201
|
Rudvin I, Valberg A. Flicker VEPs reflecting multiple rod and cone pathways. Vision Res 2006; 46:699-717. [PMID: 16171839 DOI: 10.1016/j.visres.2005.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/18/2005] [Accepted: 07/24/2005] [Indexed: 11/24/2022]
Abstract
In an attempt to determine whether the relative contributions of magno-mediated and parvo-mediated inputs to the cortex are significantly altered in the transition from cone to rod vision, VEPs were recorded at different luminance levels (photopic to scotopic) for 2Hz square-wave, isochromatic flicker. The VEP mass response appears capable of reflecting major parvo-mediated contributions even at luminance levels for which responses from individual cells in the parvocellular pathway are reported to be weak. Our findings suggest that parvo-mediated responses are the dominant source of high-contrast isochromatic flicker VEPs at all light levels.
Collapse
Affiliation(s)
- Inger Rudvin
- Institute of Physics, Section of Biophysics, Norwegian University of Science and Technology, Trondheim, Norway.
| | | |
Collapse
|
202
|
Hornstein EP, Verweij J, Li PH, Schnapf JL. Gap-junctional coupling and absolute sensitivity of photoreceptors in macaque retina. J Neurosci 2006; 25:11201-9. [PMID: 16319320 PMCID: PMC6725652 DOI: 10.1523/jneurosci.3416-05.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated gap-junctional coupling of rods and cones in macaque retina. Cone voltage responses evoked by light absorption in neighboring rods were briefer and smaller than responses recorded in the rods themselves. Rod detection thresholds, calculated from noise and response amplitude histograms, closely matched the threshold for an ideal detector limited by quantal fluctuations in the stimulus. Surprisingly, cone thresholds were only approximately two times higher. Amplitude fluctuations in cones could be explained by a Poisson distribution of photoisomerizations within a pool of seven or more coupled rods. Neurobiotin coupling between rods and cones was consistent with our electrical recordings, with approximately six rods labeled per injected cone. The spatial distribution of tracer-coupled rods matched the light-evoked cone receptive field. The gap junction inhibitor carbenoxolone abolished both electrical and tracer coupling. Amplitude fluctuations in most rods were accounted for by the expected rate of light absorption in their outer segments. The fluctuations in some rods, however, were consistent with a summation pool of up to six rods. When single rods were injected with Neurobiotin, up to 10 rods were labeled. Rod-rod and rod-cone electrical coupling is expected to extend the range of scotopic vision by circumventing saturation at the rod to rod-bipolar cell synapse; however, because coupling also renders the rod synapse less effective at separating out photon signals from dark noise, coupling is expected to elevate the absolute threshold of dark-adapted observers.
Collapse
Affiliation(s)
- Eric P Hornstein
- Department of Ophthalmology, University of California, San Francisco, California 94143-0730, USA
| | | | | | | |
Collapse
|
203
|
Eggers ED, Lukasiewicz PD. GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J Physiol 2006; 572:215-25. [PMID: 16439422 PMCID: PMC1779659 DOI: 10.1113/jphysiol.2005.103648] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rod bipolar cells relay visual signals evoked by dim illumination from the outer to the inner retina. GABAergic and glycinergic amacrine cells contact rod bipolar cell terminals, where they modulate transmitter release and contribute to the receptive field properties of third order neurones. However, it is not known how these distinct inhibitory inputs affect rod bipolar cell output and subsequent retinal processing. To determine whether GABA(A), GABA(C) and glycine receptors made different contributions to light-evoked inhibition, we recorded light-evoked inhibitory postsynaptic currents (L-IPSCs) from rod bipolar cells mediated by each pharmacologically isolated receptor. All three receptors contributed to L-IPSCs, but their relative roles differed; GABA(C) receptors transferred significantly more charge than GABA(A) and glycine receptors. We determined how these distinct inhibitory inputs affected rod bipolar cell output by recording light-evoked excitatory postsynaptic currents (L-EPSCs) from postsynaptic AII and A17 amacrine cells. Consistent with their relative contributions to L-IPSCs, GABA(C) receptor activation most effectively reduced the L-EPSCs, while glycine and GABA(A) receptor activation reduced the L-EPSCs to a lesser extent. We also found that GABAergic L-IPSCs in rod bipolar cells were limited by GABA(A) receptor-mediated inhibition between amacrine cells. We show that GABA(A), GABA(C) and glycine receptors mediate functionally distinct inhibition to rod bipolar cells, which differentially modulated light-evoked rod bipolar cell output. Our findings suggest that modulating the relative proportions of these inhibitory inputs could change the characteristics of rod bipolar cell output.
Collapse
Affiliation(s)
- Erika D Eggers
- Department of Ophthalmology, Campus Box 8096, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
204
|
Calkins DJ. Localization of ionotropic glutamate receptors to invaginating dendrites at the cone synapse in primate retina. Vis Neurosci 2006; 22:469-77. [PMID: 16212704 DOI: 10.1017/s0952523805224082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 02/28/2005] [Indexed: 11/05/2022]
Abstract
The separation of OFF pathways that signal light decrements from ON pathways that signal light increments occurs at the first retinal synapse. The dendrites of OFF bipolar cells abut the cone pedicle at basal positions distal to the site of glutamate release and express ligand-gated or ionotropic glutamate receptors (GluR). The dendrites of ON bipolar cells penetrate narrow invaginations of the cone pedicle proximal to the site of release and express the G-protein-coupled, metabotropic glutamate receptor, mGluR6. However, recent studies demonstrating the expression of GluR subunits in the rodent rod bipolar cell, known to yield an ON response to light, call this basic segregation of receptors into question. The light-microscopic distribution of many glutamate receptors in the primate retina is now well established. We reexamined their ultrastructural localization in the outer retina of Macaca fascicularis to test systematically whether invaginating dendrites at the cone synapse, presumably from ON bipolar cells, also express one or more ionotropic subunits. Using preembedding immunocytochemistry for electron microscopy, we quantified the distribution of the AMPA-sensitive subunits GluR2/3 and GluR4 and of the kainate-sensitive subunits GluR6/7 across 207 labeled dendrites occupying specific morphological loci at the cone pedicle. We report, in agreement with published investigations, that the majority of labeled processes for GluR2/3 (70%) and GluR4 (67%) either occupy basal positions or arise from horizontal cells. For GluR6/7, we find a significantly lower fraction of labeled processes at these positions (47%). We also find a considerable number of labeled dendrites for GluR2/3 (10%), GluR4 (21%), and GluR6/7 (18%) at invaginating positions. Surprisingly, for each subunit, the remainder of labeled processes corresponds to "fingers" of presynaptic cytoplasm within the cone invagination.
Collapse
Affiliation(s)
- David J Calkins
- Department of Ophthalmology and Visual Sciences, The Vanderbilt Eye Institute and Vanderbilt Vision Research Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
205
|
|
206
|
Functional Anatomy of the Mammalian Retina. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
207
|
Sagdullaev BT, McCall MA. Stimulus size and intensity alter fundamental receptive-field properties of mouse retinal ganglion cellsin vivo. Vis Neurosci 2005; 22:649-59. [PMID: 16332276 DOI: 10.1017/s0952523805225142] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/28/2005] [Indexed: 11/07/2022]
Abstract
The receptive field (RF) of most retinal ganglion cells (RGCs) is comprised of an excitatory center and an antagonistic surround. Interactions between these RF elements shape most of the visual responses of RGCs. To begin to investigate center-surround interactions of mouse RGCs quantitatively, we characterized their responses in anin vivopreparation to a variety of spot and full-field stimuli. When RGCs were stimulated with a spot that matched the cell's RF center diameter (optimal spot), all RGCs could be categorized as either ON- or OFF-center. In all RGCs, full-field stimulation significantly reduced both the peak and the mean firing rates evoked with an optimal spot stimulus. Full-field stimulation revealed differences in other response properties between ON- and OFF-center RGCs. With a full-field stimulus, the duration of the OFF-center RGCs response was reduced making them more transient, while the duration of the ON-center RGCs increased making them more sustained. Of most interest, full-field stimulation altered the RF center response sign in approximately half of the OFF-center RGCs, which became either OFF/ON or ON only. In contrast, all ON-center and the other OFF-center cells conserved their RF response sign in the presence of the full-field stimulus. We propose that sign-altering OFF-center RGCs possess an additional RF surround mechanism that underlies this alteration in their response. Of general interest these results suggest that the sole use of full-field stimulation to categorize visual response properties of RGCs does not adequately reflect their RF organization and, therefore, is not an optimal strategy for their classification.
Collapse
Affiliation(s)
- Botir T Sagdullaev
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292, USA
| | | |
Collapse
|
208
|
Shen Y, Chen L, Ping Y, Yang XL. Glycine modulates the center response of ON type rod-dominant bipolar cells in carp retina. Brain Res Bull 2005; 67:492-7. [PMID: 16216698 DOI: 10.1016/j.brainresbull.2005.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/20/2005] [Accepted: 07/20/2005] [Indexed: 11/30/2022]
Abstract
Effects of glycine on ON type rod-dominant bipolar cells (RBCs) were studied in isolated, superfused carp retina by intracellular recording technique and in carp retinal slice preparation by whole cell recording. Glycine of 4mM hyperpolarized RBCs and potentiated their light responses to large light spots, which was reversed by co-application of 10 microM strychnine. It was further found that illumination of the receptive field surround did not affect the depolarizing center response of RBCs. The above result therefore suggests that glycine modulates the center response of RBCs. Focal application of glycine to either dendrites or axon terminals of RBCs failed to induce any currents in both isolated cell and retinal slice preparations. On the other hand, glycine of 4mM increased the amplitude of the scotopic electroretinographic PIII component, which reflects the activity of rod photoreceptors. It seems likely that modulation by glycine of the RBC center response may be in part ascribed to a consequence of the potentiation of rod responses by glycine.
