201
|
Sepehri S, Soleymani S, Zabihollahi R, Aghasadeghi MR, Sadat M, Saghaie L, Fassihi A. Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel 4-[4-Arylpyridin-1(4H)-yl]benzoic Acid Derivatives as Anti-HIV-1 Agents. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/17/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Saghi Sepehri
- Department of Medicinal Chemistry; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; 81746-73461 Isfahan Iran
- Department of Medicinal Chemistry; School of Pharmacy; Ardabil University of Medical Sciences; 56189-53141 Ardabil Iran
| | - Sepehr Soleymani
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; 13169-43551 Tehran Iran
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; 13169-43551 Tehran Iran
| | | | - Mehdi Sadat
- Department of Hepatitis and AIDS; Pasteur Institute of Iran; 13169-43551 Tehran Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; 81746-73461 Isfahan Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; 81746-73461 Isfahan Iran
| |
Collapse
|
202
|
Parizadeh N, Alipour E, Soleymani S, Zabihollahi R, Aghasadeghi MR, Hajimahdi Z, Zarghi A. Synthesis of Novel 3-(5-(Alkyl/arylthio)-1,3,4-Oxadiazol-2-yl)-8-Phenylquinolin-4(1H)-One Derivatives as Anti-HIV Agents. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1394302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Niloofar Parizadeh
- Department of Organic Chemistry, Azad University, Tehran North Branch, Tehran, Iran
| | - Eskandar Alipour
- Department of Organic Chemistry, Azad University, Tehran North Branch, Tehran, Iran
| | - Sepehr Soleymani
- Hepatitis and AIDS department, Pasteur institute of Iran, Tehran, Iran
| | | | | | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
203
|
Kang D, Ding X, Wu G, Huo Z, Zhou Z, Zhao T, Feng D, Wang Z, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of Thiophene[3,2- d]pyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the Tolerant Region I of NNIBP. ACS Med Chem Lett 2017; 8:1188-1193. [PMID: 29152052 DOI: 10.1021/acsmedchemlett.7b00361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Our previous studies led us to conclude that thiophene[3,2-d]pyrimidine is a promising scaffold for diarylpyrimidine (DAPY)-type anti-HIV agents with potent activity against resistance-associated human immunodeficiency virus (HIV) variants (J. Med. Chem. 2016, 59, 7991-8007; J. Med. Chem. 2017, 60, 4424-4443). In the present study, we designed and synthesized a series of thiophenepyrimidine derivatives with various substituents in the right wing region of the structure with the aim of developing new interactions with the tolerant region I of the binding pocket of the HIV-1 non-nucleoside reverse transcriptase (NNRTI), and we evaluated their activity against a panel of mutant HIV-1 strains. All the derivatives exhibited moderate to excellent potency against wild-type (WT) HIV-1 in MT-4 cells. Among them, sulfonamide compounds 9b and 9d were single-figure-nanomolar inhibitors with EC50 values of 9.2 and 7.1 nM, respectively. Indeed, 9a and 9d were effective against the whole viral panel except RES056. Notably, both compounds showed potent antiviral activity against K103N (EC50 = 0.032 and 0.070 μM) and E138K (EC50 = 0.035 and 0.045 μM, respectively). Furthermore, 9a and 9d exhibited high affinity for WT HIV-1 RT (IC50 = 1.041 and 1.138 μM, respectively) and acted as classical NNRT inhibitors (NNRTIs). These results are expected to be helpful in the design of thiophenepyrimidine-based NNRTIs with more potent activity against HIV strains with RT mutations.
Collapse
Affiliation(s)
- Dongwei Kang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xiao Ding
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Gaochan Wu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhipeng Huo
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhongxia Zhou
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Tong Zhao
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Da Feng
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhao Wang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Ye Tian
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Dirk Daelemans
- Rega
Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega
Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega
Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xinyong Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry
of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
204
|
Frączek T, Kamiński R, Krakowiak A, Naessens E, Verhasselt B, Paneth P. Diaryl ethers with carboxymethoxyphenacyl motif as potent HIV-1 reverse transcriptase inhibitors with improved solubility. J Enzyme Inhib Med Chem 2017; 33:9-16. [PMID: 29098886 PMCID: PMC6009982 DOI: 10.1080/14756366.2017.1387542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In search of new non-nucleoside reverse transcriptase inhibitors (NNRTIs) with improved solubility, two series of novel diaryl ethers with phenacyl moiety were designed and evaluated for their HIV-1 reverse transcriptase inhibition potentials. All compounds exhibited good to excellent results with IC50 at low micromolar to submicromolar concentrations. Two most active compounds (7e and 7 g) exhibit inhibitory potency comparable or even better than that of nevirapine and rilpivirine. Furthermore, SupT1 and CD4+ cell infectivity assays for the most promising (7e) have confirmed its strong antiviral potential while docking studies indicate a novel binding interactions responsible for high activity.
Collapse
Affiliation(s)
- Tomasz Frączek
- a Institute of Applied Radiation Chemistry , Lodz University of Technology , Lodz , Poland
| | - Rafał Kamiński
- a Institute of Applied Radiation Chemistry , Lodz University of Technology , Lodz , Poland
| | - Agnieszka Krakowiak
- a Institute of Applied Radiation Chemistry , Lodz University of Technology , Lodz , Poland.,b Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Lodz , Poland
| | - Evelien Naessens
- c Department of Clinical Chemistry, Microbiology and Immunology , Ghent University, Ghent University Hospital , Ghent , Belgium
| | - Bruno Verhasselt
- c Department of Clinical Chemistry, Microbiology and Immunology , Ghent University, Ghent University Hospital , Ghent , Belgium
| | - Piotr Paneth
- a Institute of Applied Radiation Chemistry , Lodz University of Technology , Lodz , Poland
| |
Collapse
|
205
|
Paneth A, Płonka W, Paneth P. What do docking and QSAR tell us about the design of HIV-1 reverse transcriptase nonnucleoside inhibitors? J Mol Model 2017; 23:317. [PMID: 29046967 PMCID: PMC5655543 DOI: 10.1007/s00894-017-3489-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022]
Abstract
Despite vigorous studies, effective nonnucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are still in demand, not only due to toxicity and detrimental side effects of currently used drugs but also because of the emergence of multidrug-resistant viral strains. In this contribution, we present results of docking of 47 inhibitors to 107 allosteric centers of HIV-1 reverse transcriptase. Based on the average binding scores, we have constructed QSAR equations to elucidate directions of further developments in the inhibitor design that come from this structural data.
