201
|
Li P, Zbieg JR, Terrett JA. A Platform for Decarboxylative Couplings via Photoredox Catalysis: Direct Access to Carbocations from Carboxylic Acids for Carbon–Oxygen Bond Formation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03251] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peijun Li
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R. Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack A. Terrett
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
202
|
Ha MW, Paek SM. Recent Advances in the Synthesis of Ibuprofen and Naproxen. Molecules 2021; 26:4792. [PMID: 34443379 PMCID: PMC8399189 DOI: 10.3390/molecules26164792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, we review the recent progress in the synthesis of representative nonsteroidal anti-inflammatory drugs (NSAIDs), ibuprofen and naproxen. Although these drugs were discovered over 50 years ago, novel practical and asymmetric approaches are still being developed for their synthesis. In addition, this endeavor has enabled access to more potent and selective derivatives from the key frameworks of ibuprofen and naproxen. The development of a synthetic route to ibuprofen and naproxen over the last 10 years is summarized, including developing methodologies, finding novel synthetic routes, and applying continuous-flow chemistry.
Collapse
Affiliation(s)
- Min-Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea
| | - Seung-Mann Paek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongnam-do, Korea
| |
Collapse
|
203
|
Wang Y, Wang D, Li Y. Rational Design of Single-Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008151. [PMID: 34240475 DOI: 10.1002/adma.202008151] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Indexed: 05/03/2023]
Abstract
Atomically dispersed metal-based electrocatalysts have attracted increasing attention due to their nearly 100% atomic utilization and excellent catalytic performance. However, current fundamental comprehension and summaries to reveal the underlying relationship between single-atom site electrocatalysts (SACs) and corresponding catalytic application are rarely reported. Herein, the fundamental understandings and intrinsic mechanisms underlying SACs and corresponding electrocatalytic applications are systemically summarized. Different preparation strategies are presented to reveal the synthetic strategies with engineering the well-defined SACs on the basis of theoretical principle (size effect, metal-support interactions, electronic structure effect, and coordination environment effect). Then, an overview of the electrocatalytic applications is presented, including oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, oxidation of small organic molecules, carbon dioxide reduction reaction, and nitrogen reduction reaction. The underlying structure-performance relationship between SACs and electrocatalytic reactions is also discussed in depth to expound the enhancement mechanisms. Finally, a summary is provided and a perspective supplied to demonstrate the current challenges and opportunities for rational designing, synthesizing, and modulating the advanced SACs toward electrocatalytic reactions.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
204
|
Yedase GS, Kumar S, Stahl J, König B, Yatham VR. Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones. Beilstein J Org Chem 2021; 17:1727-1732. [PMID: 34367351 PMCID: PMC8313980 DOI: 10.3762/bjoc.17.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/16/2021] [Indexed: 01/25/2023] Open
Abstract
We have developed a cerium-photocatalyzed aerobic oxidation of primary and secondary benzylic alcohols to aldehydes and ketones using inexpensive CeCl3·7H2O as photocatalyst and air oxygen as the terminal oxidant.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| | - Sumit Kumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| | - Jessica Stahl
- Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstraße 31, D-93053 Regensburg, Germany
| | - Burkhard König
- Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstraße 31, D-93053 Regensburg, Germany
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| |
Collapse
|
205
|
Yu F, Shen W, Sun Y, Liao Y, Jin S, Lu X, He R, Zhong L, Zhong G, Zhang J. Ruthenium-catalyzed C-H amination of aroylsilanes. Org Biomol Chem 2021; 19:6313-6321. [PMID: 34212972 DOI: 10.1039/d1ob00935d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acylsilane represents a valuable synthon in synthetic chemistry. We report on ruthenium(ii)-catalyzed ortho-C-H amination of aroylsilanes to provide facile access to synthetically useful imidobenzoylsilanes and tosyl-amidobenzoylsilanes. The protocols, with broad substrate scope and excellent functional group tolerance, are enabled with the weak chelation-assistance of acylsilane via C-H cyclometallation.
Collapse
Affiliation(s)
- Feifei Yu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Wenzhou Shen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yaling Sun
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yilei Liao
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shuqi Jin
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xiunan Lu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Rui He
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Liangjun Zhong
- Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China. and Department of Stomatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China.
| |
Collapse
|
206
|
Tripathy AR, Yedase GS, Yatham VR. Cerium photocatalyzed radical smiles rearrangement of 2-aryloxybenzoic acids. RSC Adv 2021; 11:25207-25210. [PMID: 35478894 PMCID: PMC9037003 DOI: 10.1039/d1ra04130d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023] Open
Abstract
We report herein a cerium photocatalyzed aryl migration from an aryl ether to a carboxylic acid group through radical-Smiles rearrangement. This operationally simple protocol utilizes inexpensive CeCl3 as a photocatalyst and converted a variety of 2-aryloxybenzoic acids into aryl-2-hydroxybenzoates in good yields.