Collapse
Affiliation(s)
- Yin Shen
- Institute of Neurobiology, Institute of Brain Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | | | | | | |
Collapse
|
209
|
Douglass JK, Strausfeld NJ. Sign-conserving amacrine neurons in the fly's external plexiform layer. Vis Neurosci 2005; 22:345-58. [PMID: 16079009 DOI: 10.1017/s095252380522309x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 02/16/2005] [Indexed: 11/07/2022]
Abstract
Amacrine cells in the external plexiform layer of the fly's lamina have been intracellulary recorded and dye-filled for the first time. The recordings demonstrate that like the lamina's short photoreceptors R1-R6, type 1 lamina amacrine neurons exhibit nonspiking, "sign-conserving" sustained depolarizations in response to illumination. This contrasts with the sign-inverting responses that typify first-order retinotopic relay neurons: monopolar cells L1-L5 and the T1 efferent neuron. The contrast frequency tuning of amacrine neurons is similar to that of photoreceptors and large lamina monopolar cells. Initial observations indicate that lamina amacrine receptive fields are also photoreceptor-like, suggesting either that their inputs originate from a small number of neighboring visual sampling units (VSUs), or that locally generated potentials decay rapidly with displacement. Lamina amacrines also respond to motion, and in one recording these responses were selective for the orientation of moving edges. This functional organization corresponds to the anatomy of amacrine cells, in which postsynaptic inputs from several neighboring photoreceptor endings are linked by a network of very thin distal processes. In this way, each VSU can receive convergent inputs from a surround of amacrine processes. This arrangement is well suited for relaying responses to local intensity fluctuations from neighboring VSUs to a central VSU where amacrines are known to be presynaptic to the dendrites of the T1 efferent. The T1 terminal converges at a deeper level with that of the L2 monopolar cell relaying from the same optic cartridge. Thus, the localized spatial responses and receptor-like temporal response properties of amacrines are consistent with possible roles in lateral inhibition, motion processing, or orientation processing.
Collapse
Affiliation(s)
- John K Douglass
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, 85721, USA.
| | | |
Collapse
|
210
|
Petit-Jacques J, Völgyi B, Rudy B, Bloomfield S. Spontaneous oscillatory activity of starburst amacrine cells in the mouse retina. J Neurophysiol 2005; 94:1770-80. [PMID: 15917322 DOI: 10.1152/jn.00279.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using patch-clamp techniques, we investigated the characteristics of the spontaneous oscillatory activity displayed by starburst amacrine cells in the mouse retina. At a holding potential of -70 mV, oscillations appeared as spontaneous, rhythmic inward currents with a frequency of approximately 3.5 Hz and an average maximal amplitude of approximately 120 pA. Application of TEA, a potassium channel blocker, increased the amplitude of oscillatory currents by >70% but reduced their frequency by approximately 17%. The TEA effects did not appear to result from direct actions on starburst cells, but rather a modulation of their synaptic inputs. Oscillatory currents were inhibited by 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), an antagonist of AMPA/kainate receptors, indicating that they were dependent on a periodic glutamatergic input likely from presynaptic bipolar cells. The oscillations were also inhibited by the calcium channel blockers cadmium and nifedipine, suggesting that the glutamate release was calcium dependent. Application of AP4, an agonist of mGluR6 receptors on on-center bipolar cells, blocked the oscillatory currents in starburst cells. However, application of TEA overcame the AP4 blockade, suggesting that the periodic glutamate release from bipolar cells is intrinsic to the inner plexiform layer in that, under experimental conditions, it can occur independent of photoreceptor input. The GABA receptor antagonists picrotoxin and bicuculline enhanced the amplitude of oscillations in starburst cells prestimulated with TEA. Our results suggest that this enhancement was due to a reduction of a GABAergic feedback inhibition from amacrine cells to bipolar cells and the resultant increased glutamate release. Finally, we found that some ganglion cells and other types of amacrine cell also displayed rhythmic activity, suggesting that oscillatory behavior is expressed by a number of inner retinal neurons.
Collapse
Affiliation(s)
- Jerome Petit-Jacques
- Department of Ophthalmology, New York University School of Medicine, 550 First Ave., New York, New York 10016, USA
| | | | | | | |
Collapse
|
211
|
Kim IB, Park MR, Kang TH, Kim HJ, Lee EJ, Ahn MD, Chun MH. Synaptic connections of cone bipolar cells that express the neurokinin 1 receptor in the rabbit retina. Cell Tissue Res 2005; 321:1-8. [PMID: 15902497 DOI: 10.1007/s00441-005-1122-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Accepted: 03/18/2005] [Indexed: 12/31/2022]
Abstract
We have investigated and further characterized, in the rabbit retina, the synaptic connectivity of the ON-type cone bipolar cells that are immunoreactive for an antibody against the neurokinin-1 receptor (NK1R). NK1R-immunoreactive bipolar cell axons terminate in stratum 4 of the inner plexiform layer. The axons of NK1R-positive bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and from putative AII amacrine cells via gap junctions. The major outputs from NK1R-positive bipolar cells make contacts with amacrine cell processes. The most frequent postsynaptic dyads comprise two amacrine cell processes. Double-labeling experiments with antibodies against NK1R and either calretinin or glycine have demonstrated that NK1R-immunoreactive bipolar cells form gap junctions with AII amacrine cells. Thus, NK1R-positive cone bipolar cells, together with calbindin-positive cone bipolar cells, may play an important role in transferring rod signals to the ON-type ganglion cells of the cone pathway in the rabbit retina.
Collapse
Affiliation(s)
- In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seoul, 137-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
Vision at absolute threshold is based on signals produced in a tiny fraction of the rod photoreceptors. This requires that the rods signal the absorption of single photons, and that the resulting signals are transmitted across the retina and encoded in the activity sent from the retina to the brain. Behavioral and ganglion cell sensitivity has often been interpreted to indicate that these biophysical events occur noiselessly, i.e., that vision reaches limits to sensitivity imposed by the division of light into discrete photons and occasional photon-like noise events generated in the rod photoreceptors. We argue that this interpretation is not unique and provide a more conservative view of the constraints behavior and ganglion cell experiments impose on phototransduction and retinal processing. We summarize what is known about how these constraints are met and identify some of the outstanding open issues.
Collapse
Affiliation(s)
- Greg D Field
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
213
|
Berntson A, Smith RG, Taylor WR. Postsynaptic calcium feedback between rods and rod bipolar cells in the mouse retina. Vis Neurosci 2005; 21:913-24. [PMID: 15733346 DOI: 10.1017/s095252380421611x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Indexed: 11/07/2022]
Abstract
Light-evoked currents were recorded from rod bipolar cells in a dark-adapted mouse retinal slice preparation. Low-intensity light steps evoked a sustained inward current. Saturating light steps evoked an inward current with an initial peak that inactivated, with a time constant of about 60-70 ms, to a steady plateau level that was maintained for the duration of the step. The inactivation was strongest at hyperpolarized potentials, and absent at positive potentials. Inactivation was mediated by an increase in the intracellular calcium concentration, as it was abolished in cells dialyzed with 10 mM BAPTA, but was present in cells dialyzed with 1 mM EGTA. Moreover, responses to brief flashes of light were broader in the presence of intracellular BAPTA indicating that the calcium feedback actively shapes the time course of the light responses. Recovery from inactivation observed for paired-pulse stimuli occurred with a time constant of about 375 ms. Calcium feedback could act to increase the dynamic range of the bipolar cells, and to reduce variability in the amplitude and duration of the single-photon signal. This may be important for nonlinear processing at downstream sites of convergence from rod bipolar cells to AII amacrine cells. A model in which intracellular calcium rapidly binds to the light-gated channel and reduces the conductance can account for the results.
Collapse
Affiliation(s)
- Amy Berntson
- John Curtin School of Medical Research and Centre for Visual Sciences, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
214
|
Trexler EB, Li W, Massey SC. Simultaneous Contribution of Two Rod Pathways to AII Amacrine and Cone Bipolar Cell Light Responses. J Neurophysiol 2005; 93:1476-85. [PMID: 15525810 DOI: 10.1152/jn.00597.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rod signals traverse several synapses en route to cone bipolar cells. In one pathway, rods communicate directly with cones via gap junctions. In a second pathway, signals flow rods-rod bipolars-AII amacrines-cone bipolars. The relative contribution of each pathway to retinal function is not well understood. Here we have examined this question from the perspective of the AII amacrine. AIIs form bidirectional electrical synapses with on cone bipolars. Consequently, as on cone bipolars are activated by outer plexiform inputs, they too should contribute to the AII response. Rod bipolar inputs to AIIs were blocked by AMPA receptor antagonists, revealing a smaller, non-AMPA component of the light response. This small residual response did not reverse between −70 and +70 mV and was blocked by carbenoxolone, suggesting that the current arose in on cone bipolars and was transmitted to AIIs via gap junctions. The residual component was evident for stimuli 2 log units below cone threshold and was prolonged for bright stimuli, demonstrating that it was rod driven. Because the rod bipolar-AII pathway was blocked, the rod-driven residual current likely was generated via the rod-cone pathway activation of on cone bipolars. Thus for a large range of intensities, rod signals reach the inner retina by both rod bipolar-AII and rod-cone coupling pathways.