Collapse
Affiliation(s)
- Agata Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
- Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland.
| |
Collapse
|
206
|
1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries. Bioorg Med Chem 2017; 25:5779-5789. [DOI: 10.1016/j.bmc.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
|
207
|
Fan N, Zhang S, Sheng T, Zhao L, Liu Z, Liu J, Wang X. Docking field-based QSAR and pharmacophore studies on the substituted pyrimidine derivatives targeting HIV-1 reverse transcriptase. Chem Biol Drug Des 2017; 91:398-407. [PMID: 28816417 DOI: 10.1111/cbdd.13086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022]
Abstract
HIV-1 reverse transcriptase (RT) is one of the most important enzymes required for viral replication, thus acting as an attractive target for antiretroviral therapy. Pyrimidine analogues reportedly have selective inhibition on HIV-1 RT with favorable antiviral activities in our previous study. To further explore the relationship between inhibitory activity and pharmacophoric characteristics, field-based QSAR models were generated and validated using Schrodinger Suite (correlation coefficient of .8078, cross-validated value of 0.5397 for training set and Q2 of 0.4669, Pearson's r of .7357 for test set). Docking, pocket surfaces, and pharmacophore study were also investigated to define the binding pattern and pharmacophoric features, including (i) π-π interaction with residue Tyr181, Tyr188, and Trp229 and p-π interaction with His235 and (ii) hydrogen bond with residue Lys101 and halogen bond with residue Tyr188. The pharmacophore features of six-point hypothesis AADRRR.184, AAADRR.38, and AADRRR.26 further complimented to the docking and QSAR results. We also found that the protein-ligand complex exhibited high relative binding free energy. These observations could be potentially utilized to guide the rational design and optimization of novel HIV-1 RT inhibitors.
Collapse
Affiliation(s)
- Ningning Fan
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shuang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tao Sheng
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Junyi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaowei Wang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
208
|
Cheng X, Gao P, Sun L, Tian Y, Zhan P, Liu X. Identification of spirocyclic or phosphate substituted quinolizine derivatives as novel HIV-1 integrase inhibitors: a patent evaluation of WO2016094197A1, WO2016094198A1 and WO2016154527A1. Expert Opin Ther Pat 2017; 27:1277-1286. [PMID: 28749251 DOI: 10.1080/13543776.2017.1360283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Highly active antiretroviral therapy (HAART) has been widely adopted to control the HIV-1 infection successfully. HIV-1 integrase (IN) inhibitors are primary drugs in HAART regimens targeting integration step in the HIV-1 life cycle. However, due to the emergence of viral resistance and cross-resistance amongst drugs, there is a pressing need for new and potent IN inhibitors. This review covers the three patents describing spirocyclic and phosphate substituted quinolizine derivatives as novel HIV-1 IN inhibitors for the discovery of new anti-HIV-1 drug candidates. Areas covered: This review is focused on spirocyclic and phosphate substituted quinolizine derivatives bearing the same metal chelation scaffold as novel HIV-1 IN inhibitors. Expert opinion: Generally, privileged structure-based optimizations have emerged as an effective approach to discover newly antiviral agents. More generally, due to the similar Mg2+ catalytic active centers of endoribonucleases, some divalent metal ion chelators were found to be versatile binders targeting multiple metalloenzymes. Therefore, privileged structure-based scaffold re-evolution is an important tactic to identify new chemotypes, to explore unknown biological activities, or to provide effective ligands for multiple targets by modifying the existing active compounds.
Collapse
Affiliation(s)
- Xiqiang Cheng
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Ping Gao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Ye Tian
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| |
Collapse
|
209
|
Huang B, Wang X, Liu X, Chen Z, Li W, Sun S, Liu H, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays. Bioorg Med Chem 2017; 25:4397-4406. [DOI: 10.1016/j.bmc.2017.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 10/19/2022]
|
210
|
Xu S, Kaltashov IA. Overcoming the Hydrolytic Lability of a Reaction Intermediate in Production of Protein/Drug Conjugates: Conjugation of an Acyclic Nucleoside Phosphonate to a Model Carrier Protein. Mol Pharm 2017; 14:2843-2851. [DOI: 10.1021/acs.molpharmaceut.7b00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengsheng Xu
- Department of Chemistry, University of Massachusetts−Amherst, Amherst, Massachusetts 01003, United States
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts−Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
211
|
Righi G, Pelagalli R, Isoni V, Tirotta I, Marini M, Palagri M, Dallocchio R, Dessì A, Macchi B, Frezza C, Forte G, Dalla Cort A, Portalone G, Bovicelli P. Synthesis of potential HIV integrase inhibitors inspired by natural polyphenol structures. Nat Prod Res 2017; 32:1893-1901. [DOI: 10.1080/14786419.2017.1354191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Giuliana Righi
- Department of Chemistry, CNR-IBPM, “Sapienza” Universy of Rome, Rome, Italy
| | - Romina Pelagalli
- Department of Chemistry, “Sapienza Universy of Rome, Roma, Italy
| | - Valerio Isoni
- Department of Chemistry, “Sapienza Universy of Rome, Roma, Italy
| | - Ilaria Tirotta
- Department of Chemistry, “Sapienza Universy of Rome, Roma, Italy
| | - Martina Marini
- Department of Chemistry, “Sapienza Universy of Rome, Roma, Italy
| | - Matteo Palagri
- Department of Chemistry, “Sapienza Universy of Rome, Roma, Italy
| | | | | | - Beatrice Macchi
- Department of System Medicine, “Tor Vergata” University, Rome, Italy
| | - Caterina Frezza
- Department of System Medicine, “Tor Vergata” University, Rome, Italy
| | - Gianpiero Forte
- Department of Chemistry, “Sapienza Universy of Rome, Roma, Italy
| | | | | | - Paolo Bovicelli
- Department of Chemistry, CNR-IBPM, “Sapienza” Universy of Rome, Rome, Italy
