201
|
Manikandan I, Chang CH, Chen CL, Sathish V, Li WS, Malathi M. Aggregation induced emission enhancement (AIEE) characteristics of quinoline based compound - A versatile fluorescent probe for pH, Fe(III) ion, BSA binding and optical cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 182:58-66. [PMID: 28395226 DOI: 10.1016/j.saa.2017.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Novel benzimidazoquinoline derivative (AVT) was synthesized through a substitution reaction and characterized by various spectral techniques. Analyzing the optical properties of AVT under absorption and emission spectral studies in different environments exclusively with respect to solvents and pH, intriguing characteristics viz. aggregation induced emission enhancement (AIEE) in the THF solvent and 'On-Off' pH sensing were found at neutral pH. Sensing nature of AVT with diverse metal ions and bovine serum albumin (BSA) was also studied. Among the metal ions, Fe3+ ion alone tunes the fluorescence intensity of AVT probe in aqueous medium from "turn-on" to "turn-off" through ligand (probe) to metal charge transfer (LMCT) mechanism. The probe AVT in aqueous medium interacts strongly with BSA due to Fluorescence Resonance Energy Transfer (FRET) and the conformational change in BSA was further analyzed using synchronous fluorescence techniques. Docking study of AVT with BSA reveals that the active site of binding is tryptophan residue which is also supported by the experimental results. Interestingly, fluorescent AVT probe in cells was examined through cellular imaging studies using BT-549 and MDA-MB-231 cells. Thus, the single molecule probe based detection of multiple species and stimuli were described.
Collapse
Affiliation(s)
- Irulappan Manikandan
- Department of Chemistry, Bannari Amman Institute of Technology, Sathymangalam 638 401, India
| | | | - Chia-Ling Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathymangalam 638 401, India
| | - Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Mahalingam Malathi
- Department of Chemistry, Bannari Amman Institute of Technology, Sathymangalam 638 401, India.
| |
Collapse
|
202
|
A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity. Anal Chim Acta 2017; 975:52-60. [DOI: 10.1016/j.aca.2017.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2022]
|
203
|
Asgharzadeh MR, Barar J, Pourseif MM, Eskandani M, Jafari Niya M, Mashayekhi MR, Omidi Y. Molecular machineries of pH dysregulation in tumor microenvironment: potential targets for cancer therapy. BIOIMPACTS : BI 2017; 7:115-133. [PMID: 28752076 PMCID: PMC5524986 DOI: 10.15171/bi.2017.15] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/28/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
Introduction: Cancer is an intricate disorder/dysfunction of cells that can be defined as a genetic heterogeneity in human disease. Therefore, it is characterized by several adaptive complex hallmarks. Among them, the pH dysregulation appears as a symbol of aberrant functions within the tumor microenvironment (TME). In comparison with normal tissues, in the solid tumors, we face with an irregular acidification and alkalinization of the extracellular and intracellular fluids. Methods: In this study, we comprehensively discussed the most recent reports on the hallmarks of solid tumors to provide deep insights upon the molecular machineries involved in the pH dysregulation of solid tumors and their impacts on the initiation and progression of cancer. Results: The dysregulation of pH in solid tumors is fundamentally related to the Warburg effect and hypoxia, leading to expression of a number of molecular machineries, including: NHE1, H+ pump V-ATPase, CA-9, CA-12, MCT-1, GLUT-1. Activation of proton exchangers and transporters (PETs) gives rise to formation of TME. This condition favors the cancer cells to evade from the anoikis and apoptosis, granting them aggressive and metastasis phenotype, as well as resistance to chemotherapy and radiation therapy. This review aimed to discuss the key molecular changes of tumor cells in terms of bio-energetics and cancer metabolism in relation with pH dysregulation. During this phenomenon, the intra- and extracellular metabolites are altered and/or disrupted. Such molecular alterations provide molecular hallmarks for direct targeting of the PETs by potent relevant inhibitors in combination with conventional cancer therapies as ultimate therapy against solid tumors. Conclusion: Taken all, along with other treatment strategies, targeting the key molecular machineries related to intra- and extracellular metabolisms within the TME is proposed as a novel strategy to inhibit or block PETs that are involved in the pH dysregulation of solid tumors.
Collapse
Affiliation(s)
- Mohammad Reza Asgharzadeh
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad M. Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Jafari Niya
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
204
|
Xie YS, Zhang XL, Xie K, Zhao Y, Wu H, Yang J. Chiral-aminoquinoline-based fluorescent pH probe with large stokes shift for bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 179:51-57. [PMID: 28214676 DOI: 10.1016/j.saa.2017.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
The aminoquinoline derivatives, (R)- and (S)-2-phenyl-2-(quinolin-6-ylamino)ethan-1-ol (R-PEO and S-PEO), were synthesized by a tandem one-pot three-step CN coupling method where Smiles rearrangement was the key procedure. The selected compound R-PEO showed a significant fluorescence enhancement with a turn-on ratio over 98-fold and enabled the real time determination of proton concentration in acidic solution. The fluorescence intensity of R-PEO exhibited strong pH-dependent performance with a large Stokes shift (115nm) and responded linearly to minor pH change within the range of 3.8-6.0. With the help of 1H NMR spectrum, we also confirmed the protonation of the quinoline unit should be the proposed reaction. Compared with the conjugated acid of N-hexylquinolin-6-amine (NQA), the conjugated acid of R-PEO shows significant planar intramolecular charge transfer (PICT) character. Furthermore, biological imaging proved that R-PEO probe can be used to monitor the pH change of S. cerevisiae in vivo.
Collapse
Affiliation(s)
- Yong-Sheng Xie
- The School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Xin-Ling Zhang
- The School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Kun Xie
- The School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Yanmei Zhao
- The School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Huan Wu
- The School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Jidong Yang
- The School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| |
Collapse
|
205
|
Ma Q, Li X, Feng S, Liang B, Zhou T, Xu M, Ma Z. A novel acidic pH fluorescent probe based on a benzothiazole derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 177:6-13. [PMID: 28109965 DOI: 10.1016/j.saa.2017.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.
Collapse
Affiliation(s)
- Qiujuan Ma
- School of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Xian Li
- School of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Suxiang Feng
- School of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment, Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Beibei Liang
- School of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tiqiang Zhou
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment, Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China
| | - Min Xu
- School of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Zhuoyi Ma
- School of Pharmacology, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| |
Collapse
|
206
|
Meng TT, Wang H, Zheng ZB, Wang KZ. pH-Switchable "Off-On-Off" Near-Infrared Luminescence Based on a Dinuclear Ruthenium(II) Complex. Inorg Chem 2017; 56:4775-4779. [PMID: 28387505 DOI: 10.1021/acs.inorgchem.7b00223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pH-switchable room-temperature near-infrared (NIR) phosphorescence emission based on ruthenium(II) polypyridyl complexes has been very rarely reported, even though it is very desirable for applications in sensing, switching, and logic molecular devices and bioimaging. Here we report a novel dinuclear ruthenium(II) complex in an aerated acetonitrile solution featuring a bright NIR emission centered at 760 nm with an absolute quantum yield of 1.03%, a large Stokes shift of 254 nm, and a long emission lifetime of 108.3 ± 0.4 ns. The complex in a Britton-Roberson buffer also exhibited pH-induced "off-on-off" NIR luminescent switches with a maximum intensity enhancement factor of 41 and one of the switching events occurring near the physiological pH range.