Collapse
Affiliation(s)
- E Brady Trexler
- Department of Ophthalmology and Neuroscience, University of Texas Medical School, Houston, Texas, USA.
| | | | | |
Collapse
|
215
|
Tian N. Visual experience and maturation of retinal synaptic pathways. Vision Res 2005; 44:3307-16. [PMID: 15535998 DOI: 10.1016/j.visres.2004.07.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 07/26/2004] [Indexed: 11/26/2022]
Abstract
The retinal synaptic network continues its maturational refinement after eye opening in mammals. This synaptic refinement is reflected in changes of retinal neuron synaptic activity and connectivity. In mature retina, the dendrites of retinal ganglion cells (RGCs) in the inner plexiform layer (IPL) of retina are separated into ON or OFF sublamina. At early developmental stage, however, the dendrites of most RGCs are ramified throughout the IPL. Recently we found that the postnatal maturational processes converting bistratified ON-OFF responsive RGCs to monostratified ON and OFF responsive RGCs depend upon visual stimulation after eye opening.
Collapse
Affiliation(s)
- Ning Tian
- Department of Ophthalmology and Visual Science and Department of Neurobiology, School of Medicine, Yale University, 330 Cedar St., BML 212, New Haven, CT 06520, USA.
| |
Collapse
|
216
|
Wu SM, Gao F, Pang JJ. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina. Vision Res 2005; 44:3277-88. [PMID: 15535995 DOI: 10.1016/j.visres.2004.07.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 07/27/2004] [Indexed: 11/23/2022]
Abstract
Light-evoked excitatory cation current (DeltaIC) and inhibitory chloride current (DeltaICl) of rod and cone bipolar cells and AII amacrine cells (AIIACs) were recorded from slices of dark-adapted mouse retinas, and alpha ganglion cells were recorded from flatmounts of dark-adapted mouse retinas. The cell morphology was revealed by Lucifer yellow fluorescence with a confocal microscope. DeltaIC of all rod depolarizing bipolar cells (DBCRs) exhibited similar high sensitivity to 500 nm light, but two patterns of DeltaICl were observed with slightly different axon morphologies. At least two types of cone depolarizing bipolar cells (DBCCs) were identified: one with axon terminals ramified in 70-85% of IPL depth and DBCR-like DeltaIC sensitivity, and the other with axon terminals ramified in 55-75% of IPL depth and much lower DeltaIC sensitivity. The relative rod/cone inputs to DBCs and AIIACs were analyzed by comparing the DeltaIC and DeltaICl thresholds and dynamic ranges with the corresponding values of rods and cones. On average, the sensitivity of a DBCR to the 500 nm light is about 20 times higher than that of a rod. The sensitivity of an AIIAC is more than 1000 times higher than that of a rod, suggesting that AIIAC responses are pooled through a coupled network of about 40 AIIACs. Interactions of rod and cone signals in dark-adapted mouse retinas appear asymmetrical: rod signals spread into the cone system more efficiently than cone signals into the rod system. The mouse synaptic circuitry allows small rod signals to be highly amplified and effectively transmitted to the cone system via rod/cone and AIIAC/DBCC coupling. Three types of alpha ganglion cells (alphaGCs) were identified. (1) ONGCs exhibits no spike activity in darkness, increased spikes in light, sustained inward DeltaIC, sustained outward DeltaICl of varying amplitude, and large soma (20-25 microm in diameter) with an alpha-cell-like dendritic field about 180-350 microm stratifying near 70% of the IPL depth. (2) Transient OFFalphaGCs (tOFFalphaGCs) exhibit no spike activity in darkness, transient increased spikes at light offset, small sustained outward DeltaIC in light, a large transient inward DeltaIC at light offset, a sustained outward DeltaICl, and a morphology similar to the ONalphaGCs except for that their dendrites stratified near 30% of the IPL depth. (3) Sustained OFFalpha GCs (sOFFalphaGCs) exhibit maintained spike activity of 5-10 Hz in darkness, sustained decrease of spikes in light, sustained outward DeltaIC, sustained outward DeltaICl, and a morphology similar to the tOFFalphaGCs. By comparing the response thresholds and dynamic ranges of alphaGCs with those of the pre-ganglion cells, our data suggest that the light responses of each type of alphaGCs are mediated by different sets of bipolar cells and amacrine cells.
Collapse
Affiliation(s)
- Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA.
| | | | | |
Collapse
|
217
|
Taylor WR, Smith RG. Transmission of scotopic signals from the rod to rod-bipolar cell in the mammalian retina. Vision Res 2005; 44:3269-76. [PMID: 15535994 DOI: 10.1016/j.visres.2004.07.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/27/2004] [Indexed: 11/16/2022]
Abstract
Mammals can see at low scotopic light levels where only 1 rod in several thousand transduces a photon. The single photon signal is transmitted to the brain by the ganglion cell, which collects signals from more than 1000 rods to provide enough amplification. If the system were linear, such convergence would increase the neural noise enough to overwhelm the tiny rod signal. Recent studies provide evidence for a threshold nonlinearity in the rod to rod bipolar synapse, which removes much of the background neural noise. We argue that the height of the threshold should be 0.85 times the amplitude of the single photon signal, consistent with the saturation observed for the single photon signal. At this level, the rate of false positive events due to neural noise would be masked by the higher rate of dark thermal events. The evidence presented suggests that this synapse is optimized to transmit the single photon signal at low scotopic light levels.
Collapse
Affiliation(s)
- W Rowland Taylor
- Neurological Sciences Institute, Oregon Health and Sciences University--West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
218
|
Partida GJ, Lee SC, Haft-Candell L, Nichols GS, Ishida AT. DARPP-32-like immunoreactivity in AII amacrine cells of rat retina. J Comp Neurol 2005; 480:251-63. [PMID: 15515184 PMCID: PMC3232744 DOI: 10.1002/cne.20330] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies demonstrated that the dopamine- and adenosine 3',5'-monophosphate-regulated phosphatase inhibitor known as "DARPP-32" is present in rat, cat, monkey, and human retinas. We have followed up these studies by asking what specific cell subtypes contain DARPP-32. Using a polyclonal antibody directed against a peptide sequence of human DARPP-32, we immunostained adult rat retinas that were either transretinally sectioned or flat mounted and found DARPP-32-like immunoreactivity in some cells of the amacrine cell layer across the entire retinal surface. We report here, based on the shape and spatial distribution of these cells, their staining by an anti-parvalbumin antibody, and their juxtaposition with processes containing tyrosine hydroxylase, that DARPP-32-like immunoreactivity is present in AII amacrine cells of rat retina. These results suggest that the response of AII amacrine cells to dopamine is not mediated as simply as previously supposed.
Collapse
Affiliation(s)
| | | | | | | | - Andrew T. Ishida
- Correspondence to: Andrew Ishida at the address given above, tel & fax: (530) 752-3569,
| |
Collapse
|
219
|
Cuenca N, Herrero MT, Angulo A, de Juan E, Martínez-Navarrete GC, López S, Barcia C, Martín-Nieto J. Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson's disease. J Comp Neurol 2005; 493:261-73. [PMID: 16255027 DOI: 10.1002/cne.20761] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Physiological abnormalities resulting from death of dopaminergic neurons of the central nervous system in Parkinson's disease also extend to the retina, resulting in impaired visual functions. In both parkinsonian patients and animal models, low levels of dopamine and loss of dopaminergic cells in the retina have been reported. However, the morphology and connectivity of their postsynaptic neurons, the amacrine cells, have not been analyzed. Here we report, with macaques chronically treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a model of Parkinson's disease, that morphological impairments in dopaminergic retinal neurons and their plexus in the inner retina are accompanied by an immunoreactivity decrease in gamma-aminobutyric acidergic and glycinergic amacrine cells. Especially deteriorated were AII amacrine cells, the main neuronal subtype postsynaptic to dopaminergic cells, which exhibited a marked loss of lobular appendages and dendritic processes. Concomitantly, electrical synapses among AII cells, as well as chemical synapses between these and rod bipolar cells, were highly deteriorated in parkinsonian monkeys. These results highlight that the scotopic visual pathway is severely impaired in the parkinsonian condition and provide a morphological basis for a number of abnormalities found in electrophysiological and psychophysical trials in Parkinson's disease patients and animal models.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Campus San Vicente del Raspeig, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Protti DA, Flores-Herr N, Li W, Massey SC, Wässle H. Light signaling in scotopic conditions in the rabbit, mouse and rat retina: a physiological and anatomical study. J Neurophysiol 2004; 93:3479-88. [PMID: 15601738 DOI: 10.1152/jn.00839.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the dark, light signals are conventionally routed through the following circuit: rods synapse onto rod bipolar (RB) cells, which in turn contact AII amacrine cells. AII cells segregate the light signal into the on and off pathways by making electrical synapses with on cone bipolar (CB) cells and glycinergic inhibitory chemical synapses with off CB cells. These bipolar cells synapse onto their respective ganglion cells, which transfer on and off signals to the visual centers of the brain. Two alternative pathways have recently been postulated for the signal transfer in scotopic conditions: 1) electrical coupling between rods and cones, and 2) a circuit independent of cone photoreceptors, implying direct contacts between rods and off CB cells. Anatomical evidence supports the existence of both these circuits. To investigate the contribution of these alternative pathways to scotopic vision in the mammalian retina, we have performed patch-clamp recordings from ganglion cells in the dark-adapted retina of the rabbit, mouse, and rat. Approximately one-half of the ganglion cells in the rabbit retina received off signals through a circuit that was independent of RB cells. This was shown by their persistence in the presence of the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), which blocks rod-->RB cell signaling. Consistent with this result, strychnine, a glycine receptor antagonist, was unable to abolish these off responses. In addition, we were able to show that some off cone bipolar dendrites terminate at rod spherules and make potential contacts. In the mouse retina, however, there seems to be a very low proportion of off signals carried by an APB-resistant pathway. No ganglion cells in the rat retina displayed APB- and strychnine-resistant responses. Our data support signaling through flat contacts between rods and off CB cells as the alternative route, but suggest that the significance of this pathway differs between species.