Collapse
Affiliation(s)
- Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| |
Collapse
|
207
|
Liu MS, Min L, Chen BH, Shu W. Dual Catalysis Relay: Coupling of Aldehydes and Alkenes Enabled by Visible-Light and NHC-Catalyzed Cross-Double C–H Functionalizations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02890] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ming-Shang Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Lin Min
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Bi-Hong Chen
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| |
Collapse
|
208
|
Petek N, Brodnik H, Grošelj U, Svete J, Požgan F, Štefane B. Visible-Light Driven Selective C-N Bond Scission in anti-Bimane-Like Derivatives. Org Lett 2021; 23:5294-5298. [PMID: 34077227 PMCID: PMC8832495 DOI: 10.1021/acs.orglett.1c01376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we report the photochemical transformation of pyrazolo[1,2-a]pyrazolone substrates that reach an excited state upon irradiation with visible light to initiate the homolytic C-N bond cleavage process that yields the corresponding N1-substituted pyrazoles. Moreover, chemoselective heterolytic C-N bond cleavage is possible in the pyrazolo[1,2-a]pyrazole core in the presence of bromomalonate.
Collapse
Affiliation(s)
- Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Uroš Grošelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
209
|
Pitre SP, Overman LE. Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chem Rev 2021; 122:1717-1751. [PMID: 34232019 DOI: 10.1021/acs.chemrev.1c00247] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent progress in the development of photocatalytic reactions promoted by visible light is leading to a renaissance in the use of photochemistry in the construction of structurally elaborate organic molecules. Because of the rich functionality found in natural products, studies in natural product total synthesis provide useful insights into functional group compatibility of these new photocatalytic methods as well as their impact on synthetic strategy. In this review, we examine total syntheses published through the end of 2020 that employ a visible-light photoredox catalytic step. To assist someone interested in employing the photocatalytic steps discussed, the review is organized largely by the nature of the bond formed in the photocatalytic step.
Collapse
Affiliation(s)
- Spencer P Pitre
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Larry E Overman
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
210
|
Latrache M, Hoffmann N. Photochemical radical cyclization reactions with imines, hydrazones, oximes and related compounds. Chem Soc Rev 2021; 50:7418-7435. [PMID: 34047736 DOI: 10.1039/d1cs00196e] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photochemical reactions are a key method to generate radical intermediates. Often under these conditions no toxic reagents are necessary. During recent years, photo-redox catalytic reactions considerably push this research domain. These reaction conditions are particularly mild and safe which enables the transformation of poly-functional substrates into complex products. The synthesis of heterocyclic compounds is particularly important since they play an important role in the research of biologically active products. In this review, photochemical radical cyclization reactions of imines and related compounds such as oximes, hydrazones and chloroimines are presented. Reaction mechanisms are discussed and the structural diversity and complexity of the products are presented. Radical intermediates are mainly generated in two ways: (1) electronic excitation is achieved by light absorption of the substrates. (2) The application of photoredox catalysis is now systematically studied for these reactions. Recently, also excitation of charge transfer complexes has been studied in this context from many perspectives.
Collapse
Affiliation(s)
- Mohammed Latrache
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France.
| | - Norbert Hoffmann
- CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France.
| |
Collapse
|
211
|
Xie P, Xue C, Shi S, Du D. Visible-Light-Driven Selective Air-Oxygenation of C-H Bond via CeCl 3 Catalysis in Water. CHEMSUSCHEM 2021; 14:2689-2693. [PMID: 33877736 DOI: 10.1002/cssc.202100682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Visible-light-induced C-H aerobic oxidation is an important chemical transformation that can be applied for the synthesis of aromatic ketones. High-cost catalysts and toxic solvents were generally needed in the present methodologies. Here, an efficient aqueous C-H aerobic oxidation protocol was reported. Through CeCl3 -mediated photocatalysis, a series of aromatic ketones were produced in moderate to excellent yields. With air as the oxidant, this reaction could be performed under mild conditions in water and demonstrated high activity and functional group tolerance. This method is economical, highly efficient, and environmentally friendly, and it will provide inspiration for the development of aqueous photochemical synthesis reactions.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an, 710021 (P. R., China
| |
Collapse
|
212
|
Bera SK, Boruah PJ, Parida SS, Paul AK, Mal P. A Photochemical Intramolecular C-N Coupling Toward the Synthesis of Benzimidazole-Fused Phenanthridines. J Org Chem 2021; 86:9587-9602. [PMID: 34191516 DOI: 10.1021/acs.joc.1c00871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein, we report a direct photochemical dehydrogenative C-N coupling of unactivated C(sp2)-H and N(sp2)-H bonds. The catalysts or additive-free transformation of 2-([1,1'-biphenyl]-2-yl)-1H-benzo[d]imidazole to benzo[4,5]imidazo[1,2-f]phenanthridine was achieved at ∼350 nm of irradiation via ε-hydrogen abstraction. DFT calculations helped to understand that the N-H···π interaction was essential for the reaction to proceed at a lower energy than expected.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| | - Palash J Boruah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, India
| | - Shraddha Saraswati Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| | - Amit K Paul
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, Meghalaya, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, District Khurda, Jatni, Odisha 752050, India
| |
Collapse
|
213
|
Roseau M, De Waele V, Trivelli X, Cantrelle FX, Penhoat M, Chausset‐Boissarie L. Azobenzene: a Visible‐Light Chemical Actinometer for the Characterization of Fluidic Photosystems. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mélanie Roseau
- USR 3290 MSAP Lille University CNRS FR-59655 Villeneuve d'Ascq France
| | - Vincent De Waele
- UMR 8516 LASIR Lille University FR-59655 Villeneuve d'Ascq France
| | - Xavier Trivelli
- FR 2638 IMEC Lille University CNRS INRA Centrale Lille Artois University FR-59000 Lille France
| | - Francois Xavier Cantrelle
- ERL9002 Integrative Structural Biology CNRS FR-59000 Lille France
- U1167 RID-AGE Lille University Inserm CHU Lille Institut Pasteur Lille FR-59000 Lille France
| | - Maël Penhoat
- USR 3290 MSAP Lille University CNRS FR-59655 Villeneuve d'Ascq France
| | | |
Collapse
|
214
|
Nikitas NF, Gkizis PL, Kokotos CG. Thioxanthone: a powerful photocatalyst for organic reactions. Org Biomol Chem 2021; 19:5237-5253. [PMID: 34047729 DOI: 10.1039/d1ob00221j] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photoorganocatalysis has been recognised by the organic chemistry community as an important part of photochemistry and catalysis. In general, aromatic ketones constitute key players in this type of catalysis as they are involved in a plethora of examples in the literature. Among the various aromatic ketones, thioxanthone (TX) seems to play a unique role in photochemistry. In comparison with other aromatic ketones, TX has a high triplet energy and a relatively long triplet lifetime, while it has the ability to participate successfully in merger reactions with metal complexes. In this review, we will discuss the photophysical properties of this small organic molecule, as well as the numerous examples of photochemical reactions, where it is employed as a mediator and more specifically in polymerisation reactions, and organic transformations.