Collapse
Affiliation(s)
- Ting-Ting Meng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Hao Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Ze-Bao Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| | - Ke-Zhi Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China
| |
Collapse
|
207
|
Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S, Balogh LP, Ballerini L, Bestetti A, Brendel C, Bosi S, Carril M, Chan WCW, Chen C, Chen X, Chen X, Cheng Z, Cui D, Du J, Dullin C, Escudero A, Feliu N, Gao M, George M, Gogotsi Y, Grünweller A, Gu Z, Halas NJ, Hampp N, Hartmann RK, Hersam MC, Hunziker P, Jian J, Jiang X, Jungebluth P, Kadhiresan P, Kataoka K, Khademhosseini A, Kopeček J, Kotov NA, Krug HF, Lee DS, Lehr CM, Leong KW, Liang XJ, Ling Lim M, Liz-Marzán LM, Ma X, Macchiarini P, Meng H, Möhwald H, Mulvaney P, Nel AE, Nie S, Nordlander P, Okano T, Oliveira J, Park TH, Penner RM, Prato M, Puntes V, Rotello VM, Samarakoon A, Schaak RE, Shen Y, Sjöqvist S, Skirtach AG, Soliman MG, Stevens MM, Sung HW, Tang BZ, Tietze R, Udugama BN, VanEpps JS, Weil T, Weiss PS, Willner I, Wu Y, Yang L, Yue Z, Zhang Q, Zhang Q, Zhang XE, Zhao Y, Zhou X, Parak WJ. Diverse Applications of Nanomedicine. ACS NANO 2017; 11:2313-2381. [PMID: 28290206 PMCID: PMC5371978 DOI: 10.1021/acsnano.6b06040] [Citation(s) in RCA: 802] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 04/14/2023]
Abstract
The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.
Collapse
Affiliation(s)
- Beatriz Pelaz
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Ramon A. Alvarez-Puebla
- Department of Physical Chemistry, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Frauke Alves
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Anne M. Andrews
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sumaira Ashraf
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lajos P. Balogh
- AA Nanomedicine & Nanotechnology Consultants, North Andover, Massachusetts 01845, United States
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136 Trieste, Italy
| | - Alessandra Bestetti
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cornelia Brendel
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Susanna Bosi
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
| | - Monica Carril
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Warren C. W. Chan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xiaodong Chen
- School of Materials
Science and Engineering, Nanyang Technological
University, Singapore 639798
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine,
National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Cheng
- Molecular
Imaging Program at Stanford and Bio-X Program, Canary Center at Stanford
for Cancer Early Detection, Stanford University, Stanford, California 94305, United States
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument
Science and Engineering, School of Electronic Information and Electronical
Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials
Science and Engineering, Tongji University, Shanghai, China
| | - Christian Dullin
- Department of Haematology and Medical Oncology, Department of Diagnostic
and Interventional Radiology, University
Medical Center Göttingen, 37075 Göttingen Germany
| | - Alberto Escudero
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- Instituto
de Ciencia de Materiales de Sevilla. CSIC, Universidad de Sevilla, 41092 Seville, Spain
| | - Neus Feliu
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Mingyuan Gao
- Institute of Chemistry, Chinese
Academy of Sciences, 100190 Beijing, China
| | | | - Yury Gogotsi
- Department of Materials Science and Engineering and A.J. Drexel Nanomaterials
Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Arnold Grünweller
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Zhongwei Gu
- College of Polymer Science and Engineering, Sichuan University, 610000 Chengdu, China
| | - Naomi J. Halas
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Norbert Hampp
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Roland K. Hartmann
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry,
and Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Patrick Hunziker
- University Hospital, 4056 Basel, Switzerland
- CLINAM,
European Foundation for Clinical Nanomedicine, 4058 Basel, Switzerland
| | - Ji Jian
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Philipp Jungebluth
- Thoraxklinik Heidelberg, Universitätsklinikum
Heidelberg, 69120 Heidelberg, Germany
| | - Pranav Kadhiresan
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | - Jindřich Kopeček
- Biomedical Polymers Laboratory, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nicholas A. Kotov
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Harald F. Krug
- EMPA, Federal Institute for Materials
Science and Technology, CH-9014 St. Gallen, Switzerland
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
| | - Claus-Michael Lehr
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- HIPS - Helmhotz Institute for Pharmaceutical Research Saarland, Helmholtz-Center for Infection Research, 66123 Saarbrücken, Germany
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Mei Ling Lim
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Luis M. Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Ciber-BBN, 20014 Donostia - San Sebastián, Spain
| | - Xiaowei Ma
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS), 100190 Beijing, China
| | - Paolo Macchiarini
- Laboratory of Bioengineering Regenerative Medicine (BioReM), Kazan Federal University, 420008 Kazan, Russia
| | - Huan Meng
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Helmuth Möhwald
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Paul Mulvaney
- School of Chemistry & Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andre E. Nel
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shuming Nie
- Emory University, Atlanta, Georgia 30322, United States
| | - Peter Nordlander
- Departments of Physics and Astronomy, Rice
University, Houston, Texas 77005, United
States
| | - Teruo Okano
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | | | - Tai Hyun Park
- Department of Molecular Medicine and Biopharmaceutical
Sciences and School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea
- Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Reginald M. Penner
- Department of Chemistry, University of
California, Irvine, California 92697, United States
| | - Maurizio Prato
- Department of Chemical
and Pharmaceutical Sciences, University
of Trieste, 34127 Trieste, Italy
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| | - Victor Puntes
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Institut Català de Nanotecnologia, UAB, 08193 Barcelona, Spain
- Vall d’Hebron University Hospital
Institute of Research, 08035 Barcelona, Spain
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Amila Samarakoon
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Raymond E. Schaak
- Department of Chemistry, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youqing Shen
- Department of Polymer Science and Engineering and Center for
Bionanoengineering and Department of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, China
| | - Sebastian Sjöqvist
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Andre G. Skirtach
- Department of Interfaces, Max-Planck
Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Department of Molecular Biotechnology, University of Ghent, B-9000 Ghent, Belgium
| | - Mahmoud G. Soliman
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Molly M. Stevens
- Department of Materials,
Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical
Engineering, National Tsing Hua University, Hsinchu City, Taiwan,
ROC 300
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong, China
| | - Rainer Tietze
- ENT-Department, Section of Experimental Oncology & Nanomedicine
(SEON), Else Kröner-Fresenius-Stiftung-Professorship for Nanomedicine, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Buddhisha N. Udugama
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - J. Scott VanEpps
- Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Tanja Weil
- Institut für
Organische Chemie, Universität Ulm, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
| | - Paul S. Weiss
- California NanoSystems Institute, Department of Chemistry
and Biochemistry and Department of Psychiatry and Semel Institute
for Neuroscience and Human Behavior, Division of NanoMedicine and Center
for the Environmental Impact of Nanotechnology, and Department of Materials Science
and Engineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Itamar Willner
- Institute of Chemistry, The Center for
Nanoscience and Nanotechnology, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Yuzhou Wu
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | | | - Zhao Yue
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Qiang Zhang
- School of Pharmaceutical Science, Peking University, 100191 Beijing, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules,
CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of
China, Beijing 100190, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wolfgang J. Parak
- Fachbereich Physik, Fachbereich Medizin, Fachbereich Pharmazie, and Department of Chemistry, Philipps Universität Marburg, 35037 Marburg, Germany
- CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia - San Sebastián, Spain
| |
Collapse
|
208
|
A novel fluorescence probe based on triphenylamine Schiff base for bioimaging and responding to pH and Fe 3+. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:551-557. [DOI: 10.1016/j.msec.2016.11.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/25/2016] [Accepted: 11/23/2016] [Indexed: 11/22/2022]
|
209
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
210
|
Liu B, Thayumanavan S. Substituent Effects on the pH Sensitivity of Acetals and Ketals and Their Correlation with Encapsulation Stability in Polymeric Nanogels. J Am Chem Soc 2017; 139:2306-2317. [PMID: 28106385 DOI: 10.1021/jacs.6b11181] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effect of structural variations in acetal- and ketal-based linkers upon their degradation kinetics is studied through the design, synthesis, and study of six series of molecules, comprising a total of 18 different molecules. Through this systematic study, we show that the structural fine-tuning of the linkers allows access to variations in kinetics of degradation of more than 6 orders of magnitude. Hammett correlations show that the ρ value for the hydrolysis of benzylidene acetals is about -4.06, which is comparable to an SN1-like process. This shows that there is a strong, developing positive charge at the benzylic position in the transition state during the degradation of acetals. This positively charged transition state is consistent with the relative degradation rates of acetals vs ketals (correlated to stabilities of 1°, 2°, and 3° carboxonium ion type intermediates) and the observed effect of proximal electron-withdrawing groups upon the degradation rates. Following this, we studied whether the degradation kinetics study correlates with pH-sensitive variations in the host-guest characteristics of polymeric nanogels that contains these acetal or ketal moieties as cross-linking functionalities. Indeed, the trends observed in the small molecule degradation have clear correlations with the encapsulation stability of guest molecules within these polymeric nanogels. The implications of this fundamental study extend to a broad range of applications, well beyond the polymeric nanogel examples studied here.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, ‡Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, ‡Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
211
|
Out of Warburg effect: An effective cancer treatment targeting the tumor specific metabolism and dysregulated pH. Semin Cancer Biol 2017; 43:134-138. [PMID: 28122260 DOI: 10.1016/j.semcancer.2017.01.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/20/2022]
Abstract
As stated by Otto Warburg nearly a century ago, cancer is a metabolic disease, a fermentation caused by malfunctioning mitochondria, resulting in increased anabolism and decreased catabolism. Treatment should, therefore, aim at restoring the energy yield. To decrease anabolism, glucose uptake should be reduced (ketogenic diet). To increase catabolism, the oxidative phosphorylation should be restored. Treatment with a combination of α-lipoic acid and hydroxycitrate has been shown to be effective in multiple animal models. This treatment, in combination with conventional chemotherapy, has yielded extremely encouraging results in glioblastoma, brain metastasis and lung cancer. Randomized trials are necessary to confirm these preliminary data. The major limitation is the fact that the combination of α-lipoic acid and hydroxycitrate can only be effective if the mitochondria are still present and/or functional. That may not be the case in the most aggressive tumors. The increased intracellular alkalosis is a strong mitogenic signal, which bypasses most inhibitory signals. Concomitant correction of this alkalosis may be a very effective treatment in case of mitochondrial failure.