Collapse
Affiliation(s)
- Dario A Protti
- Discipline of Physiology, School of Medical Sciences and Inst. for Biomedical Research F13 The Univ. of Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
221
|
Völgyi B, Deans MR, Paul DL, Bloomfield SA. Convergence and segregation of the multiple rod pathways in mammalian retina. J Neurosci 2004; 24:11182-92. [PMID: 15590935 PMCID: PMC2834589 DOI: 10.1523/jneurosci.3096-04.2004] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 11/21/2022] Open
Abstract
Using a multidisciplinary approach, we demonstrate that three different pathways are responsible for the transmission of rod signals across the mouse retina. Each pathway serves a primarily nonoverlapping range of stimulus intensities, with ganglion cells receiving either segregated or convergent inputs. For both on-center (ON) and off-center (OFF) ganglion cells, the primary rod pathway carries signals with the lowest threshold, whereas the secondary rod pathway is less sensitive by approximately 1 log unit. In addition, OFF signaling uses a tertiary rod pathway that is approximately 1 log unit less sensitive than the secondary. Although some ganglion cells received rod inputs exclusively from one of the pathways, others showed convergent inputs. Using pharmacological and genetic approaches, we defined classes of ON and OFF ganglion cells for which the scotopic inputs derive only from the primary pathway or from both primary and secondary pathways. In addition, we observed a class of OFF ganglion cell receiving mixed input from primary and tertiary pathways. Interestingly, OFF ganglion cells receiving convergent inputs from all three rod pathways or from the secondary and tertiary pathways together were never observed. Overall, our data show a complex arrangement of convergence and segregation of rod inputs to ganglion cells in the mammalian retina.
Collapse
Affiliation(s)
- Béla Völgyi
- Department of Ophthalmology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
222
|
Bramblett DE, Pennesi ME, Wu SM, Tsai MJ. The transcription factor Bhlhb4 is required for rod bipolar cell maturation. Neuron 2004; 43:779-93. [PMID: 15363390 DOI: 10.1016/j.neuron.2004.08.032] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 07/27/2004] [Accepted: 08/19/2004] [Indexed: 11/23/2022]
Abstract
Retinal bipolar cells are essential to the transmission of light information. Although bipolar cell dysfunction can result in blindness, little is known about the factors required for bipolar cell development and functional maturation. The basic helix-loop-helix (bHLH) transcription factor Bhlhb4 was found to be expressed in rod bipolar cells (RB). Electroretinograms (ERGs) in the adult Bhlhb4 knockout (Bhlhb4(-/-)) showed that the loss of Bhlhb4 resulted in disrupted rod signaling and profound retinal dysfunction resembling human congenital stationary night blindness (CSNB), characterized by the loss of the scotopic ERG b-wave. A depletion of inner nuclear layer (INL) cells in the adult Bhlhb4 knockout has been ascribed to the abolishment of the RB cell population during postnatal development. Other retinal cell populations including photoreceptors were unaltered. The timing of RB cell depletion in the Bhlhb4(-/-) mouse suggests that Bhlhb4 is essential for RB cell maturation.
Collapse
Affiliation(s)
- Debra E Bramblett
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
223
|
Witkovsky P, Veisenberger E, Haycock JW, Akopian A, Garcia-Espana A, Meller E. Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci 2004; 24:4242-9. [PMID: 15115820 PMCID: PMC6729289 DOI: 10.1523/jneurosci.5436-03.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied in vivo activity-dependent phosphorylation of tyrosine hydroxylase (TH) in dopaminergic (DA) neurons of the rat retina. TH phosphorylation (TH-P) was evaluated by immunocytochemistry, using antibodies specific for each of three regulated phosphorylation sites. TH synthesis rate was measured by dihydroxyphenylalanine (DOPA) accumulation in the presence of NSD-1015, an inhibitor of aromatic amino acid decarboxylase. TH-P was increased markedly by light or after intraocular injection of GABA(A) and glycine inhibitors. All three phosphospecific antibodies responded similarly to test drugs or light. A 30 min exposure to light increased DOPA accumulation by threefold over that seen after 30 min in darkness. Immunostaining to an anti-panNa channel antibody was found in all parts of the DA neuron. TTX blocked TH-P induced by light or GABA/glycine inhibitors but only in varicosities of the DA axon plexus, not in perikarya or dendrites. Veratridine increased TH-P in all parts of the DA neuron. The distribution of the monoamine vesicular transporter 2 was shown by immunocytochemistry to reside in varicosities of the DA plexus but not in dendrites, indicating that the varicosities are sites of dopamine release. Collectively, these data indicate that, in the retina, dopamine synthesis in varicosities is affected by the spiking activity of retinal neurons, possibly including that of the DA neurons themselves.
Collapse
Affiliation(s)
- Paul Witkovsky
- Departments of Ophthalmology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|
224
|
D'Angelo I, Brecha NC. Y2 receptor expression and inhibition of voltage-dependent Ca2+ influx into rod bipolar cell terminals. Neuroscience 2004; 125:1039-49. [PMID: 15120863 DOI: 10.1016/j.neuroscience.2003.10.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2003] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is a potent inhibitory neuropeptide expressed by amacrine cells in the rat retina. NPY modulates the release of multiple neurotransmitters in mammalian retina, yet the mechanisms mediating this regulation are not well defined. To further understand the action of NPY in the retina, Y receptor coupling to voltage-dependent Ca(2+) channels was investigated using Ca(2+) imaging with fura-2 AM to measure [Ca(2+)](i) increases in rod bipolar cell terminals. Y receptor expression was studied in rat retinal tissue with reverse transcription-polymerase chain reaction (RT-PCR). NPY inhibited the depolarization-evoked Ca(2+) influx into rod bipolar cell axon terminals and caused a dose-dependent reduction and an average maximal inhibition of 72% at 1 microM, which was reversed upon washout. K(+)-evoked Ca(2+) increases were also inhibited by the selective Y2 receptor agonists, C2-NPY and NPY(13-36), at concentrations of 1 microM, but not by the selective Y1 receptor agonist, [Leu(31)Pro(34)]NPY, selective Y4 receptor agonist, rPP, or the selective Y5 receptor agonist, [d-Trp32]-NPY. Y receptor expression was determined using RT-PCR for all known Y receptor subtypes. Y2 receptor mRNA, as well as Y1, Y4, and Y5 receptor mRNAs, are present in the rat retina. Like the rod bipolar cell, other studies in central neurons have shown that the Y2 receptor is expressed predominantly as a presynaptic receptor and that it modulates transmitter release. Together, these findings suggest that NPY activates presynaptic Y2 receptors to inhibit voltage-dependent Ca(2+) influx into rod bipolar cell terminals, and establishes one mechanism by which NPY may reduce l-glutamate release from the rod bipolar cell synapse.
Collapse
Affiliation(s)
- I D'Angelo
- Department of Neurobiology, Box 951763, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
225
|
McMahon MJ, Packer OS, Dacey DM. The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. J Neurosci 2004; 24:3736-45. [PMID: 15084653 PMCID: PMC6729348 DOI: 10.1523/jneurosci.5252-03.2004] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the center-surround receptive field is a fundamental property of retinal ganglion cells, the circuitry that mediates surround inhibition remains controversial. We examined the contribution of horizontal cells and amacrine cells to the surround of parasol ganglion cells of macaque and baboon retina by measuring receptive field structure before and during the application of drugs that have been shown previously to affect surrounds in a range of mammalian and nonmammalian species. Carbenoxolone and cobalt, thought to attenuate feedback from horizontal cells to cones, severely reduced the surround. Tetrodotoxin, which blocks sodium spiking in amacrine cells, and picrotoxin, which blocks the inhibitory action of GABA, only slightly reduced the surround. These data are consistent with the hypothesis that the surrounds of light-adapted parasol ganglion cells are generated primarily by non-GABAergic horizontal cell feedback in the outer retina, with a small contribution from GABAergic amacrine cells of the inner retina.
Collapse
Affiliation(s)
- Matthew J McMahon
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
226
|
Li W, Keung JW, Massey SC. Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina. J Comp Neurol 2004; 474:1-12. [PMID: 15156575 DOI: 10.1002/cne.20075] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mammalian retinal circuits are broadly divided into rod and cone pathways, responsible for dark- and light-adapted vision, respectively. The classic rod pathway employs a single type of rod bipolar cell, which synapses with AII amacrine cells. AII amacrine cells then pass the signal to ON and OFF cone bipolar cells, respectively. Alternatively, rod signals may enter cones via gap junctions between rods and cones, and then pass from cones to cone bipolar cells. Thus, this second rod pathway does not utilize rod bipolar cells. Finally, in rodents, a third rod pathway, involving direct connections between rods and certain OFF cone bipolar cells, has been suggested. In this study, 56 OFF cone bipolar cells in the rabbit retina were dye-injected with Lucifer Yellow and their photoreceptor connections were examined by confocal microscopy in wholemount. The locations of rod and cone terminals were marked with antibodies to mGluR6 or synaptic proteins. Most OFF cone bipolar dendrites terminated at cone pedicles but some made potential contacts with rod spherules. The synaptic nature of these sites was confirmed by the presence of GluR2 receptors. All three OFF bipolar cell types had dendrites that terminated at rod spherules. However, approximately 80% of Ba2 and Ba3, but only 26% of Ba1 OFF cone bipolar cells made rod contacts. This variability suggests differential rod input to certain retinal pathways. In summary, we report anatomical evidence for direct connections between rods and OFF cone bipolar cells in a nonrodent mammal. Our data suggest that this alternative rod pathway may be a common feature of the mammalian retina.