| |
Collapse
|
212
|
Subbaiah MAM, Meanwell NA, Kadow JF. Design strategies in the prodrugs of HIV-1 protease inhibitors to improve the pharmaceutical properties. Eur J Med Chem 2017; 139:865-883. [PMID: 28865281 DOI: 10.1016/j.ejmech.2017.07.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/26/2022]
Abstract
Combination antiretroviral therapy (cART) is currently the most effective treatment for HIV-1 infection. HIV-1 protease inhibitors (PIs) are an important component of some regimens of cART. However, PIs are known for sub-optimal ADME properties, resulting in poor oral bioavailability. This often necessitates high drug doses, combination with pharmacokinetic enhancers and/or special formulations in order to effectively deliver PIs, which may lead to a high pill burden and reduced patient compliance. As a remedy, improving the ADME properties of existing drugs via prodrug and other approaches has been pursued in addition to the development of next generation PIs with improved pharmacokinetic, resistance and side effect profiles. Phosphate prodrugs have been explored to address the solubility-limiting absorption and high excipient load. Prodrug design to target carrier-mediated drug delivery has also been explored. Amino acid prodrugs have been shown to improve permeability by engaging active transport mechanisms, reduce efflux and mitigate first pass metabolism while acyl migration prodrugs have been shown to improve solubility. Prodrug design efforts have led to the identification of one marketed agent, fosamprenavir, and clinical studies with two other prodrugs. Several of the reported approaches lack detailed in vivo characterization and hence the potential preclinical or clinical benefits of these approaches are yet to be fully determined.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Prodrug Group, Department of Medicinal Chemistry, Biocon Bristol-Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Jigani Link Road, Bangalore 560009, India.
| | - Nicholas A Meanwell
- Department of Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - John F Kadow
- Department of Medicinal Chemistry, ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| |
Collapse
|
213
|
Famiglini V, La Regina G, Coluccia A, Masci D, Brancale A, Badia R, Riveira-Muñoz E, Esté JA, Crespan E, Brambilla A, Maga G, Catalano M, Limatola C, Formica FR, Cirilli R, Novellino E, Silvestri R. Chiral Indolylarylsulfone Non-Nucleoside Reverse Transcriptase Inhibitors as New Potent and Broad Spectrum Anti-HIV-1 Agents. J Med Chem 2017. [DOI: 10.1021/acs.jmedchem.6b01906] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Valeria Famiglini
- Istituto Pasteur
Italia−Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| | - Giuseppe La Regina
- Istituto Pasteur
Italia−Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| | - Antonio Coluccia
- Istituto Pasteur
Italia−Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| | - Domiziana Masci
- Istituto Pasteur
Italia−Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| | - Andrea Brancale
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, U.K
| | - Roger Badia
- AIDS Research Institute−IrsiCaixa,
Hospitals Germans Trias i Pujol, Universitat Autonóma de Barcelona, 08916 Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute−IrsiCaixa,
Hospitals Germans Trias i Pujol, Universitat Autonóma de Barcelona, 08916 Badalona, Spain
| | - José A. Esté
- AIDS Research Institute−IrsiCaixa,
Hospitals Germans Trias i Pujol, Universitat Autonóma de Barcelona, 08916 Badalona, Spain
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM−CNR, National Research Council, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Alessandro Brambilla
- Institute of Molecular Genetics IGM−CNR, National Research Council, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM−CNR, National Research Council, Via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Myriam Catalano
- Istituto Pasteur Italia−Fondazione Cenci Bolognetti,
Dipartimento di Fisiologia e Farmacologia “Vittorio Erspamer”, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
- IRCCS Neuromed, Via
Atinense 18, I-86077 Pozzilli, Italy
| | - Cristina Limatola
- Istituto Pasteur Italia−Fondazione Cenci Bolognetti,
Dipartimento di Fisiologia e Farmacologia “Vittorio Erspamer”, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
- IRCCS Neuromed, Via
Atinense 18, I-86077 Pozzilli, Italy
| | - Francesca Romana Formica
- Dipartimento del
Farmaco, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Roma, Italy
| | - Roberto Cirilli
- Dipartimento del
Farmaco, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Roma, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, I-80131 Napoli, Italy
| | - Romano Silvestri
- Istituto Pasteur
Italia−Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| |
Collapse
|
214
|
Abstract
Supplemental Digital Content is Available in the Text. Background: Antiretroviral drug discovery and formulation design will facilitate viral clearance in infectious reservoirs. Although progress has been realized for selected hydrophobic integrase and nonnucleoside reverse transcriptase inhibitors, limited success has been seen to date with hydrophilic nucleosides. To overcome these limitations, hydrophobic long-acting drug nanoparticles were created for the commonly used nucleoside reverse transcriptase inhibitor, lamivudine (2′,3′-dideoxy-3′-thiacytidine, 3TC). Methods: A 2-step synthesis created a slow-release long-acting hydrophobic 3TC. Conjugation of 3TC to a fatty acid created a myristoylated prodrug which was encased into a folate-decorated poloxamer 407. Both in vitro antiretroviral efficacy in human monocyte-derived macrophages and pharmacokinetic profiles in mice were evaluated for the decorated nanoformulated drug. Results: A stable drug formulation was produced by poloxamer encasement that improved monocyte–macrophage uptake, antiretroviral activities, and drug pharmacokinetic profiles over native drug formulations. Conclusions: Sustained release of long-acting antiretroviral therapy is a new therapeutic frontier for HIV/AIDS. 3TC depot formation in monocyte-derived macrophages can be facilitated through stable subcellular internalization and slow drug release.