Collapse
|
212
|
Niu G, Zhang P, Liu W, Wang M, Zhang H, Wu J, Zhang L, Wang P. Near-Infrared Probe Based on Rhodamine Derivative for Highly Sensitive and Selective Lysosomal pH Tracking. Anal Chem 2017; 89:1922-1929. [PMID: 28208300 DOI: 10.1021/acs.analchem.6b04417] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of near-infrared fluorescent probes with low pKa, high selectivity, high photostability, and high sensitivity for lysosomal pH detection is of great importance. In the present work, we developed a novel near-infrared lysosomal pH probe (Lyso-hNR) based on a rhodamine derivative. Lyso-hNR showed fast, highly sensitive, and highly selective fluorescence response to acidic pH caused by the H+-induced structure changes from the nonfluorescent spirolactam form to the highly emissive open-ring form. Lyso-hNR displays a significant fluorescence enhancement at 650 nm (over 280-fold) from pH 7.0 to 4.0 with a pKa value of 5.04. Live cell imaging data revealed that Lyso-hNR can selectively monitor lysosomal pH changes with excellent photostability and low cytotoxicity. In addition, Lyso-hNR can be successfully used in tracking lysosomal pH changes induced by chloroquine and those during apoptosis. All these features render Lyso-hNR a promising candidate to investigate lysosome-associated physiological and pathological processes.
Collapse
Affiliation(s)
- Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Panpan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Mengqi Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Liping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences , Beijing, 100049, China
| |
Collapse
|
213
|
Spugnini E, Fais S. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Semin Cancer Biol 2017; 43:111-118. [PMID: 28088584 DOI: 10.1016/j.semcancer.2017.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
One of the unsolved mysteries in oncology includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to the development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. In the last decades a primordial role for proton exchangers has been supported as a key tumor advantage in facing off the acidic milieu. Proton exchangers do not allow intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through that led to the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed powerful chemosensitizers as well. In this process we achieved the clinical proof of concept that PPI may well be included in new anti-cancer strategies with a solid background and rationale.
Collapse
Affiliation(s)
- Enrico Spugnini
- SAFU, Regina Elena Cancer Institute, Via Chianesi 53, 00134 Rome, Italy
| | - Stefano Fais
- Dept. of Therapeutic Research and Medicines Evaluation Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena 299, Rome Italy.
| |
Collapse
|
214
|
Granja S, Tavares-Valente D, Queirós O, Baltazar F. Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Semin Cancer Biol 2017; 43:17-34. [PMID: 28065864 DOI: 10.1016/j.semcancer.2016.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023]
Abstract
Altered metabolism, associated with acidification of the extracellular milieu, is one of the major features of cancer. As pH regulation is crucial for the maintenance of all biological functions, cancer cells rely on the activity of lactate exporters and proton transporters to regulate their intracellular pH. The major players in cancer pH regulation are proton pump ATPases, sodium-proton exchangers (NHEs), monocarboxylate transporters (MCTs), carbonic anhydrases (CAs) and anion exchangers (AEs), which have been shown to be upregulated in several human malignancies. Thanks to the activity of the proton pumps and transporters, tumours acidify their microenvironment, becoming more aggressive and resistant to therapy. Thus, targeting tumour pH may contribute to more effective anticancer strategies for controlling tumour progression and therapeutic resistance. In the present study, we review the role of the main pH regulators expressed in human cancer cells, including their diagnostic and prognostic value, as well as their usefulness as therapeutic targets.
Collapse
Affiliation(s)
- Sara Granja
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Tavares-Valente
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Odília Queirós
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA - Center of Molecular and Environmental Biology/Department of Biology/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
215
|
Chao J, Song K, Wang H, Li Z, Zhang Y, Yin C, Huo F, Wang J, Zhang T. A colorimetric and fluorescent pH probe for imaging in E. coli cells. RSC Adv 2017. [DOI: 10.1039/c6ra24885c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MDAKexhibited turn-off fluorescence as the pH decreased. Simultaneously, the color of the solution changed from yellow to colorless.
Collapse
Affiliation(s)
- Jianbin Chao
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
| | - Kailun Song
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
- School of Chemistry and Chemical Engineering
| | - Huijuan Wang
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
- School of Chemistry and Chemical Engineering
| | - Zhiqing Li
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
- School of Chemistry and Chemical Engineering
| | - Yongbin Zhang
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Caixia Yin
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- China
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Juanjuan Wang
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
| | - Ting Zhang
- Scientific Instrument Center
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
216
|
YILMAZTEPE ORAL A, ORAL HB, SARIMAHMUT M, CEVATEMRE B, ÖZKAYA G, KORKMAZ Ş, ULUKAYA E. Combination of esomeprazole with chemotherapeutics results in more pronounced cytotoxic effect via apoptosis on A549 nonsmall-cell lung cancer cell line. Turk J Biol 2017. [DOI: 10.3906/biy-1606-46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
217
|
An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells. Talanta 2017; 162:180-186. [DOI: 10.1016/j.talanta.2016.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/26/2016] [Accepted: 10/02/2016] [Indexed: 11/20/2022]
|
218
|
Tong ZX, Liu W, Huang H, Chen HZ, Liu XJ, Kuang YQ, Jiang JH. A ratiometric fluorescent pH probe based on keto–enol tautomerization for imaging of living cells in extreme acidity. Analyst 2017; 142:3906-3912. [DOI: 10.1039/c7an01103b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A ratiometric fluorescent pH probe (DDXC) has been developed for extreme acidity, the sensing mechanism of which is based on the reversible protonation of the carbonyl oxygen followed by keto–enol tautomerization.
Collapse
Affiliation(s)
- Zong-Xuan Tong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Wei Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Hui Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Hong-Zong Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Xian-Jun Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Yong-Qing Kuang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
219
|
Luo W, Jiang H, Tang X, Liu W. A reversible ratiometric two-photon lysosome-targeted probe for real-time monitoring of pH changes in living cells. J Mater Chem B 2017; 5:4768-4773. [DOI: 10.1039/c7tb00838d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A reversible ratiometric two-photon lysosome-targeted probe that can monitor real-time pH changes in living cells.