Collapse
Affiliation(s)
- Wei Li
- Department of Ophthalmology and Visual Science, University of Texas Medical School at Houston, Texas 77030, USA
| | | | | |
Collapse
|
227
|
Zhou C, Dacheux RF. AII amacrine cells in the rabbit retina possess AMPA-, NMDA-, GABA-, and glycine-activated currents. Vis Neurosci 2004; 21:181-8. [PMID: 15259569 DOI: 10.1017/s0952523804042099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Physiological properties of ligand-activated currents were characterized for morphologically identified AII amacrine cells in the rabbit retina by using whole-cell recordings in a superfused retina slice preparation. The AII amacrine cells were identified based on their distinct narrow-field, bistratified morphology. In the present study, the whole-cell recordings from AII amacrine cells synaptically isolated from presynaptic influences demonstrated the presence of glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) receptors, but no kainate receptors. The presence of only AMPA receptors on rabbit AII amacrine cells is in contrast to an earlier study on rabbit AII amacrine cells by Bloomfield and Xin (2000), but consistent with previous studies on rat AII amacrine cells. In addition, NMDA (N-methyl-D-aspartate) -activated currents blocked by the NMDA antagonist D-AP7 (D-2-amino-7-phosphonoheptanoic acid) were found on the AII amacrine cells. These most likely extrasynaptic NMDA-activated currents were attenuated by the presence of Co2+interacting with Mg2+and Ca2+as they competed for divalent cation-binding sites within the NMDA channel. AII amacrine cells also possessed GABA (γ-aminobutyric acid) -activated currents that were unaffected by the GABACreceptor antagonist TPMPA (1,2,5,6-tetrahydropyridine-4-yl methylphosphinic), but were completely blocked by the GABAAantagonist bicuculline. This indicates that the major inhibitory inputs were mediated by only GABAAreceptors located directly on the AII amacrine cells. Furthermore, although the AII amacrine cells were glycinergic amacrine cells, they also possessed glycine-activated currents that may be mediated by autoreceptors.
Collapse
Affiliation(s)
- Chengwen Zhou
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham 35294-0009, USA
| | | |
Collapse
|
228
|
Parisi P, Tommasini P, Piazza G, Manfredi M. Scotopic threshold response changes after vigabatrin therapy in a child without visual field defects: a new electroretinographic marker of early damage? Neurobiol Dis 2004; 15:573-9. [PMID: 15056465 DOI: 10.1016/j.nbd.2003.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Revised: 11/20/2003] [Accepted: 12/04/2003] [Indexed: 11/18/2022] Open
Abstract
Vigabatrin (VGB) has been widely used in patients affected by drug-resistant epilepsy and West syndrome. Following reports of visual field loss associated with vigabatrin therapy, some authors have investigated retinal electrophysiologic variables to identify early electrophysiologic markers and pathogenetic mechanisms of retinal damage. There are no previous reports of a scotopic threshold response (STR) reduction associated with vigabatrin therapy. A 13-year-old male child was submitted to a complete electroretinographic study before and after the start of vigabatrin therapy. Of the electroretinographic responses analyzed, only the scotopic threshold response was altered. The scotopic threshold response is a corneal-negative wave in the electroretinogram (ERG) of a fully dark-adapted eye. In cat, this response has been shown to be mediated by K+ spatial buffer currents that flow from proximal to distal retina in retinal glia as a result of elevated concentration of K+ in proximal retina following depolarization of local neurons in response to light onset. The prospective nature of the study in a previously untreated patient on vigabatrin monotherapy allows us to speculate on the underlying pathogenetic mechanisms and level of action of vigabatrin therapy-related retinal damage. If the predictive value of the scotopic threshold response changes is documented, this ERG response could be used to perform a preliminary evaluation of drugs, which modify gamma-aminobutyric acid (GABA) receptors and/or GABA levels.
Collapse
Affiliation(s)
- Pasquale Parisi
- Child Neurology, Department of Pediatrics, La Sapienza 2 University, c/o Sant'Andrea Hospital, Via di Grottarossa, 1035-1039 Rome, Italy.
| | | | | | | |
Collapse
|
229
|
Witkovsky P, Arango-Gonzalez B, Haycock JW, Kohler K. Rat retinal dopaminergic neurons: Differential maturation of somatodendritic and axonal compartments. J Comp Neurol 2004; 481:352-62. [PMID: 15593337 DOI: 10.1002/cne.20389] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We examined developmental changes in dopaminergic (DA) neurons of rat pups between postnatal (P) days 3 and 21. DA cell bodies and dendrites grew progressively between P3-15. Voltage-sensitive sodium channels were present in axons at P11, but the ring-like DA axon terminals appeared only during the third postnatal week. The density of ring terminals increased markedly between P15 and P21. The vesicular monoamine transporter (VMAT2) was absent before P13 and became concentrated in DA ring terminals after P17. A steady increase in VMAT2-containing rings around AII amacrine cells occurred during the third postnatal week. The presynaptic membrane protein SNAP-25 colocalized with DA terminals, but several other presynaptic proteins tested, including synaptotagmin I, synapsin, bassoon, syntaxin, and synaptogyrin, appeared not to be associated with DA neurons. Our study shows that the somatodendritic compartment of DA neurons matures before the DA axon terminals do. Maturation of DA axons during the third postnatal week corresponds to the period of onset of visual function.
Collapse
Affiliation(s)
- Paul Witkovsky
- Department of Ophthalmology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
230
|
MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. The population of bipolar cells in the rabbit retina. J Comp Neurol 2004; 472:73-86. [PMID: 15024753 DOI: 10.1002/cne.20063] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The population of bipolar cells in the rabbit retina was studied using Golgi impregnation and photocatalyzed filling of single cells with dihydrorhodamine, a quantitative sampling technique. The Golgi method revealed the morphology and stratification of cells in detail. The photofilling method allowed us to estimate the frequency of the cell types. From a sample of 243 Golgi-impregnated bipolar cells and 107 photofilled cells, we identified 1 type of rod bipolar cell and 12 types of cone bipolar cells. An analysis based on retinal coverage indicates that this number of types could be contained within the number of bipolar cells known to exist. The dendrites of most cone bipolars contacted all the cones within the individual cone bipolar cell's dendritic field. Types of bipolar cell were encountered at roughly similar frequency, without any one type predominating. The rabbit retina thus contains about a dozen parallel and roughly equipotent through-pathways.
Collapse
Affiliation(s)
- Margaret A MacNeil
- Department of Natural Sciences, York College, City University of New York, Jamaica, New York 11451, USA.
| | | | | | | | | |
Collapse
|
231
|
Lu B, Coffey P, Wang S, Ferrari R, Lund R. Abnormal c-fos-like immunoreactivity in the superior colliculus and other subcortical visual centers of pigmented royal college of surgeons rats. J Comp Neurol 2004; 472:100-12. [PMID: 15024755 DOI: 10.1002/cne.20069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurons in the central nervous system often show a transient up-regulation of expression of the immediate early gene c-fos when presented with precise novel stimuli. In normal rats, neurons in most subcortical visual centers show low levels of fos-like immunoreactivity (FLI) expression, but there is a substantial and transient increase in FLI expression if the animal is exposed to a flashing light. This is especially evident in the superior colliculus (SC). We have examined here FLI expression in the subcortical visual centers of the Royal College of Surgeons rat, focusing specifically on the SC. In this animal, as a result of a genetic defect, there is early loss of rod photoreceptors over the first few months of life, along with slower disappearance of cones. Although light stimulation showed that FLI expression was very similar to that seen in normal rats, the basal levels of FLI expression under dark-maintained conditions were much higher than normal, even exceeding the levels seen after visual stimulation. In the SC, the elevation of FLI expression was already evident by 6 weeks of age and reached a plateau by 17 weeks. Other subcortical visual centers also showed elevated basal levels of FLI expression, although in general the increases were less dramatic than the increase in the SC. The elevated FLI expression in dark-maintained condition seen in the SC was abolished by contralateral optic nerve section. It was also severely diminished by subretinal cell transplantation at 3 weeks of age with the objective of limiting photoreceptor loss over part of the retina. These results suggest that the elevated basal FLI expression is a retina-driven event. Although it correlates with the loss of rod photoreceptors, it is unlikely to reflect reduced photoreceptor drive but rather some form of bursting activity generated in the inner retina, as a result of circuit reorganization or receptor up-regulation.