Collapse
|
215
|
Melo BCL, Bernardino AMR, Polillo G, Pereira HS, Paixão ICP, Ribeiro MS, Borges JC. Novel 4-arylaminoquinoline-3-carbonitriles as Inhibitors of HIV-1 Reverse Transcriptase. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Beatriz C. L. Melo
- Instituto de Química, Programa de Pós-Graduação em Química, Departamento de Química Orgânica, Campus do Valonguinho; Universidade Federal Fluminense; CEP 24020-141 Niterói RJ Brazil
| | - Alice M. R. Bernardino
- Instituto de Química, Programa de Pós-Graduação em Química, Departamento de Química Orgânica, Campus do Valonguinho; Universidade Federal Fluminense; CEP 24020-141 Niterói RJ Brazil
| | - Gustavo Polillo
- Instituto de Química, Programa de Pós-Graduação em Química, Departamento de Química Orgânica, Campus do Valonguinho; Universidade Federal Fluminense; CEP 24020-141 Niterói RJ Brazil
| | - Helena S. Pereira
- Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Campus do Valonguinho; Universidade Federal Fluminense; CEP 24210-150 Niterói RJ Brazil
| | - Izabel C. P. Paixão
- Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Campus do Valonguinho; Universidade Federal Fluminense; CEP 24210-150 Niterói RJ Brazil
| | - Michele S. Ribeiro
- Instituto de Biologia, Programa de Pós-Graduação em Ciências e Biotecnologia, Departamento de Biologia Celular e Molecular, Campus do Valonguinho; Universidade Federal Fluminense; CEP 24210-150 Niterói RJ Brazil
| | - Julio C. Borges
- Instituto de Química, Programa de Pós-Graduação em Química, Departamento de Química Orgânica, Campus do Valonguinho; Universidade Federal Fluminense; CEP 24020-141 Niterói RJ Brazil
- Instituto Federal de Educação Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis; CEP 26530-060 Nilópolis RJ Brazil
| |
Collapse
|
216
|
Structural basis for the potent inhibition of the HIV integrase-LEDGF/p75 protein-protein interaction. J Mol Graph Model 2017; 75:189-198. [PMID: 28582696 DOI: 10.1016/j.jmgm.2017.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 11/20/2022]
Abstract
Integrase (IN) constitutes one of the key enzymes involved in the lifecycle of the Human Immunodeficiency Virus (HIV), the etiological agent of AIDS. The biological role of IN strongly depends on the recognition and binding of cellular cofactors belonging to the infected host cell. Thus, the inhibition of the protein-protein interaction (PPI) between IN and cellular cofactors has been envisioned as a promising therapeutic target. In the present work we explore a structure-activity relationship for a set of 14 compounds reported as inhibitors of the PPI between IN and the lens epithelium-derived growth factor (LEDGF/p75). Our results demonstrate that the possibility to adopt the bioactive conformation capable of interacting with the hotspots IN-LEDGF/p75 hotspots residues constitutes a critical feature to obtain a potent inhibition. A ligand efficiency (|Lig-Eff|) quantitative descriptor combining both interaction energetics and conformational requirements was developed and correlated with the reported biological activity. Our results contribute to the rational development of IN-LEDGF/p75 interaction inhibitors providing a solid quantitative structure-activity relationship aimed for the screening of new IN-LEDGF/p75 interaction inhibitors.
Collapse
|
217
|
Kang D, Fang Z, Huang B, Lu X, Zhang H, Xu H, Huo Z, Zhou Z, Yu Z, Meng Q, Wu G, Ding X, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Structure-Based Optimization of Thiophene[3,2-d]pyrimidine Derivatives as Potent HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Resistance-Associated Variants. J Med Chem 2017; 60:4424-4443. [PMID: 28481112 DOI: 10.1021/acs.jmedchem.7b00332] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work follows on from our initial discovery of a series of piperidine-substituted thiophene[3,2-d]pyrimidine HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) ( J. Med. Chem. 2016 , 59 , 7991 - 8007 ). In the present study, we designed, synthesized, and biologically tested several series of new derivatives in order to investigate previously unexplored chemical space. Some of the synthesized compounds displayed single-digit nanomolar anti-HIV potencies against wild-type (WT) virus and a panel of NNRTI-resistant mutant viruses in MT-4 cells. Compound 25a was exceptionally potent against the whole viral panel, affording 3-4-fold enhancement of in vitro antiviral potency against WT, L100I, K103N, Y181C, Y188L, E138K, and K103N+Y181C and 10-fold enhancement against F227L+V106A relative to the reference drug etravirine (ETV) in the same cellular assay. The structure-activity relationships, pharmacokinetics, acute toxicity, and cardiotoxicity were also examined. Overall, the results indicate that 25a is a promising new drug candidate for treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China.,The Second Hospital of Shandong University , no. 247 Beiyuan Avenue, Jinan 250033, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Haoran Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhipeng Huo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhao Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Qing Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| |
Collapse
|
218
|
Zhang H, Tian Y, Kang D, Huo Z, Zhou Z, Liu H, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of uracil-bearing DAPYs derivatives as novel HIV-1 NNRTIs via crystallographic overlay-based molecular hybridization. Eur J Med Chem 2017; 130:209-222. [DOI: 10.1016/j.ejmech.2017.02.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
|
219
|
Famiglini V, Castellano S, Silvestri R. N-Pyrrylarylsulfones with High Therapeutic Potential. Molecules 2017; 22:E434. [PMID: 28282943 PMCID: PMC6155187 DOI: 10.3390/molecules22030434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
This review illustrates the various studies made to investigate the activity of N-pyrrylarylsulfone containing compounds as potential antiviral, anticancer and SNC drugs. A number of synthetic approaches to obtain tetracyclic, tricyclic and non-cyclic compounds, and their biological activity with regard to structure-activity relationships (SARs) have been reviewed. The literature reviewed here may provide useful information on the potential of N-pyrrylarylsulfone pharmacophore as well as suggest concepts for the design and synthesis of new N-pyrrylarylsulfone based agents.
Collapse
Affiliation(s)
- Valeria Famiglini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fiscano, Salerno, Italy.
