201
|
Abstract
Antigen-experienced T-cells directly target and destroy insulin-producing beta cells in patients with Type 1 diabetes. Consequently, T-cells are also major targets of immunomodulatory strategies that aim to prevent or delay the immune mediated loss of islet beta-cell function. These strategies have had modest success, prompting efforts into better defining the mechanisms that drive the differentiation of quiescent autoreactive clones into pathogenic effector and memory T-cells. Recent and novel findings now indicate that in addition to the classic mechanisms of antigenic recognition, autoreactive T-cell differentiation and expansion can be boosted by the homeostatic cytokine interleukin-7. In this article, we discuss recent evidence of the role of IL-7 mediated T-cell proliferation in the pathogenesis of Type 1 diabetes and the rationale for including immunomodulatory molecules targeting the IL-7/IL-7R axis in immunotherapeutic strategies to control beta-cell autoimmunity.
Collapse
Affiliation(s)
- Paolo Monti
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy,
| | | |
Collapse
|
202
|
Skyler JS. ATG in type 1 diabetes: an unanswered question. Lancet Diabetes Endocrinol 2013; 1:265-6. [PMID: 24622406 DOI: 10.1016/s2213-8587(13)70087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami 33136, Florida, USA.
| |
Collapse
|
203
|
Coppieters KT, Harrison LC, von Herrath MG. Trials in type 1 diabetes: Antigen-specific therapies. Clin Immunol 2013; 149:345-55. [PMID: 23490422 PMCID: PMC5777514 DOI: 10.1016/j.clim.2013.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) results from an aberrant immunological response against the insulin-producing beta cells in the islets of the pancreas. The ideal therapy would restore immune balance in a safe and lasting fashion, stopping the process of beta cell decay. The efficacy of immune suppressive agents such as cyclosporin underscores the notion that T1D can in principle be prevented, albeit at an unacceptable long-term safety risk. Immune modulatory drugs such as monoclonal anti-CD3 antibody, on the other hand, have recently had rather disappointing results in phase 3 trials, possibly due to inadequate dosing or choice of inappropriate endpoints. Therefore, it is argued that striking the right balance between safety and efficacy, together with careful trial design, will be paramount in preventing T1D. Here we outline the concept of antigen-specific tolerization as a strategy to safely induce long-term protection against T1D, focusing on available clinical trial data, key knowledge gaps and potential future directions.
Collapse
Affiliation(s)
| | - Leonard C. Harrison
- The Walter and Eliza Hall Institute of Medical Research and Department of Clinical Immunology and Burnet Clinical Research Unit, The Royal Melbourne Hospital, Melbourne, Australia
| | - Matthias G. von Herrath
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
204
|
|
205
|
Axelsson S, Chéramy M, Akerman L, Pihl M, Ludvigsson J, Casas R. Cellular and humoral immune responses in type 1 diabetic patients participating in a phase III GAD-alum intervention trial. Diabetes Care 2013; 36:3418-24. [PMID: 23863909 PMCID: PMC3816912 DOI: 10.2337/dc12-2251] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE GAD formulated in aluminum hydroxide (GAD-alum) has previously been shown to induce preservation of residual insulin secretion in recent-onset type 1 diabetes, but recent phase II and III GAD-alum trials failed to reach primary outcomes. The European phase III study was therefore closed after 15 months, and only a minority of patients completed the 30 months of follow-up. RESEARCH DESIGN AND METHODS This study aimed to characterize cellular and humoral responses in the Swedish patients (n = 148) participating in the phase III trial, receiving four (4D) or two (2D) GAD-alum doses or placebo. Serum GAD65 antibody (GADA) levels, GADA IgG1-4 subclass distribution, cytokine secretion, and proliferative responses in peripheral blood mononuclear cells (PBMCs) were analyzed. RESULTS The GAD65-induced cytokine profile tended to switch toward a predominant Th2-associated profile over time both in the 2D and 4D group. The groups also displayed increased GADA levels and PBMC proliferation compared with placebo, whereas GADA IgG subclass distribution changed in 4D patients. CONCLUSIONS Both 2D and 4D patients displayed GAD65-specifc cellular and humoral effects after GAD-alum treatment, but at different time points and magnitudes. No specific immune markers could be associated with treatment efficacy.
Collapse
|
206
|
Rydén AKE, Wesley JD, Coppieters KT, Von Herrath MG. Non-antigenic and antigenic interventions in type 1 diabetes. Hum Vaccin Immunother 2013; 10:838-46. [PMID: 24165565 PMCID: PMC4896560 DOI: 10.4161/hv.26890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of the pancreatic β-cells. Current T1D therapies are exclusively focused on regulating glycemia rather than the underlying immune response. A handful of trials have sought to alter the clinical course of T1D using various broad immune-suppressors, e.g., cyclosporine A and azathioprine.1–3 The effect on β-cell preservation was significant, however, these therapies were associated with unacceptable side-effects. In contrast, more recent immunomodulators, such as anti-CD3 and antigenic therapies such as DiaPep277, provide a more targeted immunomodulation and have been generally well-tolerated and safe; however, as a monotherapy there appear to be limitations in terms of therapeutic benefit. Therefore, we argue that this new generation of immune-modifying agents will likely work best as part of a combination therapy. This review will summarize current immune-modulating therapies under investigation and discuss how to move the field of immunotherapy in T1D forward.
Collapse
Affiliation(s)
- Anna K E Rydén
- Type 1 Diabetes R&D Center; Novo Nordisk Inc.; Seattle, WA USA; Pacific Northwest Diabetes Research Institute; Seattle, WA USA
| | | | | | | |
Collapse
|
207
|
Harrison LC, Wentworth JM, Zhang Y, Bandala-Sanchez E, Böhmer RM, Neale AM, Stone NL, Naselli G, Bosco JJ, Auyeung P, Rashidi M, Augstein P, Morahan G. Antigen-based vaccination and prevention of type 1 diabetes. Curr Diab Rep 2013; 13:616-23. [PMID: 23888323 DOI: 10.1007/s11892-013-0415-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin-dependent or type 1 diabetes (T1D) is a paradigm for prevention of autoimmune disease: Pancreatic β-cell autoantigens are defined, at-risk individuals can be identified before the onset of symptoms, and autoimmune diabetes is preventable in rodent models. Intervention in asymptomatic individuals before or after the onset of subclinical islet autoimmunity places a premium on safety, a requirement met only by lifestyle-dietary approaches or autoantigen-based vaccination to induce protective immune tolerance. Insulin is the key driver of autoimmune β-cell destruction in the nonobese diabetic (NOD) mouse model of T1D and is an early autoimmune target in children at risk for T1D. In the NOD mouse, mucosal administration of insulin induces regulatory T cells that protect against diabetes. The promise of autoantigen-specific vaccination in humans has yet to be realized, but recent trials of oral and nasal insulin vaccination in at-risk humans provide grounds for cautious optimism.