Collapse
Affiliation(s)
- Weifang Luo
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Huie Jiang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xiaoliang Tang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
220
|
Wycisk V, Achazi K, Hillmann P, Hirsch O, Kuehne C, Dernedde J, Haag R, Licha K. Responsive Contrast Agents: Synthesis and Characterization of a Tunable Series of pH-Sensitive Near-Infrared Pentamethines. ACS OMEGA 2016; 1:808-817. [PMID: 30023492 PMCID: PMC6044694 DOI: 10.1021/acsomega.6b00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/20/2016] [Indexed: 05/15/2023]
Abstract
The demand for responsive dyes in optical imaging is high to achieve a better signal-to-noise ratio and, more specifically, to visualize acidic compartments of the endocytic pathway. Herein, we present a new synthetic route, with a step-by-step synthesis of water-soluble pH-sensitive cyanine dyes exhibiting pKa values in the region of physiological pH, as confirmed by absorption and fluorescence spectra. Moreover, modification of pKa values was achieved by two different substitution patterns, creating tunable pH-sensitive dyes. We demonstrated the functionality of the pH-sensitive dyes and their suitability as contrast agents for cellular uptake studies by preparing dye-labeled cetuximab and transferrin conjugates. Sulfonated head chains increased water solubility and prevented the formation of dimers, even in the context of dye-labeled bioconjugates. Confocal microscopy images of living cells revealed their pH-responsiveness, as specific fluorescence signal enhancements were observed in acidic compartments of the endocytic pathway (endosomes and lysosomes), although the background signal was low in a pH-neutral environment. Using mixtures of conjugates labeled with either a pH-sensitive or non-pH-sensitive dye for the uptake studies, we could follow the receptor binding and distinguish it from the endocytic uptake process of the conjugates in a simultaneous manner. Moreover, we used flow cytometry to quantify the fluorescence and observed a 3-fold signal enhancement for the pH-sensitive dye conjugates over a period of 3 h.
Collapse
Affiliation(s)
- Virginia Wycisk
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Paul Hillmann
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Ole Hirsch
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| | - Christian Kuehne
- Institute
of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jens Dernedde
- Institute
of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rainer Haag
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Kai Licha
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
221
|
Anees P, Sudheesh KV, Jayamurthy P, Chandrika AR, Omkumar RV, Ajayaghosh A. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor. Chem Sci 2016; 7:6808-6814. [PMID: 28042467 PMCID: PMC5134758 DOI: 10.1039/c6sc02659a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.
Collapse
Affiliation(s)
- Palapuravan Anees
- Chemical Sciences and Technology Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695019 , India .
| | - Karivachery V Sudheesh
- Chemical Sciences and Technology Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695019 , India .
| | - Purushothaman Jayamurthy
- Agroprocessing and Natural Products Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , India
| | - Arunkumar R Chandrika
- Molecular Neurobiology Division , Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapuram 695 014 , India
| | - Ramakrishnapillai V Omkumar
- Molecular Neurobiology Division , Rajiv Gandhi Centre for Biotechnology (RGCB) , Thiruvananthapuram 695 014 , India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division , Academy of Scientific and Innovative Research (AcSIR) , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram 695019 , India .
| |
Collapse
|
222
|
Abstract
The highly regulated pH of cells and the less-regulated pH of the surrounding extracellular matrix (ECM) is the result of a delicate balance between metabolic processes and proton production, proton transportation, chemical buffering, and vascular removal of waste products. Malignant cells show a pronounced increase in metabolic processes where the 10- to 15-fold rise in glucose consumption is only the tip of the iceberg. Aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer metabolism that implies excessive production of protons, which if stayed inside the cells would result in fatal intracellular acidosis (maintaining a strict acid-base balance is essential for the survival of eukaryotic cells). Malignant cells solve this problem by increasing mechanisms of proton transportation which expel the excess acidity. This allows cancer cells to keep a normal intracellular pH, or even overshooting this mechanism permits a slightly alkaline intracellular tendency. The proton excess expelled from malignant cells accumulates in the ECM, where chronic hypoxia and relative lack of enough blood vessels impede adequate proton clearance, thus creating an acidic microenvironment. This microenvironment is quite heterogeneous due to the tumor's metabolic heterogeneity and variable degrees of hypoxia inside the tumor mass. The acidic environment (plus other necessary cellular modifications) stimulates migration and invasion and finally intravasation of malignant cells which eventually may result in metastasis. Targeting tumor pH may go in two directions: 1) increasing extracellular pH which should result in less migration, invasion, and metastasis; and 2) decreasing intracellular pH which may result in acidic stress and apoptosis. Both objectives seem achievable at the present state of the art with repurposed drugs. This hypothesis analyzes the altered pH of tumors and its implications for progression and metastasis and also possible repurposed drug combinations targeting this vulnerable side of cancer development. It also analyzes the double-edged approach, which consists in pharmacologically increasing intracellular proton production and simultaneously decreasing proton extrusion creating intracellular acidity, acid stress, and eventual apoptosis.
Collapse
Affiliation(s)
- Tomas Koltai
- Obra Social del Personal de la, Industria Alimenticia, Filial Capital Federal, Republic of Argentina
| |
Collapse
|
223
|
Pratiwi FW, Hsia CH, Kuo CW, Yang SM, Hwu YK, Chen P. Construction of single fluorophore ratiometric pH sensors using dual-emission Mn2+-doped quantum dots. Biosens Bioelectron 2016; 84:133-40. [DOI: 10.1016/j.bios.2016.01.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/04/2023]
|
224
|
Alterations in Red Blood Cell Functionality Induced by an Indole Scaffold Containing a Y-Iminodiketo Moiety: Potential Antiproliferative Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2104247. [PMID: 27651854 PMCID: PMC5019890 DOI: 10.1155/2016/2104247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023]
Abstract
We have recently proposed a new erythrocyte-based model of study to predict the antiproliferative effects of selected heterocyclic scaffolds. Starting from the metabolic similarity between erythrocytes and cancer cells, we have demonstrated how the metabolic derangement induced by an indolone-based compound (DPIT) could be related to its antiproliferative effects. In order to prove the validity of our biochemical approach, in the present study the effects on erythrocyte functionality of its chemical precursor (PID), whose synthesis we reported, were investigated. The influence of the tested compound on band 3 protein (B3), oxidative state, ATP efflux, caspase 3, metabolism, intracellular pH, and Ca2+ homeostasis has been evaluated. PID crosses the membrane localizing into the cytosol, increases anion exchange, induces direct caspase activation, shifts the erythrocytes towards an oxidative state, and releases less ATP than in normal conditions. Analysis of phosphatidylserine externalization shows that PID slightly induces apoptosis. Our findings indicate that, due to its unique features, erythrocyte responses to exogenous molecular stimuli can be fruitfully correlated at structurally more complex cells, such as cancer cells. Overall, our work indicates that erythrocyte is a powerful study tool to elucidate the biochemical/biological effects of selected heterocycles opening considerable perspectives in the field of drug discovery.
Collapse
|
225
|
Cancer cell spheroids for screening of chemotherapeutics and drug-delivery systems. Ther Deliv 2016; 6:509-20. [PMID: 25996047 DOI: 10.4155/tde.15.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Over the last few decades, the most popular platform to perform high-throughput screening for viable anti-neoplastic compounds has been monolayer cell culture. However, cells in monolayer culture lose many of their in vivo characteristics. As a result, this platform provides a limited predictive value in determining the clinical outcome of the compounds of interest. Using a technique known as 3D spheroid culture, may be the answer to this conundrum. Spheroids have been shown to mimic the tissue-like properties of tumors necessary for the proper evaluation of compounds. In this review, production of cancer cell spheroids, utilization of these spheroids in understanding various therapeutic mechanisms and the potential for their use in high-throughput screening of drugs and drug-delivery systems are discussed in detail.
