201
|
Lobbia VR, Trueba Sanchez MC, van Ingen H. Beyond the Nucleosome: Nucleosome-Protein Interactions and Higher Order Chromatin Structure. J Mol Biol 2021; 433:166827. [PMID: 33460684 DOI: 10.1016/j.jmb.2021.166827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/20/2022]
Abstract
The regulation of chromatin biology ultimately depends on the manipulation of its smallest subunit, the nucleosome. The proteins that bind and operate on the nucleosome do so, while their substrate is part of a polymer embedded in the dense nuclear environment. Their molecular interactions must in some way be tuned to deal with this complexity. Due to the rapid increase in the number of high-resolution structures of nucleosome-protein complexes and the increasing understanding of the cellular chromatin structure, it is starting to become clearer how chromatin factors operate in this complex environment. In this review, we analyze the current literature on the interplay between nucleosome-protein interactions and higher-order chromatin structure. We examine in what way nucleosomes-protein interactions can affect and can be affected by chromatin organization at the oligonucleosomal level. In addition, we review the characteristics of nucleosome-protein interactions that can cause phase separation of chromatin. Throughout, we hope to illustrate the exciting challenges in characterizing nucleosome-protein interactions beyond the nucleosome.
Collapse
Affiliation(s)
- Vincenzo R Lobbia
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Maria Cristina Trueba Sanchez
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
202
|
Mazina MY, Vorobyeva NE. Chromatin Modifiers in Transcriptional Regulation: New Findings and Prospects. Acta Naturae 2021; 13:16-30. [PMID: 33959384 PMCID: PMC8084290 DOI: 10.32607/actanaturae.11101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023] Open
Abstract
Histone-modifying and remodeling complexes are considered the main coregulators that affect transcription by changing the chromatin structure. Coordinated action by these complexes is essential for the transcriptional activation of any eukaryotic gene. In this review, we discuss current trends in the study of histone modifiers and chromatin remodelers, including the functional impact of transcriptional proteins/ complexes i.e., "pioneers"; remodeling and modification of non-histone proteins by transcriptional complexes; the supplementary functions of the non-catalytic subunits of remodelers, and the participation of histone modifiers in the "pause" of RNA polymerase II. The review also includes a scheme illustrating the mechanisms of recruitment of the main classes of remodelers and chromatin modifiers to various sites in the genome and their functional activities.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| | - N. E. Vorobyeva
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| |
Collapse
|
203
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
204
|
Estrogen Receptor on the move: Cistromic plasticity and its implications in breast cancer. Mol Aspects Med 2020; 78:100939. [PMID: 33358533 DOI: 10.1016/j.mam.2020.100939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
Estrogen Receptor (ERα) is a hormone-driven transcription factor, critically involved in driving tumor cell proliferation in the vast majority of breast cancers (BCas). ERα binds the genome at cis-regulatory elements, dictating the expression of a large spectrum of responsive genes in 3D genomic space. While initial reports described a rather static ERα chromatin binding repertoire, we now know that ERα DNA interactions are highly versatile, altered in breast tumor development and progression, and deviate between tumors from patients with differential outcome. Multiple cellular signaling cascades are known to impinge on ERα genomic function, changing its cistrome to retarget the receptor to other regions of the genome and reprogram its impact on breast cell biology. This review describes the current state-of-the-art on which factors manipulate the ERα cistrome and how this alters the response to both endogenous and exogenous hormonal stimuli, ultimately impacting BCa cell progression and response to commonly used therapeutic interventions. Novel insights in ERα cistrome dynamics may pave the way for better patient diagnostics and the development of novel therapeutic interventions, ultimately improving cancer care and patient outcome.
Collapse
|
205
|
Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 2020; 588:664-669. [PMID: 33328632 DOI: 10.1038/s41586-020-3034-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/13/2020] [Indexed: 12/30/2022]
|
206
|
Zhang T, Foreman R, Wollman R. Identifying chromatin features that regulate gene expression distribution. Sci Rep 2020; 10:20566. [PMID: 33239733 PMCID: PMC7688950 DOI: 10.1038/s41598-020-77638-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Gene expression variability, differences in the number of mRNA per cell across a population of cells, is ubiquitous across diverse organisms with broad impacts on cellular phenotypes. The role of chromatin in regulating average gene expression has been extensively studied. However, what aspects of the chromatin contribute to gene expression variability is still underexplored. Here we addressed this problem by leveraging chromatin diversity and using a systematic investigation of randomly integrated expression reporters to identify what aspects of chromatin microenvironment contribute to gene expression variability. Using DNA barcoding and split-pool decoding, we created a large library of isogenic reporter clones and identified reporter integration sites in a massive and parallel manner. By mapping our measurements of reporter expression at different genomic loci with multiple epigenetic profiles including the enrichment of transcription factors and the distance to different chromatin states, we identified new factors that impact the regulation of gene expression distributions.
Collapse
Affiliation(s)
- Thanutra Zhang
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, USA
| | - Robert Foreman
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, USA
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA, USA.
- Departments of Integrative Biology and Physiology and Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
207
|
Lin Y, Xiao Y, Lin C, Zhang Q, Zhang S, Pei F, Liu H, Chen Z. SALL1 regulates commitment of odontoblast lineages by interacting with RUNX2 to remodel open chromatin regions. STEM CELLS (DAYTON, OHIO) 2020; 39:196-209. [PMID: 33159702 DOI: 10.1002/stem.3298] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/18/2020] [Indexed: 11/10/2022]
Abstract
Mouse dental papilla cells (mDPCs) derive from cranial neural crest cells and maintain mesenchymal stem cell characteristics. The differentiation of neural crest cells into odontoblasts is orchestrated by transcription factors regulating the expression of genes whose enhancers are initially inaccessible. However, the identity of the transcription factors driving the emergence of odontoblast lineages remains elusive. In this study, we identified SALL1, a transcription factor that was particularly expressed in preodontoblasts, polarizing odontoblasts, and secretory odontoblasts in vivo. Knockdown of Sall1 in mDPCs inhibited their odontoblastic differentiation. In order to identify the regulatory network of Sall1, RNA sequencing and an assay for transposase-accessible chromatin with high-throughput sequencing were performed to analyze the genome-wide direct regulatory targets of SALL1. We found that inhibition of Sall1 expression could decrease the accessibility of some chromatin regions associated with odontoblast lineages at embryonic day 16.5, whereas these regions remained unaffected at postnatal day 0.5, suggesting that SALL1 regulates the fate of mDPCs by remodeling open chromatin regions at the early bell stage. Specifically, we found that SALL1 could directly increase the accessibility of cis-regulatory elements near Tgf-β2 and within the Runx2 locus. Moreover, coimmunoprecipitation and proximal ligation assays showed that SALL1 could establish functional interactions with RUNX2. Taken together, our results demonstrated that SALL1 positively regulates the commitment of odontoblast lineages by interacting with RUNX2 and directly activating Tgf-β2 at an early stage.
Collapse
Affiliation(s)
- Yuxiu Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - ChuJiao Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Qian Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Shu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Fei Pei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
208
|
Mashtalir N, Suzuki H, Farrell DP, Sankar A, Luo J, Filipovski M, D'Avino AR, St Pierre R, Valencia AM, Onikubo T, Roeder RG, Han Y, He Y, Ranish JA, DiMaio F, Walz T, Kadoch C. A Structural Model of the Endogenous Human BAF Complex Informs Disease Mechanisms. Cell 2020; 183:802-817.e24. [PMID: 33053319 PMCID: PMC7717177 DOI: 10.1016/j.cell.2020.09.051] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture. Here, we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome, generated using cryoelectron microscopy (cryo-EM), cross-linking mass spectrometry, and homology modeling. BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminal α-helix and the SMARCA4/2 C-terminal SnAc/post-SnAc regions, with disease-associated mutations in either causing attenuated chromatin remodeling activities. Further, we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes. Finally, we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex, identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation. Taken together, this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.
Collapse
Affiliation(s)
- Nazar Mashtalir
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hiroshi Suzuki
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Akshay Sankar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Martin Filipovski
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew R D'Avino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Roodolph St Pierre
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard Medical School, Boston, MA, USA
| | - Alfredo M Valencia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard Medical School, Boston, MA, USA
| | - Takashi Onikubo
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA.