Collapse
Affiliation(s)
- Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece.
| |
Collapse
|
215
|
Li XR, Yan BC, Hu K, He S, Sun HD, Zuo J, Puno PT. Spiro ent-Clerodane Dimers: Discovery and Green Approaches for a Scalable Biomimetic Synthesis. Org Lett 2021; 23:5647-5651. [PMID: 34170713 DOI: 10.1021/acs.orglett.1c01724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scospirosins A (1) and B (2), two unprecedented spiro ent-clerodane dimers with 6/6/10/6 and 6/6/6/6/6 ring systems, respectively, were isolated from Isodon scoparius. Their structures were unambiguously established by spectroscopic, X-ray crystallographic, and chemical approaches. A bioinspired protecting-group-free strategy for their synthesis was achieved on a gram scale and featured the application of green methods, including neat reaction, sensitized photooxygenation, and electrochemical oxidation. 2 exhibited selective immunosuppressive activity against the proliferation of T lymphocytes (IC50 = 1.42 μM).
Collapse
Affiliation(s)
- Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
216
|
Wu L, Abreu BL, Blake AJ, Taylor LJ, Lewis W, Argent SP, Poliakoff M, Boufroura H, George MW. Multigram Synthesis of Trioxanes Enabled by a Supercritical CO2 Integrated Flow Process. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingqiao Wu
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Bruna L. Abreu
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Alexander J. Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Laurence J. Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P. Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Martyn Poliakoff
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hamza Boufroura
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Michael W. George
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
217
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
218
|
Abstract
The merging of click chemistry with discrete photochemical processes has led to the creation of a new class of click reactions, collectively known as photoclick chemistry. These light-triggered click reactions allow the synthesis of diverse organic structures in a rapid and precise manner under mild conditions. Because light offers unparalleled spatiotemporal control over the generation of the reactive intermediates, photoclick chemistry has become an indispensable tool for a wide range of spatially addressable applications including surface functionalization, polymer conjugation and cross-linking, and biomolecular labeling in the native cellular environment. Over the past decade, a growing number of photoclick reactions have been developed, especially those based on the 1,3-dipolar cycloadditions and Diels-Alder reactions owing to their excellent reaction kinetics, selectivity, and biocompatibility. This review summarizes the recent advances in the development of photoclick reactions and their applications in chemical biology and materials science. A particular emphasis is placed on the historical contexts and mechanistic insights into each of the selected reactions. The in-depth discussion presented here should stimulate further development of the field, including the design of new photoactivation modalities, the continuous expansion of λ-orthogonal tandem photoclick chemistry, and the innovative use of these unique tools in bioconjugation and nanomaterial synthesis.
Collapse
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
219
|
Milyutin CV, Komogortsev AN, Lichitsky BV, Melekhina VG, Minyaev ME. Construction of Spiro-γ-butyrolactone Core via Cascade Photochemical Reaction of 3-Hydroxypyran-4-one Derivatives. Org Lett 2021; 23:5266-5270. [PMID: 34152150 DOI: 10.1021/acs.orglett.1c01814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We elaborate a novel one-step photochemical method for the synthesis of spiro-γ-butyrolactone derivatives from 3-hydroxypyran-4-ones. The suggested approach is based on a cascade process including initial photoinduced contraction of 4-pyranone ring followed by intramolecular cyclization leading to the final spiro system. A distinctive feature of the proposed method is intramolecular trapping of unstable α-hydroxydiketone intermediate formed in situ as a result of a photochemical reaction. The structures of two synthesized 1-oxaspiro[4.4]non-8-ene-2,6,7-triones were determined by X-ray diffraction.
Collapse
Affiliation(s)
- Constantine V Milyutin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Andrey N Komogortsev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Boris V Lichitsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Valeriya G Melekhina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| | - Mikhail E Minyaev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation
| |
Collapse
|
220
|
Pascual-Escudero A, Ortiz-Rojano L, Simón-Fuente S, Adrio J, Ribagorda M. Aldehydes as Photoremovable Directing Groups: Synthesis of Pyrazoles by a Photocatalyzed [3+2] Cycloaddition/Norrish Type Fragmentation Sequence. Org Lett 2021; 23:4903-4908. [PMID: 34097415 DOI: 10.1021/acs.orglett.1c01665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward methodology for the regioselective synthesis of pyrazoles has been developed by a domino sequence based on a photoclick cycloaddition followed by a photocatalyzed oxidative deformylation reaction. Distinguishing features of this protocol include an unprecedented photoredox-catalyzed Norrish type fragmentation under green-light irradiation and the use of α,β-unsaturated aldehydes as synthetic equivalents of alkynes, where the aldehyde is acting as a novel photoremovable directing group.