Collapse
Affiliation(s)
- Leonard C Harrison
- Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Xu D, Prasad S, Miller SD. Inducing immune tolerance: a focus on Type 1 diabetes mellitus. ACTA ACUST UNITED AC 2013; 3:415-426. [PMID: 24505231 DOI: 10.2217/dmt.13.36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tolerogenic strategies that specifically target diabetogenic immune cells in the absence of complications of immunosuppression are the desired treatment for the prevention or even reversal of Type 1 diabetes (T1D). Antigen (Ag)-based therapies must not only suppress disease-initiating diabetogenic T cells that are already activated, but, more importantly, prevent activation of naive auto-Ag-specific T cells that may become autoreactive through epitope spreading as a result of Ag liberation from damaged islet cells. Therefore, identification of auto-Ags relevant to T1D initiation and progression is critical to the design of effective Ag-specific therapies. Animal models of T1D have been successfully employed to identify potential diabetogenic Ags, and have further facilitated translation of Ag-specific tolerance strategies into human clinical trials. In this review, we highlight important advances using animal models in Ag-specific T1D immunotherapies, and the application of the preclinical findings to human subjects. We provide an up-to-date overview of the strengths and weaknesses of various tolerance-inducing strategies, including infusion of soluble Ags/peptides by various routes of delivery, genetic vaccinations, cell- and inert particle-based tolerogenic approaches, and various other strategies that target distinct tolerance-inducing pathways.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Suchitra Prasad
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology & Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
209
|
Thomas HR, Gitelman SE. Altering the course of type 1 diabetes: an update on prevention and new-onset clinical trials. Pediatr Diabetes 2013; 14:311-21. [PMID: 23773203 PMCID: PMC3748836 DOI: 10.1111/pedi.12040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/06/2013] [Accepted: 03/26/2013] [Indexed: 01/10/2023] Open
Affiliation(s)
- Hilary R. Thomas
- Department of Medicine and Diabetes Center, University of California, San Francisco, HSW 1102, 513 Parnassus Ave, San Francisco, CA 94143, 415-514-2110 (t), 415-564-5813 (f),
| | - Stephen E. Gitelman
- Department of Pediatrics and Diabetes Center, University of California San Francisco, Box 0434, Rm S-679, 513 Parnassus Avenue, San Francisco, CA 94143, Tel 415.476.3748, Fax 415.476.8214,
| |
Collapse
|
210
|
Axelsson S, Chéramy M, Akerman L, Pihl M, Ludvigsson J, Casas R. Cellular and humoral immune responses in type 1 diabetic patients participating in a phase III GAD-alum intervention trial. Diabetes Care 2013. [PMID: 23863909 DOI: 10.2337/dc12‐2251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
OBJECTIVE GAD formulated in aluminum hydroxide (GAD-alum) has previously been shown to induce preservation of residual insulin secretion in recent-onset type 1 diabetes, but recent phase II and III GAD-alum trials failed to reach primary outcomes. The European phase III study was therefore closed after 15 months, and only a minority of patients completed the 30 months of follow-up. RESEARCH DESIGN AND METHODS This study aimed to characterize cellular and humoral responses in the Swedish patients (n = 148) participating in the phase III trial, receiving four (4D) or two (2D) GAD-alum doses or placebo. Serum GAD65 antibody (GADA) levels, GADA IgG1-4 subclass distribution, cytokine secretion, and proliferative responses in peripheral blood mononuclear cells (PBMCs) were analyzed. RESULTS The GAD65-induced cytokine profile tended to switch toward a predominant Th2-associated profile over time both in the 2D and 4D group. The groups also displayed increased GADA levels and PBMC proliferation compared with placebo, whereas GADA IgG subclass distribution changed in 4D patients. CONCLUSIONS Both 2D and 4D patients displayed GAD65-specifc cellular and humoral effects after GAD-alum treatment, but at different time points and magnitudes. No specific immune markers could be associated with treatment efficacy.
Collapse
|
211
|
Cabrera SM, Colvin SC, Tersey SA, Maier B, Nadler JL, Mirmira RG. Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the non-obese diabetic mouse model of type 1 diabetes. Clin Exp Immunol 2013; 172:375-82. [PMID: 23600825 DOI: 10.1111/cei.12068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2013] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) results from T helper type 1 (Th1)-mediated autoimmune destruction of insulin-producing β cells. Novel experimental therapies for T1D target immunomodulation, β cell survival and inflammation. We examined combination therapy with the dipeptidyl peptidase-IV inhibitor MK-626 and the histone deacetylase inhibitor vorinostat in the non-obese diabetic (NOD) mouse model of T1D. We hypothesized that combination therapy would ameliorate T1D by providing protection from β cell inflammatory destruction while simultaneously shifting the immune response towards immune-tolerizing regulatory T cells (T(regs)). Although neither mono- nor combination therapies with MK-626 and vorinostat caused disease remission in diabetic NOD mice, the combination of MK-626 and vorinostat increased β cell area and reduced the mean insulitis score compared to diabetic control mice. In prediabetic NOD mice, MK-626 monotherapy resulted in improved glucose tolerance, a reduction in mean insulitis score and an increase in pancreatic lymph node T(reg) percentage, and combination therapy with MK-626 and vorinostat increased pancreatic lymph node T(reg) percentage. We conclude that neither single nor combination therapies using MK-626 and vorinostat induce diabetes remission in NOD mice, but combination therapy appears to have beneficial effects on β cell area, insulitis and T(reg) populations. Combinations of vorinostat and MK-626 may serve as beneficial adjunctive therapy in clinical trials for T1D prevention or remission.
Collapse
Affiliation(s)
- S M Cabrera
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
212
|
von Herrath M, Peakman M, Roep B. Progress in immune-based therapies for type 1 diabetes. Clin Exp Immunol 2013; 172:186-202. [PMID: 23574316 DOI: 10.1111/cei.12085] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 01/10/2023] Open
Abstract
Immune-based therapies that prevent type 1 diabetes or preserve metabolic function remaining at diagnosis have become a major objective for funding agencies and international trial consortia, and receive backing from notable patient advocate groups. The development of immune-based therapeutic strategies in this arena requires a careful balancing of the risks of the therapy against the potential benefits, because many individuals are diagnosed or identified as being at increased risk of disease in early childhood, a period when manipulation of the developing immune system should be undertaken with caution. In addition, a therapy exists (daily insulin injection) that is life-saving in the acute stages of disease and can be used effectively over a lifetime as maintenance. Conversely, the disease is increasing in incidence; is peaking in ever-younger age groups; carries significant risk of increased morbidity and early mortality; and remains difficult to manage effectively in many settings. With these issues in mind, in this article we review progress towards immune-based strategies for this chronic autoimmune disease.
Collapse
Affiliation(s)
- M von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|
213
|
Clemente-Casares X, Tsai S, Huang C, Santamaria P. Antigen-specific therapeutic approaches in Type 1 diabetes. Cold Spring Harb Perspect Med 2013; 2:a007773. [PMID: 22355799 DOI: 10.1101/cshperspect.a007773] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of strategies capable of specifically curbing pathogenic autoimmune responses in a disease- and organ-specific manner without impairing foreign or tumor antigen-specific immune responses represents a long sought-after goal in autoimmune disease research. Unfortunately, our current understanding of the intricate details of the different autoimmune diseases that affect mankind, including type 1 diabetes, is rudimentary. As a result, progress in the development of the so-called "antigen-specific" therapies for autoimmunity has been slow and fraught with limitations that interfere with bench-to-bedside translation. Absent or incomplete understanding of mechanisms of action and lack of adequate immunological biomarkers, for example, preclude the rational design of effective drug development programs. Here, we provide an overview of antigen-specific approaches that have been tested in preclinical models of T1D and, in some cases, human subjects. The evidence suggests that effective translation of these approaches through clinical trials and into patients will continue to meet with failure unless detailed mechanisms of action at the level of the organism are defined.
Collapse
Affiliation(s)
- Xavier Clemente-Casares
- Julia McFarlane Diabetes Research Centre, University of Calgary, NW Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
214
|
Boettler T, Pagni PP, Jaffe R, Cheng Y, Zerhouni P, von Herrath M. The clinical and immunological significance of GAD-specific autoantibody and T-cell responses in type 1 diabetes. J Autoimmun 2013; 44:40-8. [PMID: 23770292 DOI: 10.1016/j.jaut.2013.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/12/2023]
Abstract
Antigen-specific interventions are desirable approaches in Type 1 Diabetes (T1D) as they can alter islet-specific autoimmunity without systemic side effects. Glutamic acid decarboxylase of 65 kDa (GAD65) is a major autoantigen in type 1 diabetes (T1D) and GAD-specific autoimmunity is a common feature of T1D in humans but also in mouse models of the disease. In humans, administration of the GAD65 protein in an alum formulation has been shown to reduce C-peptide decline in recently diagnosed patients, however, these observations were not confirmed in subsequent phase II/III clinical trials. As GAD-based immune interventions in different formulations have successfully been employed to prevent the establishment of T1D in mouse models of T1D, we sought to analyze the efficacy of GAD-alum treatment and the effects on the GAD-specific immune response in two different mouse models of T1D. Consistent with the latest clinical trials, mice treated with GAD-alum were not protected from diabetes, although GAD-alum induced a GAD-specific Th2-deviated immune response in transgenic rat insulin promoter-glycoprotein (RIP-GP) mice. These observations underline the importance of a thorough, preclinical evaluation of potential drugs before the initiation of clinical trials.