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
209
|
Price RM, Budzyński MA, Kundra S, Teves SS. Advances in visualizing transcription factor - DNA interactions. Genome 2020; 64:449-466. [PMID: 33113335 DOI: 10.1139/gen-2020-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the heart of the transcription process is the specific interaction between transcription factors (TFs) and their target DNA sequences. Decades of molecular biology research have led to unprecedented insights into how TFs access the genome to regulate transcription. In the last 20 years, advances in microscopy have enabled scientists to add imaging as a powerful tool in probing two specific aspects of TF-DNA interactions: structure and dynamics. In this review, we examine how applications of diverse imaging technologies can provide structural and dynamic information that complements insights gained from molecular biology assays. As a case study, we discuss how applications of advanced imaging techniques have reshaped our understanding of TF behavior across the cell cycle, leading to a rethinking in the field of mitotic bookmarking.
Collapse
Affiliation(s)
- Rachel M Price
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Marek A Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shivani Kundra
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
210
|
Inada H, Udono M, Matsuda-Ito K, Horisawa K, Ohkawa Y, Miura S, Goya T, Yamamoto J, Nagasaki M, Ueno K, Saitou D, Suyama M, Maehara Y, Kumamaru W, Ogawa Y, Sekiya S, Suzuki A. Direct reprogramming of human umbilical vein- and peripheral blood-derived endothelial cells into hepatic progenitor cells. Nat Commun 2020; 11:5292. [PMID: 33087715 PMCID: PMC7578104 DOI: 10.1038/s41467-020-19041-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/26/2020] [Indexed: 12/18/2022] Open
Abstract
Recent advances have enabled the direct induction of human tissue-specific stem and progenitor cells from differentiated somatic cells. However, it is not known whether human hepatic progenitor cells (hHepPCs) can be generated from other cell types by direct lineage reprogramming with defined transcription factors. Here, we show that a set of three transcription factors, FOXA3, HNF1A, and HNF6, can induce human umbilical vein endothelial cells to directly acquire the properties of hHepPCs. These induced hHepPCs (hiHepPCs) propagate in long-term monolayer culture and differentiate into functional hepatocytes and cholangiocytes by forming cell aggregates and cystic epithelial spheroids, respectively, under three-dimensional culture conditions. After transplantation, hiHepPC-derived hepatocytes and cholangiocytes reconstitute damaged liver tissues and support hepatic function. The defined transcription factors also induce hiHepPCs from endothelial cells circulating in adult human peripheral blood. These expandable and bipotential hiHepPCs may be useful in the study and treatment of human liver diseases. The conditions to induce human hepatic progenitor cells from other cell types are unclear. Here, the authors reprogram human endothelial cells to hepatic progenitor cells by expressing FOXA3, HNF1A and HNF6, capable of giving rise to hepatocytes and cholangiocytes that reconstitute damaged liver tissues on transplantation.
Collapse
Affiliation(s)
- Hiroki Inada
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miyako Udono
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kanae Matsuda-Ito
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shizuka Miura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takeshi Goya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Junpei Yamamoto
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masao Nagasaki
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,Human Biosciences Unit for the Top Global Course, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Daisuke Saitou
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Wataru Kumamaru
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
211
|
Hammelman J, Krismer K, Banerjee B, Gifford DK, Sherwood RI. Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay. Genome Res 2020; 30:1468-1480. [PMID: 32973041 PMCID: PMC7605270 DOI: 10.1101/gr.263228.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
A key mechanism in cellular regulation is the ability of the transcriptional machinery to physically access DNA. Transcription factors interact with DNA to alter the accessibility of chromatin, which enables changes to gene expression during development or disease or as a response to environmental stimuli. However, the regulation of DNA accessibility via the recruitment of transcription factors is difficult to study in the context of the native genome because every genomic site is distinct in multiple ways. Here we introduce the multiplexed integrated accessibility assay (MIAA), an assay that measures chromatin accessibility of synthetic oligonucleotide sequence libraries integrated into a controlled genomic context with low native accessibility. We apply MIAA to measure the effects of sequence motifs on cell type-specific accessibility between mouse embryonic stem cells and embryonic stem cell-derived definitive endoderm cells, screening 7905 distinct DNA sequences. MIAA recapitulates differential accessibility patterns of 100-nt sequences derived from natively differential genomic regions, identifying E-box motifs common to epithelial-mesenchymal transition driver transcription factors in stem cell-specific accessible regions that become repressed in endoderm. We show that a single binding motif for a key regulatory transcription factor is sufficient to open chromatin, and classify sets of stem cell-specific, endoderm-specific, and shared accessibility-modifying transcription factor motifs. We also show that overexpression of two definitive endoderm transcription factors, T and Foxa2, results in changes to accessibility in DNA sequences containing their respective DNA-binding motifs and identify preferential motif arrangements that influence accessibility.
Collapse
Affiliation(s)
- Jennifer Hammelman
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Budhaditya Banerjee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David K Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard I Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Hubrecht Institute, 3584 CT Utrecht, Netherlands
| |
Collapse
|
212
|
FOXA2 Is Required for Enhancer Priming during Pancreatic Differentiation. Cell Rep 2020; 28:382-393.e7. [PMID: 31291575 PMCID: PMC6636862 DOI: 10.1016/j.celrep.2019.06.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/18/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulatory mechanisms of lineage priming in embryonic development are largely uncharacterized because of the difficulty of isolating transient progenitor populations. Directed differentiation of human pluripotent stem cells (hPSCs) combined with gene editing provides a powerful system to define precise temporal gene requirements for progressive chromatin changes during cell fate transitions. Here, we map the dynamic chromatin landscape associated with sequential stages of pancreatic differentiation from hPSCs. Our analysis of chromatin accessibility dynamics led us to uncover a requirement for FOXA2, known as a pioneer factor, in human pancreas specification not previously shown from mouse knockout studies. FOXA2 knockout hPSCs formed reduced numbers of pancreatic progenitors accompanied by impaired recruitment of GATA6 to pancreatic enhancers. Furthermore, FOXA2 is required for proper chromatin remodeling and H3K4me1 deposition during enhancer priming. This work highlights the power of combining hPSC differentiation, genome editing, and computational genomics for discovering transcriptional mechanisms during development.
Collapse
|
213
|
Alsina B. Mechanisms of cell specification and differentiation in vertebrate cranial sensory systems. Curr Opin Cell Biol 2020; 67:79-85. [PMID: 32950922 DOI: 10.1016/j.ceb.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Abstract
Vertebrates sense a large variety of sensory stimuli that ranges from temperature, volatile and nonvolatile chemicals, touch, pain, light, sound and gravity. To achieve this, they use specialized cells present in sensory organs and cranial ganglia. Much of our understanding of the transcription factors and mechanisms responsible for sensory cell specification comes from cell-lineage tracing and genetic experiments in different species, but recent advances in single-cell transcriptomics, high-resolution imaging and systems biology approaches have allowed to study these processes in an unprecedented resolution. Here I will point to the transcription factor programs driving cell diversity in the different sensory organs of vertebrates to then discuss in vivo data of how cell specification is coupled with tissue morphogenesis.
Collapse
Affiliation(s)
- Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain.