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
220
|
Kang D, Huo Z, Wu G, Xu J, Zhan P, Liu X. Novel fused pyrimidine and isoquinoline derivatives as potent HIV-1 NNRTIs: a patent evaluation of WO2016105532A1, WO2016105534A1 and WO2016105564A1. Expert Opin Ther Pat 2017; 27:383-391. [PMID: 28276283 DOI: 10.1080/13543776.2017.1303046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION In the three patent applications, the impact of changing the pyrimidine core of the rilpivirine (RPV) to a variety of alternative fused cores was explored, culminating in the identification of a series of conformationally restricted compounds with comparable potencies against WT and mutant HIV-1 strains with those of efavirenz (EFV) and RPV, and higher security in the Human Ether-a-go-go-Related Gene (hERG) assay. Areas covered: The present review provides a fused pyrimidine and isoquinoline derivatives as potent HIV-1 NNRTIs, and highlights the conformational restriction strategies in the development of NNRTIs. Expert opinion: The molecular docking analysis of the newly synthesized compounds maintain the classical horseshoe conformation and shares similar binding mode with RPV. The conformational restriction strategies have greatly accelerated the optimization of the DAPY NNRTIs and contribute to finding new chemical entities (NCEs) with favorable druggability.
Collapse
Affiliation(s)
- Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Zhipeng Huo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Jiabao Xu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , PR China
| |
Collapse
|
221
|
Jana S, Iram S, Thomas J, Hayat MQ, Pannecouque C, Dehaen W. Application of the Triazolization Reaction to Afford Dihydroartemisinin Derivatives with Anti-HIV Activity. Molecules 2017; 22:molecules22020303. [PMID: 28218680 PMCID: PMC6155659 DOI: 10.3390/molecules22020303] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/12/2022] Open
Abstract
Artemisinin and synthetic derivatives of dihydroartemisinin are known to possess various biological activities. Post-functionalization of dihydroartemisinin with triazole heterocycles has been proven to lead to enhanced therapeutic potential. By using our newly developed triazolization strategy, a library of unexplored fused and 1,5-disubstituted 1,2,3-triazole derivatives of dihydroartemisinin were synthesized in a single step. All these newly synthesized compounds were characterized and evaluated for their anti-HIV (Human Immunodeficiency Virus) potential in MT-4 cells. Interestingly; three of the synthesized triazole derivatives of dihydroartemisinin showed activities with half maximal inhibitory concentration (IC50) values ranging from 1.34 to 2.65 µM.
Collapse
Affiliation(s)
- Sampad Jana
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Shabina Iram
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan.
| | - Joice Thomas
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Muhammad Qasim Hayat
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan.
| | - Christophe Pannecouque
- Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
222
|
Zhernov YV, Kremb S, Helfer M, Schindler M, Harir M, Mueller C, Hertkorn N, Avvakumova NP, Konstantinov AI, Brack-Werner R, Schmitt-Kopplin P, Perminova IV. Supramolecular combinations of humic polyanions as potent microbicides with polymodal anti-HIV-activities. NEW J CHEM 2017. [DOI: 10.1039/c6nj00960c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anti-HIV potency of humic PAs is governed by scaffolds diversity.
Collapse
Affiliation(s)
- Yury V. Zhernov
- State Research Center “Institute of Immunology” of the Federal Medical-Biological Agency of Russia
- Moscow
- Russia
| | - Stephan Kremb
- Institute of Virology, Helmholtz Zentrum München – German Research Center for Environmental Health
- Neuherberg
- Germany
| | - Markus Helfer
- Institute of Virology, Helmholtz Zentrum München – German Research Center for Environmental Health
- Neuherberg
- Germany
| | - Michael Schindler
- University Hospital Tübingen
- Institute for Medical Virology and Epidemiology of Viral Diseases
- Tübingen
- Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry
- Helmholtz Zentrum München – German Research Center for Environmental Health
- Neuherberg
- Germany
| | - Constanze Mueller
- Research Unit Analytical BioGeoChemistry
- Helmholtz Zentrum München – German Research Center for Environmental Health
- Neuherberg
- Germany
| | - Norbert Hertkorn
- Research Unit Analytical BioGeoChemistry
- Helmholtz Zentrum München – German Research Center for Environmental Health
- Neuherberg
- Germany
| | - Nadezhda P. Avvakumova
- Samara State Medical University
- Department of General, Bioinorganic and Bioorganic Chemistry
- Samara
- Russia
| | | | - Ruth Brack-Werner
- Institute of Virology, Helmholtz Zentrum München – German Research Center for Environmental Health
- Neuherberg
- Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry
- Helmholtz Zentrum München – German Research Center for Environmental Health
- Neuherberg
- Germany
- Technical University of Munich
| | | |
Collapse
|
223
|
Huang B, Zhou Z, Kang D, Li W, Chen Z, Zhan P, Liu X. Novel diaryltriazines with a picolinonitrile moiety as potent HIV-1 RT inhibitors: a patent evaluation of WO2016059647(A2). Expert Opin Ther Pat 2016; 27:9-15. [PMID: 27855563 DOI: 10.1080/13543776.2017.1262349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diaryltriazine derivatives, which are structurally related to diarylpyrimidines, are a representative class of HIV-1 reverse transcriptase inhibitors with remarkable antiviral activities against wild-type and several mutant strains of HIV-1. A series of novel diaryltriazines with a picolinonitrile moiety was reported as potent HIV-1 RT inhibitors in the patent WO2016059647(A2). Two representative compounds 5e (hydrochloride) and 6e (hydrochloride) exhibited outstanding activities against various HIV-1 strains in cell-based assays, which were superior to those of AZT. Moreover, modeling simulation study is performed and discussed in details, providing deep insights and valuable information to explain the excellent antiviral potency of 6e. Finally, several cases to improve anti-drug-resistance profiles by targeting highly conserved residues in HIV-1 RT are herein preliminarily summarized.