Collapse
Affiliation(s)
- Ana Pascual-Escudero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Ortiz-Rojano
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Simón-Fuente
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
221
|
Kang YC, Treacy SM, Rovis T. Iron-Catalyzed Photoinduced LMCT: a 1° C-H Abstraction Enables Skeletal Rearrangements and C(sp 3)-H Alkylation. ACS Catal 2021; 11:7442-7449. [PMID: 35669035 DOI: 10.1021/acscatal.1c02285] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein we disclose an iron-catalyzed method to access skeletal rearrangement reactions akin to the Dowd-Beckwith ring expansion from unactivated C(sp3)-H bonds. Photoinduced ligand-to-metal charge transfer at the iron center generates a chlorine radical, which abstracts electron-rich C(sp3)-H bonds. The resulting unstable alkyl radicals can undergo rearrangement in the presence of suitable functionality. Addition to an electron deficient olefin, recombination with a photoreduced iron complex, and subsequent protodemetallation allows for redox-neutral alkylation of the resulting radical. Simple adjustments to the reaction conditions enable the selective synthesis of the directly alkylated or the rearranged-alkylated products. As a radical clock, these rearrangements also enable the measurement of rate constants of addition into various electron deficient olefins in the Giese reaction.
Collapse
Affiliation(s)
- Yi Cheng Kang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sean M. Treacy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
222
|
Jiang Y, Yang M, Wu Y, López-Arteaga R, Rogers CR, Weiss EA. Chemo- and Stereoselective Intermolecular [2+2] Photocycloaddition of Conjugated Dienes using Colloidal Nanocrystal Photocatalysts. CHEM CATALYSIS 2021; 1:106-116. [PMID: 34337591 DOI: 10.1016/j.checat.2021.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of visible-light photosensitizers to power [2+2] photocycloadditions that produce complex tetrasubstituted cyclobutanes is a true success of photochemistry, but the scope of this reaction has been limited to activated α, β-unsaturated carbonyls. This paper describes selective intermolecular homo- and hetero-[2+2] photocycloadditions of terminal and internal aryl conjugated dienes - substrates historically unsuited for this reaction because of their multiple possible reaction pathways and product configurations - through triplet-triplet energy transfer from CdSe nanocrystal photocatalysts, to generate valuable and elusive syn-trans aryl vinylcyclobutanes. The negligible singlet-triplet splitting of nanocrystals' excited states allows them to drive the [2+2] pathway over the competing [4+2] photoredox pathway, a chemoselectivity not achievable with any known molecular photosensitizer. Reversible tethering of the cyclobutane product to the nanocrystal surface results in near quantitative yield of the syn-trans product. Flat colloidal CdSe nanoplatelets produce cyclobutanes coupled at the terminal alkenes of component dienes with up to 89% regioselectivity.
Collapse
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Muwen Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Yue Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Rafael López-Arteaga
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Cameron R Rogers
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA.,Lead contact
| |
Collapse
|
223
|
Zhang JL, Ye WL, Zhang J, Hu XQ, Xu PF. Enantioselective Construction of Polycyclic Indazole Skeletons Bearing Five Consecutive Chiral Centers through an Asymmetric Triple-Reaction Sequence. Org Lett 2021; 23:5033-5038. [PMID: 34138570 DOI: 10.1021/acs.orglett.1c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach for the asymmetric construction of polycyclic indazole skeletons via enamine-imine activation and PCET activation was developed by merging organocatalysis with photocatalysis through an asymmetric triple-reaction sequence. In this process, five C-X bonds and five consecutive chiral centers were efficiently constructed. Differently substituted polycyclic indazole deriatives were successfully constructed with satisfactory results under mild conditions.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wen-Long Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
224
|
Knowles JP, Steeds HG, Schwarz M, Latter F, Booker-Milburn KI. Pd-Catalyzed Cascade Reactions of Aziridines: One-Step Access to Complex Tetracyclic Amines. Org Lett 2021; 23:4986-4990. [PMID: 34132553 PMCID: PMC8289308 DOI: 10.1021/acs.orglett.1c01403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 11/29/2022]
Abstract
The combination of palladium catalysis and thermal cycloaddition is shown to transform tricyclic aziridines into complex, stereodefined tetracyclic products in a single step. This highly unusual cascade process involves a diverted Tsuji-Trost sequence leading to a surprisingly facile intramolecular Diels-Alder reaction. The starting materials are accessible on multigram scales from the photochemical rearrangement of simple pyrroles. The tetracyclic amine products can be further elaborated through routine transformations, highlighting their potential as scaffolds for medicinal chemistry.