| |
Collapse
|
214
|
Bevington SL, Keane P, Soley JK, Tauch S, Gajdasik DW, Fiancette R, Matei-Rascu V, Willis CM, Withers DR, Cockerill PN. IL-2/IL-7-inducible factors pioneer the path to T cell differentiation in advance of lineage-defining factors. EMBO J 2020; 39:e105220. [PMID: 32930455 PMCID: PMC7667885 DOI: 10.15252/embj.2020105220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
When dormant naïve T cells first become activated by antigen-presenting cells, they express the autocrine growth factor IL-2 which transforms them into rapidly dividing effector T cells. During this process, hundreds of genes undergo epigenetic reprogramming for efficient activation, and also for potential reactivation after they return to quiescence as memory T cells. However, the relative contributions of IL-2 and T cell receptor signaling to this process are unknown. Here, we show that IL-2 signaling is required to maintain open chromatin at hundreds of gene regulatory elements, many of which control subsequent stimulus-dependent alternative pathways of T cell differentiation. We demonstrate that IL-2 activates binding of AP-1 and STAT5 at sites that can subsequently bind lineage-determining transcription factors, depending upon what other external factors exist in the local T cell environment. Once established, priming can also be maintained by the stroma-derived homeostatic cytokine IL-7, and priming diminishes if Il7r is subsequently deleted in vivo. Hence, IL-2 is not just a growth factor; it lays the foundation for T cell differentiation and immunological memory.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jake K Soley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Saskia Tauch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Remi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Veronika Matei-Rascu
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire M Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
215
|
Abstract
Pioneer transcription factors have the intrinsic biochemical ability to scan partial DNA sequence motifs that are exposed on the surface of a nucleosome and thus access silent genes that are inaccessible to other transcription factors. Pioneer factors subsequently enable other transcription factors, nucleosome remodeling complexes, and histone modifiers to engage chromatin, thereby initiating the formation of an activating or repressive regulatory sequence. Thus, pioneer factors endow the competence for fate changes in embryonic development, are essential for cellular reprogramming, and rewire gene networks in cancer cells. Recent studies with reconstituted nucleosomes in vitro and chromatin binding in vivo reveal that pioneer factors can directly perturb nucleosome structure and chromatin accessibility in different ways. This review focuses on our current understanding of the mechanisms by which pioneer factors initiate gene network changes and will ultimately contribute to our ability to control cell fates at will.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA;
| |
Collapse
|
216
|
Kim KP, Wu Y, Yoon J, Adachi K, Wu G, Velychko S, MacCarthy CM, Shin B, Röpke A, Arauzo-Bravo MJ, Stehling M, Han DW, Gao Y, Kim J, Gao S, Schöler HR. Reprogramming competence of OCT factors is determined by transactivation domains. SCIENCE ADVANCES 2020; 6:6/36/eaaz7364. [PMID: 32917606 PMCID: PMC7467702 DOI: 10.1126/sciadv.aaz7364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
OCT4 (also known as POU5F1) plays an essential role in reprogramming. It is the only member of the POU (Pit-Oct-Unc) family of transcription factors that can induce pluripotency despite sharing high structural similarities to all other members. Here, we discover that OCT6 (also known as POU3F1) can elicit reprogramming specifically in human cells. OCT6-based reprogramming does not alter the mesenchymal-epithelial transition but is attenuated through the delayed activation of the pluripotency network in comparison with OCT4-based reprogramming. Creating a series of reciprocal domain-swapped chimeras and mutants across all OCT factors, we clearly delineate essential elements of OCT4/OCT6-dependent reprogramming and, conversely, identify the features that prevent induction of pluripotency by other OCT factors. With this strategy, we further discover various chimeric proteins that are superior to OCT4 in reprogramming. Our findings clarify how reprogramming competences of OCT factors are conferred through their structural components.
Collapse
Affiliation(s)
- Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - You Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Juyong Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Sergiy Velychko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Caitlin M MacCarthy
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Borami Shin
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, Münster 48149, Germany
| | - Marcos J Arauzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastian 20014, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
| | - Dong Wook Han
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen 529020, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany.
- University of Münster, Medical Faculty, Domagkstrasse 3, Münster 48149, Germany
| |
Collapse
|
217
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, Liao JY, Hu KS, He JH, Saw PE, Xu X, Yin D. LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics 2020; 10:10823-10837. [PMID: 32929382 PMCID: PMC7482804 DOI: 10.7150/thno.47830] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: The forkhead box A1 (FOXA1) is a crucial transcription factor in initiation and development of breast, lung and prostate cancer. Previous studies about the FOXA1 transcriptional network were mainly focused on protein-coding genes. Its regulatory network of long non-coding RNAs (lncRNAs) and their role in FOXA1 oncogenic activity remains unknown. Methods: The Cancer Genome Atlas (TCGA) data, RNA-seq and ChIP-seq data were used to analyze FOXA1 regulated lncRNAs. RT-qPCR was used to detect the expression of DSCAM-AS1, RT-qPCR and Western blotting were used to determine the expression of FOXA1, estrogen receptor α (ERα) and Y box binding protein 1 (YBX1). RNA pull-down and RIP-qPCR were employed to investigate the interaction between DSCAM-AS1 and YBX1. The effect of DSCAM-AS1 on malignant phenotypes was examined through in vitro and in vivo assays. Results: In this study, we conducted a global analysis of FOXA1 regulated lncRNAs. For detailed analysis, we chose lncRNA DSCAM-AS1, which is specifically expressed in lung adenocarcinoma, breast and prostate cancer. The expression level of DSCAM-AS1 is regulated by two super-enhancers (SEs) driven by FOXA1. High expression levels of DSCAM-AS1 was associated with poor prognosis. Knockout experiments showed DSCAM-AS1 was essential for the growth of xenograft tumors. Moreover, we demonstrated DSCAM-AS1 can regulate the expression of the master transcriptional factor FOXA1. In breast cancer, DSCAM-AS1 was also found to regulate ERα. Mechanistically, DSCAM-AS1 interacts with YBX1 and influences the recruitment of YBX1 in the promoter regions of FOXA1 and ERα. Conclusion: Our study demonstrated that lncRNA DSCAM-AS1 was transcriptionally activated by super-enhancers driven by FOXA1 and exhibited lineage-specific expression pattern. DSCAM-AS1 can promote cancer progression by interacting with YBX1 and regulating expression of FOXA1 and ERα.
Collapse
|
218
|
Horisawa K, Udono M, Ueno K, Ohkawa Y, Nagasaki M, Sekiya S, Suzuki A. The Dynamics of Transcriptional Activation by Hepatic Reprogramming Factors. Mol Cell 2020; 79:660-676.e8. [PMID: 32755593 DOI: 10.1016/j.molcel.2020.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Specific combinations of two transcription factors (Hnf4α plus Foxa1, Foxa2, or Foxa3) can induce direct conversion of mouse fibroblasts into hepatocyte-like cells. However, the molecular mechanisms underlying hepatic reprogramming are largely unknown. Here, we show that the Foxa protein family members and Hnf4α sequentially and cooperatively bind to chromatin to activate liver-specific gene expression. Although all Foxa proteins bind to and open regions of closed chromatin as pioneer factors, Foxa3 has the unique potential of transferring from the distal to proximal regions of the transcription start site of target genes, binding RNA polymerase II, and co-traversing target genes. These distinctive characteristics of Foxa3 are essential for inducing the hepatic fate in fibroblasts. Similar functional coupling of transcription factors to RNA polymerase II may occur in other contexts whereby transcriptional activation can induce cell differentiation.
Collapse
Affiliation(s)
- Kenichi Horisawa
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Miyako Udono
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masao Nagasaki
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Human Biosciences Unit for the Top Global Course, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8507, Japan
| | - Sayaka Sekiya
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
219
|
Hight SK, Mootz A, Kollipara RK, McMillan E, Yenerall P, Otaki Y, Li LS, Avila K, Peyton M, Rodriguez-Canales J, Mino B, Villalobos P, Girard L, Dospoy P, Larsen J, White MA, Heymach JV, Wistuba II, Kittler R, Minna JD. An in vivo functional genomics screen of nuclear receptors and their co-regulators identifies FOXA1 as an essential gene in lung tumorigenesis. Neoplasia 2020; 22:294-310. [PMID: 32512502 PMCID: PMC7281309 DOI: 10.1016/j.neo.2020.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Using a mini-library of 1062 lentiviral shRNAs targeting 40 nuclear hormone receptors and 70 of their co-regulators, we searched for potential therapeutic targets that would be important during in vivo tumor growth using a parallel in vitro and in vivo shRNA screening strategy in the non-small cell lung cancer (NSCLC) line NCI-H1819. We identified 21 genes essential for in vitro growth, and nine genes specifically required for tumor survival in vivo, but not in vitro: NCOR2, FOXA1, HDAC1, RXRA, RORB, RARB, MTA2, ETV4, and NR1H2. We focused on FOXA1, since it lies within the most frequently amplified genomic region in lung adenocarcinomas. We found that 14q-amplification in NSCLC cell lines was a biomarker for FOXA1 dependency for both in vivo xenograft growth and colony formation, but not mass culture growth in vitro. FOXA1 knockdown identified genes involved in electron transport among the most differentially regulated, indicating FOXA1 loss may lead to a decrease in cellular respiration. In support of this, FOXA1 amplification was correlated with increased sensitivity to the complex I inhibitor phenformin. Integrative ChipSeq analyses reveal that FOXA1 functions in this genetic context may be at least partially independent of NKX2-1. Our findings are consistent with a neomorphic function for amplified FOXA1, driving an oncogenic transcriptional program. These data provide new insight into the functional consequences of FOXA1 amplification in lung adenocarcinomas, and identify new transcriptional networks for exploration of therapeutic vulnerabilities in this patient population.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Genome-Wide Association Study