Collapse
Affiliation(s)
- Bin Lu
- Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
232
|
Abstract
Night (scotopic) vision is mediated by a distinct retinal circuit in which the light responses of rod-driven neurons are faster than those of the rods themselves. To investigate the dynamics of synaptic transmission at the second synapse in the rod pathway, we made paired voltage-clamp recordings from rod bipolar cells (RBCs) and postsynaptic AII and A17 amacrine cells in rat retinal slices. Depolarization of RBCs from -60 mV elicited sustained Ca2+ currents and evoked AMPA receptor (AMPAR)-mediated EPSCs in synaptically coupled amacrine cells that exhibited large, rapidly rising initial peaks that decayed rapidly to smaller, steady-state levels. The transient component persisted in the absence of feedback inhibition to the RBC terminal and when postsynaptic AMPA receptor desensitization was blocked with cyclothiazide, indicating that it reflects a time-dependent decrease in the rate of exocytosis from the presynaptic terminal. The EPSC waveform was similar when RBCs were recorded in perforated-patch or whole-cell configurations, but asynchronous release from RBCs was enhanced when the intraterminal Ca2+ buffer capacity was reduced. When RBCs were depolarized from -100 mV, inactivating, low voltage-activated (T-type channel-mediated) Ca2+ currents were evident. Although Ca2+ influx through T-type channels boosted vesicle release, as reflected by larger EPSCs, it did not make the EPSCs faster, indicating that activation of T-type channels is not necessary to generate a transient phase of exocytosis. We conclude that the time course of vesicle release from RBCs is inherently transient and, together with the fast kinetics of postsynaptic AMPARs, speeds transmission at this synapse.
Collapse
|
233
|
Gábriel R, Lesauter J, Bánvölgyi T, Petrovics G, Silver R, Witkovsky P. AII amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell Tissue Res 2003; 315:181-6. [PMID: 14610664 PMCID: PMC3271844 DOI: 10.1007/s00441-003-0785-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Accepted: 08/04/2003] [Indexed: 11/30/2022]
Abstract
We investigated parvalbumin immunoreactivity (PA-IR) in the retinas of rats maintained on a 12:12 h light:dark cycle, or after being placed in constant darkness for 24-72 h. Retinas were harvested at zeitgeber and circadian times 02:00, 06:00, 10:00, 14:00, 18:00 and 22:00 h. PA-IR was found primarily in retinal amacrine cells of the AII subtype. In a light/dark cycle, PA-IR showed a clear rhythm, with a low near zeitgeber time (ZT) 10:00 h and a peak near ZT 18:00 h. The ratio of immunofluorescence intensities at these timepoints was >15-fold. When animals were kept in complete darkness for 1-3 days, the rhythm of PA-IR was still preserved, but was progressively reduced in amplitude. The rhythm of PA-IR inferred from immunohistochemical data was confirmed by Western blots. We conclude that PA-IR in the rat retina shows an underlying circadian rhythm that is enhanced by cyclic light. The regulation may involve translocation of the protein between cell compartments and/or new protein synthesis.
Collapse
Affiliation(s)
- Robert Gábriel
- Department of General Zoology and Neurobiology, University of Pécs, 7601 Pécs, u 6, Ifjúság, Hungary.
| | | | | | | | | | | |
Collapse
|
234
|
Cui J, Ma YP, Lipton SA, Pan ZH. Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells. J Physiol 2003; 553:895-909. [PMID: 14514876 PMCID: PMC2343622 DOI: 10.1113/jphysiol.2003.052092] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We investigated the properties of glycine receptors and glycinergic synaptic inputs at the axon terminals of rod bipolar cells (RBCs) in rats by patch-clamp recording. Glycine currents recorded from isolated axon terminals were larger than those from isolated somata/dendrites; this was confirmed by puffing glycine onto these two regions in retinal slices. The current density at terminal endings was more than one order of magnitude higher than the density at somatic/dendritic regions. Glycine currents from isolated terminals and isolated somata/dendrites showed similar sensitivity to picrotoxinin blockade. Single-channel opening recorded from isolated terminals and somata/dendrites displayed a similar main-state conductance of ~46 pS. Application of glycine effectively suppressed depolarization-evoked increases in intracellular Ca2+ at the terminals. In the presence of GABAA and GABAC antagonists, strychnine-sensitive chloride currents were evoked in RBCs in retinal slices by puffing kainate onto the inner plexiform layer. No such currents were observed if the recorded RBCs did not retain axon terminals or if Ca2+ was replaced by Co2+ in the extracellular solution. The currents displayed discrete miniature-like events, which were partially blocked by tetrodotoxin. Consistent with early studies in the rabbit and mouse, this study demonstrates that glycine receptors are highly concentrated at the axon terminals of rat RBCs. The pharmacological and physiological properties of glycine receptors located in the axon terminal and somatic/dendritic regions, however, appear to be the same. This study provides evidence for the existence of functional glycinergic synaptic input at the axon terminals of RBCs, suggesting that glycine receptors may play a role in modulating bipolar cell synaptic transmission.
Collapse
Affiliation(s)
- Jinjuan Cui
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
235
|
Scher J, Wankiewicz E, Brown GM, Fujieda H. AII amacrine cells express the MT1 melatonin receptor in human and macaque retina. Exp Eye Res 2003; 77:375-82. [PMID: 12907170 DOI: 10.1016/s0014-4835(03)00123-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AII amacrine cells are critical interneurons in the rod pathway of mammalian retina, active primarily in dim lighting conditions. Melatonin, a neuromodulator produced at night in the retina, is believed to induce retinal adaptation to dim lighting conditions in most vertebrate species examined to date, including humans. We hypothesized that melatonin may influence retinal light adaptation by acting on AII cells directly and thus investigated whether melatonin receptors were expressed in AII neurons. Postmortem nonpathological eyes from four human donors as well as two eyes from two Macaque Fasicularis monkeys were analyzed. Double immunocytochemistry was performed using an anti-MT(1) antibody and an antibody to calretinin, an AII marker. Analysis utilized confocal microscopy. A polyclonal anti-calretinin antibody labelled amacrine cells exhibiting the distinct AII morphology, in both human and macaque retina. MT(1) immunoreactivity in macaque retina was similar to human staining, in that horizontal, amacrine and ganglion cell bodies were stained, as were inner segments of photoreceptors. In human retina 86% of calretinin positive cells expressed the MT(1) receptor peripherally, whereas centrally, 78% colocalization was observed. In the macaque retina, 100% of AII amacrine cells expressed MT(1) immunoreactivity both centrally and peripherally. That virtually all AII neurons express the MT(1) receptor in both human and macaque retina, may provide the first evidence demonstrating a role for melatonin in AII regulation, furthering the hypothesis of melatonin function in retinal light adaptation.
Collapse
Affiliation(s)
- Judite Scher
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 Kings College Circle, Rm 3321, Ont., M5S 1A8, Toronto, Canada.
| | | | | | | |
Collapse
|
236
|
Kamphuis W, Dijk F, O'Brien BJ. Gene expression of AMPA-type glutamate receptor subunits in rod-type ON bipolar cells of rat retina. Eur J Neurosci 2003; 18:1085-92. [PMID: 12956708 DOI: 10.1046/j.1460-9568.2003.02841.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The retinal rod bipolar cell type is involved in the sign-inverting depolarizing ON-type response to light. This response is mediated by the metabotropic glutamate receptor type 6 (mGluR6) expressed on the rod bipolar dendrites. In a previous immunocytochemical study, an unexpected colocalization was reported [W. Kamphuis et al. (2003) J. Comp. Neurol., 455, 172-186] of mGluR6 with the ionotropic AMPA-type glutamate receptor subunit GluR2 in rod bipolar cells of rat retina. The aim of the present study was to investigate whether expression of both genes could be found at the single-cell level. Two approaches were followed. (i). Retinal cells were isolated by enzymatic and mechanical treatment. Single cells with a bipolar morphology were harvested, subjected to multiplex PCR with protein kinase C (PKC)-, mGluR6- and GluR1-4-specific primers, followed by a real-time quantitative PCR assay. Of 23 studied cells, 74% expressed PKC and 87% expressed mGluR6. Using the presence of both transcripts as the criterion for a rod bipolar cell signature (n = 15), 73% of these cells expressed GluR2, with a minor contribution of GluR1 (20%), GluR3 (7%), and GluR4 (20%). Quantification of the transcript levels demonstrated that mGluR6 and GluR2 genes are expressed at similar levels in rod ON-type bipolar cells. (ii). Rod bipolar cells were identified in retinal sections by immunolabelling with a protein kinase C antibody and isolated using laser pressure catapulting (LPC). Quantitative PCR was employed to assess gene expression levels of reference genes, PKCalpha, mGluR6 and the GluR subunits. However, in samples from PKCalpha-immunopositive somata no significant enrichment of PKCalpha transcript levels was observed when compared with control samples from immunonegative somata. We conclude that this approach lacks sufficient spatial specificity. In conclusion, the results show coexpression of mGluR6 and GluR2 in rod bipolar cells; this is in good agreement with the results of previous immunocytochemical studies. The functional implications of AMPA-type glutamate receptors for ON-type rod bipolar-mediated signal transduction remains to be elucidated.
Collapse
Affiliation(s)
- Willem Kamphuis
- Graduate School for the Neurosciences Amsterdam, the Netherlands.
| | | | | |
Collapse
|
237
|
Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF alpha ganglion cells in the mouse retina. J Neurosci 2003. [PMID: 12853425 DOI: 10.1523/jneurosci.23-14-06063.2003] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bipolar cell and amacrine cell synaptic inputs to alpha ganglion cells (alphaGCs) in dark-adapted mouse retinas were studied by recording the light-evoked excitatory cation current (DeltaIC) and inhibitory chloride current (DeltaICl) under voltage-clamp conditions, and the cell morphology was revealed by Lucifer yellow fluorescence with a confocal microscope. Three types of alphaGCs were identified. (1) ONalphaGCs exhibits no spike activity in darkness, increased spikes in light, sustained inward DeltaIC, sustained outward DeltaICl of varying amplitude, and large soma (20-25 microm in diameter) with alpha-cell-like dendritic field approximately 180-350 microm stratifying near 70% of the inner plexiform layer (IPL) depth. (2) Transient OFFalphaGCs (tOFFalphaGCs) exhibit no spike activity in darkness, transient increased spikes at light offset, small sustained outward DeltaIC in light, a large transient inward DeltaIC at light offset, a sustained outward DeltaICl, and a morphology similar to the ONalphaGCs except for that their dendrites stratified near 30% of the IPL depth. (3) Sustained OFFalphaGCs exhibit maintained spike activity of 5-10 Hz in darkness, sustained decrease of spikes in light, sustained outward DeltaIC, sustained outward DeltaICl, and a morphology similar to the tOFFalphaGCs. By comparing the response thresholds and dynamic ranges of alphaGCs with those of the preganglion cells, our data suggest that the light responses of each type of alphaGCs are mediated by different sets of bipolar cells and amacrine cells. This detailed physiological analysis complements the existing anatomical results and provides new insights on the functional roles of individual synapses in the inner mammalian retina.