Collapse
Affiliation(s)
- Tobias Boettler
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
215
|
Brooks-Worrell B, Palmer JP. Prevention versus intervention of type 1 diabetes. Clin Immunol 2013; 149:332-8. [PMID: 23803322 DOI: 10.1016/j.clim.2013.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/10/2023]
Abstract
Type 1 diabetes (T1D) is a cell-mediated autoimmune disease. New cases of T1D are on the increase and exogenous insulin therapy is the only intervention regularly initiated for T1D patients. Though tremendous strides have been made in prediction of T1D, prevention and intervention strategies have not experienced the same success. In this review, we will discuss some possible reasons why new intervention therapies for T1D have not been implemented into the mainstream treatment regimen for T1D patients. We will also discuss potential caveats for why prevention and intervention trials in T1D may not have experienced the same success as prediction trials.
Collapse
Affiliation(s)
- Barbara Brooks-Worrell
- Department of Medicine, University of Washington, Seattle, WA 98108, USA; Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | |
Collapse
|
216
|
Skyler JS, Pugliese A. Immunotherapy trials for type 1 diabetes: the contribution of George Eisenbarth. Diabetes Technol Ther 2013; 15 Suppl 2:S2-13-S2-20. [PMID: 23786294 PMCID: PMC3676656 DOI: 10.1089/dia.2013.0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of pancreatic β-cells, and as such it should respond to immunotherapy. George Eisenbarth gave many significant contributions to this field. He has been involved at some level in most immunotherapy trials during the past three decades. He was among the pioneers who attempted immunotherapy approaches in patients with recent-onset T1D. In the early 1980s he began studying relatives of those with the disease, leading to the concept that T1D was a chronic autoimmune disease, in which islet autoimmune responses would silently destroy β-cells and cause progressive impairment of insulin secretion, years to months before a diagnosis was made. Consequently, he was one of the first to attempt immune intervention in people at high risk of T1D. Throughout his career he developed autoantibody assays and predictive models (which included metabolic testing and later genetics) to identify individuals at risk of T1D. He provided seminal intellectual contributions and critical tools for prevention trials. His focus on insulin as a critical autoantigen led to multiple prevention trials, including the Diabetes Prevention Trial-Type 1 (DPT-1), which studied both parenteral and oral insulin. In the DPT-1 Oral Insulin Trial, a cohort with higher levels of insulin autoantibodies was identified that appeared to have delayed disease progression. Type 1 Diabetes TrialNet is conducting a new trial to verify or refute this observation. Moreover, George identified and tested in the mouse small molecules that block or modulate presentation of a key insulin peptide and in turn prevent the activation of insulin-specific T-lymphocytes. Thus, we believe his greatest contribution is yet to come, as in the near future we should see this most recent work translate into clinical trials.
Collapse
Affiliation(s)
- Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | |
Collapse
|
217
|
Pihl M, Akerman L, Axelsson S, Chéramy M, Hjorth M, Mallone R, Ludvigsson J, Casas R. Regulatory T cell phenotype and function 4 years after GAD-alum treatment in children with type 1 diabetes. Clin Exp Immunol 2013; 172:394-402. [PMID: 23600827 PMCID: PMC3646438 DOI: 10.1111/cei.12078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 01/13/2023] Open
Abstract
Glutamic acid decarboxylase (GAD)(65) formulated with aluminium hydroxide (GAD-alum) was effective in preserving insulin secretion in a Phase II clinical trial in children and adolescents with recent-onset type 1 diabetes. In addition, GAD-alum treated patients increased CD4(+) CD25(hi) forkhead box protein 3(+) (FoxP3(+)) cell numbers in response to in-vitro GAD(65) stimulation. We have carried out a 4-year follow-up study of 59 of the original 70 patients to investigate long-term effects on the frequency and function of regulatory T cells after GAD-alum treatment. Peripheral blood mononuclear cells were stimulated in vitro with GAD65 for 7 days and expression of regulatory T cell markers was measured by flow cytometry. Regulatory T cells (CD4(+) CD25(hi) CD127(lo)) and effector T cells (CD4(+) CD25(-) CD127(+)) were further sorted, expanded and used in suppression assays to assess regulatory T cell function after GAD-alum treatment. GAD-alum-treated patients displayed higher frequencies of in-vitro GAD(65) -induced CD4(+) CD25(+) CD127(+) as well as CD4(+) CD25(hi) CD127(lo) and CD4(+) FoxP3(+) cells compared to placebo. Moreover, GAD(65) stimulation induced a population of CD4(hi) cells consisting mainly of CD25(+) CD127(+) , which was specific of GAD-alum-treated patients (16 of 25 versus one of 25 in placebo). Assessment of suppressive function in expanded regulatory T cells revealed no difference between GAD-alum- and placebo-treated individuals. Regulatory T cell frequency did not correlate with C-peptide secretion throughout the study. In conclusion, GAD-alum treatment induced both GAD(65) -reactive CD25(+) CD127(+) and CD25(hi) CD127(lo) cells, but no difference in regulatory T cell function 4 years after GAD-alum treatment.
Collapse
Affiliation(s)
- M Pihl
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
218
|
Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, Greenbaum CJ, Herold KC, Marks JB, Raskin P, Sanda S, Schatz D, Wherrett DK, Wilson DM, Krischer JP, Skyler JS, Pickersgill L, de Koning E, Ziegler AG, Böehm B, Badenhoop K, Schloot N, Bak JF, Pozzilli P, Mauricio D, Donath MY, Castaño L, Wägner A, Lervang HH, Perrild H, Mandrup-Poulsen T. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 2013; 381:1905-15. [PMID: 23562090 PMCID: PMC3827771 DOI: 10.1016/s0140-6736(13)60023-9] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Innate immunity contributes to the pathogenesis of autoimmune diseases, such as type 1 diabetes, but until now no randomised, controlled trials of blockade of the key innate immune mediator interleukin-1 have been done. We aimed to assess whether canakinumab, a human monoclonal anti-interleukin-1 antibody, or anakinra, a human interleukin-1 receptor antagonist, improved β-cell function in recent-onset type 1 diabetes. METHODS We did two randomised, placebo-controlled trials in two groups of patients with recent-onset type 1 diabetes and mixed-meal-tolerance-test-stimulated C peptide of at least 0·2 nM. Patients in the canakinumab trial were aged 6-45 years and those in the anakinra trial were aged 18-35 years. Patients in the canakinumab trial were enrolled at 12 sites in the USA and Canada and those in the anakinra trial were enrolled at 14 sites across Europe. Participants were randomly assigned by computer-generated blocked randomisation to subcutaneous injection of either 2 mg/kg (maximum 300 mg) canakinumab or placebo monthly for 12 months or 100 mg anakinra or placebo daily for 9 months. Participants and carers were masked to treatment assignment. The primary endpoint was baseline-adjusted 2-h area under curve C-peptide response to the mixed meal tolerance test at 12 months (canakinumab trial) and 9 months (anakinra trial). Analyses were by intention to treat. These studies are registered with ClinicalTrials.gov, numbers NCT00947427 and NCT00711503, and EudraCT number 2007-007146-34. FINDINGS Patients were enrolled in the canakinumab trial between Nov 12, 2010, and April 11, 2011, and in the anakinra trial between Jan 26, 2009, and May 25, 2011. 69 patients were randomly assigned to canakinumab (n=47) or placebo (n=22) monthly for 12 months and 69 were randomly assigned to anakinra (n=35) or placebo (n=34) daily for 9 months. No interim analyses were done. 45 canakinumab-treated and 21 placebo-treated patients in the canakinumab trial and 25 anakinra-treated and 26 placebo-treated patients in the anakinra trial were included in the primary analyses. The difference in C peptide area under curve between the canakinumab and placebo groups at 12 months was 0·01 nmol/L (95% CI -0·11 to 0·14; p=0·86), and between the anakinra and the placebo groups at 9 months was 0·02 nmol/L (-0·09 to 0·15; p=0·71). The number and severity of adverse events did not differ between groups in the canakinumab trial. In the anakinra trial, patients in the anakinra group had significantly higher grades of adverse events than the placebo group (p=0·018), which was mainly because of a higher number of injection site reactions in the anakinra group. INTERPRETATION Canakinumab and anakinra were safe but were not effective as single immunomodulatory drugs in recent-onset type 1 diabetes. Interleukin-1 blockade might be more effective in combination with treatments that target adaptive immunity in organ-specific autoimmune disorders. FUNDING National Institutes of Health and Juvenile Diabetes Research Foundation.