- Genomics/methods
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Humans
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Cytoplasmic and Nuclear
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Suzie K Hight
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Allison Mootz
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul Yenerall
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yoichi Otaki
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Long-Shan Li
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Mino
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela Villalobos
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patrick Dospoy
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jill Larsen
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John V Heymach
- Department Thoracic and Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
220
|
Ntini E, Marsico A. Functional impacts of non-coding RNA processing on enhancer activity and target gene expression. J Mol Cell Biol 2020; 11:868-879. [PMID: 31169884 PMCID: PMC6884709 DOI: 10.1093/jmcb/mjz047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023] Open
Abstract
Tight regulation of gene expression is orchestrated by enhancers. Through recent research advancements, it is becoming clear that enhancers are not solely distal regulatory elements harboring transcription factor binding sites and decorated with specific histone marks, but they rather display signatures of active transcription, showing distinct degrees of transcription unit organization. Thereby, a substantial fraction of enhancers give rise to different species of non-coding RNA transcripts with an unprecedented range of potential functions. In this review, we bring together data from recent studies indicating that non-coding RNA transcription from active enhancers, as well as enhancer-produced long non-coding RNA transcripts, may modulate or define the functional regulatory potential of the cognate enhancer. In addition, we summarize supporting evidence that RNA processing of the enhancer-associated long non-coding RNA transcripts may constitute an additional layer of regulation of enhancer activity, which contributes to the control and final outcome of enhancer-targeted gene expression.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Free University Berlin, Berlin, Germany
| | - Annalisa Marsico
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Free University Berlin, Berlin, Germany.,Institute of Computational Biology, Helmholtz Zentrum München, München, Germany
| |
Collapse
|
221
|
Kerschner JL, Paranjapye A, Yin S, Skander DL, Bebek G, Leir SH, Harris A. A functional genomics approach to investigate the differentiation of iPSCs into lung epithelium at air-liquid interface. J Cell Mol Med 2020; 24:9853-9870. [PMID: 32692488 PMCID: PMC7520342 DOI: 10.1111/jcmm.15568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 01/24/2023] Open
Abstract
The availability of robust protocols to differentiate induced pluripotent stem cells (iPSCs) into many human cell lineages has transformed research into the origins of human disease. The efficacy of differentiating iPSCs into specific cellular models is influenced by many factors including both intrinsic and extrinsic features. Among the most challenging models is the generation of human bronchial epithelium at air‐liquid interface (HBE‐ALI), which is the gold standard for many studies of respiratory diseases including cystic fibrosis. Here, we perform open chromatin mapping by ATAC‐seq and transcriptomics by RNA‐seq in parallel, to define the functional genomics of key stages of the iPSC to HBE‐ALI differentiation. Within open chromatin peaks, the overrepresented motifs include the architectural protein CTCF at all stages, while motifs for the FOXA pioneer and GATA factor families are seen more often at early stages, and those regulating key airway epithelial functions, such as EHF, are limited to later stages. The RNA‐seq data illustrate dynamic pathways during the iPSC to HBE‐ALI differentiation, and also the marked functional divergence of different iPSC lines at the ALI stages of differentiation. Moreover, a comparison of iPSC‐derived and lung donor‐derived HBE‐ALI cultures reveals substantial differences between these models.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Dannielle L Skander
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA
| | - Gurkan Bebek
- Systems Biology and Bioinformatics Graduate Program, Case Western Reserve University, Cleveland, OH, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA.,Electrical Engineering and Computer Science Department, Case Western Reserve University, Cleveland, OH, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
222
|
Bylino OV, Ibragimov AN, Shidlovskii YV. Evolution of Regulated Transcription. Cells 2020; 9:E1675. [PMID: 32664620 PMCID: PMC7408454 DOI: 10.3390/cells9071675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genomes of all organisms abound with various cis-regulatory elements, which control gene activity. Transcriptional enhancers are a key group of such elements in eukaryotes and are DNA regions that form physical contacts with gene promoters and precisely orchestrate gene expression programs. Here, we follow gradual evolution of this regulatory system and discuss its features in different organisms. In eubacteria, an enhancer-like element is often a single regulatory element, is usually proximal to the core promoter, and is occupied by one or a few activators. Activation of gene expression in archaea is accompanied by the recruitment of an activator to several enhancer-like sites in the upstream promoter region. In eukaryotes, activation of expression is accompanied by the recruitment of activators to multiple enhancers, which may be distant from the core promoter, and the activators act through coactivators. The role of the general DNA architecture in transcription control increases in evolution. As a whole, it can be seen that enhancers of multicellular eukaryotes evolved from the corresponding prototypic enhancer-like regulatory elements with the gradually increasing genome size of organisms.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
| | - Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
223
|
FOXA1 Expression in Nasopharyngeal Carcinoma: Association with Clinicopathological Characteristics and EMT Markers. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4234632. [PMID: 32685483 PMCID: PMC7330629 DOI: 10.1155/2020/4234632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
The forkhead box (FOXA) family of transcription factors regulates gene expression and chromatin structure during tumorigenesis and embryonic development. Until now, the relationship between FOXA1 and the nasopharyngeal carcinoma (NPC) has not yet been reported. Therefore, our purpose is to analyze the expression of FOXA1 in 56 NPC patients compared to 10 normal nasopharyngeal mucosae and to correlate the expression with the clinicopathological features. Besides, we investigated the association between FOXA1 and LMP1 gene expression, as well as the EMT markers namely the E-cadherin and Twist1. Among 56 NPC tissues, 34 (60.7%) cases were positive for FOXA1. Furthermore, we noticed that FOXA1 expression correlated with TNM (p = 0.037), and age at diagnosis (p = 0.05). Moreover, positive expression of FOXA1 is likely to be associated with prolonged disease-free survival and overall survival rates. On the other hand, we observed a positive association between the expression of E-cadherin and FOXA1 (p = 0.0051) whereas Twist1 correlated negatively with FOXA1 (p = 0.004). Furthermore, knowing that LMP1 plays a key role in the pathogenesis of NPC, we explored the association of FOXA1 with the LMP1 gene expression in both NPC cell lines and tissues. We found that, in the C666-1 which displays low levels of LMP1, the expression of FOXA1 is high, and inversely in the C15 cell line that expresses a high level of LMP1, the level of FOXA1 is low. Besides, in accordance to our results, we found that in NPC tissues there is a negative association between LMP1 and FOXA1. In conclusion, our results suggest that the overexpression of FOXA1 is associated with a nonaggressive behavior and favorable prognosis in NPC patients. FOXA1 could contribute in the EMT process through key factors as E-cadherin, Twist1, and LMP1.
Collapse
|
224
|
Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS. Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. Mol Cell 2020; 79:677-688.e6. [PMID: 32574554 DOI: 10.1016/j.molcel.2020.05.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/06/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic probes of chromatin structure reveal accessible versus inaccessible chromatin states, while super-resolution microscopy reveals a continuum of chromatin compaction states. Characterizing histone H2B movements by single-molecule tracking (SMT), we resolved chromatin domains ranging from low to high mobility and displaying different subnuclear localizations patterns. Heterochromatin constituents correlated with the lowest mobility chromatin, whereas transcription factors varied widely with regard to their respective mobility with low- or high-mobility chromatin. Pioneer transcription factors, which bind nucleosomes, can access the low-mobility chromatin domains, whereas weak or non-nucleosome binding factors are excluded from the domains and enriched in higher mobility domains. Nonspecific DNA and nucleosome binding accounted for most of the low mobility of strong nucleosome interactor FOXA1. Our analysis shows how the parameters of the mobility of chromatin-bound factors, but not their diffusion behaviors or SMT-residence times within chromatin, distinguish functional characteristics of different chromatin-interacting proteins.
Collapse
Affiliation(s)
- Jonathan Lerner
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Pablo Aurelio Gomez-Garcia
- Center for Genomic Regulation, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; ICFO-Institute of Photonics Sciences, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ryan L McCarthy
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Zhe Liu
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Melike Lakadamyali
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; University of Pennsylvania, Department of Physiology, Philadelphia, PA 19104-6058, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
225
|
Hankey W, Chen Z, Wang Q. Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Res 2020; 80:2427-2436. [PMID: 32094298 PMCID: PMC7299826 DOI: 10.1158/0008-5472.can-19-3447] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 01/28/2023]
Abstract
The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease, but inevitably becomes reactivated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13, and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin-remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13, and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome.