Collapse
Affiliation(s)
- Boshi Huang
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Zhongxia Zhou
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Wanzhuo Li
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Zihui Chen
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , Shandong , P. R. China
| |
Collapse
|
224
|
Kang D, Zhang H, Zhou Z, Huang B, Naesens L, Zhan P, Liu X. First discovery of novel 3-hydroxy-quinazoline-2,4(1H,3H)-diones as specific anti-vaccinia and adenovirus agents via 'privileged scaffold' refining approach. Bioorg Med Chem Lett 2016; 26:5182-5186. [PMID: 27742238 PMCID: PMC7126219 DOI: 10.1016/j.bmcl.2016.09.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 12/29/2022]
Abstract
A series of 1,2,3-triazolyl 3-hydroxy-quinazoline-2,4(1H,3H)-diones was constructed utilizing Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) method. The biological significance of the novel synthesized quinazolines was highlighted by evaluating them in vitro for antiviral activity, wherein several compounds exhibited excellent activity specifically against vaccinia and adenovirus. Especially, 24b11 displayed the most potent inhibitory activity against vaccinia with an EC50 value of 1.7μM, which was 15 fold than that of the reference drug Cidofovir (EC50=25μM). 24b13 was the most potent compound against adenovirus-2 with an EC50 value of 6.2μM, which proved lower than all the reference drugs. Preliminary structure-activity relationships were also discussed. To the best of our knowledge, no data are present in the literature on antiviral activity of 3-hydroxy-quinazoline-2,4(1H,3H)-diones against DNA-viruses. Thus, these findings warrant further investigations (library expansion and compound refinement) on this novel class of antiviral agents.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Lieve Naesens
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
225
|
Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement. Eur J Med Chem 2016; 126:190-201. [PMID: 27750153 DOI: 10.1016/j.ejmech.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022]
Abstract
To further explore the chemical space around the entrance channel of HIV-1 reverse transcriptase (RT), a series of novel indolylarylsulfones (IASs) bearing N-substituted piperidine at indole-2-carboxamide were identified as potent HIV NNRTIs by structure-guided scaffold morphing and fragment rearrangement. All the IASs exhibited moderate to excellent potency against wild-type HIV-1 with EC50 values ranging from 0.62 μM to 0.006 μM 8 (EC50 = 6 nM) and 18 (EC50 = 9 nM) were identified as the most potent compounds, which were more active than NVP and DLV, and reached the same order of EFV and ETV. Furthermore, most compounds maintained high activity agaist various single HIV-1 mutants (L100I, K103N, E138K, Y181C) as well as one double mutant (F227L/V106A) with EC50 values in low-micromolar to double-digit nanomolar concentration ranges. Especially, 8 displayed outstanding potency against L100I (EC50 = 17 nM with a 2.8-fold resistance ratio) and 18 was relatively more potent to E138K mutant (EC50 = 43 nM with a 4.7-fold resistance ratio). Preliminary SARs and molecular modeling studies were also discussed in detail, which may provide valuable insights for further optimization.
Collapse
|
226
|
Novel (2,6-difluorophenyl)(2-(phenylamino)pyrimidin-4-yl)methanones with restricted conformation as potent non-nucleoside reverse transcriptase inhibitors against HIV-1. Eur J Med Chem 2016; 122:185-195. [DOI: 10.1016/j.ejmech.2016.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/01/2016] [Accepted: 06/15/2016] [Indexed: 01/26/2023]
|
227
|
Zhao Y, Gu Q, Morris-Natschke SL, Chen CH, Lee KH. Incorporation of Privileged Structures into Bevirimat Can Improve Activity against Wild-Type and Bevirimat-Resistant HIV-1. J Med Chem 2016; 59:9262-9268. [PMID: 27676157 DOI: 10.1021/acs.jmedchem.6b00461] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two "privileged fragments", caffeic acid and piperazine, were integrated into bevirimat producing new derivatives with improved activity against HIV-1/NL4-3 and NL4-3/V370A carrying the most prevalent bevirimat-resistant polymorphism. The activity of one of these, 18c, was increased by 3-fold against NL4-3 and 51-fold against NL4-3/V370A. Moreover, 18c is a maturation inhibitor with improved metabolic stability. Our study suggested that integration of privileged motifs into promising natural product skeletons is an effective strategy for discovering potent derivatives.
Collapse
Affiliation(s)
- Yu Zhao
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States
| | - Qiong Gu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States
| | - Chin-Ho Chen
- Surgical Oncology Research Facility, Duke University Medical Center , Box 2926, Durham, North Carolina 27710, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States.,Chinese Medicine Research and Development Center, China Medical University and Hospital , 404 Taichung, Taiwan
| |
Collapse
|
228
|
Liu GN, Luo RH, Zhou Y, Zhang XJ, Li J, Yang LM, Zheng YT, Liu H. Synthesis and Anti-HIV-1 Activity Evaluation for Novel 3a,6a-Dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione Derivatives. Molecules 2016; 21:molecules21091198. [PMID: 27617994 PMCID: PMC6274355 DOI: 10.3390/molecules21091198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022] Open
Abstract
The search for new molecular constructs that resemble the critical two-metal binding pharmacophore and the halo-substituted phenyl functionality required for HIV-1 integrase (IN) inhibition represents a vibrant area of research within drug discovery. As reported herein, we have modified our recently disclosed 1-[2-(4-fluorophenyl)ethyl]-pyrrole-2,5-dione scaffolds to design 35 novel compounds with improved biological activities against HIV-1. These new compounds show single-digit micromolar antiviral potencies against HIV-1 and low toxicity. Among of them, compound 9g and 15i had potent anti-HIV-1 activities (EC50 < 5 μM) and excellent therapeutic index (TI, CC50/EC50 > 100). These two compounds have potential as lead compounds for further optimization into clinical anti-HIV-1 agents.
Collapse
Affiliation(s)
- Guan-Nan Liu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang, China.