Collapse
|
219
|
Is type 1 diabetes a food-induced disease? Med Hypotheses 2013; 81:338-42. [PMID: 23688738 DOI: 10.1016/j.mehy.2013.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
The incidence of type 1 diabetes among children has almost doubled during the last decades in Sweden. Type 1 diabetes is considered as an autoimmune disease with unknown aetiology. Here we propose that the immune reaction may be initiated by food-derived mechanisms. The incidence of diabetes parallels an increased consumption of pasta, white bread, meat, cheese, low-fat milk, exotic fruits, soda, and snacks. Simultaneously, the consumption of potatoes, butter, high-fat milk, and domestic fruit has decreased. Three categories of food related reaction mechanisms are discussed against the following items (1) proteins from wheat, meat, and milk, (2) fat from processed food, and (3) exotic fruits. The current food consumption is suggested to initiate a pro-inflammatory reaction in the intestine and thereby reduce the intestinal barrier function. This may influence tolerance development and thus pave the way for an autoimmune attack on pancreatic beta cells.
Collapse
|
220
|
Ludvigsson J, Carlsson A, Deli A, Forsander G, Ivarsson SA, Kockum I, Lindblad B, Marcus C, Lernmark Å, Samuelsson U. Decline of C-peptide during the first year after diagnosis of Type 1 diabetes in children and adolescents. Diabetes Res Clin Pract 2013; 100:203-9. [PMID: 23529064 DOI: 10.1016/j.diabres.2013.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/01/2013] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS We studied the decline of C-peptide during the first year after diagnosis of Type 1 diabetes (T1D), and its relation to various factors. METHODS 3824/4017 newly diagnosed patients (95%) were classified as T1D in a national study. In a non-selected subgroup of 1669 T1D patients we determined non-fasting C-peptide both at diagnosis and after 1 year, and analyzed decline in relation to clinical symptoms and signs, initial C-peptide and occurrence of auto-antibodies. RESULTS Younger children lost more C-peptide (p<0.001) and the higher the C-peptide at diagnosis the larger the decline during the first year (p<0.0000). Patients with higher BMI had higher C-peptide at diagnosis but lost more (p<0.01), and those with lower HbA1c, without symptoms and signs at diagnosis, and with higher BMI, had higher C-peptide at diagnosis, but lost more during the first year (p<0.001). Finally, patients diagnosed during autumn had higher C-peptide at diagnosis, but lost more during the coming year (p<0.001). Occurrence of auto-antibodies did not correlate with C-peptide decline, except possibly for a more rapid loss in IAA-positive patients. CONCLUSIONS/INTERPRETATION Even in a restricted geographical area and narrow age range (<18 years), the natural course of Type 1 diabetes is heterogeneous. This should be considered in clinical trials.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, and Pediatric Clinic, Östergötland County Council, Linköping, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Liu YF, Peakman M, Dayan CM. Safely targeting autoimmunity in type 1 diabetes: the MonoPepT1De trial. PRACTICAL DIABETES 2013. [DOI: 10.1002/pdi.1764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
222
|
Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med 2013; 2:a007781. [PMID: 22474615 DOI: 10.1101/cshperspect.a007781] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes is characterized by recognition of one or more β-cell proteins by the immune system. The list of target antigens in this disease is ever increasing and it is conceivable that additional islet autoantigens, possibly including pivotal β-cell targets, remain to be discovered. Many knowledge gaps remain with respect to the disorder's pathogenesis, including the cause of loss of tolerance to islet autoantigens and an explanation as to why targeting of proteins with a distribution of expression beyond β cells may result in selective β-cell destruction and type 1 diabetes. Yet, our knowledge of β-cell autoantigens has already led to translation into tissue-specific immune intervention strategies that are currently being assessed in clinical trials for their efficacy to halt or delay disease progression to type 1 diabetes, as well as to reverse type 1 diabetes. Here we will discuss recently gained insights into the identity, biology, structure, and presentation of islet antigens in relation to disease heterogeneity and β-cell destruction.
Collapse
Affiliation(s)
- Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | | |
Collapse
|
223
|
Herold KC, Vignali DAA, Cooke A, Bluestone JA. Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 2013; 13:243-56. [PMID: 23524461 PMCID: PMC4172461 DOI: 10.1038/nri3422] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Type 1 diabetes (T1D) remains an important health problem, particularly in western countries, where the incidence has been increasing in younger children. In 1986, Eisenbarth described T1D as a chronic autoimmune disease. Work over the past three-and-a-half decades has identified many of the genetic, immunological and environmental factors that are involved in the disease and have led to hypotheses concerning its pathogenesis. Clinical trials have been conducted to test these hypotheses but have had mixed results. Here, we discuss the findings that have led to our current concepts of the disease mechanisms involved in T1D and the clinical studies promoted by these studies. The findings from preclinical and clinical studies support the original proposed model for how T1D develops but have also suggested that this disease is more complex than was originally thought and will require broader treatment approaches.
Collapse
Affiliation(s)
- Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
224
|
Anderson RP, Jabri B. Vaccine against autoimmune disease: antigen-specific immunotherapy. Curr Opin Immunol 2013; 25:410-7. [PMID: 23478068 DOI: 10.1016/j.coi.2013.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 02/08/2013] [Indexed: 02/08/2023]
Abstract
Recent interest in testing whether the success of antigen-specific immunotherapy (ASIT) for autoimmune diseases in mice can be translated to humans has highlighted the need for better tools to study and understand human autoimmunity. Clinical development of ASIT for allergy has been instructive, but limited understanding of CD4 T cell epitope/determinant hierarchies hampers the rational design and monitoring of ASIT. Definitive identification of pathogenic T cell epitopes as is now known in celiac disease and recent initiatives to optimize immune monitoring will facilitate rational design, monitoring and mechanistic understanding of ASIT for human autoimmune diseases.
Collapse
|
225
|
Robert S, Korf H, Gysemans C, Mathieu C. Antigen-based vs. systemic immunomodulation in type 1 diabetes: the pros and cons. Islets 2013; 5:53-66. [PMID: 23648893 PMCID: PMC4204023 DOI: 10.4161/isl.24785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In type 1 diabetic patients insulin-producing pancreatic β-cells are destroyed by an orchestrated immune process involving self-reactive auto-antigen-specific CD4⁺ and CD8⁺ T cells. Efforts to reverse or prevent this destructive immunological cascade have led to promising results in animal models, however, the transition to the clinic has yet been unsuccessful. In addition, current clinical studies lack reliable biomarkers to circumscribe end-point parameters and define therapeutic success. Here, we give a current overview of both antigen-specific and non-specific systemic immunomodulatory approaches with a focus on the therapies verified or under evaluation in a clinical setting. While both approaches have their advantages and disadvantages, rationally designed combination therapies may yield the highest therapeutic efficacy. In order for future strategies to be effective, new well-defined biomarkers need to be developed and the extrapolation process of dose, timing and frequency from in vivo models to patients needs to be carefully reconsidered.