Collapse
Affiliation(s)
- William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
226
|
Srivastava D, Mahony S. Sequence and chromatin determinants of transcription factor binding and the establishment of cell type-specific binding patterns. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194443. [PMID: 31639474 PMCID: PMC7166147 DOI: 10.1016/j.bbagrm.2019.194443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 10/06/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) selectively bind distinct sets of sites in different cell types. Such cell type-specific binding specificity is expected to result from interplay between the TF's intrinsic sequence preferences, cooperative interactions with other regulatory proteins, and cell type-specific chromatin landscapes. Cell type-specific TF binding events are highly correlated with patterns of chromatin accessibility and active histone modifications in the same cell type. However, since concurrent chromatin may itself be a consequence of TF binding, chromatin landscapes measured prior to TF activation provide more useful insights into how cell type-specific TF binding events became established in the first place. Here, we review the various sequence and chromatin determinants of cell type-specific TF binding specificity. We identify the current challenges and opportunities associated with computational approaches to characterizing, imputing, and predicting cell type-specific TF binding patterns. We further focus on studies that characterize TF binding in dynamic regulatory settings, and we discuss how these studies are leading to a more complex and nuanced understanding of dynamic protein-DNA binding activities. We propose that TF binding activities at individual sites can be viewed along a two-dimensional continuum of local sequence and chromatin context. Under this view, cell type-specific TF binding activities may result from either strongly favorable sequence features or strongly favorable chromatin context.
Collapse
Affiliation(s)
- Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America.
| |
Collapse
|
227
|
Macchi F, Sadler KC. Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends Genet 2020; 36:587-597. [PMID: 32487496 DOI: 10.1016/j.tig.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
A wealth of studies over several decades has revealed an epigenetic prepattern that determines the competence of cellular differentiation in the developing liver. More recently, studies focused on the impact of epigenetic factors during liver regeneration suggest that an epigenetic code in the quiescent liver may establish its regenerative potential. We review work on the pioneer factors and other chromatin remodelers that impact the gene expression patterns instructing hepatocyte and biliary cell specification and differentiation, along with the requirement of epigenetic regulatory factors for hepatic outgrowth. We then explore recent studies involving the role of epigenetic regulators, Arid1a and Uhrf1, in efficient activation of proregenerative genes during liver regeneration, thus highlighting the epigenetic mechanisms of liver disease and tumor development.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
228
|
Cramer P. Eukaryotic Transcription Turns 50. Cell 2020; 179:808-812. [PMID: 31675494 DOI: 10.1016/j.cell.2019.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
This year we celebrate the 50th anniversary of the discovery of the three eukaryotic RNA polymerases. Ever since this seminal event in 1969, researchers have investigated the intricate mechanisms of gene transcription with great dedication. The transcription field continues to influence developmental, stem cell, and cancer biology.
Collapse
Affiliation(s)
- Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
229
|
Parras C, Marie C, Zhao C, Lu QR. Chromatin remodelers in oligodendroglia. Glia 2020; 68:1604-1618. [PMID: 32460418 DOI: 10.1002/glia.23837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
Oligodendrocytes, the myelinating cells in the vertebrate central nervous system, produce myelin sheaths to enable saltatory propagation of action potentials. The process of oligodendrocyte myelination entails a stepwise progression from precursor specification to differentiation, which is coordinated by a series of transcriptional and chromatin remodeling events. ATP-dependent chromatin remodeling enzymes, which utilize ATP as an energy source to control chromatin dynamics and regulate the accessibility of chromatin to transcriptional regulators, are critical for oligodendrocyte lineage development and regeneration. In this review, we focus on the latest insights into the spatial and temporal specificity of chromatin remodelers during oligodendrocyte development, myelinogenesis, and regeneration. We will also bring together various plausible mechanisms by which lineage specific transcriptional regulators coordinate with chromatin remodeling factors for programming genomic landscapes to specifically modulate these different processes during developmental myelination and remyelination upon injury.
Collapse
Affiliation(s)
- Carlos Parras
- Sorbonne Université, UPMC University Paris 06, Inserm U1127, CNRS UMR 7225, GH Pitié-Salpêtrière, Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
| | - Corentine Marie
- Sorbonne Université, UPMC University Paris 06, Inserm U1127, CNRS UMR 7225, GH Pitié-Salpêtrière, Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
| | - Chuntao Zhao
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Qing Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
230
|
Paranjapye A, Mutolo MJ, Ebron JS, Leir SH, Harris A. The FOXA1 transcriptional network coordinates key functions of primary human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 319:L126-L136. [PMID: 32432922 DOI: 10.1152/ajplung.00023.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The differentiated functions of the human airway epithelium are coordinated by a complex network of transcription factors. These include the pioneer factors Forkhead box A1 and A2 (FOXA1 and FOXA2), which are well studied in several tissues, but their role in airway epithelial cells is poorly characterized. Here, we define the cistrome of FOXA1 and FOXA2 in primary human bronchial epithelial (HBE) cells by chromatin immunoprecipitation with deep-sequencing (ChIP-seq). Next, siRNA-mediated depletion of each factor is used to investigate their transcriptome by RNA-seq. We found that, as predicted from their DNA-binding motifs, genome-wide occupancy of the two factors showed substantial overlap; however, their global impact on gene expression differed. FOXA1 is an abundant transcript in HBE cells, while FOXA2 is expressed at low levels, and both these factors likely exhibit autoregulation and cross-regulation. FOXA1 regulated loci are involved in cell adhesion and the maintenance of epithelial cell identity, particularly through repression of genes associated with epithelial to mesenchymal transition (EMT). FOXA1 also directly targets other transcription factors with a known role in the airway epithelium such as SAM-pointed domain-containing Ets-like factor (SPDEF). The intersection of the cistrome and transcriptome for FOXA1 revealed enrichment of genes involved in epithelial development and tissue morphogenesis. Moreover, depletion of FOXA1 was shown to reduce the transepithelial resistance of HBE cells, confirming the role of this factor in maintaining epithelial barrier integrity.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Michael J Mutolo
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Jey Sabith Ebron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
231
|
Wang X, Cairns MJ, Yan J. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res 2020; 47:11481-11496. [PMID: 31724731 PMCID: PMC7145697 DOI: 10.1093/nar/gkz1038] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Gene expression is precisely controlled in a stage and cell-type-specific manner, largely through the interaction between cis-regulatory elements and their associated trans-acting factors. Where these components aggregate in promoters and enhancers, they are able to cooperate to modulate chromatin structure and support the engagement in long-range 3D superstructures that shape the dynamics of a cell's genomic architecture. Recently, the term 'super-enhancer' has been introduced to describe a hyper-active regulatory domain comprising a complex array of sequence elements that work together to control the key gene networks involved in cell identity. Here, we survey the unique characteristics of super-enhancers compared to other enhancer types and summarize the recent advances in our understanding of their biological role in gene regulation. In particular, we discuss their capacity to attract the formation of phase-separated condensates, and capacity to generate three-dimensional genome structures that precisely activate their target genes. We also propose a multi-stage transition model to explain the evolutionary pressure driving the development of super-enhancers in complex organisms, and highlight the potential for involvement in tumorigenesis. Finally, we discuss more broadly the role of super-enhancers in human health disorders and related potential in therapeutic interventions.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education / School of Life Sciences, Northwest University, Xi'an 710069, China.,Division of Theoretical Systems Biology, Germany Cancer Research Center, Heidelberg 69115, Germany.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute
| | - Jian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education / School of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong S.A.R., China
| |
Collapse
|
232
|
Soluri IV, Zumerling LM, Payan Parra OA, Clark EG, Blythe SA. Zygotic pioneer factor activity of Odd-paired/Zic is necessary for late function of the Drosophila segmentation network. eLife 2020; 9:e53916. [PMID: 32347792 PMCID: PMC7190358 DOI: 10.7554/elife.53916] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/29/2020] [Indexed: 12/20/2022] Open
Abstract
Because chromatin determines whether information encoded in DNA is accessible to transcription factors, dynamic chromatin states in development may constrain how gene regulatory networks impart embryonic pattern. To determine the interplay between chromatin states and regulatory network function, we performed ATAC-seq on Drosophila embryos during the establishment of the segmentation network, comparing wild-type and mutant embryos in which all graded maternal patterning inputs are eliminated. While during the period between zygotic genome activation and gastrulation many regions maintain stable accessibility, cis-regulatory modules (CRMs) within the network undergo extensive patterning-dependent changes in accessibility. A component of the network, Odd-paired (opa), is necessary for pioneering accessibility of late segmentation network CRMs. opa-driven changes in accessibility are accompanied by equivalent changes in gene expression. Interfering with the timing of opa activity impacts the proper patterning of expression. These results indicate that dynamic systems for chromatin regulation directly impact the reading of embryonic patterning information.