Collapse
|
226
|
Song GJ, Bai SY, Luo J, Cao XQ, Zhao BX. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH. J Fluoresc 2016; 26:2079-2086. [DOI: 10.1007/s10895-016-1902-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
227
|
Shin JJ, Aftab Q, Austin P, McQueen JA, Poon T, Li SC, Young BP, Roskelley CD, Loewen CJR. Systematic identification of genes involved in metabolic acid stress resistance in yeast and their potential as cancer targets. Dis Model Mech 2016; 9:1039-49. [PMID: 27519690 PMCID: PMC5047693 DOI: 10.1242/dmm.023374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 07/18/2016] [Indexed: 12/12/2022] Open
Abstract
A hallmark of all primary and metastatic tumours is their high rate of glucose uptake and glycolysis. A consequence of the glycolytic phenotype is the accumulation of metabolic acid; hence, tumour cells experience considerable intracellular acid stress. To compensate, tumour cells upregulate acid pumps, which expel the metabolic acid into the surrounding tumour environment, resulting in alkalization of intracellular pH and acidification of the tumour microenvironment. Nevertheless, we have only a limited understanding of the consequences of altered intracellular pH on cell physiology, or of the genes and pathways that respond to metabolic acid stress. We have used yeast as a genetic model for metabolic acid stress with the rationale that the metabolic changes that occur in cancer that lead to intracellular acid stress are likely fundamental. Using a quantitative systems biology approach we identified 129 genes required for optimal growth under conditions of metabolic acid stress. We identified six highly conserved protein complexes with functions related to oxidative phosphorylation (mitochondrial respiratory chain complex III and IV), mitochondrial tRNA biosynthesis [glutamyl-tRNA(Gln) amidotransferase complex], histone methylation (Set1C-COMPASS), lysosome biogenesis (AP-3 adapter complex), and mRNA processing and P-body formation (PAN complex). We tested roles for two of these, AP-3 adapter complex and PAN deadenylase complex, in resistance to acid stress using a myeloid leukaemia-derived human cell line that we determined to be acid stress resistant. Loss of either complex inhibited growth of Hap1 cells at neutral pH and caused sensitivity to acid stress, indicating that AP-3 and PAN complexes are promising new targets in the treatment of cancer. Additionally, our data suggests that tumours may be genetically sensitized to acid stress and hence susceptible to acid stress-directed therapies, as many tumours accumulate mutations in mitochondrial respiratory chain complexes required for their proliferation.
Collapse
Affiliation(s)
- John J Shin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Qurratulain Aftab
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Pamela Austin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jennifer A McQueen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Tak Poon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Shu Chen Li
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Barry P Young
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Christopher J R Loewen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
228
|
Li Z, Zhang P, Lu W, Peng L, Zhao Y, Chen G. Ratiometric Fluorescent pH Probes Based on Glycopolymers. Macromol Rapid Commun 2016; 37:1513-9. [DOI: 10.1002/marc.201600242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/25/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Zhiyun Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 China
| | - Pengshan Zhang
- Cyrus Tang Hematology Center; Soochow University; Suzhou 215123 China
- The Collaborative Innovation Center of Hematology; Soochow University; Suzhou 215006 China
| | - Wei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 China
| | - Lun Peng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 China
| | - Yun Zhao
- Cyrus Tang Hematology Center; Soochow University; Suzhou 215123 China
- The Collaborative Innovation Center of Hematology; Soochow University; Suzhou 215006 China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 China
| |
Collapse
|
229
|
Abstract
Highlights Fermentation of the dietary fiber by intestinal microflora results in production of butyrate.Butyrate possesses anticarcinogenic effect at the colonic level.Three transporters (MCT1, SMCT1 and BCRP) regulate the intracellular concentration of BT in colonic epithelial cells.Changes in the expression of these transporters occur in colorectal cancer. Abstract Colorectal cancer (CRC) is one of the most common solid tumors worldwide. Consumption of dietary fiber is associated with a low risk of developing CRC. The fermentation of the dietary fiber by intestinal microflora results in production of butyrate (BT). This short-chain fatty acid is an important metabolic substrate in normal colonic epithelial cells and has important homeostatic functions at the colonic level. Because the cellular effects of BT (e.g. inhibition of histone deacetylases) are dependent on its intracellular concentration, knowledge on the mechanisms involved in BT membrane transport and its regulation seems particularly relevant. In this review, we will present the carrier-mediated mechanisms involved in BT membrane transport at the colonic epithelial level and their regulation, with an emphasis on CRC. Several xenobiotics known to modulate the risk for developing CRC are able to interfere with BT transport at the intestinal level. Thus, interference with BT transport certainly contributes to the anticarcinogenic or procarcinogenic effect of these compounds and these compounds may interfere with the anticarcinogenic effect of BT. Finally, we suggest that differences in BT transport between normal colonocytes and tumoral cells contribute to the "BT paradox" (the apparent opposing effect of BT in CRC cells and normal colonocytes).
Collapse
|
230
|
Shimoyama Y, Akihara Y, Kirat D, Iwano H, Hirayama K, Kagawa Y, Ohmachi T, Matsuda K, Okamoto M, Kadosawa T, Yokota H, Taniyama H. Expression of Monocarboxylate Transporter 1 in Oral and Ocular Canine Melanocytic Tumors. Vet Pathol 2016; 44:449-57. [PMID: 17606506 DOI: 10.1354/vp.44-4-449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Solid tumors are composed of a heterogeneous population of cells surviving in various concentrations of oxygen. In a hypoxic environment, tumor cells generally up-regulate glycolysis and, therefore, generate more lactate that must be expelled from the cell through proton transporters to prevent intracellular acidosis. Monocarboxylate transporter 1 (MCT1) is a major proton transporter in mammalian cells that transports monocarboxylates, such as lactate and pyruvate, together with a proton across the plasma membrane. Melanocytic neoplasia occurs frequently in dogs, but the prognosis is highly site-dependent. In this study, 50 oral canine melanomas, which were subdivided into 3 histologic subtypes, and 17 ocular canine melanocytic neoplasms (14 melanocytomas and 3 melanomas) were used to examine and compare MCT1 expression. Immunohistochemistry using a polyclonal chicken anti-rat MCT1 antibody showed that most oral melanoma exhibited cell membrane staining, although there were no significant differences observed among the 3 histologic subtypes. In contrast, the majority of ocular melanocytic tumors were not immunoreactive. Additionally, we documented the presence of a 45-kDa band in cell membrane protein Western blots, and sequencing of a reverse transcriptase polymerase chain reaction band of expected size confirmed its identity as a partial canine MCT1 transcript in 3 oral tumors. Increased MCT1 expression in oral melanomas compared with ocular melanocytic tumors may reflect the very different biology between these tumors in dogs. These results are the first to document canine MCT1 expression in canine tumors and suggest that increased MCT1 expression may provide a potential therapeutic target for oral melanoma.
Collapse
Affiliation(s)
- Y Shimoyama
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, 582-1 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Chaumeil MM, Radoul M, Najac C, Eriksson P, Viswanath P, Blough MD, Chesnelong C, Luchman HA, Cairncross JG, Ronen SM. Hyperpolarized (13)C MR imaging detects no lactate production in mutant IDH1 gliomas: Implications for diagnosis and response monitoring. Neuroimage Clin 2016; 12:180-9. [PMID: 27437179 PMCID: PMC4939422 DOI: 10.1016/j.nicl.2016.06.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 10/26/2022]
Abstract
Metabolic imaging of brain tumors using (13)C Magnetic Resonance Spectroscopy (MRS) of hyperpolarized [1-(13)C] pyruvate is a promising neuroimaging strategy which, after a decade of preclinical success in glioblastoma (GBM) models, is now entering clinical trials in multiple centers. Typically, the presence of GBM has been associated with elevated hyperpolarized [1-(13)C] lactate produced from [1-(13)C] pyruvate, and response to therapy has been associated with a drop in hyperpolarized [1-(13)C] lactate. However, to date, lower grade gliomas had not been investigated using this approach. The most prevalent mutation in lower grade gliomas is the isocitrate dehydrogenase 1 (IDH1) mutation, which, in addition to initiating tumor development, also induces metabolic reprogramming. In particular, mutant IDH1 gliomas are associated with low levels of lactate dehydrogenase A (LDHA) and monocarboxylate transporters 1 and 4 (MCT1, MCT4), three proteins involved in pyruvate metabolism to lactate. We therefore investigated the potential of (13)C MRS of hyperpolarized [1-(13)C] pyruvate for detection of mutant IDH1 gliomas and for monitoring of their therapeutic response. We studied patient-derived mutant IDH1 glioma cells that underexpress LDHA, MCT1 and MCT4, and wild-type IDH1 GBM cells that express high levels of these proteins. Mutant IDH1 cells and tumors produced significantly less hyperpolarized [1-(13)C] lactate compared to GBM, consistent with their metabolic reprogramming. Furthermore, hyperpolarized [1-(13)C] lactate production was not affected by chemotherapeutic treatment with temozolomide (TMZ) in mutant IDH1 tumors, in contrast to previous reports in GBM. Our results demonstrate the unusual metabolic imaging profile of mutant IDH1 gliomas, which, when combined with other clinically available imaging methods, could be used to detect the presence of the IDH1 mutation in vivo.