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Yu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xing-Jie Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Jian Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liu-Meng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Hong Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
229
|
Design and anti-HIV activity of arylsulphonamides as non-nucleoside reverse transcriptase inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1707-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
230
|
Kang D, Fang Z, Li Z, Huang B, Zhang H, Lu X, Xu H, Zhou Z, Ding X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, Synthesis, and Evaluation of Thiophene[3,2-d]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. J Med Chem 2016; 59:7991-8007. [PMID: 27541578 DOI: 10.1021/acs.jmedchem.6b00738] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We designed and synthesized a series of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a piperidine-substituted thiophene[3,2-d]pyrimidine scaffold, employing a strategy of structure-based molecular hybridization and substituent decorating. Most of the synthesized compounds exhibited broad-spectrum activity with low (single-digit) nanomolar EC50 values toward a panel of wild-type (WT), single-mutant, and double-mutant HIV-1 strains. Compound 27 was the most potent; compared with ETV, its antiviral efficacy was 3-fold greater against WT, 5-7-fold greater against Y181C, Y188L, E138K, and F227L+V106A, and nearly equipotent against L100I and K103N, though somewhat weaker against K103N+Y181C. Importantly, 27 has lower cytotoxicity (CC50 > 227 μM) and a huge selectivity index (SI) value (ratio of CC50/EC50) of >159101. 27 also showed favorable, drug-like pharmacokinetic and safety properties in rats in vivo. Molecular docking studies and the structure-activity relationships provide important clues for further molecular elaboration.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China.,The Second Hospital, Shandong University , No. 247 Beiyuan Avenue, Jinan 250033, China
| | - Zhenyu Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Haoran Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| |
Collapse
|
231
|
Lu X, Li X, Yang J, Huang B, Kang D, Zhao F, Zhou Z, De Clercq E, Daelemans D, Pannecouque C, Zhan P, Liu X. Arylazolyl(azinyl)thioacetanilides. Part 20: Discovery of novel purinylthioacetanilides derivatives as potent HIV-1 NNRTIs via a structure-based bioisosterism approach. Bioorg Med Chem 2016; 24:4424-4433. [PMID: 27501911 DOI: 10.1016/j.bmc.2016.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 11/26/2022]
Abstract
By means of structure-based bioisosterism approach, a series of novel purinylthioacetanilide derivatives were designed, synthesized and evaluated as potent HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Some of the tested compounds were found to be active against wild-type (WT) HIV-1(IIIB) with EC50 in the range of 0.78-4.46μM. Among them, LAD-8 displayed the most potent anti-HIV activity (EC50=0.78μM, SI=24). In addition, LBD-6 showed moderate activity against L100I mutant (EC50=5.64μM) and double mutant strain RES056 (EC50=22.24μM). Preliminary structure-activity relationships (SARs) were discussed in detail. Molecular modeling study was used to predict the optimal conformation in the NNRTI binding site, which may play a guiding role in further rational optimization.
Collapse
Affiliation(s)
- Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Xiao Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Jiapei Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong, PR China.
| |
Collapse
|
232
|
Sun L, Gao P, Zhan P, Liu X. Pyrazolo[1,5-a]pyrimidine-based macrocycles as novel HIV-1 inhibitors: a patent evaluation of WO2015123182. Expert Opin Ther Pat 2016; 26:979-86. [PMID: 27398994 DOI: 10.1080/13543776.2016.1210127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The emergence of drug resistance in Combination Antiretroviral Therapy (cART) confirms a continuing need to investigate novel HIV-1 inhibitors with unexplored mechanisms of action. Recently, a series of pyrazolopyrimidine-based macrocyclic compounds were reported as inhibitors of HIV-1 replication disclosed in the patent WO2015123182. Most of the disclosed compounds possessed in vitro antiviral potency in single-digit nanomolar range, which were determined by MT-2 cell assay. Then, the structural diversity, pharmacophore similarity of HIV-1 IN-LEDGF/p75 inhibitors, and implications for drug design were analyzed. In the end of this article, a glimpse of some macrocycles as potent antiviral agents (drug candidates) was provided. Some strategies and technologies enabling macrocycle design were also described. We expect that further development of these macrocyclic compounds will offer new anti-HIV-1 drug candidates.
Collapse
Affiliation(s)
- Lin Sun
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Ping Gao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| |
Collapse
|
233
|
Ghosh AK, Osswald HL, Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem 2016; 59:5172-208. [PMID: 26799988 PMCID: PMC5598487 DOI: 10.1021/acs.jmedchem.5b01697] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1 protease inhibitors continue to play an important role in the treatment of HIV/AIDS, transforming this deadly ailment into a more manageable chronic infection. Over the years, intensive research has led to a variety of approved protease inhibitors for the treatment of HIV/AIDS. In this review, we outline current drug design and medicinal chemistry efforts toward the development of next-generation protease inhibitors beyond the currently approved drugs.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Heather L. Osswald
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Gary Prato
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
234
|
Li X, Huang B, Zhou Z, Gao P, Pannecouque C, Daelemans D, De Clercq E, Zhan P, Liu X. Arylazolyl(azinyl)thioacetanilides: Part 19: Discovery of Novel Substituted Imidazo[4,5-b]pyridin-2-ylthioacetanilides as Potent HIV NNRTIs Via a Structure-based Bioisosterism Approach. Chem Biol Drug Des 2016; 88:241-53. [PMID: 26914186 DOI: 10.1111/cbdd.12751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 02/14/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao Li
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Boshi Huang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Ping Gao
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Christophe Pannecouque
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Xinyong Liu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| |
Collapse
|
235
|
Corona A, Desantis J, Massari S, Distinto S, Masaoka T, Sabatini S, Esposito F, Manfroni G, Maccioni E, Cecchetti V, Pannecouque C, Le Grice SFJ, Tramontano E, Tabarrini O. Studies on Cycloheptathiophene-3-carboxamide Derivatives as Allosteric HIV-1 Ribonuclease H Inhibitors. ChemMedChem 2016; 11:1709-20. [PMID: 26990134 DOI: 10.1002/cmdc.201600015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 02/04/2023]
Abstract
Despite the significant progress achieved with combination antiretroviral therapy in the fight against human immunodeficiency virus (HIV) infection, the difficulty to eradicate the virus together with the rapid emergence of multidrug-resistant strains clearly underline a pressing need for innovative agents, possibly endowed with novel mechanisms of action. In this context, owing to its essential role in HIV genome replication, the reverse transcriptase associated ribonuclease H (RNase H) has proven to be an appealing target. To identify new RNase H inhibitors, an in-house cycloheptathiophene-3-carboxamide library was screened; this led to compounds endowed with inhibitory activity, the structural optimization of which led to the catechol derivative 2-(3,4-dihydroxybenzamido)-N-(pyridin-2-yl)-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carboxamide (compound 33) with an IC50 value on the RNase H activity in the nanomolar range. Mechanistic studies suggested selective inhibition of the RNase H through binding to an innovative allosteric site, which could be further exploited to enrich this class of inhibitors.