Collapse
Affiliation(s)
- Isabella V Soluri
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Lauren M Zumerling
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Omar A Payan Parra
- Program in Interdisciplinary Biological Sciences, Northwestern UniversityEvanstonUnited States
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Eleanor G Clark
- Program in Interdisciplinary Biological Sciences, Northwestern UniversityEvanstonUnited States
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
233
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
234
|
Yu X, Buck MJ. Pioneer factors and their in vitro identification methods. Mol Genet Genomics 2020; 295:825-835. [PMID: 32296927 DOI: 10.1007/s00438-020-01675-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/02/2020] [Indexed: 11/27/2022]
Abstract
Pioneer transcription factors are a special group of transcription factors that can interact with nucleosomal DNA and initiate regulatory events. Their binding to regulatory regions is the first event in gene activation and can occur in silent or heterochromatin regions. Several research groups have endeavored to define pioneer factors and study their binding characteristics using various techniques. In this review, we describe the in vitro methods used to define and characterize pioneer factors, paying particular attention to differences in methodologies and how these differences can affect results.
Collapse
Affiliation(s)
- Xinyang Yu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, P.R. China.
| | - Michael J Buck
- Department of Biochemistry, New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
- Department of Biomedical Informatics, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
235
|
Inamori S, Fujii M, Satake S, Iida H, Teramoto M, Sumi T, Meno C, Ishii Y, Kondoh H. Modeling early stages of endoderm development in epiblast stem cell aggregates with supply of extracellular matrices. Dev Growth Differ 2020; 62:243-259. [PMID: 32277710 PMCID: PMC7318635 DOI: 10.1111/dgd.12663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
Endoderm precursors expressing FoxA2 and Sox17 develop from the epiblast through the gastrulation process. In this study, we developed an experimental system to model the endoderm-generating gastrulation process using epiblast stem cells (EpiSCs). To this end, we established an EpiSC line i22, in which enhanced green fluorescent protein is coexpressed with Foxa2. Culturing i22 EpiSCs as aggregates for a few days was sufficient to initiate Foxa2 expression, and further culturing of the aggregates in Matrigel promoted the sequential activation of transcription factor genes involved in endoderm precursor development, e.g., Eomes, Gsc, and Sox17. In aggregation culture of i22 cells for 3 days, all cells expressed POU5F1, SOX2, and E-cadherin, a signature of the epiblast, whereas expression of GATA4 and SOX17 was also activated moderately in dispersed cells, suggesting priming of these cells to endodermal development. Embedding the aggregates in Matrigel for further 3 days elicited migration of the cells into the lumen of laminin-rich matrices covering the aggregates, in which FOXA2 and SOX17 were expressed at a high level with the concomitant loss of E-cadherin, indicating the migratory phase of endodermal precursors. Prolonged culturing of the aggregates generated three segregating cell populations found in post-gastrulation stage embryos: (1) definitive endoderm co-expressing high SOX17, GATA4, and E-cadherin, (2) mesodermal cells expressing a low level of GATA4 and lacking E-cadherin, and (3) primed epiblast cells expressing POU5F1, SOX2 without E-cadherin. Thus, aggregation of EpiSCs followed by embedding of aggregates in the laminin-rich matrix models the gastrulation-dependent endoderm precursor development.
Collapse
Affiliation(s)
- Sachiko Inamori
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Mai Fujii
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Sayaka Satake
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Hideaki Iida
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Machiko Teramoto
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| | - Tomoyuki Sumi
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan.,Department of Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences and Institutes for Protein Dynamics and Comprehensive Research, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
236
|
Dodonova SO, Zhu F, Dienemann C, Taipale J, Cramer P. Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature 2020; 580:669-672. [PMID: 32350470 DOI: 10.1038/s41586-020-2195-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023]
Abstract
'Pioneer' transcription factors are required for stem-cell pluripotency, cell differentiation and cell reprogramming1,2. Pioneer factors can bind nucleosomal DNA to enable gene expression from regions of the genome with closed chromatin. SOX2 is a prominent pioneer factor that is essential for pluripotency and self-renewal of embryonic stem cells3. Here we report cryo-electron microscopy structures of the DNA-binding domains of SOX2 and its close homologue SOX11 bound to nucleosomes. The structures show that SOX factors can bind and locally distort DNA at superhelical location 2. The factors also facilitate detachment of terminal nucleosomal DNA from the histone octamer, which increases DNA accessibility. SOX-factor binding to the nucleosome can also lead to a repositioning of the N-terminal tail of histone H4 that includes residue lysine 16. We speculate that this repositioning is incompatible with higher-order nucleosome stacking, which involves contacts of the H4 tail with a neighbouring nucleosome. Our results indicate that pioneer transcription factors can use binding energy to initiate chromatin opening, and thereby facilitate nucleosome remodelling and subsequent transcription.
Collapse
Affiliation(s)
- Svetlana O Dodonova
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fangjie Zhu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
237
|
Schiessel H, Blossey R. Pioneer transcription factors in chromatin remodeling: The kinetic proofreading view. Phys Rev E 2020; 101:040401. [PMID: 32422793 DOI: 10.1103/physreve.101.040401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Pioneer transcription factors are a recently defined class of transcription factors which can bind directly to nucleosomal DNA; they play a key role in gene activation in certain pathways. Here we quantify their role in the initiation of nucleosome displacement within the kinetic proofreading scenario of chromatin remodeling. The model allows one to perform remodeling efficiency comparisons for scenarios involving different types of transcription factors and remodelers as a function of their binding and unbinding rates and concentrations. Our results demonstrate a way to fine-tune the specificity of processes that modify the chromatin structure in transcriptional initiation.
Collapse
Affiliation(s)
- Helmut Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
| | - Ralf Blossey
- University of Lille, Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, 59000 Lille, France
| |
Collapse
|
238
|
Serrano-Nascimento C, Morillo-Bernal J, Rosa-Ribeiro R, Nunes MT, Santisteban P. Impaired Gene Expression Due to Iodine Excess in the Development and Differentiation of Endoderm and Thyroid Is Associated with Epigenetic Changes. Thyroid 2020; 30:609-620. [PMID: 31801416 DOI: 10.1089/thy.2018.0658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Thyroid hormone (TH) synthesis is essential for the control of development, growth, and metabolism in vertebrates and depends on a sufficient dietary iodine intake. Importantly, both iodine deficiency and iodine excess (IE) impair TH synthesis, causing serious health problems especially during fetal/neonatal development. While it is known that IE disrupts thyroid function by inhibiting thyroid gene expression, its effects on thyroid development are less clear. Accordingly, this study sought to investigate the effects of IE during the embryonic development/differentiation of endoderm and the thyroid gland. Methods: We used the murine embryonic stem (ES) cell model of in vitro directed differentiation to assess the impact of IE on the generation of endoderm and thyroid cells. Additionally, we subjected endoderm and thyroid explants obtained during early gestation to IE and evaluated gene and protein expression of endodermal markers in both models. Results: ES cells were successfully differentiated into endoderm cells and, subsequently, into thyrocytes expressing the specific thyroid markers Tshr, Slc5a5, Tpo, and Tg. IE exposure decreased the messenger RNA (mRNA) levels of the main endoderm markers Afp, Crcx4, Foxa1, Foxa2, and Sox17 in both ES cell-derived endoderm cells and embryonic explants. Interestingly, IE also decreased the expression of the main thyroid markers in ES cell-derived thyrocytes and thyroid explants. Finally, we demonstrate that DNA methyltransferase expression was increased by exposure to IE, and this was accompanied by hypermethylation and hypoacetylation of histone H3, pointing to an association between the gene repression triggered by IE and the observed epigenetic changes. Conclusions: These data establish that IE treatment is deleterious for embryonic endoderm and thyroid gene expression.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- CIBERONC Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jesús Morillo-Bernal
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- CIBERONC Instituto de Salud Carlos III, Madrid, Spain
| | - Rafaela Rosa-Ribeiro
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid, Spain
- CIBERONC Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
239
|
Choi W, Choe S, Lau GW. Inactivation of FOXA2 by Respiratory Bacterial Pathogens and Dysregulation of Pulmonary Mucus Homeostasis. Front Immunol 2020; 11:515. [PMID: 32269574 PMCID: PMC7109298 DOI: 10.3389/fimmu.2020.00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 01/21/2023] Open
Abstract
Forkhead box (FOX) proteins are transcriptional factors that regulate various cellular processes. This minireview provides an overview of FOXA2 functions, with a special emphasis on the regulation airway mucus homeostasis in both healthy and diseased lungs. FOXA2 plays crucial roles during lung morphogenesis, surfactant protein production, goblet cell differentiation and mucin expression. In healthy airways, FOXA2 exerts a tight control over goblet cell development and mucin biosynthesis. However, in diseased airways, microbial infections and proinflammatory responses deplete FOXA2 expression, resulting in uncontrolled goblet cell hyperplasia and metaplasia, mucus hypersecretion, and impaired mucociliary clearance of pathogens. Furthermore, accumulated mucus clogs the airways and creates a niche environment for persistent microbial colonization and infection, leading to acute exacerbation and deterioration of pulmonary function in patients with chronic lung diseases. Various studies have shown that FOXA2 inhibition is mediated through induction of antagonistic EGFR and IL-13R-STAT6 signaling pathways as well as through posttranslational modifications induced by microbial infections. An improved understanding of how bacterial pathogens inactivate FOXA2 may pave the way for developing therapeutics that preserve the protein's function, which in turn, will improve the mucus status and mucociliary clearance of pathogens, reduce microbial-mediated acute exacerbation and restore lung function in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Shawn Choe
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
240
|
Schmitt-Ney M. The FOXO's Advantages of Being a Family: Considerations on Function and Evolution. Cells 2020; 9:E787. [PMID: 32214027 PMCID: PMC7140813 DOI: 10.3390/cells9030787] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The nematode Caenorhabditis elegans possesses a unique (with various isoforms) FOXO transcription factor DAF-16, which is notorious for its role in aging and its regulation by the insulin-PI3K-AKT pathway. In humans, five genes (including a protein-coding pseudogene) encode for FOXO transcription factors that are targeted by the PI3K-AKT axis, such as in C. elegans. This common regulation and highly conserved DNA-binding domain are the pillars of this family. In this review, I will discuss the possible meaning of possessing a group of very similar proteins and how it can generate additional functionality to more complex organisms. I frame this discussion in relation to the much larger super family of Forkhead proteins to which they belong. FOXO members are very often co-expressed in the same cell type. The overlap of function and expression creates a certain redundancy that might be a safeguard against the accidental loss of FOXO function, which could otherwise lead to disease, particularly, cancer. This is one of the points that will be examined in this "family affair" report.