Collapse
|
226
|
|
227
|
Affiliation(s)
- Jay S Skyler
- Division of Endocrinology, Diabetes & Metabolism, and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
228
|
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder directed against the β cells of the pancreatic islets. The genetic risk of the disease is linked to HLA-DQ risk alleles and unknown environmental triggers. In most countries, only 10-15% of children or young adults newly diagnosed with T1DM have a first-degree relative with the disease. Autoantibodies against insulin, GAD65, IA-2 or the ZnT8 transporter mark islet autoimmunity. These islet autoantibodies may already have developed in children of 1-3 years of age. Immune therapy in T1DM is approached at three different stages. Primary prevention is treatment of individuals at increased genetic risk. For example, one trial is testing if hydrolyzed casein milk formula reduces T1DM incidence in genetically predisposed infants. Secondary prevention is targeted at individuals with persistent islet autoantibodies. Ongoing trials involve nonautoantigen-specific therapies, such as Bacillus Calmette-Guérin vaccine or anti-CD3 monoclonal antibodies, or autoantigen-specific therapies, including oral and nasal insulin or alum-formulated recombinant human GAD65. Trial interventions at onset of T1DM have also included nonautoantigen-specific approaches, and autoantigen-specific therapies, such as proinsulin peptides. Although long-term preservation of β-cell function has been difficult to achieve in many studies, considerable progress is being made through controlled clinical trials and animal investigations towards uncovering mechanisms of β-cell destruction. Novel therapies that prevent islet autoimmunity or halt progressive β-cell destruction are needed.
Collapse
Affiliation(s)
- Ake Lernmark
- Lund University, Department of Clinical Sciences, Skåne University Hospital SUS, Malmö, Sweden. ake.lernmark@ med.lu.se
| | | |
Collapse
|
229
|
Herold KC, Gitelman SE, Willi SM, Gottlieb PA, Waldron-Lynch F, Devine L, Sherr J, Rosenthal SM, Adi S, Jalaludin MY, Michels AW, Dziura J, Bluestone JA. Teplizumab treatment may improve C-peptide responses in participants with type 1 diabetes after the new-onset period: a randomised controlled trial. Diabetologia 2013; 56:391-400. [PMID: 23086558 PMCID: PMC3537871 DOI: 10.1007/s00125-012-2753-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/07/2012] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes results from a chronic autoimmune process continuing for years after presentation. We tested whether treatment with teplizumab (a Fc receptor non-binding anti-CD3 monoclonal antibody), after the new-onset period, affects the decline in C-peptide production in individuals with type 1 diabetes. METHODS In a randomised placebo-controlled trial we treated 58 participants with type 1 diabetes for 4-12 months with teplizumab or placebo at four academic centres in the USA. A central randomisation centre used computer generated tables to allocate treatments. Investigators, patients, and caregivers were blinded to group assignment. The primary outcome was a comparison of C-peptide responses to a mixed meal after 1 year. We explored modification of treatment effects in subgroups of patients. RESULTS Thirty-four and 29 subjects were randomized to the drug and placebo treated groups, respectively. Thirty-one and 27, respectively, were analysed. Although the primary outcome analysis showed a 21.7% higher C-peptide response in the teplizumab-treated group (0.45 vs 0.371; difference, 0.059 [95% CI 0.006, 0.115] nmol/l) (p = 0.03), when corrected for baseline imbalances in HbA(1c) levels, the C-peptide levels in the teplizumab-treated group were 17.7% higher (0.44 vs 0.378; difference, 0.049 [95% CI 0, 0.108] nmol/l, p = 0.09). A greater proportion of placebo-treated participants lost detectable C-peptide responses at 12 months (p = 0.03). The teplizumab group required less exogenous insulin (p < 0.001) but treatment differences in HbA(1c) levels were not observed. Teplizumab was well tolerated. A subgroup analysis showed that treatment benefits were larger in younger individuals and those with HbA(1c) <6.5% at entry. Clinical responders to teplizumab had an increase in circulating CD8 central memory cells 2 months after enrolment compared with non-responders. CONCLUSIONS/INTERPRETATIONS This study suggests that deterioration in insulin secretion may be affected by immune therapy with teplizumab after the new-onset period but the magnitude of the effect is less than during the new-onset period. Our studies identify characteristics of patients most likely to respond to this immune therapy. TRIAL REGISTRATION ClinicalTrials.gov NCT00378508 FUNDING This work was supported by grants 2007-502, 2007-1059 and 2006-351 from the JDRF and grants R01 DK057846, P30 DK20495, UL1 RR024139, UL1RR025780, UL1 RR024131 and UL1 RR024134 from the NIH.
Collapse
Affiliation(s)
- K C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, 300 George St, New Haven, CT 06511, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol 2013; 3:406. [PMID: 23335921 PMCID: PMC3541479 DOI: 10.3389/fimmu.2012.00406] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/16/2012] [Indexed: 12/24/2022] Open
Abstract
Aluminum-containing adjuvants are widely used in preventive vaccines against infectious diseases and in preparations for allergy immunotherapy. The mechanism by which they enhance the immune response remains poorly understood. Aluminum adjuvants selectively stimulate a Th2 immune response upon injection of mice and a mixed response in human beings. They support activation of CD8 T cells, but these cells do not undergo terminal differentiation to cytotoxic T cells. Adsorption of antigens to aluminum adjuvants enhances the immune response by facilitating phagocytosis and slowing the diffusion of antigens from the injection site which allows time for inflammatory cells to accumulate. The adsorptive strength is important as high affinity interactions interfere with the immune response. Adsorption can also affect the physical and chemical stability of antigens. Aluminum adjuvants activate dendritic cells via direct and indirect mechanisms. Phagocytosis of aluminum adjuvants followed by disruption of the phagolysosome activates NLRP3-inflammasomes resulting in the release of active IL-1β and IL-18. Aluminum adjuvants also activate dendritic cells by binding to membrane lipid rafts. Injection of aluminum-adjuvanted vaccines causes the release of uric acid, DNA, and ATP from damaged cells which in turn activate dendritic cells. The use of aluminum adjuvant is limited by weak stimulation of cell-mediated immunity. This can be enhanced by addition of other immunomodulatory molecules. Adsorption of these molecules is determined by the same mechanisms that control adsorption of antigens and can affect the efficacy of such combination adjuvants. The widespread use of aluminum adjuvants can be attributed in part to the excellent safety record based on a 70-year history of use. They cause local inflammation at the injection site, but also reduce the severity of systemic and local reactions by binding biologically active molecules in vaccines.
Collapse
Affiliation(s)
- Harm Hogenesch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| |
Collapse
|
231
|
Staeva TP, Chatenoud L, Insel R, Atkinson MA. Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes 2013; 62:9-17. [PMID: 23258904 PMCID: PMC3526042 DOI: 10.2337/db12-0562] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Lucienne Chatenoud
- Université Paris Descartes, INSERM U1013, Hôpital Universitaire Necker-Enfants malades, Paris, France
| | | | - Mark A. Atkinson
- Department of Pathology, University of Florida, Gainesville, Florida
- Corresponding author: Mark A. Atkinson,
| |
Collapse
|
232
|
Gastrointestinal Tract and Endocrine System. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
233
|
Ehlers MR, Nepom GT. Immune-directed therapy for type 1 diabetes at the clinical level: the Immune Tolerance Network (ITN) experience. Rev Diabet Stud 2012; 9:359-71. [PMID: 23804273 DOI: 10.1900/rds.2012.9.359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reestablishing immune tolerance in type 1 diabetes (T1D), a chronic autoimmune disease, is a major goal. The Immune Tolerance Network (ITN) has initiated eight clinical trials of immunomodulatory therapies in recent-onset T1D over the past decade. Results have been mixed in terms of clinical efficacy, but the studies have provided valuable mechanistic insight that are enhancing our understanding of the disease and guiding the design of future trials. Trials of non-Fc-binding anti-CD3 mAbs have revealed that modulation of this target leads to partial responses, and ITN's AbATE trial led to identification of a robust responder group that could be distinguished from non-responders by baseline metabolic and immunologic features. A pilot study of the combination of IL-2 and rapamycin gave the first demonstration that frequency and function of regulatory T cells (Tregs) can be enhanced in T1D subjects, although the therapy triggered the activation of effectors with transient β-cell dysfunction. Similarly, therapy with anti-thymocyte globulin led to substantial lymphocyte depletion, but also to the activation of the acute-phase response with no clinical benefit during preliminary analyses. These and other results provide mechanistic tools that can be used as biomarkers for safety and efficacy in future trials. Furthermore, our results, together with those of other organizations, notably TrialNet, delineate the roles of the major components of the immune response in T1D. This information is setting the stage for future combination therapy trials. The development of disease-relevant biomarkers will also enable the implementation of innovative trial designs, notably adaptive trials, which will increase efficiencies in terms of study duration and sample size, and which will expedite the conduct of trials in which there are uncertainties about dose response and effect size.