Collapse
Affiliation(s)
- Angela Corona
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Jenny Desantis
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Serena Massari
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Simona Distinto
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Takashi Masaoka
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Stefano Sabatini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Francesca Esposito
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Elias Maccioni
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy
| | - Violetta Cecchetti
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research-KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Enzo Tramontano
- Dipartimento di Scienze della Vita e dell'Ambiente, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Italy.
| | - Oriana Tabarrini
- Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
236
|
Chawla R, Van Puyenbroeck V, Pflug NC, Sama A, Ali R, Schols D, Vermeire K, Bell TW. Tuning Side Arm Electronics in Unsymmetrical Cyclotriazadisulfonamide (CADA) Endoplasmic Reticulum (ER) Translocation Inhibitors to Improve their Human Cluster of Differentiation 4 (CD4) Receptor Down-Modulating Potencies. J Med Chem 2016; 59:2633-47. [PMID: 26974263 DOI: 10.1021/acs.jmedchem.5b01832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclotriazadisulfonamide prevents HIV entry into cells by down-modulating surface CD4 receptor expression through binding to the CD4 signal peptide. According to a two-site binding model, 28 new unsymmetrical analogues bearing a benzyl tail group and nine bearing a cyclohexylmethyl tail have been designed and synthesized. The most potent new CD4 down-modulator (40 (CK147); IC50 63 nM) has a 4-dimethylaminobenzenesulfonyl side arm. One of the two side arms was varied with substituents in different positions. This gave a range of CD4 down-modulation potencies that correlated well with anti-HIV-1 activities. The side arms of 21 of the new benzyl-tailed analogues were modeled by means of quantum mechanical calculations. For CADA analogues with arenesulfonamide side arms, the pIC50 values for CD4 down-modulation correlated with the component of the electric dipole moment in the aromatic ring, suggesting that an attractive electronic interaction is a major factor determining the stability of the complex between the molecule and its target.
Collapse
Affiliation(s)
- Reena Chawla
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557-0216 United States
| | - Victor Van Puyenbroeck
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven-University of Leuven , 3000 Leuven, Belgium
| | - Nicholas C Pflug
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557-0216 United States
| | - Alekhya Sama
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557-0216 United States
| | - Rameez Ali
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557-0216 United States
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven-University of Leuven , 3000 Leuven, Belgium
| | - Kurt Vermeire
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven-University of Leuven , 3000 Leuven, Belgium
| | - Thomas W Bell
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557-0216 United States
| |
Collapse
|
237
|
Li X, Gao P, Zhan P, Liu X. Substituted indoles as HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent evaluation (WO2015044928). Expert Opin Ther Pat 2016; 26:629-35. [PMID: 26742549 DOI: 10.1517/13543776.2016.1135902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The invention described in this patent (WO2015044928) is related to compounds based on the substituted indole scaffold, their synthetic process and application to inhibit HIV-1 replication as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Some of the newly claimed compounds presented improved potency against wild-type (WT) HIV-1 strain in comparison to previously disclosed indole-based NNRTIs and were also shown to be effective against common resistant HIV-1 strains. In light of their novel structural characteristics, simple synthetic route and improved anti-HIV activity, these compounds deserve further study as promising NNRTIs.
Collapse
Affiliation(s)
- Xiao Li
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R.China
| | - Ping Gao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R.China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R.China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P.R.China
| |
Collapse
|
238
|
Focus on Chirality of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Molecules 2016; 21:molecules21020221. [PMID: 26891289 PMCID: PMC6273187 DOI: 10.3390/molecules21020221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/02/2023] Open
Abstract
Chiral HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are of great interest since one enantiomer is often more potent than the corresponding counterpart against the HIV-1 wild type (WT) and the HIV-1 drug resistant mutant strains. This review exemplifies the various studies made to investigate the effect of chirality on the antiretroviral activity of top HIV-1 NNRTI compounds, such as nevirapine (NVP), efavirenz (EFV), alkynyl- and alkenylquinazolinone DuPont compounds (DPC), diarylpyrimidine (DAPY), dihydroalkyloxybenzyloxopyrimidine (DABO), phenethylthiazolylthiourea (PETT), indolylarylsulfone (IAS), arylphosphoindole (API) and trifluoromethylated indole (TFMI) The chiral separation, the enantiosynthesis, along with the biological properties of these HIV-1 NNRTIs, are discussed.
Collapse
|
239
|
Abstract
INTRODUCTION The hybridization of biologically active molecules is a powerful tool for drug discovery used to target a variety of diseases. It offers the prospect of better drugs for the treatment of a number of illnesses including cancer, malaria, tuberculosis and AIDS. Hybrid drugs can provide combination therapies in a single multi-functional agent and, by doing so, be more specific and powerful than conventional classic treatments. This research field is in great expansion and attracts many researchers worldwide. AREA COVERED This review covers the main research published between early 2013 to mid-2015 and takes into account several previous reviews on the subject. Its intention is to showcase the most recent advances reported towards the development of molecular hybrids in drug discovery. Particular attention is given to anticancer hybrids throughout the review. EXPERT OPINION Current advances show that molecular hybrids of biologically active molecules can lead to powerful therapeutics. Natural products play a key role in this field. It is also believed that toxin hybrids present a great opportunity for future progress and should be further explored. Furthermore, the synthesis of hybrid organometallics should be systematically studied as it can lead to potent drugs. The crucial requirement for growth still remains the efficacy of synthesis. Hence, the development of efficient synthetic methods allowing rapid access to diverse series of hybrids must be further investigated by researchers.
Collapse
Affiliation(s)
- Gervais Bérubé
- a Département de Chimie, Biochimie et Physique , Université du Québec à Trois-Rivières , Québec , Canada
| |
Collapse
|