Collapse
Key Words
- 2-HG, 2-hydroxyglutarate
- AIF, arterial input function
- AUC, area under the curve
- DNP, dynamic nuclear polarization
- DNP-MR, dynamic nuclear polarization magnetic resonance
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- FA, flip angle
- FGF, fibroblast growth factor
- FLAIR, fluid attenuated inversion recovery
- FOV, field of view
- GBM, glioblastoma
- Glioma
- Hyperpolarized 13C Magnetic Resonance Spectroscopy (MRS)
- IDH1, isocitrate dehydrogenase 1
- Isocitrate dehydrogenase 1 (IDH1) mutation
- LDHA, lactate dehydrogenase A
- MCT1, monocarboxylate transporter 1
- MCT4, monocarboxylate transporter 4
- MR, magnetic resonance
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopic imaging
- MRS, magnetic resonance spectroscopy
- Metabolic reprogramming
- NA, number of averages
- NT, number of transients
- PBS, phosphate-buffer saline
- PDGF, platelet-derived growth factor
- PET, positron emission tomography
- PI3K, phosphoinositide 3-kinase
- PTEN, phosphatase and tensin homolog
- RB1, retinoblastoma protein 1
- SLC16A1, solute carrier family 16 member 1
- SLC16A3, solute carrier family 16 member 3
- SNR, signal-to-noise ratio
- SW, spectral width
- TCGA, The Cancer Genome Atlas
- TE, echo time
- TMZ, temozolomide
- TP53, tumor protein p53
- TR, repetition time
- Tacq, acquisition time
- VOI, voxel of interest
- mTOR, mammalian target of rapamycin
- α-KG, α-ketoglutarate
Collapse
Affiliation(s)
- Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
| | - Michael D. Blough
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - Charles Chesnelong
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - H. Artee Luchman
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - J. Gregory Cairncross
- Department of Clinical Neurosciences, Foothills Hospital, 1403 29 St NW, Calgary, AB T2N 2T9, Canada
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158 San Francisco, CA, United States
- Brain Tumor Research Center, Helen Diller Family Cancer Research Building, 1450 3rd Street, University of California, 94158 San Francisco, CA, United States
| |
Collapse
|
232
|
Pan W, Wang H, Yang L, Yu Z, Li N, Tang B. Ratiometric Fluorescence Nanoprobes for Subcellular pH Imaging with a Single-Wavelength Excitation in Living Cells. Anal Chem 2016; 88:6743-8. [DOI: 10.1021/acs.analchem.6b01010] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Wei Pan
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Honghong Wang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Limin Yang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Zhengze Yu
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Na Li
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| | - Bo Tang
- College of Chemistry,
Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People’s Republic of China
| |
Collapse
|
233
|
Alba JJ, Sadurní A, Gargallo R. Nucleic Acid i-Motif Structures in Analytical Chemistry. Crit Rev Anal Chem 2016; 46:443-54. [DOI: 10.1080/10408347.2016.1143347] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Joan Josep Alba
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Anna Sadurní
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Raimundo Gargallo
- Department of Analytical Chemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
234
|
Viswanath P, Najac C, Izquierdo-Garcia JL, Pankov A, Hong C, Eriksson P, Costello JF, Pieper RO, Ronen SM. Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget 2016; 7:34942-55. [PMID: 27144334 PMCID: PMC5085201 DOI: 10.18632/oncotarget.9006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/10/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) are characteristic of low-grade gliomas. We recently showed that mutant IDH1 cells reprogram cellular metabolism by down-regulating pyruvate dehydrogenase (PDH) activity. Reduced pyruvate metabolism via PDH could lead to increased pyruvate conversion to lactate. The goal of this study was therefore to investigate the impact of the IDH1 mutation on the pyruvate-to-lactate flux. We used 13C magnetic resonance spectroscopy and compared the conversion of hyperpolarized [1-13C]-pyruvate to [1-13C]-lactate in immortalized normal human astrocytes expressing mutant or wild-type IDH1 (NHAIDHmut and NHAIDHwt). Our results indicate that hyperpolarized lactate production is reduced in NHAIDHmut cells compared to NHAIDHwt. This reduction was associated with lower expression of the monocarboxylate transporters MCT1 and MCT4 in NHAIDHmut cells. Furthermore, hyperpolarized lactate production was comparable in lysates of NHAIDHmut and NHAIDHwt cells, wherein MCTs do not impact hyperpolarized pyruvate delivery and lactate production. Collectively, our findings indicated that lower MCT expression was a key contributor to lower hyperpolarized lactate production in NHAIDHmut cells. The SLC16A3 (MCT4) promoter but not SLC16A1 (MCT1) promoter was hypermethylated in NHAIDHmut cells, pointing to possibly different mechanisms mediating reduced MCT expression. Finally analysis of low-grade glioma patient biopsy data from The Cancer Genome Atlas revealed that MCT1 and MCT4 expression was significantly reduced in mutant IDH1 tumors compared to wild-type. Taken together, our study shows that reduced MCT expression is part of the metabolic reprogramming of mutant IDH1 gliomas. This finding could impact treatment and has important implications for metabolic imaging of mutant IDH1 gliomas.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jose L Izquierdo-Garcia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aleksandr Pankov
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chibo Hong
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pia Eriksson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
235
|
Yao D, Li H, Guo Y, Zhou X, Xiao S, Liang H. A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem Commun (Camb) 2016; 52:7556-9. [PMID: 27225943 DOI: 10.1039/c6cc03089k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The toehold-mediated DNA-strand-displacement reaction has unique programmable properties for driving the catalytic assembly of gold nanoparticles (AuNPs). Herein, we introduced a pH-responsive triplex structure into the DNA-strand-displacement-based catalytic assembly system of DNA-AuNPs to add an additional controlling factor, namely the pH. In this catalytic system, the aggregation rate of AuNPs could be regulated by both internal factors (concentrations of substrate, target, etc.) and an external control (pH gradient). This strategy can be used to construct pH-induced DNA logic gates and sophisticated DNA networks as well as to image instantaneous pH changes in living cells.
Collapse
Affiliation(s)
- Dongbao Yao
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | | | | | | | | | | |
Collapse
|
236
|
Federici C, Lugini L, Marino ML, Carta F, Iessi E, Azzarito T, Supuran CT, Fais S. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells. J Enzyme Inhib Med Chem 2016; 31:119-125. [PMID: 27142956 DOI: 10.1080/14756366.2016.1177525] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
CONTEXT Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. OBJECTIVE To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. METHODS The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. RESULTS The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. DISCUSSION These results represent the first successful attempt in combining two different proton exchanger inhibitors. CONCLUSION This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.