Collapse
Affiliation(s)
- Mario R Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, CA, USA.
| | | |
Collapse
|
234
|
Coppieters KT, Sehested Hansen B, von Herrath MG. Clinical potential of antigen-specific therapies in type 1 diabetes. Rev Diabet Stud 2012; 9:328-37. [PMID: 23804270 PMCID: PMC3740700 DOI: 10.1900/rds.2012.9.328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 12/31/2022] Open
Abstract
In type 1 diabetes (T1D), pancreatic beta-cells are attacked and destroyed by the immune system, which leads to a loss of endogenous insulin secretion. The desirable outcome of therapeutic intervention in autoimmune diseases is the restoration of immune tolerance to prevent organ damage. Past trials with immune suppressive drugs highlight the fact that T1D is in principle a curable condition. However, the barrier in T1D therapy in terms of drug safety is set particularly high because of the predominantly young population and the good prognosis associated with modern exogenous insulin therapy. Thus, there is a general consensus that chronic immune suppression is associated with unacceptable long-term safety risks. On the other hand, immune-modulatory biologicals have recently failed to confer significant protection in phase 3 clinical trials. However, the concept of antigen-specific tolerization may offer a unique strategy to safely induce long-term protection against T1D. In this review, we analyze the potential reasons for the failure of the different tolerization therapies, and describe how the concept of antigen-specific toleraization may overcome the obstacles associated with clinical therapy in T1D.
Collapse
Affiliation(s)
| | | | - Matthias G. von Herrath
- Type 1 Diabetes R&D Center, Novo Nordisk Inc., Seattle, WA, USA
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
235
|
Cabrera SM, Rigby MR, Mirmira RG. Targeting regulatory T cells in the treatment of type 1 diabetes mellitus. Curr Mol Med 2012; 12:1261-72. [PMID: 22709273 PMCID: PMC3709459 DOI: 10.2174/156652412803833634] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a T cell-mediated autoimmune disease resulting in islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. T1DM has classically been attributed to the pathogenic actions of auto-reactive effector T cells(Teffs) on the β cell. Recent literature now suggests that a failure of a second T cell subtype, known as regulatory T cells (Tregs), plays a critical role in the development of T1DM. During immune homeostasis, Tregs counterbalance the actions of autoreactive Teff cells, thereby participating in peripheral tolerance. An imbalance in the activity between Teff and Tregs may be crucial in the breakdown of peripheral tolerance, leading to the development of T1DM. In this review, we summarize our current understanding of Treg function in health and in T1DM, and examine the effect of experimental therapies for T1DM on Treg cell number and function in both mice and humans.
Collapse
Affiliation(s)
- Susanne M. Cabrera
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark R. Rigby
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Raghavendra G. Mirmira
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
236
|
Guglielmi C, Palermo A, Pozzilli P. Latent autoimmune diabetes in the adults (LADA) in Asia: from pathogenesis and epidemiology to therapy. Diabetes Metab Res Rev 2012; 28 Suppl 2:40-6. [PMID: 23280865 DOI: 10.1002/dmrr.2345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus is a metabolic disorder resulting from a defect in insulin secretion, insulin action or both. An effect of this process is chronic hyperglycaemia with disorder of carbohydrate, fat and protein metabolism and with long-term complications of diabetes including retinopathy, nephropathy and neuropathy. Latent autoimmune diabetes in adults (LADA) is a type of autoimmune diabetes that resembles Type 1 diabetes (T1D), however, it shows a later onset and slower progression towards insulin necessity. Epidemiological studies suggest that LADA may account for 2-12% of all cases of diabetes in adult population. The epidemiology and phenotypic characteristics of LADA may vary between Caucasian and Asian diabetic patients as lifestyle, food habits and body mass index differ between these two populations. Data on LADA from population-based studies in Asia are sparse and only few studies have looked at it. A number of attractive therapeutic interventions may be envisaged for prevention of beta-cell loss in LADA, including hypoglycaemic and immunomodulatory agents. Because the autoimmune process in LADA seems to be slower than in childhood T1D, there is a wider window of opportunities for intervention. In deciding the best therapeutic approach, features of LADA should guide therapy including presence of other comorbidities that may influence the therapeutic choice.
Collapse
Affiliation(s)
- Chiara Guglielmi
- Department of Endocrinology and Diabetes, University Campus Bio Medico, Via Alvaro del Portillo 21, Rome, Italy
| | | | | |
Collapse
|
237
|
Bobbala D, Chen XL, Leblanc C, Mayhue M, Stankova J, Tanaka T, Chen YG, Ilangumaran S, Ramanathan S. Interleukin-15 plays an essential role in the pathogenesis of autoimmune diabetes in the NOD mouse. Diabetologia 2012; 55:3010-20. [PMID: 22890824 DOI: 10.1007/s00125-012-2675-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/05/2012] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS IL-15, induced by innate immune stimuli, promotes rheumatoid arthritis and inflammatory bowel disease. However, its role in autoimmune type 1 diabetes is unclear. Our aim is to define the role of IL-15 in the pathogenesis of diabetes in the NOD mouse model. METHODS We generated NOD.Il15(-/-) mice expressing a polyclonal repertoire of T cell antigen receptor (TCR) or a transgenic TCR and monitored diabetes onset and insulitis. NOD Scid.Il15(-/-) (full name NOD.CB17-Prkdc (scid)/NCrCrl) and NOD Scid.gamma (full name NOD.Cg-Prkdc(scid) Il2rg ( tm1Wjl )/SzJ) mice were used to distinguish the requirement for IL-15 signalling in CD8(+) T cells and antigen-presenting cells (APCs) to induce disease. We examined the effect of blocking IL-15 signalling on diabetes onset in NOD mice. RESULTS At 7 months of age, more than 75% of the NOD Il15(-/-) female mice remained diabetes free compared with only 30% in the control group. Diabetes incidence was also decreased in 8.3-NOD (full name NOD Cg-Tg[TcraTcrbNY8.3]-1Pesa/DvsJ).Il15(-/-) mice expressing a highly pathogenic transgenic TCR on CD8(+) T cells. Adoptive transfer of splenocytes from diabetic NOD and 8.3-NOD donors induced disease in NOD Scid recipients but not in NOD Scid.Il15(-/-) or NOD Scid.gamma mice. Transient blockade of IL-15 signalling at the onset of insulitis prevented diabetes in NOD mice. CONCLUSIONS/INTERPRETATION Our results show that IL-15 is needed for the initial activation of diabetogenic CD8(+) T cells as well as for sustaining the diabetogenic potential of antigen-stimulated cells, acting on both CD8(+) T cells and on APCs. Our findings demonstrate a critical role for IL-15 in the pathogenesis of autoimmune diabetes and suggest that IL-15 is a promising therapeutic target.