Collapse
Affiliation(s)
- Jonathan P. Knowles
- Department
of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1
8ST, U.K.
| | - Hannah G. Steeds
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Maria Schwarz
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Francesca Latter
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | | |
Collapse
|
225
|
Zheng L, Xue H, Zhou B, Luo SP, Jin H, Liu Y. Single Cu(I)-Photosensitizer Enabling Combination of Energy-Transfer and Photoredox Catalysis for the Synthesis of Benzo[ b]fluorenols from 1,6-Enynes. Org Lett 2021; 23:4478-4482. [PMID: 33988383 DOI: 10.1021/acs.orglett.1c01427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient, mild, and atom-economical synthesis of benzo[b]fluorenols from 1,6-enynes has been developed under photocatalytic conditions. A single P/N heteroleptic Cu(I)-photosensitizer might exhibit both energy-transfer and photoredox catalytic activities in the formation of benzo[b]fluorenols.
Collapse
Affiliation(s)
- Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Han Xue
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shu-Ping Luo
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
226
|
Nikitas NF, Apostolopoulou MK, Skolia E, Tsoukaki A, Kokotos CG. Photochemical Activation of Aromatic Aldehydes: Synthesis of Amides, Hydroxamic Acids and Esters. Chemistry 2021; 27:7915-7922. [PMID: 33772903 DOI: 10.1002/chem.202100655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 12/17/2022]
Abstract
A cheap, facile and metal-free photochemical protocol for the activation of aromatic aldehydes has been developed. Utilizing thioxanthen-9-one as the photocatalyst and cheap household lamps as the light source, a variety of aromatic aldehydes have been activated and subsequently converted in a one-pot reaction into amides, hydroxamic acids and esters in good to high yields. The applicability of this method was highlighted in the synthesis of Moclobemide, a drug against depression and social anxiety. Extended and detailed mechanistic studies have been conducted, in order to determine a plausible mechanism for the reaction.
Collapse
Affiliation(s)
- Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| | - Mary K Apostolopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| | - Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| | - Anna Tsoukaki
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| |
Collapse
|
227
|
Abstract
AbstractContinuous flow photochemistry as a field has witnessed an increasing popularity over the last decade in both academia and industry. Key drivers for this development are safety, practicality as well as the ability to rapidly access complex chemical structures. Continuous flow reactors, whether home-built or from commercial suppliers, additionally allow for creating valuable target compounds in a reproducible and automatable manner. Recent years have furthermore seen the advent of new energy efficient LED lamps that in combination with innovative reactor designs provide a powerful means to increasing both the practicality and productivity of modern photochemical flow reactors. In this review article we wish to highlight key achievements pertaining to the scalability of such continuous photochemical processes.
Graphical abstract
Collapse
|
228
|
Zhao G, Li J, Wang T. Metal‐free Photocatalytic Intermolecular anti‐Markovnikov Hydroamination of Unactivated Alkenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gaoyuan Zhao
- Department of Chemistry, University at Albany State University of New York 1400 Washington Avenue Albany New York 12222 USA
- Department of Chemistry SUNY Stony Brook 100 Nicolls Road Stony Brook NY 11790 USA
| | - Juncheng Li
- Department of Chemistry, University at Albany State University of New York 1400 Washington Avenue Albany New York 12222 USA
| | - Ting Wang
- Department of Chemistry, University at Albany State University of New York 1400 Washington Avenue Albany New York 12222 USA
| |
Collapse
|
229
|
Mu X, Li Y, Zheng N, Long J, Chen S, Liu B, Zhao C, Yang Z. Stereoselective Synthesis of Cyclohepta[
b
]indoles by Visible‐Light‐Induced [2+2]‐Cycloaddition/retro‐Mannich‐type Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin‐Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuan‐He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Jian‐Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Si‐Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Bing‐Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chun‐Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| |
Collapse
|
230
|
Mu XP, Li YH, Zheng N, Long JY, Chen SJ, Liu BY, Zhao CB, Yang Z. Stereoselective Synthesis of Cyclohepta[b]indoles by Visible-Light-Induced [2+2]-Cycloaddition/retro-Mannich-type Reactions. Angew Chem Int Ed Engl 2021; 60:11211-11216. [PMID: 33683807 DOI: 10.1002/anie.202101104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Indexed: 12/12/2022]
Abstract
A novel method for the concise synthesis of cyclohepta[b]indoles in high yields was developed. The method involves a visible-light-induced, photocatalyzed [2+2]-cycloaddition/ retro-Mannich-type reaction of enaminones. Experimental and computational studies suggested that the reaction is a photoredox process initiated by single-electron oxidation of an enaminone moiety, which undergoes subsequent cyclobutane formation and rapidly fragmentation in a radical-cation state to form cyclohepta[b]indoles.
Collapse
Affiliation(s)
- Xin-Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jian-Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Si-Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Bing-Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chun-Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China.,Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| |
Collapse
|
231
|
George IR, López-Tena M, Sundin AP, Strand D. A Unifying Bioinspired Synthesis of (-)-Asperaculin A and (-)-Penifulvin D. Org Lett 2021; 23:3536-3540. [PMID: 33830776 PMCID: PMC8155558 DOI: 10.1021/acs.orglett.1c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The first syntheses
of the isomeric dioxafenestrene natural products
(−)-asperaculin A and (−)-penifulvin D are reported.
Each target is formed selectively by choice of oxidant in a final
divergent bioinspired Baeyer–Villiger (BV) reaction. Density
functional theory calculations reveal that electrostatic interactions
between the oxidant leaving group and the lactone motif accounts for
a reversal of selectivity with H2O2/H3O+ compared to peracids. Synthetic features include forging
the polycyclic carbon framework with a diastereoselective meta-photocycloaddition biased by an ether substituent at
the aryl α-position. The encumbered tertiary alcohol was installed
by cyanation of a ketone intermediate followed by nonaqueous hydrolysis
of the resulting delicate cyanohydrin.
