proteins mSin3A and 3B during aging and replicative senescence. Biochem Biophys Res Commun 2000; 275:455-9. [PMID: 10964686 DOI: 10.1006/bbrc.2000.3325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sin3 proteins have a key role in transcriptional repression mediated by histone deacetylation. Mammalian Sin3 proteins, mSin3A and 3B, act as adapter molecules which bind both to repressive transcription factors and to the methyl-CpG-binding proteins (MeCPs) and recruit histone deacetylases to assemble a multiprotein repressor complex. We have recently observed (Biochem. Biophys. Res. Commun. 252, 274-277, 1998) that the expression of mSin3A but not mSin3B protein is induced during neuronal apoptosis. The purpose of this study was to find out whether aging and replicative senescence affect the expression levels of mSin3A and 3B repressor proteins. We studied the expression levels of mSin3A and 3B mRNAs and proteins both in replicative senescence model of WI-38 fibroblasts and in liver and brain tissues of young (4-6 months) and old (26-30 months) male Wistar rats. Replicative senescence of human WI-38 fibroblasts did not affect the expression levels of mSin3A and 3B mRNAs. However, the late passage WI-38 fibroblasts showed a significant decline in the expression level of mSin3A protein. Immortalization of WI-38 fibroblasts with SV-40 transformation increased the expression level of 6.0 kb mSin3A mRNA. Aging of Wistar rats did not affect the expression levels of either mSin3A or mSin3B mRNAs in the liver and frontal cortex. Similarly, the protein levels of mSin3A and 3B were unaffected in the hippocampus, cerebellum and liver tissues during aging. These results show that aging in vivo, in contrast to replicative senescence, does not affect the expression levels of mSin3A and 3B repressor proteins. However, this does not exclude the possible age-related functional changes mediated by mSin3-histone deacetylase complexes.
Collapse
Affiliation(s)
- S Kyrylenko
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio, FIN-70211, Finland
| | | | | | | | | |
Collapse
|
241
|
Ostenfeld T, Caldwell MA, Prowse KR, Linskens MH, Jauniaux E, Svendsen CN. Human neural precursor cells express low levels of telomerase in vitro and show diminishing cell proliferation with extensive axonal outgrowth following transplantation. Exp Neurol 2000; 164:215-26. [PMID: 10877932 DOI: 10.1006/exnr.2000.7427] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Worldwideattention is presently focused on proliferating populations of neural precursor cells as an in vitro source of tissue for neural transplantation and brain repair. However, successful neuroreconstruction is contingent upon their capacity to integrate within the host CNS and the absence of tumorigenesis. Here we show that human neural precursor cells express very low levels of telomerase at early passages (less than 20 population doublings), but that this decreases to undetectable levels at later passages. In contrast, rodent neural precursors express high levels of telomerase at both early and late passages. The human neural precursors also have telomeres (approximately 12 kbp) significantly shorter than those of their rodent counterparts (approximately 40 kbp). Human neural precursors were then expanded 100-fold prior to intrastriatal transplantation in a rodent model of Parkinson's disease. To establish the effects of implanted cell number on survival and integration, precursors were transplanted at either 200,000, 1 million, or 2 million cells per animal. Interestingly, the smaller transplants were more likely to extend neuronal fibers and less likely to provoke immune rejection than the largest transplants in this xenograft model. Cellular proliferation continued immediately post-transplantation, but by 20 weeks there were virtually no dividing cells within any of the grafts. In contrast, fiber outgrowth increased gradually over time and often occupied the entire striatum at 20 weeks postgrafting. Transient expression of tyrosine hydroxylase-positive cells within the grafts was found in some animals, but this was not sustained at 20 weeks and had no functional effects. For Parkinson's disease, the principal aim now is to induce the dopaminergic phenotype in these cells prior to transplantation. However, given the relative safety profile for these human cells and their capacity to extend fibers into the adult rodent brain, they may provide the ideal basis for the repair of other lesions of the CNS where extensive axonal outgrowth is required.