Collapse
Affiliation(s)
- Michel Schmitt-Ney
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
241
|
Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat Genet 2020; 52:418-427. [PMID: 32203463 PMCID: PMC7901023 DOI: 10.1038/s41588-020-0591-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. But a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short alpha-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming.
Collapse
|
242
|
Nevil M, Gibson TJ, Bartolutti C, Iyengar A, Harrison MM. Establishment of chromatin accessibility by the conserved transcription factor Grainy head is developmentally regulated. Development 2020; 147:dev185009. [PMID: 32098765 PMCID: PMC10624965 DOI: 10.1242/dev.185009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
The dramatic changes in gene expression required for development necessitate the establishment of cis-regulatory modules defined by regions of accessible chromatin. Pioneer transcription factors have the unique property of binding closed chromatin and facilitating the establishment of these accessible regions. Nonetheless, much of how pioneer transcription factors coordinate changes in chromatin accessibility during development remains unknown. To determine whether pioneer-factor function is intrinsic to the protein or whether pioneering activity is developmentally modulated, we studied the highly conserved, essential transcription factor Grainy head (Grh). Prior work established that Grh is expressed throughout Drosophila development and is a pioneer factor in the larva. We demonstrated that Grh remains bound to mitotic chromosomes, a property shared with other pioneer factors. By assaying chromatin accessibility in embryos lacking maternal and/or zygotic Grh at three stages of development, we discovered that Grh is not required for chromatin accessibility in early embryogenesis, in contrast to its essential functions later in development. Our data reveal that the pioneering activity of Grh is temporally regulated and likely influenced by additional factors expressed at a given developmental stage.
Collapse
Affiliation(s)
- Markus Nevil
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Constantine Bartolutti
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anusha Iyengar
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
243
|
Bozek M, Gompel N. Developmental Transcriptional Enhancers: A Subtle Interplay between Accessibility and Activity: Considering Quantitative Accessibility Changes between Different Regulatory States of an Enhancer Deconvolutes the Complex Relationship between Accessibility and Activity. Bioessays 2020; 42:e1900188. [PMID: 32142172 DOI: 10.1002/bies.201900188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Measurements of open chromatin in specific cell types are widely used to infer the spatiotemporal activity of transcriptional enhancers. How reliable are these predictions? In this review, it is argued that the relationship between the accessibility and activity of an enhancer is insufficiently described by simply considering open versus closed chromatin, or active versus inactive enhancers. Instead, recent studies focusing on the quantitative nature of accessibility signal reveal subtle differences between active enhancers and their different inactive counterparts: the closed silenced state and the accessible primed and repressed states. While the open structure as such is not a specific indicator of enhancer activity, active enhancers display a higher degree of accessibility than the primed and repressed states. Molecular mechanisms that may account for these quantitative differences are discussed. A model that relates molecular events at an enhancer to changes in its activity and accessibility in a developing tissue is also proposed.
Collapse
Affiliation(s)
- Marta Bozek
- Department Biochemie, Ludwig-Maximilians Universität München, Genzentrum, 81377, München, Germany
| | - Nicolas Gompel
- Fakultät für Biologie, Ludwig-Maximilians Universität München, Biozentrum, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
244
|
Srinivasan R, Nady N, Arora N, Hsieh LJ, Swigut T, Narlikar GJ, Wossidlo M, Wysocka J. Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage. SCIENCE ADVANCES 2020; 6:eaaz9115. [PMID: 32219172 PMCID: PMC7083622 DOI: 10.1126/sciadv.aaz9115] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/02/2020] [Indexed: 05/07/2023]
Abstract
Zinc finger protein Zscan4 is selectively expressed in mouse two-cell (2C) embryos undergoing zygotic genome activation (ZGA) and in a rare subpopulation of embryonic stem cells with 2C-like features. Here, we show that Zscan4 specifically recognizes a subset of (CA)n microsatellites, repeat sequences prone to genomic instability. Zscan4-associated microsatellite regions are characterized by low nuclease sensitivity and high histone occupancy. In vitro, Zscan4 binds nucleosomes and protects them from disassembly upon torsional strain. Furthermore, Zscan4 depletion leads to elevated DNA damage in 2C mouse embryos in a transcription-dependent manner. Together, our results identify Zscan4 as a DNA sequence-dependent microsatellite binding factor and suggest a developmentally regulated mechanism, which protects fragile genomic regions from DNA damage at a time of embryogenesis associated with high transcriptional burden and genomic stress.
Collapse
Affiliation(s)
- Rajini Srinivasan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nataliya Nady
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neha Arora
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura J. Hsieh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark Wossidlo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
245
|
Nitta S, Kusakari Y, Yamada Y, Kubo T, Neo S, Igarashi H, Hisasue M. Conversion of mesenchymal stem cells into a canine hepatocyte-like cells by Foxa1 and Hnf4a. Regen Ther 2020; 14:165-176. [PMID: 32123700 PMCID: PMC7038439 DOI: 10.1016/j.reth.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Hepatocytes, which account for the majority of liver tissue, are derived from the endoderm and become hepatocytes via differentiation of hepatic progenitor cells. Induced hepatocyte-like (iHep) cells and artificial liver tissues are expected to become useful, efficient therapies for severe and refractory liver diseases and to contribute to drug discovery research. The establishment of iHep cell lines are needed to carry out liver transplants and assess liver toxicity in the rising number of dogs affected by liver disease. Recently, direct conversion of non-hepatocyte cells into iHep cells was achieved by transfecting mouse adult fibroblasts with the Forkhead box protein A1 (Foxa1) and hepatocyte nuclear factor 4 homeobox alpha (Hnf4α) genes. Here, we applied this conversion process for the differentiation of canine bone marrow stem cells (cBMSCs) into hepatocyte-like cells. Methods Bone marrow specimens were collected from four healthy Beagle dogs and used to culture cBMSCs in Dulbecco's Modified Eagle's Medium (DMEM). The cBMSCs displayed the following characteristic features: plastic adherence; differentiation into adipocytes, osteoblasts and chondrocytes; and a cell surface antigen profile of CD29 (+), CD44 (+), CD90 (+), CD45 (−), CD34 (−) and CD14 (−), or CD11b (−) and CD79a (−), or CD19 (−) and HLA class II(−). The cBMSCs were seeded in a collagen I-coated plate and cultured in DMEM with 10% fetal bovine serum and transfected with retroviruses expressing Foxa1 and Hnf4α the following day. Canine iHep cells were differentiated from cBMSCs in culture on day 10, and were analyzed for morphology, RNA expression, immunocytochemistry, urea production, and low-density lipoprotein (LDL) metabolism. Results The cBMSCs expressed CD29 (98.06 ± 1.14%), CD44 (99.59 ± 0.27%) and CD90 (92.78 ± 4.89%), but did not express CD14 (0.47 ± 0.29%), CD19 (0.44 ± 0.39%), CD34 (0.33 ± 0.25%), CD45 (0.46 ± 0.34%) or MHC class II (0.54 ± 0.40%). The iHep cells exhibited morphology that included circular to equilateral circular shapes, and the formation of colonies that adhered to each other 10 days after Foxa1 and Hnf4α transfection. Quantitative RT-PCR analysis showed that the expression levels of the genes encoding albumin (ALB) and cadherin (CDH) in iHep cells on day 10 were increased approximately 100- and 10,000-fold, respectively, compared with cBMSCs. Corresponding protein expression of ALB and epithelial-CDH was confirmed by immunocytochemistry. Important hepatic functions, including LDL metabolic ability and urea production, were increased in iHep cells on day 10. Conclusion We successfully induced cBMSCs to differentiate into functional iHep cells. To our knowledge, this is the first report of canine liver tissue differentiation using Foxa1 and Hnf4α gene transfection. Canine iHep cells are expected to provide insights for the construction of liver models for drug discovery research and may serve as potential therapeutics for canine liver disease.
