201
|
Li Z, Zhang Y, Ma J, Meng Q, Fan J. Modeling Interactions between Liposomes and Hydrophobic Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804992. [PMID: 30589212 DOI: 10.1002/smll.201804992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 05/09/2023]
Abstract
2D nanomaterials could cause structural disruption and cytotoxic effects to cells, which greatly challenges their promising biomedical applications including biosensing, bioimaging, and drug delivery. Here, the physical and mechanical interaction between lipid liposomes and hydrophobic nanosheets is studied utilizing coarse-grained (CG) molecular dynamics (MD) simulations. The simulations reveal a variety of characteristic interaction morphologies that depend on the size and the orientation of nanosheets. Dynamic and thermodynamic analyses on the morphologic evolution provide insights into molecular motions such as "nanosheet rotation," "lipid extraction," "lipid flip-flop," and "lipid spreading." Driven by these molecular motions, hydrophobic nanosheets cause morphologic changes of liposomes. The lipid bilayer structure can be corrugated, and the overall liposome sphere can be split or collapsed by large nanosheets. In addition, nanosheets embedded into lipid bilayers greatly weaken the fluidity of lipids, and this effect can be cumulatively enhanced as nanosheets continuously intrude. These results could facilitate molecular-level understanding on the cytotoxicity of nanomaterials, and help future nanotoxicology studies associating computational modeling with experiments.
Collapse
Affiliation(s)
- Zhen Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yonghui Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiale Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiangqiang Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
202
|
Rai M, Jamil B. Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. Nanotheranostics 2019. [PMCID: PMC7121811 DOI: 10.1007/978-3-030-29768-8_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Various viruses can be considered as one of the most frequent causes of human diseases, from mild illnesses to really serious sicknesses that end fatally. Numerous viruses are also pathogenic to animals and plants, and many of them, mutating, become pathogenic also to humans. Several cases of affecting humans by originally animal viruses have been confirmed. Viral infections cause significant morbidity and mortality in humans, the increase of which is caused by general immunosuppression of the world population, changes in climate, and overall globalization. In spite of the fact that the pharmaceutical industry pays great attention to human viral infections, many of clinically used antivirals demonstrate also increased toxicity against human cells, limited bioavailability, and thus, not entirely suitable therapeutic profile. In addition, due to resistance, a combination of antivirals is needed for life-threatening infections. Thus, the development of new antiviral agents is of great importance for the control of virus spread. On the other hand, the discovery and development of structurally new antivirals represent risks. Therefore, another strategy is being developed, namely the reformulation of existing antivirals into nanoformulations and investigation of various metal and metalloid nanoparticles with respect to their diagnostic, prophylactic, and therapeutic antiviral applications. This chapter is focused on nanoscale materials/formulations with the potential to be used for the treatment or inhibition of the spread of viral diseases caused by human immunodeficiency virus, influenza A viruses (subtypes H3N2 and H1N1), avian influenza and swine influenza viruses, respiratory syncytial virus, herpes simplex virus, hepatitis B and C viruses, Ebola and Marburg viruses, Newcastle disease virus, dengue and Zika viruses, and pseudorabies virus. Effective antiviral long-lasting and target-selective nanoformulations developed for oral, intravenous, intramuscular, intranasal, intrarectal, intravaginal, and intradermal applications are discussed. Benefits of nanoparticle-based vaccination formulations with the potential to secure cross protection against divergent viruses are outlined as well.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra, India, Department of Chemistry, Federal University of Piauí, Teresina, Piauí Brazil
| | - Bushra Jamil
- Department of DMLS, University of Lahore, Islamabad, Pakistan
| |
Collapse
|
203
|
Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview. NANOSCALE HORIZONS 2019; 4:117-137. [PMID: 32254148 DOI: 10.1039/c8nh00174j] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to the increasing global population, growing contamination of water and air, and wide spread of infectious diseases, antibiotics are extensively used as a major antibacterial drug. However, many microbes have developed resistance to antibiotics through mutation over time. As an alternative to antibiotics, antimicrobial nanomaterials have attracted great attention due to their advantageous properties and unique mechanisms of action toward microbes. They inhibit bacterial growth and destroy cells through complex mechanisms, making it difficult for bacteria to develop drug resistance, though some health concerns related to biocompatibility remain for practical applications. Among various antibacterial nanomaterials, carbon-based materials, especially graphene oxide (GO) and carbon dots (C-Dots), are promising candidates due to the ease of production and functionalization, high dispersibility in aqueous media, and promising biocompatibility. The antibacterial properties of these nanomaterials can be easily adjusted by surface modification. They are promising materials for future applications against multidrug-resistant bacteria based on their strong capacity in disruption of microbial membranes. Though many studies have reported excellent antibacterial activity of carbon nanomaterials, their impact on the environment and living organisms is of concern due to the accumulatory and cytotoxic effects. In this review, we discuss antimicrobial applications of the functional carbon nanomaterials (GO and C-Dots), their antibacterial mechanisms, factors affecting antibacterial activity, and concerns regarding cytotoxicity.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | | | | | | | | |
Collapse
|
204
|
Du T, Lu J, Liu L, Dong N, Fang L, Xiao S, Han H. Antiviral Activity of Graphene Oxide–Silver Nanocomposites by Preventing Viral Entry and Activation of the Antiviral Innate Immune Response. ACS APPLIED BIO MATERIALS 2018; 1:1286-1293. [DOI: 10.1021/acsabm.8b00154] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ting Du
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Jian Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Lingzhi Liu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Nan Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| |
Collapse
|
205
|
Bai DP, Lin XY, Huang YF, Zhang XF. Theranostics Aspects of Various Nanoparticles in Veterinary Medicine. Int J Mol Sci 2018; 19:ijms19113299. [PMID: 30352960 PMCID: PMC6274759 DOI: 10.3390/ijms19113299] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoscience and nanotechnology shows immense interest in various areas of research and applications, including biotechnology, biomedical sciences, nanomedicine, and veterinary medicine. Studies and application of nanotechnology was explored very extensively in the human medical field and also studies undertaken in rodents extensively, still either studies or applications in veterinary medicine is not up to the level when compared to applications to human beings. The application in veterinary medicine and animal production is still relatively innovative. Recently, in the era of health care technologies, Veterinary Medicine also entered into a new phase and incredible transformations. Nanotechnology has tremendous and potential influence not only the way we live, but also on the way that we practice veterinary medicine and increase the safety of domestic animals, production, and income to the farmers through use of nanomaterials. The current status and advancements of nanotechnology is being used to enhance the animal growth promotion, and production. To achieve these, nanoparticles are used as alternative antimicrobial agents to overcome the usage alarming rate of antibiotics, detection of pathogenic bacteria, and also nanoparticles being used as drug delivery agents as new drug and vaccine candidates with improved characteristics and performance, diagnostic, therapeutic, feed additive, nutrient delivery, biocidal agents, reproductive aids, and finally to increase the quality of food using various kinds of functionalized nanoparticles, such as liposomes, polymeric nanoparticles, dendrimers, micellar nanoparticles, and metal nanoparticles. It seems that nanotechnology is ideal for veterinary applications in terms of cost and the availability of resources. The main focus of this review is describes some of the important current and future principal aspects of involvement of nanotechnology in Veterinary Medicine. However, we are not intended to cover the entire scenario of Veterinary Medicine, despite this review is to provide a glimpse at potential important targets of nanotechnology in the field of Veterinary Medicine. Considering the strong potential of the interaction between the nanotechnology and Veterinary Medicine, the aim of this review is to provide a concise description of the advances of nanotechnology in Veterinary Medicine, in terms of their potential application of various kinds of nanoparticles, secondly we discussed role of nanomaterials in animal health and production, and finally we discussed conclusion and future perspectives of nanotechnology in veterinary medicine.