Collapse
Affiliation(s)
- T Ostenfeld
- MRC Centre for Brain Repair, University of Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
242
|
Chen QM. Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints. Ann N Y Acad Sci 2000; 908:111-25. [PMID: 10911952 DOI: 10.1111/j.1749-6632.2000.tb06640.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Normal human diploid fibroblasts (HDFs) undergo replicative senescence inevitably in tissue culture after a certain number of cell divisions. A number of molecular changes observed in replicative senescent cells occur in somatic cells during the process of aging. Genetic studies on replicative senescence indicate the control of tumor suppression mechanisms. Despite the significance of replicative senescence in aging and cancer, little is known about the central cause of the complex changes observed in replicative senescent cells. The interest in the phenomenon has intensified in recent years, since damaging agents, certain oncogenes and tumor suppressor genes have been found to induce features of senescence in early passage young HDFs or in immortalized tumor cells. The reported features of senescence are summarized here in order to clarify the concept of replicative senescence or premature senescence. The experimental results of extending the replicative life span by reducing ambient oxygen tension or by N-tert-butyl-alpha-phenylnitrone (PBN) argue a role of oxidative damage in replicative senescence. By inducing premature senescence with a pulse treatment of H2O2, we can study the role of the cell cycle checkpoint proteins p53, p21, p16 and Rb in gaining each feature of senescence. Although p53 and Rb control G1 arrest and Rb appears to control cell enlargement, activation of the senescent associate beta-galactosidase, loss of cell replication and multiple molecular changes observed in premature senescent or replicative senescent cells are likely controlled by mechanisms beyond the cell cycle checkpoints.
Collapse
Affiliation(s)
- Q M Chen
- Department of Pharmacology, University of Arizona, Tucson 85721, USA.
| |
Collapse
|
243
|
Dellambra E, Golisano O, Bondanza S, Siviero E, Lacal P, Molinari M, D'Atri S, De Luca M. Downregulation of 14-3-3sigma prevents clonal evolution and leads to immortalization of primary human keratinocytes. J Cell Biol 2000; 149:1117-30. [PMID: 10831615 PMCID: PMC2174818 DOI: 10.1083/jcb.149.5.1117] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In human epidermal keratinocytes, replicative senescence, is determined by a progressive decline of clonogenic and dividing cells. Its timing is controlled by clonal evolution, that is, by the continuous transition from stem cells to transient amplifying cells. We now report that downregulation of 14-3-3sigma, which is specifically expressed in human stratified epithelia, prevents keratinocyte clonal evolution, thereby forcing keratinocytes into the stem cell compartment. This allows primary human keratinocytes to readily escape replicative senescence. 14-3-3sigma-dependent bypass of senescence is accompanied by maintenance of telomerase activity and by downregulation of the p16(INK4a) tumor suppressor gene, hallmarks of keratinocyte immortalization. Taken together, these data therefore suggest that inhibition of a single endogenous gene product fosters immortalization of primary human epithelial cells without the need of exogenous oncogenes and/or oncoviruses.
Collapse
Affiliation(s)
- Elena Dellambra
- Laboratory of Tissue Engineering, IDI, Istituto Dermopatico dell'Immacolata, 00040 Rome, Italy
| | - Osvaldo Golisano
- Laboratory of Tissue Engineering, IDI, Istituto Dermopatico dell'Immacolata, 00040 Rome, Italy
| | - Sergio Bondanza
- Laboratory of Tissue Engineering, IDI, Istituto Dermopatico dell'Immacolata, 00040 Rome, Italy
| | - Emanuela Siviero
- Laboratory of Tissue Engineering, IDI, Istituto Dermopatico dell'Immacolata, 00040 Rome, Italy
| | - Pedro Lacal
- Laboratory of Clinical Pharmacology, IDI, Istituto Dermopatico dell'Immacolata, 00040 Rome, Italy
| | - Marta Molinari
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Stefania D'Atri
- Laboratory of Clinical Pharmacology, IDI, Istituto Dermopatico dell'Immacolata, 00040 Rome, Italy
| | - Michele De Luca
- Laboratory of Tissue Engineering, IDI, Istituto Dermopatico dell'Immacolata, 00040 Rome, Italy
| |
Collapse
|
244
|