Collapse
Affiliation(s)
- Suguru Nitta
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Yuto Kusakari
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Yoko Yamada
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Takeaki Kubo
- Celltrust Animal Therapeutics Co., Ltd, Yokohama City, Kanagawa, Japan
| | - Sakurako Neo
- Clinical Diagnostics, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Hirotaka Igarashi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara City, Kanagawa, Japan
| |
Collapse
|
246
|
Peng Q, Zhang L, Li J, Wang W, Cai J, Ban Y, Zhou Y, Hu M, Mei Y, Zeng Z, Li X, Xiong W, Li G, Tan Y, Xiang B, Yi M. FOXA1 Suppresses the Growth, Migration, and Invasion of Nasopharyngeal Carcinoma Cells through Repressing miR-100-5p and miR-125b-5p. J Cancer 2020; 11:2485-2495. [PMID: 32201519 PMCID: PMC7066028 DOI: 10.7150/jca.40709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a unique subtype of head and neck cancer, within highest incidence in South China and southeastern Asia but rare in other regions worldwide. FOXA1 is a pioneer factor implicated in various human malignancies. Downregulation of FOXA1 promotes NPC cells proliferation, invasiveness in vitro and tumorigenicity in vivo. However, it is remain elusive to determine whether microRNAs (miRNAs) regulated by FOXA1 contribute to NPC progression. Methods: In this study, differentially expressed miRNAs and mRNAs induced by FOXA1 expression were determined by microarray. Integrative miRNA-mRNA regulatory networks mediated by FOXA1 in NPC were established. The expressions of differentially expressed miRNAs in NPC cells were measured by quantitative reverse-transcription PCR. Cell viability was determined by CCK-8 assays. Cell migration and invasiveness were measured by Transwell assays. The correlation between miRNAs and its target mRNAs was analyzed. Results: FOXA1 suppressed the expression of miR-100-5p and miR-125b-5p in NPC cells. Silencing either miR-100-5p or miR-125b-5p inhibited the malignant behaviors of NPC cells, whereas re-expression of miR-100-5p or miR-125b-5p restored the malignancy of NPC cells repressed by FOXA1. Mechanistically, miR-100-5p or miR-125b-5p suppressed RASGRP3 or FOXN3 expression respectively via direct binding to its 3'-UTR. Furthermore, we demonstrated that FOXA1 induced RASGRP3 or FOXN3 expression via inhibiting miR-100-5p or miR-125b-5p. Upregulation of RASGRP3 or FOXN3 contributed to inhibition of NPC by FOXA1. We also demonstrated that the mRNA levels of RASGRP3 and FOXN3 are positively correlated with FOXA1. Conclusion: Our study provided evidence the first time that FOXA1 suppresses NPC cells via downregulation of miR-100-5p or miR-125b-5p.
Collapse
Affiliation(s)
- Qian Peng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjun Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Zhou
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng Hu
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Mei
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, The Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, 410011, Hunan, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Yi
- The Key Laboratory of Carcinogenesis of the National Health Commission, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China.,Department of Dermatology, Xiangya Hospital of Central South University, Changsha, 410008, China
| |
Collapse
|
247
|
Karagianni P, Moulos P, Schmidt D, Odom DT, Talianidis I. Bookmarking by Non-pioneer Transcription Factors during Liver Development Establishes Competence for Future Gene Activation. Cell Rep 2020; 30:1319-1328.e6. [PMID: 32023452 PMCID: PMC7003066 DOI: 10.1016/j.celrep.2020.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 01/01/2023] Open
Abstract
Transcription factor binding to enhancer and promoter regions critical for homeostatic adult gene activation is established during development. To understand how cell-specific gene expression patterns are generated, we study the developmental timing of association of two prominent hepatic transcription factors with gene regulatory regions. Most individual binding events display extraordinarily high temporal variations during liver development. Early and persistent binding is necessary, but not sufficient, for gene activation. Stable gene expression patterns are the result of combinatorial activity of multiple transcription factors, which mark regulatory regions long before activation and promote progressive broadening of active chromatin domains. Both temporally stable and dynamic, short-lived binding events contribute to the developmental maturation of active promoter configurations. The results reveal a developmental bookmarking function of master regulators and illuminate remarkable parallels between the principles employed for gene activation during development, during evolution, and upon mitotic exit.
Collapse
Affiliation(s)
- Panagiota Karagianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Herakleion, Crete, Greece; Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
| | - Panagiotis Moulos
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Duncan T Odom
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Herakleion, Crete, Greece.
| |
Collapse
|
248
|
Cebola I. Liver gene regulatory networks: Contributing factors to nonalcoholic fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1480. [PMID: 32020788 DOI: 10.1002/wsbm.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/17/2022]
Abstract
Metabolic diseases such as nonalcoholic fatty liver disease (NAFLD) result from complex interactions between intrinsic and extrinsic factors, including genetics and exposure to obesogenic environments. These risk factors converge in aberrant gene expression patterns in the liver, which are underlined by altered cis-regulatory networks. In homeostasis and in disease states, liver cis-regulatory networks are established by coordinated action of liver-enriched transcription factors (TFs), which define enhancer landscapes, activating broad gene programs with spatiotemporal resolution. Recent advances in DNA sequencing have dramatically expanded our ability to map active transcripts, enhancers and TF cistromes, and to define the 3D chromatin topology that contains these elements. Deployment of these technologies has allowed investigation of the molecular processes that regulate liver development and metabolic homeostasis. Moreover, genomic studies of NAFLD patients and NAFLD models have demonstrated that the liver undergoes pervasive regulatory rewiring in NAFLD, which is reflected by aberrant gene expression profiles. We have therefore achieved an unprecedented level of detail in the understanding of liver cis-regulatory networks, particularly in physiological conditions. Future studies should aim to map active regulatory elements with added levels of resolution, addressing how the chromatin landscapes of different cell lineages contribute to and are altered in NAFLD and NAFLD-associated metabolic states. Such efforts would provide additional clues into the molecular factors that trigger this disease. This article is categorized under: Biological Mechanisms > Metabolism Biological Mechanisms > Regulatory Biology Laboratory Methods and Technologies > Genetic/Genomic Methods.
Collapse
Affiliation(s)
- Inês Cebola
- Department of Metabolism, Digestion and Reproduction, Section of Genetics and Genomics, Imperial College London, London, UK
| |
Collapse
|
249
|
Yan F, Powell DR, Curtis DJ, Wong NC. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis. Genome Biol 2020; 21:22. [PMID: 32014034 PMCID: PMC6996192 DOI: 10.1186/s13059-020-1929-3] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Assay of Transposase Accessible Chromatin sequencing (ATAC-seq) is widely used in studying chromatin biology, but a comprehensive review of the analysis tools has not been completed yet. Here, we discuss the major steps in ATAC-seq data analysis, including pre-analysis (quality check and alignment), core analysis (peak calling), and advanced analysis (peak differential analysis and annotation, motif enrichment, footprinting, and nucleosome position analysis). We also review the reconstruction of transcriptional regulatory networks with multiomics data and highlight the current challenges of each step. Finally, we describe the potential of single-cell ATAC-seq and highlight the necessity of developing ATAC-seq specific analysis tools to obtain biologically meaningful insights.
Collapse
Affiliation(s)
- Feng Yan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Clinical Haematology, Alfred Health, Melbourne, VIC, Australia
| | - Nicholas C Wong
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Monash Bioinformatics Platform, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
250
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|