Collapse
Affiliation(s)
- D Bobbala
- CRC 4855, Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, 3001 North 12th Avenue, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Bluestone JA, Bour-Jordan H. Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb Perspect Biol 2012; 4:4/11/a007542. [PMID: 23125012 DOI: 10.1101/cshperspect.a007542] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases reflect a breakdown in self-tolerance that results from defects in thymic deletion of potentially autoreactive T cells (central tolerance) and in T-cell intrinsic and extrinsic mechanisms that normally control potentially autoreactive T cells in the periphery (peripheral tolerance). The mechanisms leading to autoimmune diseases are multifactorial and depend on a complex combination of genetic, epigenetic, molecular, and cellular elements that result in pathogenic inflammatory responses in peripheral tissues driven by self-antigen-specific T cells. In this article, we describe the different checkpoints of tolerance that are defective in autoimmune diseases as well as specific events in the autoimmune response which represent therapeutic opportunities to restore long-term tolerance in autoimmune diseases. We present evidence for the role of different pathways in animal models and the therapeutic strategies targeting these pathways in clinical trials in autoimmune diseases.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California at San Francisco, 94143, USA.
| | | |
Collapse
|
239
|
Abstract
Vaccination is the administration of antigenic material to stimulate the immune system to develop adaptive immunity to a disease. As the most successful prophylactic in medical history, there is now an emerging interest as to whether vaccination can be applied in autoimmune and inflammatory conditions. These are diseases of failed immune regulation; vaccination in this context aims to exploit the power of antigenic material to stimulate immune homeostasis in the form of active, adaptive, regulatory immune responses. Type 1 diabetes is an autoimmune disease that could benefit from the therapeutic potential of vaccination. The major conditions necessary to make prophylaxis feasible are in place; the self antigens are known, the failure of existing immune regulation has been demonstrated, early studies of vaccine approaches have proved safe, and the preclinical prodrome of the disease can be easily detected by simple blood tests. Challenges for future implementation include finding the best mode of delivery and the best blend of adjunctive therapies that create the favorable conditions required for a vaccine to be effective.
Collapse
Affiliation(s)
- Mark Peakman
- Department of Immunobiology, King's College London and National Institute for Health Research Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT UK
| |
Collapse
|
240
|
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes the deficit of pancreatic islet β cells. A true cure has proven elusive despite intensive research pressure by using conventional approaches over the past 25 years. The situation highlights the challenges we face in conquering this disease. Alternative approaches are needed. Increasing evidence demonstrates that stem cells possess the function of immune modulation. We established the Stem Cell Educator therapy by using cord blood-derived multipotent stem cells (CB-SCs). A closed-loop system that circulates a patient's blood through a blood cell separator, briefly co-cultures the patient's lymphocytes with adherent CB-SCs in vitro, and returns the educated lymphocytes (but not the CB-SCs) to the patient's circulation. Our clinical trial reveals that a single treatment with the Stem Cell Educator provides lasting reversal of autoimmunity that allows regeneration of islet β cells and improvement of metabolic control in subjects with long-standing T1D.
Collapse
Affiliation(s)
- Yong Zhao
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
241
|
Axelsson S, Hjorth M, Ludvigsson J, Casas R. Decreased GAD(65)-specific Th1/Tc1 phenotype in children with Type 1 diabetes treated with GAD-alum. Diabet Med 2012; 29:1272-8. [PMID: 22587593 DOI: 10.1111/j.1464-5491.2012.03710.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The balance between T helper cell subsets is an important regulator of the immune system and is often examined after immune therapies. We aimed to study the immunomodulatory effect of glutamic acid decarboxylase (GAD) 65 formulated with aluminium hydroxide (GAD-alum) in children with Type 1 diabetes, focusing on chemokines and their receptors. METHODS Blood samples were collected from 70 children with Type 1 diabetes included in a phase II clinical trial with GAD-alum. Expression of CC chemokine receptor 5 (CCR5) and CCR4 was analysed on CD4+ and CD8+ lymphocytes after in vitro stimulation with GAD(65) using flow cytometry, and secretion of the chemokines CCL2, CCL3 and CCL4 was detected in peripheral blood mononuclear cell supernatants with Luminex. RESULTS Expression of Th1-associated CCR5 was down-regulated following antigen challenge, together with an increased CCR4/CCR5 ratio and CCL2 secretion in GAD-alum-treated patients, but not in the placebo group. CONCLUSION Our results suggest that GAD-alum treatment has induced a favourable immune modulation associated with decreased Th1/Tc1 phenotypes upon antigen re-challenge, which may be of importance for regulating GAD(65) immunity.
Collapse
Affiliation(s)
- S Axelsson
- Division of Paediatrics, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
242
|
Korsgren S, Molin Y, Salmela K, Lundgren T, Melhus A, Korsgren O. On the etiology of type 1 diabetes: a new animal model signifying a decisive role for bacteria eliciting an adverse innate immunity response. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1735-48. [PMID: 22944599 DOI: 10.1016/j.ajpath.2012.07.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 12/27/2022]
Abstract
The cause of type 1 diabetes (T1D) remains unknown; however, a decisive role for environmental factors is recognized. The increased incidence of T1D during the last decades, as well as regional differences, is paralleled by differences in the intestinal bacterial flora. A new animal model was established to test the hypothesis that bacteria entering the pancreatic ductal system could trigger β-cell destruction and to provide new insights to the immunopathology of the disease. Obtained findings were compared with those present in two patients dying at onset of T1D. Different bacterial species, present in the human duodenum, instilled into the ductal system of the pancreas in healthy rats rapidly induced cellular infiltration, consisting of mainly neutrophil polymorphonuclear cells and monocytes/macrophages, centered around the pancreatic ducts. Also, the islets of Langerhans attracted polymorphonuclear cells, possibly via release of IL-6, IL-8, and monocyte chemotactic protein 1. Small bleedings or large dilatations of the capillaries were frequently found within the islets, and several β-cells had severe hydropic degeneration (ie, swollen cytoplasm) but with preserved nuclei. A novel rat model for the initial events in T1D is presented, revealing marked similarities with the morphologic findings obtained in patients dying at onset of T1D and signifying a decisive role for bacteria in eliciting an adverse innate immunity response. The present findings support the hypothesis that T1D is an organ-specific inflammatory disease.
Collapse
Affiliation(s)
- Stella Korsgren
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|
243
|
Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, Ahmann A, Rabinovitch A, Aggarwal S, Phippard D, Turka LA, Ehlers MR, Bianchine PJ, Boyle KD, Adah SA, Bluestone JA, Buckner JH, Greenbaum CJ. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 2012; 61:2340-8. [PMID: 22721971 PMCID: PMC3425404 DOI: 10.2337/db12-0049] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapamycin/interleukin-2 (IL-2) combination treatment of NOD mice effectively treats autoimmune diabetes. We performed a phase 1 clinical trial to test the safety and immunologic effects of rapamycin/IL-2 combination therapy in type 1 diabetic (T1D) patients. Nine T1D subjects were treated with 2-4 mg/day rapamycin orally for 3 months and 4.5 × 10(6) IU IL-2 s.c. three times per week for 1 month. β-Cell function was monitored by measuring C-peptide. Immunologic changes were monitored using flow cytometry and serum analyses. Regulatory T cells (Tregs) increased within the first month of therapy, yet clinical and metabolic data demonstrated a transient worsening in all subjects. The increase in Tregs was transient, paralleling IL-2 treatment, whereas the response of Tregs to IL-2, as measured by STAT5 phosphorylation, increased and persisted after treatment. No differences were observed in effector T-cell subset frequencies, but an increase in natural killer cells and eosinophils occurred with IL-2 therapy. Rapamycin/IL-2 therapy, as given in this phase 1 study, resulted in transient β-cell dysfunction despite an increase in Tregs. Such results highlight the difficulties in translating therapies to the clinic and emphasize the importance of broadly interrogating the immune system to evaluate the effects of therapy.