Powell CD, Van Zandycke SM, Quain DE, Smart KA. Replicative ageing and senescence in Saccharomyces cerevisiae and the impact on brewing fermentations. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1023-1034. [PMID: 10832629 DOI: 10.1099/00221287-146-5-1023] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Christopher D Powell
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK1
| | - Sylvie M Van Zandycke
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK1
| | - David E Quain
- Bass Brewers, Technical Centre, PO Box 12, Cross Street, Burton-on-Trent DE14 1XH, UK2
| | - Katherine A Smart
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK1
| |
Collapse
|
245
|
Scharffetter-Kochanek K, Brenneisen P, Wenk J, Herrmann G, Ma W, Kuhr L, Meewes C, Wlaschek M. Photoaging of the skin from phenotype to mechanisms. Exp Gerontol 2000; 35:307-16. [PMID: 10832052 DOI: 10.1016/s0531-5565(00)00098-x] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The skin is increasingly exposed to ambient UV-irradiation thus increasing its risk for photooxidative damage with longterm detrimental effects like photoaging, which is characterized by wrinkles, loss of skin tone, and resilience. Photoaged skin displays prominent alterations in the cellular component and the extracellular matrix of the connective tissue with an accumulation of disorganized elastin and its microfibrillar component fibrillin in the deep dermis and a severe loss of interstitial collagens, the major structural proteins of the dermal connective tissue. The unifying pathogenic agents for these changes are UV-generated reactive oxygen species (ROS) that deplete and damage non-enzymatic and enzymatic antioxidant defense systems of the skin. As well as causing permanent genetic changes, ROS activate cytoplasmic signal transduction pathways in resident fibroblasts that are related to growth, differentiation, senescence, and connective tissue degradation. This review focuses on the role of UV-induced ROS in the photodamage of the skin resulting in biochemical and clinical characteristics of photoaging. In addition, the relationship of photoaging to intrinsic aging of the skin will be discussed. A decrease in the overall ROS load by efficient sunscreens or other protective agents may represent promising strategies to prevent or at least minimize ROS induced photoaging.
Collapse
Affiliation(s)
- K Scharffetter-Kochanek
- Department of Dermatology, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Chen QM, Liu J, Merrett JB. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 2000; 347:543-51. [PMID: 10749685 PMCID: PMC1220988 DOI: 10.1042/0264-6021:3470543] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Early-passage human diploid fibroblasts (HDFs) undergo senescence-like growth arrest in response to sublethal concentrations of H(2)O(2) [Chen and Ames (1994) Proc. Natl. Acad. Sci. USA. 95, 4130-4134]. We determine here whether H(2)O(2) can cause apoptosis in HDFs and the molecular changes that differ between apoptosis and senescence-like growth arrest. When exponentially growing early-passage IMR-90 cells were treated for 2 h with 50-200 microM (or 0.25-1 pmol/cell) H(2)O(2), a fraction of cells detached at 16-32 h after the treatment. The cells remaining attached were growth-arrested and developed features of senescence in 1 week. The detached cells showed caspase-3 activation and typical morphological changes associated with apoptosis. Caspase-3 activation was H(2)O(2) dose-dependent and preceded nuclear condensation or plasma membrane leakage. Apoptotic cells were mainly distributed in the S-phase of the cell cycle, while growth-arrested cells exhibited predominantly G1- and G2/M-phase distributions. H(2)O(2) pretreatment induced G1 arrest and prohibited induction of apoptosis by a subsequent H(2)O(2) challenge. The p53 protein showed an average 6.1-fold elevation in apoptotic cells and a 3.5-fold elevation in growth-arrested cells. Reduction of p53 levels with human papillomavirus E6 protein prohibited the activation of caspase-3 and decreased the proportion of apoptotic cells. Growth-arrested cells had elevated p21, while p21 was absent in apoptotic cells. Bcl-2 was elevated in both growth-arrested and apoptotic cells. Finally, although the overall level of bax did not change in growth-arrested or apoptotic cells, the solubility of bax protein increased in apoptotic cells. Our data suggest that in contrast with growth-arrested cells, apoptotic cells show an S-phase cell cycle distribution, a higher degree of p53 elevation, an absence of p21 protein and increased solubility of bax protein.