Collapse
Affiliation(s)
- Ian R George
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Miguel López-Tena
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Anders P Sundin
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
232
|
Choi I, Müller V, Ackermann L. Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
233
|
Complex communication application identification and private network mining technology under a large-scale network. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05442-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
234
|
Xie P, Shi S, Hu X, Xue C, Du D. Sunlight Photocatalytic Synthesis of Aryl Hydrazides by Decatungstate‐Promoted Acylation under Room Temperature. ChemistrySelect 2021. [DOI: 10.1002/slct.202100808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| | - Sanshan Shi
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| | - Xueqing Hu
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| | - Cheng Xue
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| | - Dongdong Du
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry Shaanxi University of Science & Technology Xi'an 710021 China
| |
Collapse
|
235
|
Zhang Z, Zhou YJ, Liang XW. Total synthesis of natural products using photocycloaddition reactions of arenes. Org Biomol Chem 2021; 18:5558-5566. [PMID: 32677654 DOI: 10.1039/d0ob01204a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photocycloaddition reaction of benzene with alkenes has become a significant approach for organic chemists and thus has been frequently utilized as a key step in the total synthesis of natural products. In this mini-review, the recent developments in [4 + 2] and [2 + 2] photocycloaddition reactions will be emphasized in constructing core scaffolds of complex natural products. By combining them together, we aim to demonstrate the utility and reinstate the importance of this methodology.
Collapse
Affiliation(s)
| | - Ying-Jun Zhou
- Xiang-Ya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Xiao-Wei Liang
- Xiang-Ya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
236
|
Jamatia R, Mondal A, Srimani D. Visible‐Light‐Induced Manganese‐Catalyzed Reactions: Present Approach and Future Prospects. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramen Jamatia
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
237
|
Mandal S, Thirupathi B. Strategies for the construction of γ-spirocyclic butenolides in natural product synthesis. Org Biomol Chem 2021; 18:5287-5314. [PMID: 32633316 DOI: 10.1039/d0ob00954g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last four decades, a number of γ-spirocyclic butenolide containing natural products, drugs, and medicinally useful synthetic compounds have been reported. In this review, we discuss diverse chemical approaches to synthesize γ-spiro butenolides and their application towards natural product synthesis. The collective perception of various methods may allow superior approaches capable of delivering efficient synthetic approaches to obtain γ-spiro butenolide comprising natural products and their hybrid analogues for further drug discovery and development.
Collapse
Affiliation(s)
- Sudip Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, Berhampur 760 010, Odisha, India.
| |
Collapse
|
238
|
Yadav D, Srivastava A, Ansari MA, Singh MS. Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. J Org Chem 2021; 86:5908-5921. [PMID: 33821649 DOI: 10.1021/acs.joc.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The unique properties of ketoximes are used prominently for the synthesis of heterocycles. In contrast, their potential to absorb light and photoelectron transfer processes remains challenging. Widespread interest in controlling direct excitation of ketoxime tacticity unlocks unconventional reaction pathways, enabling photochemical intramolecular skeletal modification to constitute alkynyl sulfides that cannot be realized via traditional activation. Despite decades of advancements, the alkynyl sulfides, particularly those composed of polar functionalities and derived from renewable sources, remain unknown. These findings demonstrate the importance of decelerated ketoxime from β-oxodithioester for the identification of reaction conditions. The method uses mild reaction conditions to generate excited-state photoreductant for the functionalization of an array of alkynyl sulfides. Additionally, a fundamental understanding of elementary steps using electrochemical and spectroscopic techniques/experiments revealed a PCET pathway to this transformation, while the involved substrates and their properties with improved economical tools indicated the translational potential of this method.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Abhijeet Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
239
|
Yang Z, Liu Y, Cao K, Zhang X, Jiang H, Li J. Synthetic reactions driven by electron-donor-acceptor (EDA) complexes. Beilstein J Org Chem 2021; 17:771-799. [PMID: 33889219 PMCID: PMC8042489 DOI: 10.3762/bjoc.17.67] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
The reversible, weak ground-state aggregate formed by dipole-dipole interactions between an electron donor and an electron acceptor is referred to as an electron-donor-acceptor (EDA) complex. Generally, upon light irradiation, the EDA complex turns into the excited state, causing an electron transfer to give radicals and to initiate subsequent reactions. Besides light as an external energy source, reactions involving the participation of EDA complexes are mild, obviating transition metal catalysts or photosensitizers in the majority of cases and are in line with the theme of green chemistry. This review discusses the synthetic reactions concerned with EDA complexes as well as the mechanisms that have been shown over the past five years.