Collapse
Affiliation(s)
- S. Alice Long
- Translational Immunology Program, Benaroya Research Institute, Seattle, Washington
| | - Mary Rieck
- Translational Immunology Program, Benaroya Research Institute, Seattle, Washington
| | - Srinath Sanda
- Diabetes Program, Benaroya Research Institute, Seattle, Washington
| | | | - Peter L. Samuels
- Translational Immunology Program, Benaroya Research Institute, Seattle, Washington
| | - Robin Goland
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York
| | - Andrew Ahmann
- Harold Schnitzer Diabetes Health Center, Oregon Health and Science University, Portland, Oregon
| | - Alex Rabinovitch
- Sanford Research, University of South Dakota, Sioux Falls, South Dakota
| | - Sudeepta Aggarwal
- Tolerance Assays and Data Analysis Group, Immune Tolerance Network, Bethesda, Maryland
| | - Deborah Phippard
- Tolerance Assays and Data Analysis Group, Immune Tolerance Network, Bethesda, Maryland
| | - Laurence A. Turka
- Tolerance Assays and Data Analysis Group, Immune Tolerance Network, Bethesda, Maryland
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mario R. Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, California
| | - Peter J. Bianchine
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Karen D. Boyle
- Rho Federal Systems Division, Inc., Chapel Hill, North Carolina
| | - Steven A. Adah
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Jeffrey A. Bluestone
- Diabetes Center and Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jane H. Buckner
- Translational Immunology Program, Benaroya Research Institute, Seattle, Washington
- Corresponding authors: Carla J. Greenbaum, , and Jane H. Buckner,
| | - Carla J. Greenbaum
- Diabetes Program, Benaroya Research Institute, Seattle, Washington
- Corresponding authors: Carla J. Greenbaum, , and Jane H. Buckner,
| |
Collapse
|
244
|
Abstract
OBJECTIVE To review prediction of type 1 diabetes mellitus in light of current trials for prevention and novel preclinical therapies. METHODS The stages in the development of type 1A diabetes are reviewed and strategies for prevention are discussed. RESULTS From islet autoantibody testing of random cadaveric donors, it is apparent that approximately one-half million persons in the United States express multiple islet autoantibodies and are in the process of developing type 1A (immune-mediated) diabetes. It is now possible to predict not only risk for type 1A diabetes but also the approximate age of diabetes onset in children followed up from birth. In animal models, diabetes can be prevented. Some of the immunologic therapies effective in animal models are able to delay loss of insulin secretion in humans. CONCLUSIONS None of the therapies studied to date in humans can completely arrest progressive loss of insulin secretion resulting from destruction of islet β cells. Nevertheless, current knowledge of pathogenesis (targeting trimolecular recognition complex: major histocompatibility complex, peptide, T-cell receptor) and natural history combined with newer diagnostic methods allows accurate diagnosis and has stimulated the search for novel safe and effective preventive therapies.
Collapse
Affiliation(s)
- George S Eisenbarth
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, USA.
| |
Collapse
|
245
|
Greenbaum CJ, Beam CA, Boulware D, Gitelman SE, Gottlieb PA, Herold KC, Lachin JM, McGee P, Palmer JP, Pescovitz MD, Krause-Steinrauf H, Skyler JS, Sosenko JM. Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes 2012; 61:2066-73. [PMID: 22688329 PMCID: PMC3402330 DOI: 10.2337/db11-1538] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/09/2012] [Indexed: 12/25/2022]
Abstract
Interpretation of clinical trials to alter the decline in β-cell function after diagnosis of type 1 diabetes depends on a robust understanding of the natural history of disease. Combining data from the Type 1 Diabetes TrialNet studies, we describe the natural history of β-cell function from shortly after diagnosis through 2 years post study randomization, assess the degree of variability between patients, and investigate factors that may be related to C-peptide preservation or loss. We found that 93% of individuals have detectable C-peptide 2 years from diagnosis. In 11% of subjects, there was no significant fall from baseline by 2 years. There was a biphasic decline in C-peptide; the C-peptide slope was -0.0245 pmol/mL/month (95% CI -0.0271 to -0.0215) through the first 12 months and -0.0079 (-0.0113 to -0.0050) from 12 to 24 months (P < 0.001). This pattern of fall in C-peptide over time has implications for understanding trial results in which effects of therapy are most pronounced early and raises the possibility that there are time-dependent differences in pathophysiology. The robust data on the C-peptide obtained under clinical trial conditions should be used in planning and interpretation of clinical trials.
Collapse
|
246
|
Chatenoud L, Warncke K, Ziegler AG. Clinical immunologic interventions for the treatment of type 1 diabetes. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a007716. [PMID: 22908194 DOI: 10.1101/cshperspect.a007716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes is an autoimmune disease, hence the rationale for immunotherapy to halt disease progression. Based on knowledge gained from other autoimmune diseases and from transplantation, the first immunointervention trials used immunosuppressive drugs, e.g., cyclosporin, in patients with recently diagnosed type 1 diabetes. Although remarkable, the effect vanished following drug withdrawal. Efforts were then devoted to devise strategies to induce/restore self-tolerance and avoid chronic immunosuppression. Various approaches were identified from work in spontaneous models of autoimmune diabetes, including the use of β-cell autoantigens and monoclonal antibodies directed at relevant immune molecules such as costimulatory ligands, T-cell receptor molecules such as CD3, and B cells. Phase II and phase III trials were launched, results of which are now available. Although the endeavor is challenging, the experience gained indicates that immunotherapy appears as the real hope of inducing long-term remission of the disease provided the treatment is started early and that protocols are adapted based on lessons from the past.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Descartes, INSERM Unité 1013, Hôpital Necker Enfants Malades, Paris, France.
| | | | | |
Collapse
|
247
|
Culina S, Mallone R. Immune biomarkers in immunotherapeutic trials for type 1 diabetes: cui prodest? DIABETES & METABOLISM 2012; 38:379-85. [PMID: 22858113 DOI: 10.1016/j.diabet.2012.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 01/02/2023]
Abstract
Decades of research efforts aimed at upgrading type 1 diabetes (T1DM) treatment did not harvest much success besides improving insulin therapy, which remains the standard of care since 1922. Immunological strategies targeting autoimmune mechanisms, rather than their metabolic consequences, are highly demanded. A dealt of preclinical studies in animal models offered some promises, which were however not maintained once translated into human. All these immune intervention trials evaluated metabolic and clinical endpoints, namely C-peptide secretion, HbA(1c) and insulin requirements. While critical, we argue that these endpoints are insufficient and should be complemented with immune surrogate endpoints, i.e. biomarkers reflecting the immune modifications induced by such treatments. This is even more critical when clinical expectations are not met, in order to sort out the reasons of such failure, i.e. whether immune changes are not accomplished or whether, despite being accomplished, they are insufficient to translate into clinical benefits. Furthermore, these ancillary analyses may give precious indications to design further trials, i.e. to enroll patients with the best odds to respond to therapy and to follow-up their response.
Collapse
Affiliation(s)
- S Culina
- Inserm U986, DeAR Lab Avenir, Saint-Vincent-de-Paul Hospital, 82, avenue Denfert-Rochereau, 75674 Paris cedex 14, France
| | | |
Collapse
|
248
|
Rosenblum MD, Gratz IK, Paw JS, Abbas AK. Treating human autoimmunity: current practice and future prospects. Sci Transl Med 2012; 4:125sr1. [PMID: 22422994 DOI: 10.1126/scitranslmed.3003504] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases are caused by immune cells attacking the host tissues they are supposed to protect. Recent advances suggest that maintaining a balance of effector and regulatory immune function is critical for avoiding autoimmunity. New therapies, including costimulation blockade, regulatory T cell therapy, antigen-specific immunotherapy, and manipulating the interleukin-2 pathway, attempt to restore this balance. This review discusses these advances as well as the challenges that must be overcome to target these therapies to patients suffering from autoimmune disease while avoiding the pitfalls of general immunosuppression.
Collapse
Affiliation(s)
- Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94115, USA.
| | | | | | | |
Collapse
|
249
|
Pozzilli P, Strollo R. Immunotherapy for Type 1 diabetes: getting beyond a negative first impression. Immunotherapy 2012; 4:655-8. [DOI: 10.2217/imt.12.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Paolo Pozzilli
- Centre of Diabetes, Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Rocky Strollo
- Department of Endocrinology & Diabetes, University Campus Bio-Medico, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
250
|
Bollepalli S, Smith LB, Vasquez A, Rodriguez H, Vehik K. Addressing the burdens of Type 1 diabetes in youth. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/cpr.12.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|