Collapse
|
238
|
Massey SC, O'Brien JJ, Trexler EB, Li W, Keung JW, Mills SL, O'Brien J. Multiple neuronal connexins in the mammalian retina. CELL COMMUNICATION & ADHESION 2003; 10:425-30. [PMID: 14681052 DOI: 10.1080/cac.10.4-6.425.430] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gap junctions are abundant in the mammalian retina and many neuronal types form neural networks. Several different neuronal connexins have now been identified in the mammalian retina. Cx36 supports coupling in the AII amacrine cell network and is essential for processing rod signals. Cx36 is probably also responsible for photoreceptor coupling. Horizontal cells appear to be extensively coupled by either Cx50 or Cx57. These results indicate that multiple neuronal connexins are expressed in the mammalian retina and that different cell types express different connexins.
Collapse
Affiliation(s)
- Stephen C Massey
- Department of Ophthalmology and Visual Science, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
239
|
Dong CJ, Hare WA. Temporal modulation of scotopic visual signals by A17 amacrine cells in mammalian retina in vivo. J Neurophysiol 2003; 89:2159-66. [PMID: 12686583 DOI: 10.1152/jn.01008.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined function of the feedback pathway from A17 GABAergic amacrine cells to rod bipolar cells (A17 feedback), a critically located inhibitory circuit in the classic rod pathway of the mammalian retina whose role in processing of scotopic visual information is still poorly understood. We show evidence that this A17 feedback has a profound influence on the temporal properties of rod-driven postphotoreceptoral responses (assessed with the scotopic electroretinogram b-wave). Application of a GABA(c) antagonist prolonged preferentially the decay of the scotopic b-wave. The degree of prolongation increased as the light intensity decreased. Application of selective GABA(a) antagonists accelerated the kinetics of the scotopic b-wave. This effect was abolished when the GABA(c) antagonist was coapplied. Selective ablation of A17 cells mimicked the action of the GABA(c) antagonist. In A17 cell-ablated retinas, the GABA(c) antagonist was no longer very effective to slow the decay of the scotopic b-wave. Thus the A17 feedback, activated by light stimulation and mediated mainly by the GABA(c) receptors, makes the scotopic b-wave more transient by accelerating preferentially its decay. The strength of the feedback can be modulated by GABA(a) receptor-mediated inhibition and by light intensity. Our results also suggest that in the mammalian retina the feedback may be a novel mechanism that contributes postphotoreceptorally to the termination of rod signals, especially those elicited by very dim light stimuli.
Collapse
Affiliation(s)
- Cun-Jian Dong
- Department of Biological Sciences, Allergan Pharmaceuticals, Irvine, California 92612, USA.
| | | |
Collapse
|
240
|
Casini G, Sabatini A, Catalani E, Willems D, Bosco L, Brecha NC. Expression of the neurokinin 1 receptor in the rabbit retina. Neuroscience 2003; 115:1309-21. [PMID: 12453499 DOI: 10.1016/s0306-4522(02)00408-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Substance P is the preferred ligand for the neurokinin 1 (NK1) receptor. In vertebrate retinas, substance P is expressed by amacrine, interplexiform and ganglion cells. Substance P influences the activity of amacrine and ganglion cells and it is reported to evoke dopamine release. We investigated NK1 receptor expression in the rabbit retina using affinity-purified NK1 receptor antibodies. NK1 receptors were expressed by two distinct populations of retinal neurons. One is a population of ON-type bipolar cells characterized by axonal arborizations that ramified in the inner plexiform layer near the ganglion cell layer. Double-label studies showed that NK1 receptor-expressing bipolar cells were distinct from rod bipolar cells and from other immunocytochemically identified types of cone bipolar cells. Their density was about 2250 cells/mm2 in the visual streak and 1115 cells/mm2 in ventral mid-periphery. They were distributed in a non-random pattern. In the outer plexiform layer, the dendrites of these bipolar cells converged into heavily immunostained clusters having a punctate appearance. The density of these clusters in mid-peripheral ventral regions (about 13000 clusters/mm2) was similar to the reported cone density [Famiglietti and Sharpe (1995) Vis. Neurosci. 12, 1151-1175], suggesting these dendrites contact all cone photoreceptors. The second NK1 receptor expressing cell population corresponds to the tyrosine hydroxylase-containing amacrine cell population. NK1 receptor immunostaining was localized to the cell body and processes, but not to the processes that form the 'rings' that are known to encircle somata of AII amacrine cells. These findings show that NK1 receptor immunoreactivity is localized to a population of ON-type cone bipolar cells and to dopaminergic amacrine cells, suggesting that substance P acting on NK1 receptors influences multiple retinal circuits in the rabbit retina.
Collapse
Affiliation(s)
- G Casini
- Dipartimento di Scienze Ambientali, Università della Tuscia, 01100, Viterbo, Italy.
| | | | | | | | | | | |
Collapse
|
241
|
Abstract
Amacrine cells in the mammalian retina are famously diverse in shape and function. Here, we show that two wide-field GABA amacrine cells, S1 and S2, have stereotyped synaptic contacts with the appropriate morphology and distribution to perform specific functions. S1 and S2 both supply negative feedback to rod bipolar terminals and thus provide a substrate for lateral inhibition in the rod pathway. Synapses are specialized structures, and the presynaptic compartment is normally characterized by a swelling or varicosity. Each S1 amacrine cell has approximately 280 varicosities, whereas an S2 cell has even more, approximately 500 per cell. Confocal analysis shows that essentially all varicosities aggregate around rod bipolar terminals where they are apposed by postsynaptic GABA receptors. Each rod bipolar terminal is contacted by varicosities from approximately 25 different S1 and 50 different S2 amacrine cells. In fact, rod bipolar cells are the only synaptic target for S1 and S2 amacrine cells: all of the output from these two wide-field GABA amacrine cells goes to rod bipolar terminals. It has long been a puzzle why two amacrine cells, apparently with the same connections, are required. However, an analysis of the distribution of varicosities suggests that S1 and S2 amacrine cells provide different signals. S2 amacrine cells dominate within 200 mu from a rod bipolar terminal and can provide an inhibitory input with spatial characteristics that match the size of the surround signal recorded from AII amacrine cells in the rod pathway. In contrast, the larger, better-coupled S1 amacrine cells may provide a more distant network signal.
Collapse
|
242
|
Abstract
In the retina, AII (rod) amacrine cells are essential for integrating rod signals into the cone pathway. In addition to being interconnected via homologous gap junctions, these cells make extensive heterologous gap junctions with ON-cone bipolar cells (BCs). These gap junctions are the pathway for transfer of rod signals to the ON-system. To investigate the functional properties of these gap junctions, we performed simultaneous whole-cell recordings from pairs of AII amacrine cells and ON-cone bipolar cells in the in vitro slice preparation of the rat retina. We demonstrate strong electrical coupling with symmetrical junction conductance (approximately 1.2 nS) and very low steady-state voltage sensitivity. However, signal transmission is more effective in the direction from AII amacrine cells to ON-cone bipolar cells than in the other direction. This functional rectification can be explained by a corresponding difference in membrane input resistance between the two cell types. Signal transmission has low-pass filter characteristics with increasing attenuation and phase shift for increasing stimulus frequency. Action potentials in AII amacrine cells evoke distinct electrical postsynaptic potentials in ON-cone bipolar cells. Strong and temporally precise synchronization of subthreshold membrane potential fluctuations are commonly observed.
Collapse
|
243
|
Kamphuis W, Klooster J, Dijk F. Expression of AMPA-type glutamate receptor subunit (GluR2) in ON-bipolar neurons in the rat retina. J Comp Neurol 2003; 455:172-86. [PMID: 12454983 DOI: 10.1002/cne.10469] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The role of glutamate receptors (GluR) in the signal pathways of the retina is widely recognized. Photoreceptors make synaptic contact with functionally different classes of bipolar cells. The OFF-type bipolar cells mediate light offset-evoked responses and use ionotropic alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA)- or kainate-type GluRs, whereas bipolars involved in the ON-pathway use the metabotropic GluR6. This dichotomy predicts a defined expression pattern of AMPA-type GluRs and mGluR6 in bipolar cell classes. This hypothesis was tested by performing immunocytochemical double labeling studies combining GluR-specific antibodies with markers specific for the diverse bipolar cell populations in the rat retina. AMPA-type receptors are composed of combinations of four types of subunits, GluR1-4. GluR1 is expressed by a few somata in the outer part of the inner nuclear layer (INL). Sparse colocalization with any of the bipolar markers used could be established. In contrast, GluR2 is expressed by many of the somata in the outer zone of the INL. At the transcript level, in situ hybridizations demonstrated abundant GluR2 expression over the complete width of the INL. In contrast to our expectations, approximately 70% of the somata labeled by the rod ON-bipolar markers protein kinase C (PKC) or Goalpha, colocalized with GluR2. Approximately 90% of the OFF-type bipolar cells, identified as recoverin-positive, showed GluR2 immunoreactivity. At least 40% of the somata that were mGluR6-immunoreactive, a both rod and cone ON-type bipolar marker, were GluR2-immunopositive. Ultrastructurally, examples were observed of GluR2 localization in bipolar processes with labeling outside the actual compartment associated with the synaptic complex of the rod terminal. No specific antibody was available against GluR3, but 74% of the PKC-positive cells were GluR2/3-positive. GluR4 did not show a somatic localization making double labeling impossible. On the basis of these results, we conclude that ionotropic GluRs are expressed by rod ON-type bipolar cells (PKC- or Goalpha-immunoreactive), and by cone ON- and OFF-type bipolars based on a colocalization with nearly all of the present recoverin-positive somata. Our observations show that the functional dichotomy in ON- and OFF-type bipolars is not reflected in a matching expression pattern of ionotropic and metabotropic GluRs. This finding raises the intriguing possibility that the AMPA-type GluRs are, in an as yet unclear manner, involved in the ON signaling pathways of rods and cones.