Collapse
Affiliation(s)
- Zhonglie Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yutong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Kun Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaobin Zhang
- Irradiation Preservation Key Laboratory of Sichuan Province, Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610100, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
240
|
Xu H, Chen R, Ruan H, Ye R, Meng L. Visible‐Light‐Promoted Formation of C—C and C—P Bonds Derived from Evolution of Bromoalkynes under Additive‐Free Conditions: Synthesis of 1,1‐Dibromo‐1‐en‐3‐ynes and Alkynylphosphine Oxides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hailong Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| | - Rui Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| | - Hongjie Ruan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| | - Ruyi Ye
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| | - Ling‐Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University Huaibei Anhui 235000 China
| |
Collapse
|
241
|
Atom-transfer radical cyclization of α-bromocarboxamides under organophotocatalytic conditions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
242
|
Okada Y. Synthetic Semiconductor Photoelectrochemistry. CHEM REC 2021; 21:2223-2238. [PMID: 33769685 DOI: 10.1002/tcr.202100029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Indexed: 01/06/2023]
Abstract
In the field of synthetic organic chemistry, photochemical and electrochemical approaches are often considered to be competing technologies that induce single electron transfer (SET). Recently, their fusion, i. e., the "photoelectrochemical" approach, has become the focus of attention. In this approach, both solar and electrical energy are used in creative combinations. Historically, the term "photoelectrochemistry" has been used in more inorganic fields, where a photovoltaic effect exhibited by semiconducting materials is employed. Semiconductors have also been studied intensively as photocatalysts; however, they recently have taken a back seat to molecular photocatalysts. In this account, we would like to revisit semiconductor photocatalysts in the field of synthetic organic chemistry to demonstrate that semiconductor "photoelectrochemical" approaches are more than mere alternatives to molecular photochemical and/or electrochemical approaches.
Collapse
Affiliation(s)
- Yohei Okada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
243
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
244
|
Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Recent advances in the chemistry of ketyl radicals. Chem Soc Rev 2021; 50:5349-5365. [PMID: 33972956 PMCID: PMC8111543 DOI: 10.1039/d0cs00358a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketyl radicals are valuable reactive intermediates for synthesis and are used extensively to construct complex, functionalized products from carbonyl substrates. Single electron transfer (SET) reduction of the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O bond of aldehydes and ketones is the classical approach for the formation of ketyl radicals and metal reductants are the archetypal reagents employed. The past decade has, however, witnessed significant advances in the generation and harnessing of ketyl radicals. This tutorial review highlights recent, exciting developments in the chemistry of ketyl radicals by comparing the varied contemporary – for example, using photoredox catalysts – and more classical approaches for the generation and use of ketyl radicals. The review will focus on different strategies for ketyl radical generation, their creative use in new synthetic protocols, strategies for the control of enantioselectivity, and detailed mechanisms where appropriate. Ketyl radicals are valuable reactive intermediates for synthesis. This review highlights exciting recent developments in the chemistry of ketyl radicals by comparing contemporary and more classical approaches for their generation and use.![]()
Collapse
Affiliation(s)
- Áron Péter
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | |
Collapse
|
245
|
Dotson JJ, Liepuoniute I, Bachman JL, Hipwell VM, Khan SI, Houk KN, Garg NK, Garcia-Garibay MA. Taming Radical Pairs in the Crystalline Solid State: Discovery and Total Synthesis of Psychotriadine. J Am Chem Soc 2021; 143:4043-4054. [PMID: 33682403 PMCID: PMC8292139 DOI: 10.1021/jacs.1c01100] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Solid-state photodecarbonylation is an attractive but underutilized methodology to forge hindered C-C bonds in complex molecules. This study discloses the use of this reaction to assemble the vicinal quaternary stereocenter motif present in bis(cyclotryptamine) alkaloids. Our strategy was enabled by experimental and computational investigations of the role of substrate conformation on the success or failure of the solid-state photodecarbonylation reaction. This informed a crystal engineering strategy to optimize the key step of the total synthesis. Ultimately, this endeavor culminated in the successful synthesis of the bis(cyclotryptamine) alkaloid "psychotriadine," which features the elusive piperidinoindoline framework. Psychotriadine, a previously unknown compound, was identified in the extracts of the flower Psychotria colorata, suggesting it is a naturally occurring metabolite.
Collapse
Affiliation(s)
- Jordan J Dotson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ieva Liepuoniute
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - J Logan Bachman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Vince M Hipwell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Saeed I Khan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
246
|
Wau JS, Robertson MJ, Oelgemöller M. Solar Photooxygenations for the Manufacturing of Fine Chemicals-Technologies and Applications. Molecules 2021; 26:1685. [PMID: 33802876 PMCID: PMC8002662 DOI: 10.3390/molecules26061685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/05/2022] Open
Abstract
Photooxygenation reactions involving singlet oxygen (1O2) are utilized industrially as a mild and sustainable access to oxygenated products. Due to the usage of organic dyes as photosensitizers, these transformations can be successfully conducted using natural sunlight. Modern solar chemical reactors enable outdoor operations on the demonstration (multigram) to technical (multikilogram) scales and have subsequently been employed for the manufacturing of fine chemicals such as fragrances or biologically active compounds. This review will highlight examples of solar photooxygenations for the manufacturing of industrially relevant target compounds and will discuss current challenges and opportunities of this sustainable methodology.
Collapse
Affiliation(s)
- Jayson S. Wau
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
| | - Mark J. Robertson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
| | - Michael Oelgemöller
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; (J.S.W.); (M.J.R.)