Collapse
Affiliation(s)
- Cristina Federici
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Luana Lugini
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Maria Lucia Marino
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Fabrizio Carta
- b NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Elisabetta Iessi
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Tommaso Azzarito
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Claudiu T Supuran
- b NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Stefano Fais
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| |
Collapse
|
237
|
Ma Y, Liang H, Zeng Y, Yang H, Ho CL, Xu W, Zhao Q, Huang W, Wong WY. Phosphorescent soft salt for ratiometric and lifetime imaging of intracellular pH variations. Chem Sci 2016; 7:3338-3346. [PMID: 29997827 PMCID: PMC6006953 DOI: 10.1039/c5sc04624f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
In contrast to traditional short-lived fluorescent probes, long-lived phosphorescent probes based on transition-metal complexes can effectively eliminate unwanted background interference by using time-resolved luminescence imaging techniques, such as photoluminescence lifetime imaging microscopy. Hence, phosphorescent probes have become one of the most attractive candidates for investigating biological events in living systems. However, most of them are based on single emission intensity changes, which might be affected by a variety of intracellular environmental factors. Ratiometric measurement allows simultaneous recording of two separated wavelengths instead of measuring mere intensity changes and thus offers built-in correction for environmental effects. Herein, for the first time, a soft salt based phosphorescent probe has been developed for ratiometric and lifetime imaging of intracellular pH variations in real time. Specifically, a pH sensitive cationic complex (C1) and a pH insensitive anionic complex (A1) are directly connected through electrostatic interaction to form a soft salt based probe (S1), which exhibits a ratiometric phosphorescent response to pH with two well-resolved emission peaks separated by about 150 nm (from 475 to 625 nm). This novel probe was then successfully applied for ratiometric and lifetime imaging of intracellular pH variations. Moreover, quantitative measurements of intracellular pH fluctuations caused by oxidative stress have been performed for S1 based on the pH-dependent calibration curve.
Collapse
Affiliation(s)
- Yun Ma
- Institute of Molecular Functional Materials , Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Waterloo Road , Hong Kong , P. R. China . ; ; Tel: +852 34117074
| | - Hua Liang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Yi Zeng
- Institute of Molecular Functional Materials , Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Waterloo Road , Hong Kong , P. R. China . ; ; Tel: +852 34117074
| | - Huiran Yang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Cheuk-Lam Ho
- Institute of Molecular Functional Materials , Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Waterloo Road , Hong Kong , P. R. China . ; ; Tel: +852 34117074
| | - Wenjuan Xu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Qiang Zhao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Wei Huang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 85866396
| | - Wai-Yeung Wong
- Institute of Molecular Functional Materials , Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Waterloo Road , Hong Kong , P. R. China . ; ; Tel: +852 34117074
- Institute of Polymer Optoelectronic Materials and Devices , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , P. R. China
| |
Collapse
|
238
|
Pore N, Jalla S, Liu Z, Higgs B, Sorio C, Scarpa A, Hollingsworth R, Tice DA, Michelotti E. In Vivo Loss of Function Screening Reveals Carbonic Anhydrase IX as a Key Modulator of Tumor Initiating Potential in Primary Pancreatic Tumors. Neoplasia 2016; 17:473-80. [PMID: 26152355 PMCID: PMC4719001 DOI: 10.1016/j.neo.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Reprogramming of energy metabolism is one of the emerging hallmarks of cancer. Up-regulation of energy metabolism pathways fuels cell growth and division, a key characteristic of neoplastic disease, and can lead to dependency on specific metabolic pathways. Thus, targeting energy metabolism pathways might offer the opportunity for novel therapeutics. Here, we describe the application of a novel in vivo screening approach for the identification of genes involved in cancer metabolism using a patient-derived pancreatic xenograft model. Lentiviruses expressing short hairpin RNAs (shRNAs) targeting 12 different cell surface protein transporters were separately transduced into the primary pancreatic tumor cells. Transduced cells were pooled and implanted into mice. Tumors were harvested at different times, and the frequency of each shRNA was determined as a measure of which ones prevented tumor growth. Several targets including carbonic anhydrase IX (CAIX), monocarboxylate transporter 4, and anionic amino acid transporter light chain, xc- system (xCT) were identified in these studies and shown to be required for tumor initiation and growth. Interestingly, CAIX was overexpressed in the tumor initiating cell population. CAIX expression alone correlated with a highly tumorigenic subpopulation of cells. Furthermore, CAIX expression was essential for tumor initiation because shRNA knockdown eliminated the ability of cells to grow in vivo. To the best of our knowledge, this is the first parallel in vivo assessment of multiple novel oncology target genes using a patient-derived pancreatic tumor model.
Collapse
Affiliation(s)
| | | | - Zheng Liu
- MedImmune, LLC, Gaithersburg, MD, USA
| | | | - Claudio Sorio
- ARC-NET Research Centre and Department of Pathology and Diagnostics, University of Verona Medical School, Verona, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre and Department of Pathology and Diagnostics, University of Verona Medical School, Verona, Italy
| | | | | | | |
Collapse
|
239
|
Wang Q, Zhou L, Qiu L, Lu D, Wu Y, Zhang XB. An efficient ratiometric fluorescent probe for tracking dynamic changes in lysosomal pH. Analyst 2016; 140:5563-9. [PMID: 26107774 DOI: 10.1039/c5an00683j] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lysosomes are acidic organelles (approximately pH 4.5-5.5) and tracking the changes in lysosomal pH is of great biological importance. To address this issue, quite a few of fluorescent probes have been developed. However, few of these probes can realize the tracking of dynamic changes in lysosomal pH. Herein, we report a new lysosome-targeted ratiometric fluorescent probe (FR-Lys) by hybridizing morpholine with a xanthane derivative and an o-hydroxy benzoxazole group. In this probe, the morpholine group serves as a targeting unit for lysosome, the xanthane derivative exhibits a pH-modulated open/close reaction of the spirocycle, while the o-hydroxy benzoxazole moiety shows a pH modulated excited-state intramolecular proton transfer (ESIPT) process. Such a design affords the probe a ratiometric fluorescence response towards pH with pH values ranging from 4.0 to 6.3. The response of the probe to pH was fast and reversible with high selectivity. Moreover, this probe possesses further advantages such as easy synthesis, high photostability and low cytotoxicity. These features are favorable for tracking dynamic pH changes in biosystems. It was then applied for dynamic imaging pH changes in lysosomes with satisfactory results.
Collapse
Affiliation(s)
- Qianqian Wang
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, PR China.