Collapse
Affiliation(s)
- Willem Kamphuis
- Graduate School for the Neurosciences Amsterdam, Netherlands Ophthalmic Research Institute-KNAW, Glaucoma Research Group, 1105 BA Amsterdam, The Netherlands.
| | | | | |
Collapse
|
244
|
Cooper RM. Diffuse light increases metabolic activity in the lateral geniculate nucleus, visual cortex, and superior colliculus of the cone-dominated ground squirrel visual system. Vision Res 2002; 42:2899-907. [PMID: 12450501 DOI: 10.1016/s0042-6989(02)00361-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ground squirrels were monocularly exposed to either steady- or flashing-diffuse light for 45 min following an injection of 14C 2-deoxyglucose (2-DG). Autoradiographic analysis indicated greater metabolic activity in the lateral geniculate nucleus, visual cortex and superior colliculus (SC) of the hemisphere lying contralateral to and receiving input from the diffusely stimulated eye (covered by a white mask), than in the corresponding regions of the other hemisphere receiving input from the occluded eye (black mask). The diffuse light results for the cortex and colliculus of the diurnal ground squirrel are different from those for the nocturnal rat. In the rat visual cortex, there is no difference between metabolic activity under conditions of diffuse light (steady or flashing) and under darkness. In the rat SC, although flashing-diffuse light increases metabolic activity (as is the case for the squirrel), steady-diffuse light decreases it to a level below that which occurs in darkness. The cortex and colliculus differences in 2-DG response to diffuse light between the ground squirrel and rat were attributed to differences in the operations of their respective cone- and rod-dominated visual systems.
Collapse
|
245
|
Deans MR, Volgyi B, Goodenough DA, Bloomfield SA, Paul DL. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 2002; 36:703-12. [PMID: 12441058 PMCID: PMC2834592 DOI: 10.1016/s0896-6273(02)01046-2] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To examine the functions of electrical synapses in the transmission of signals from rod photoreceptors to ganglion cells, we generated connexin36 knockout mice. Reporter expression indicated that connexin36 was present in multiple retinal neurons including rod photoreceptors, cone bipolar cells, and AII amacrine cells. Disruption of electrical synapses between adjacent AIIs and between AIIs and ON cone bipolars was demonstrated by intracellular injection of Neurobiotin. In addition, extracellular recording in the knockout revealed the complete elimination of rod-mediated, on-center responses at the ganglion cell level. These data represent direct proof that electrical synapses are critical for the propagation of rod signals across the mammalian retina, and they demonstrate the existence of multiple rod pathways, each of which is dependent on electrical synapses.
Collapse
Affiliation(s)
| | - Bela Volgyi
- Departments of Ophthalmology and Physiology & Neuroscience New York University School of Medicine 550 First Avenue New York, New York 10016
| | - Daniel A. Goodenough
- Department of Cell Biology Harvard Medical School 200 Longwood Avenue Boston, Massachusetts 02115
| | - Stewart A. Bloomfield
- Departments of Ophthalmology and Physiology & Neuroscience New York University School of Medicine 550 First Avenue New York, New York 10016
| | | |
Collapse
|
246
|
Li W, Trexler EB, Massey SC. Glutamate receptors at rod bipolar ribbon synapses in the rabbit retina. J Comp Neurol 2002; 448:230-48. [PMID: 12115706 DOI: 10.1002/cne.10189] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the mammalian retina, maximum sensitivity is achieved in the rod pathway, which serves dark-adapted vision. Rod bipolar cells carry the highly convergent rod input and make ribbon synapses with two postsynaptic elements in the inner retina. One postsynaptic neuron is the AII amacrine cell, which feeds the rod signal into the cone pathways. The other postsynaptic element is either an S1 or S2 amacrine cell. These two wide-field GABA amacrine cells both make reciprocal synapses with rod bipolar terminals but their individual roles are unknown. AII and S1/S2 dendrites come in close together and form a dyad opposing the presynaptic ribbon, which is the site of glutamate release. Therefore, two postsynaptic neurons sense the very same neurotransmitter yet serve different functions in the rod pathway. This functional diversity could be derived partly from the expression of different glutamate receptors on each postsynaptic element. In this study, we labeled all pre- and postsynaptic combinations and a signal-averaging method was developed to locate glutamate receptor subunits. In summary, GluR2/3 and GluR4 are expressed by AII amacrine cells but not by S1/S2 amacrine cells. In contrast, the orphan subunit delta1/2 is exclusively located on S1 varicosities but not on AII or S2 amacrine cells. These results confirm the prediction of divergence mediated by different glutamate receptors at the rod bipolar dyad. Each different amacrine cell type appears to express specific glutamate receptors. Finally, the differential expression of glutamate receptors by S1 and S2 may partly explain the need for two wide-field GABA amacrine cells with the same feedback connections to rod bipolar terminals.
Collapse
Affiliation(s)
- Wei Li
- Department of Ophthalmology and Visual Science, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | | | |
Collapse
|
247
|
Völgyi B, Xin D, Bloomfield SA. Feedback inhibition in the inner plexiform layer underlies the surround-mediated responses of AII amacrine cells in the mammalian retina. J Physiol 2002; 539:603-14. [PMID: 11882691 PMCID: PMC2290143 DOI: 10.1113/jphysiol.2001.013133] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intracellular recordings were made from narrow-field, bistratified AII amacrine cells in the isolated, superfused retina-eyecup of the rabbit. Pharmacological agents were applied to neurons to dissect the synaptic pathways subserving AII cells so as to determine the circuitry generating their off-surround responses. Application of the GABA antagonists, picrotoxin, bicuculline and 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid (TPMPA) all increased the on-centre responses of AII amacrine cells, but attenuated the off-surround activity. At equal concentrations, picrotoxin was approximately twice as effective as bicuculline or TPMPA in modifying the response activity of AII amacrine cells. These results indicate that the mechanism underlying surround inhibition of AII amacrine cells includes activation of both GABA(A) and GABA(C) receptors in an approximately equal ratio. Application of the GABA antagonists also increased the size of on-centre receptive fields of AII amacrine cells. Again, picrotoxin was most effective, producing, on average, a 54 % increase in the size of the receptive field, whereas bicuculline and TPMPA produced comparable 34 and 33 % increases, respectfully. Application of the voltage-gated sodium channel blocker TTX produced effects on AII amacrine cells qualitatively similar to those of the GABA blockers. Intracellular application of the chloride channel blocker 4,4'-dinitro-stilbene-2,2'-disulphonic acid (DNDS) abolished the direct effects of GABA on AII amacrine cells. Moreover, DNDS increased the amplitude of both the on-centre and off-surround responses. The failure of DNDS to block the off-surround activity indicates that it is not mediated by direct GABAergic inhibition. Taken together, our results suggest that surround receptive fields of AII amacrine cells are generated indirectly by the GABAergic, reciprocal feedback synapses from S1/S2 amacrine cells to the axon terminals of rod bipolar cells.
Collapse
Affiliation(s)
- Béla Völgyi
- Department of Ophthalmology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
248
|
Abstract
Rod bipolar (RB) cells of the mammalian retina release glutamate in a graded, light-dependent fashion from 20 to 40 ribbon synapses (dyads). At the dyads, two classes of amacrine cells, the AI and AII cells, are the postsynaptic partners. We examined the glutamate receptors (GluRs) that are expressed by AI and AII cells using immunocytochemistry with specific antibodies against GluR subunits. Sections of macaque monkey and rabbit retina were examined by confocal microscopy. AII amacrine cells were selectively labeled for calretinin, and AI cells in rabbits were labeled for 5-HT uptake. Thus, double- and triple-labeling for these markers and GluR subunits was possible. Electron microscopy using postembedding immunocytochemistry and double-labeling was applied to show the synaptic expression of GluRs. We also studied the synaptic localization of the two postsynaptic density proteins PSD-95 and glutamate receptor-interacting protein (GRIP). We found that AII amacrine cells express the AMPA receptor subunits GluR2/3 and GluR4 at the RB cell dyads, and they are clustered together with PSD-95. In contrast, AI amacrine cells express the delta1/2 subunits that appear to be associated with kainate receptor subunits and to be clustered together with GRIP. The RB cell dyad is therefore a synapse that initiates two functionally and molecularly distinct pathways: a "through conducting" pathway based on AMPA receptors and a modulatory pathway mediated by a combination of delta1/2 subunits and kainate receptors.
Collapse
|