Collapse
Affiliation(s)
- Q M Chen
- Department of Pharmacology, Skaggs Pharmaceutical Sciences Building, Room 130, University of Arizona, 1703 E. Mabel Street, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
247
|
Yang X, He Z, Xin B, Cao L. LMP1 of Epstein-Barr virus suppresses cellular senescence associated with the inhibition of p16INK4a expression. Oncogene 2000; 19:2002-13. [PMID: 10803461 DOI: 10.1038/sj.onc.1203515] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epstein-Barr virus is associated with a number of human proliferative and malignant diseases. It is capable of immortalizing human primary B-lymphocytes in vitro. Studies indicate that latent membrane protein LMP1 is one of the viral proteins essential for this process. In this report, LMP1 was shown to prevent primary mouse embryonic fibroblasts from entering into replicative senescence in vitro. It further suppresses the senescence-associated induction of p16INK4a, commonly believed to be a key regulator of replicative senescence. In addition, LMP1 was shown to prevent premature senescence provoked by oncogenic ras in mouse embryonic fibroblasts, and to inhibit the oncogene ras-mediated induction of p16INK4a and p21WAF1. In parallel, LMP1 also prevents ras-induced premature senescence in rat embryonic fibroblasts REF52 and human diploid fibroblasts IMR90. Moreover, LMP1 is capable of suppressing the p16INK4a promoter in REF52 and Saos-2 cells in a promoter reporter assay. Our findings suggest that with the expression of p16INK4a and replicative senescence being suppressed, LMP1 may play a key role in Epstein-Barr virus-associated proliferative diseases, and it may further contribute to cancer development by preventing premature senescence induced by mitogenic oncogenes.
Collapse
Affiliation(s)
- X Yang
- Department of Microbiology, The University of Hong Kong, SAR, China
| | | | | | | |
Collapse
|
248
|
Reed M, Corsa A, Kudravi S, McCormick R, Arthur W. A deficit in collagenase activity contributes to impaired migration of aged microvascular endothelial cells. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000401)77:1<116::aid-jcb12>3.0.co;2-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
249
|
Christiansen M, Kveiborg M, Kassem M, Clark BF, Rattan SI. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts. J Gerontol A Biol Sci Med Sci 2000; 55:B194-200. [PMID: 10811146 DOI: 10.1093/gerona/55.4.b194] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to understand the reasons for age-related impairment of the function of bone forming osteoblasts, we have examined the steady-state mRNA levels of the transcription factor CBFA1 and topoisomerase I during cellular aging of normal human trabecular osteoblasts, by the use of semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). There is a progressive and significant reduction of the CBFA1 steady-state mRNA level down to 50% during cellular aging of human osteoblasts. In comparison to the normal cells, human osteosarcoma cell lines SaOS-2 and KHOS/NP, and the SV40-transformed human lung fibroblast cell line MRC5V2 have 20 to 40% higher levels of CBFA1 mRNA. Similar levels of CBFA1 mRNA are detectable in normal human skin fibroblasts, and these cells also exhibit an age-related decline to the same extent. In addition, the expression of topoisomerase I is reduced by 40% in senescent osteoblasts, and the mRNA levels are significantly higher (40-70%) in transformed osteoblasts and fibroblasts. These changes in gene expression may be among the causes of impaired osteoblast functions, resulting in reduced bone formation during aging.
Collapse
Affiliation(s)
- M Christiansen
- Danish Centre for Molecular Gerontology, Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | |
Collapse
|
250
|
Abstract
Normal somatic cells are able to divide only a limited number of times before they become senescent. The occurrence of intratumoral cell death and the need for clonal evolution mean that many more cell divisions are required for tumorigenesis than is possible unless cells breach the senescence proliferation barrier and become immortalized. Senescence may therefore be a major tumor suppressor mechanism. During the past decade the study of senescence and immortalization has entered the mainstream of cancer research. A major reason for the current interest in this subject is the observation that most cancers have an activated telomere maintenance mechanism, a marker of immortalization. It has also been found that some of the most common genetic changes known to occur in cancer have a key role in the immortalization process.
Collapse
Affiliation(s)
- R R Reddel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia.
| |
Collapse
|