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium
| |
Collapse
|
247
|
Li J, Reiser P, Boswell BR, Eberhard A, Burns NZ, Friederich P, Lopez SA. Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations. Chem Sci 2021; 12:5302-5314. [PMID: 34163763 PMCID: PMC8179587 DOI: 10.1039/d0sc05610c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Photochemical reactions are widely used by academic and industrial researchers to construct complex molecular architectures via mechanisms that often require harsh reaction conditions. Photodynamics simulations provide time-resolved snapshots of molecular excited-state structures required to understand and predict reactivities and chemoselectivities. Molecular excited-states are often nearly degenerate and require computationally intensive multiconfigurational quantum mechanical methods, especially at conical intersections. Non-adiabatic molecular dynamics require thousands of these computations per trajectory, which limits simulations to ∼1 picosecond for most organic photochemical reactions. Westermayr et al. recently introduced a neural-network-based method to accelerate the predictions of electronic properties and pushed the simulation limit to 1 ns for the model system, methylenimmonium cation (CH2NH2+). We have adapted this methodology to develop the Python-based, Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics (PyRAI2MD) software for the cis–trans isomerization of trans-hexafluoro-2-butene and the 4π-electrocyclic ring-closing of a norbornyl hexacyclodiene. We performed a 10 ns simulation for trans-hexafluoro-2-butene in just 2 days. The same simulation would take approximately 58 years with traditional multiconfigurational photodynamics simulations. We generated training data by combining Wigner sampling, geometrical interpolations, and short-time quantum chemical trajectories to adaptively sample sparse data regions along reaction coordinates. The final data set of the cis–trans isomerization and the 4π-electrocyclic ring-closing model has 6207 and 6267 data points, respectively. The training errors in energy using feedforward neural networks achieved chemical accuracy (0.023–0.032 eV). The neural network photodynamics simulations of trans-hexafluoro-2-butene agree with the quantum chemical calculations showing the formation of the cis-product and reactive carbene intermediate. The neural network trajectories of the norbornyl cyclohexadiene corroborate the low-yielding syn-product, which was absent in the quantum chemical trajectories, and revealed subsequent thermal reactions in 1 ns. Photochemical reactions are widely used by academia and industry to construct complex molecular architectures via mechanisms that are often inaccessible by other means.![]()
Collapse
Affiliation(s)
- Jingbai Li
- Department of Chemistry and Chemical Biology, Northeastern University Boston MA 02115 USA
| | - Patrick Reiser
- Institute of Nanotechnology, Karlsruhe Institute of Technology Karlsruhe Germany
| | | | - André Eberhard
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology Karlsruhe Germany
| | - Noah Z Burns
- Department of Chemistry, Stanford University Stanford CA USA
| | - Pascal Friederich
- Institute of Nanotechnology, Karlsruhe Institute of Technology Karlsruhe Germany .,Institute of Theoretical Informatics, Karlsruhe Institute of Technology Karlsruhe Germany
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University Boston MA 02115 USA
| |
Collapse
|
248
|
Luque A, Paternoga J, Opatz T. Strain Release Chemistry of Photogenerated Small-Ring Intermediates. Chemistry 2021; 27:4500-4516. [PMID: 33080091 PMCID: PMC7986234 DOI: 10.1002/chem.202004178] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Photochemical processes, such as isomerizations and cycloadditions, have proven to be very useful in the construction of highly strained molecular frameworks. Photoinduced ring strain enables subsequent exergonic reactions which do not require the input of additional chemical energy and provides a variety of attractive synthetic options leading to complex structures. This review covers the progress achieved in the application of sequences combining excitation by ultraviolet light to form strained intermediates, which are further transformed to lower energy products in strain-release reactions. As ring strain is considerable in small ring systems, photogenerated three- and four-membered rings will be covered, mainly focusing on examples from 2000 to May 2020.
Collapse
Affiliation(s)
- Adriana Luque
- Department of ChemistryJohannes Gutenberg UniversityDuesbergweg 10–1455128MainzGermany
| | - Jan Paternoga
- Department of ChemistryJohannes Gutenberg UniversityDuesbergweg 10–1455128MainzGermany
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg UniversityDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
249
|
Shatskiy A, Axelsson A, Stepanova EV, Liu JQ, Temerdashev AZ, Kore BP, Blomkvist B, Gardner JM, Dinér P, Kärkäs MD. Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Chem Sci 2021; 12:5430-5437. [PMID: 34168785 PMCID: PMC8179686 DOI: 10.1039/d1sc00658d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
A protocol for stereoselective C-radical addition to a chiral glyoxylate-derived N-sulfinyl imine was developed through visible light-promoted photoredox catalysis, providing a convenient method for the synthesis of unnatural α-amino acids. The developed protocol allows the use of ubiquitous carboxylic acids as radical precursors without prior derivatization. The protocol utilizes near-stoichiometric amounts of the imine and the acid radical precursor in combination with a catalytic amount of an organic acridinium-based photocatalyst. Alternative mechanisms for the developed transformation are discussed and corroborated by experimental and computational studies.
Collapse
Affiliation(s)
- Andrey Shatskiy
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Anton Axelsson
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Elena V Stepanova
- Tomsk Polytechnic University Lenin Avenue 30 634050 Tomsk Russia
- Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences Leninsky Prospect 47 119991 Moscow Russia
| | - Jian-Quan Liu
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Azamat Z Temerdashev
- Department of Analytical Chemistry, Kuban State University Stavropolskaya St. 149 350040 Krasnodar Russia
| | - Bhushan P Kore
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Björn Blomkvist
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - James M Gardner
- Division of Applied Physical Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Peter Dinér
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D Kärkäs
- Division of Organic Chemistry, Department of Chemistry, KTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
250
|
Wang B, Zou L, Wang L, Sun M, Li P. Visible-light-induced photoredox-catalyzed synthesis of benzimidazo[2,1-a]iso-quinoline-6(5H)-ones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|