| | | | | | | | | | | |
Collapse
|
240
|
Gupta K. Cancer generated lactic acid: Novel therapeutic approach. Int J Appl Basic Med Res 2016; 6:1-2. [PMID: 26958512 PMCID: PMC4765265 DOI: 10.4103/2229-516x.173976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Kapil Gupta
- Department of Biochemistry, Adesh Institute of Medical Sciences and Research, Bathinda, Punjab, India
| |
Collapse
|
241
|
Alfarouk KO. Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J Enzyme Inhib Med Chem 2016; 31:859-66. [PMID: 26864256 DOI: 10.3109/14756366.2016.1140753] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer cells reprogram their metabolic machineries to enter into permanent glycolytic pathways. The full reason for such reprogramming takes place is unclear. However, this metabolic switch is not made in vain for the lactate that is generated and exported outside cells is reused by other cells. This results in the generation of a pH gradient between the low extracellular pH that is acidic (pHe) and the higher cytosolic alkaline or near neutral pH (pHi) environments that are tightly regulated by the overexpression of several pumps and ion channels (e.g. NHE-1, MCT-1, V-ATPase, CA9, and CA12). The generation of this unique pH gradient serves as a determining factor in defining "tumor fitness". Tumor fitness is the capacity of the tumor to invade and metastasize due to its ability to reduce the efficiency of the immune system and confer resistance to chemotherapy. In this article, we highlight the importance of tumor microenvironment in mediating the failure of chemotherapeutic agents.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- a Department of Pharmacology , Faculty of Pharmacy, AL-Neelain University , Khartoum , Sudan
| |
Collapse
|
242
|
Xu J, Ji B, Wen G, Yang Y, Jin H, Liu X, Xie R, Song W, Song P, Dong H, Tuo B. Na+/H+ exchanger 1, Na+/Ca2+ exchanger 1 and calmodulin complex regulates interleukin 6-mediated cellular behavior of human hepatocellular carcinoma. Carcinogenesis 2016; 37:290-300. [PMID: 26775040 DOI: 10.1093/carcin/bgw004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023] Open
Abstract
Interleukin 6 (IL6) is a key cytokine involved in the development and progression of inflammation-associated hepatocellular carcinoma (HCC). However, the mechanisms of IL6 action on HCC remain largely unknown. Proton and Ca(2+) are two intracellular messenger ions, which are believed to play a central role in tumorigenesis and tumor progression. In this study, we found that IL6 stimulation markedly increased intracellualr pH recovery rates of human HCC cells, Huh7 and HepG2, after NH4Cl acidification, and the NH4Cl acidification induced transient intracellular Ca(2+) increases in the HCC cells. The inhibition of Na(+)/H(+) exchanger 1 (NHE1), Na(+)/Ca(2+) exchanger 1 (NCX1) and calmodulin (CaM) inhibited the IL6 stimulation-induced intracellular pH recovery increases and NH4Cl acidification-induced intracellular Ca(2+) increases. IL6 stimulation also induced the structural interaction of NHE1, NCX1 and CaM proteins. The protein expression levels of NHE1, NCX1 and CaM in native human HCC tissues were markedly higher than those in normal liver tissues. IL6 upregulated the expressions of NHE1, NCX1 and CaM in Huh7 and HepG2 cells. NHE1, NCX1 and CaM mediated the promotion of IL6 on the proliferation, migration and invasion of Huh7 and HepG2 cells and the growth of HCC in nude mice. In conclusion, IL6 activates the functional activity of NHE1 and induces the functional and structural interaction of NHE1, NCX1 and CaM. The interaction of NHE1, NCX1 and CaM mediates the effects of IL6 on human HCC.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi 563003, China
| | - Bei Ji
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi 563003, China
| | - Yuan Yang
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi 563003, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Wenfeng Song
- Key Laboratory of Combined Multi-organ Transplantation, Zhejiang University, Hangzhou 310003, China and.,Collaborative innovation center for Diagnosis treatment of infectious diseases, Zhejiang Province, Hangzhou 310003, China
| | - Penghong Song
- Key Laboratory of Combined Multi-organ Transplantation, Zhejiang University, Hangzhou 310003, China and.,Collaborative innovation center for Diagnosis treatment of infectious diseases, Zhejiang Province, Hangzhou 310003, China
| | - Hui Dong
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, 149 Dalian Road, Zunyi 563003, China.,Digestive Disease Institute of Guizhou Province, Zunyi 563003, China.,Research Center of Medicine and Biology, Zunyi Medical College, Zunyi 563003, China
| |
Collapse
|
243
|
Bis(Naphthalimide-Piperazine)-Based Off-On Fluorescent Probe for Acids. J Fluoresc 2016; 26:807-11. [DOI: 10.1007/s10895-016-1767-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
|
244
|
Song X, Hu M, Wang C, Xiao Y. Near-infrared fluorescent probes with higher quantum yields and neutral pKa values for the evaluation of intracellular pH. RSC Adv 2016. [DOI: 10.1039/c6ra11637j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Near-infrared fluorescent probes for pH, named pH-A and pH-B, for labeling cells to produce high resolution fluorescent images reflect the changes of intracellular pH.
Collapse
Affiliation(s)
- Xinbo Song
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Mingyu Hu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Chao Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
245
|
Xiang D, Meng Q, Liu H, Lan M, Wei G. The study of a curcumin-resembling molecular probe for the pH-responsive fluorometric assay and application in cell imaging. Talanta 2016; 146:851-6. [DOI: 10.1016/j.talanta.2015.05.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
246
|
Zhu X, Lin Q, Chen P, Fu YP, Zhang YM, Wei TB. A novel pH sensor which could respond to multi-scale pH changes via different fluorescence emissions. NEW J CHEM 2016. [DOI: 10.1039/c5nj03114a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensor L6 exhibited two obvious pH jumps and could respond to multi-scale pH changes via different fluorescence emissions and colors.
Collapse
Affiliation(s)
- Xin Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Pei Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Yong-Peng Fu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
247
|
Pereira TM, Vitório F, Amaral RC, Zanoni KPS, Murakami Iha NY, Kümmerle AE. Microwave-assisted synthesis and photophysical studies of novel fluorescent N-acylhydrazone and semicarbazone-7-OH-coumarin dyes. NEW J CHEM 2016. [DOI: 10.1039/c6nj01532h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Emissive 7-OH-coumarins were synthesized by a microwave-assisted protocol and spectral changes were induced after conformational changes in low polarity media.
Collapse
Affiliation(s)
- Thiago Moreira Pereira
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory)
- Departament of Chemistry
- Universidade Federal Rural do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Felipe Vitório
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory)
- Departament of Chemistry
- Universidade Federal Rural do Rio de Janeiro
- Rio de Janeiro
- Brazil
| | - Ronaldo Costa Amaral
- Laboratory of Photochemistry and Energy Conversion
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo – SP 05508-000
| | - Kassio Papi Silva Zanoni
- Laboratory of Photochemistry and Energy Conversion
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo – SP 05508-000
| | - Neyde Yukie Murakami Iha
- Laboratory of Photochemistry and Energy Conversion
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo – SP 05508-000
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory)
- Departament of Chemistry
- Universidade Federal Rural do Rio de Janeiro
- Rio de Janeiro
- Brazil
| |
Collapse
|
248
|
Sarkar Y, Das S, Ray A, Jewrajka SK, Hirota S, Parui PP. A simple interfacial pH detection method for cationic amphiphilic self-assemblies utilizing a Schiff-base molecule. Analyst 2016; 141:2030-9. [DOI: 10.1039/c5an02128f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple pH-sensing method to monitor interfacial pH deviation from the bulk pH for cationic micelle and vesicle is introduced by estimating the change in the Schiff-base molecule (AH) proton dissociation between interface and bulk.
Collapse
Affiliation(s)
- Yeasmin Sarkar
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | - Sanju Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
- Department of Chemistry
| | - Ambarish Ray
- Department of Chemistry
- Maulana Azad College
- Kolkata 700013
- India
| | - Suresh K. Jewrajka
- CSIR-Central Salt & Marine Chemicals Research Institute
- Gujarat-364002
- India
| | - Shun Hirota
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Nara 630-0192
- Japan
| | | |
Collapse
|
249
|
Qi Q, Li Y, Yan X, Zhang F, Jiang S, Su J, Xu B, Fu X, Sun L, Tian W. Intracellular pH sensing using polymeric micelle containing tetraphenylethylene-oxazolidine. Polym Chem 2016. [DOI: 10.1039/c6py01072e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembled polymeric micelle can be used as an effective probe for intracellular pH detection by switching its luminescence from cyan to red with high selectivity and contrast.
Collapse
Affiliation(s)
- Qingkai Qi
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Yue Li
- Edmond H. Fischer Signal Transduction Laboratory
- College of Life Sciences
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiaoyu Yan
- Department of Pathophysiology
- Basic Medical College
- Jilin University
- Changchun 130021
- China
| | - Fengli Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Shan Jiang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Jing Su
- Department of Pathophysiology
- Basic Medical College
- Jilin University
- Changchun 130021
- China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory
- College of Life Sciences
- Jilin University
- Changchun 130012
- P. R. China
| | - Liankun Sun
- Department of Pathophysiology
- Basic Medical College
- Jilin University
- Changchun 130021
- China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
250
|
Zhang Y, Fang HM, Zhang XT, Wang S, Xing GW. 8-(4-aminophenyl)BODIPYs as fluorescent pH probes: facile synthesis, computational study and lysosome imaging. ChemistrySelect 2015. [DOI: 10.1002/slct.201500016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Zhang
- Department of Chemistry; Beijing Normal University; Beijing 100875 China
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Hong-mei Fang
- Department of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Xiao-tai Zhang
- Department of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Shu Wang
- Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
| | - Guo-wen Xing
- Department of Chemistry; Beijing Normal University; Beijing 100875 China
| |
Collapse
|