Collapse
Affiliation(s)
- Ding-Ping Bai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xin-Yu Lin
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yi-Fan Huang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xi-Feng Zhang
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
206
|
Guo N, Zhang B, Hu H, Ye S, Chen F, Li Z, Chen P, Wang C, He Q. Caerin1.1 Suppresses the Growth of Porcine Epidemic Diarrhea Virus In Vitro via Direct Binding to the Virus. Viruses 2018; 10:v10090507. [PMID: 30231560 PMCID: PMC6165370 DOI: 10.3390/v10090507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023] Open
Abstract
Porcine epidemic diarrhea (PED) has re-emerged in recent years and has already caused huge economic losses to the porcine industry all over the world. Therefore, it is urgent for us to find out efficient ways to prevent and control this disease. In this study, the antiviral activity of a cationic amphibian antimicrobial peptide Caerin1.1 against porcine epidemic diarrhea virus (PEDV) was evaluated by an in vitro system using Vero cells. We found that even at a very low concentration, Caerin1.1 has the ability to destroy the integrity of the virus particles to block the release of the viruses, resulting in a considerable decrease in PEDV infections. In addition, Caerin1.1 showed powerful antiviral activity without interfering with the binding progress between PEDV and the receptor of the cells, therefore, it could be used as a potential antiviral drug or as a microbicide compound for prevention and control of PEDV.
Collapse
Affiliation(s)
- Nan Guo
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bingzhou Zhang
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Han Hu
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangzhou Chen
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhonghua Li
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Pin Chen
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture, Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Qigai He
- Division of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
207
|
Feng C, Fang P, Zhou Y, Liu L, Fang L, Xiao S, Liang J. Different Effects of His-Au NCs and MES-Au NCs on the Propagation of Pseudorabies Virus. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1800030. [PMID: 31565343 PMCID: PMC6607262 DOI: 10.1002/gch2.201800030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Indexed: 06/10/2023]
Abstract
In a previous work, gold nanoclusters (Au NCs) are found to inactivate RNA virus, but the effect of surface modification of Au NCs on its proliferation is still largely unknown. Here, the effect of surface modification of Au NCs on the proliferation of pseudorabies virus (PRV) by synthesizing two types of gold clusters with different surface modification, histidine stabilized Au NCs (His-Au NCs) and mercaptoethane sulfonate and histidine stabilized Au NCs (MES-Au NCs), is investigated. His-Au NCs rather than MES-Au NCs could strongly inhibit the proliferation of PRV, as indicated by the results of plaque assay, confocal microscopic analysis, Western blot assay, and quantitative real-time polymerase chain reaction (PCR) assay. Further study reveals that His-Au NCs perform the function via blockage of the viral replication process rather than the processes of attachment, penetration, or release. Additionally, His-Au NCs are found to be mainly localized to nucleus, while MES-Au NCs are strictly distributed in cytoplasm, which may explain why His-Au NCs can suppress the proliferation of PRV, but not MES-Au NCs. These results demonstrate that surface modification plays a key role in the antiviral effects of Au NCs and a potential antiviral agent can be developed by changing the Au NC surface modification.
Collapse
Affiliation(s)
- Chenchen Feng
- College of ScienceState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Puxian Fang
- College of Veterinary MedicineState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Yanrong Zhou
- College of Veterinary MedicineState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Lingzhi Liu
- College of ScienceState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Liurong Fang
- College of Veterinary MedicineState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Shaobo Xiao
- College of Veterinary MedicineState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| | - Jiangong Liang
- College of ScienceState Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhan430070P. R. China
| |
Collapse
|
208
|
Lei Z, Liu Q, Zhu Q, Yang B, Khaliq H, Sun A, Qi Y, Moku GK, Su Y, Wang J, Cao J, He Q. Comparative Pharmacokinetics and Preliminary Pharmacodynamics Evaluation of Piscidin 1 Against PRV and PEDV in Rats. Front Chem 2018; 6:244. [PMID: 29988520 PMCID: PMC6026642 DOI: 10.3389/fchem.2018.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial peptide (Piscidin-1) is an effective natural polypeptide, which has great influence and potential on porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV). As an alternative antibiotic substitute, Piscidin-1 was subjected for pharmacokinetics study with three administration routes (i.v, i.m, and p.o) after a single dose of 2 mg/kg in rats and preliminary pharmacodynamics including antiviral activity in cell against PEDV and PRV. Based on 50 percent tissue culture infective dose (TCID50), there were about 2 and 10% virus survived ratios for Piscidin-1 against PRV and PEDV, respectively. The plaque test showed 1 and 2 μg/ml Piscidin-1 could eliminate 95% PRV and 85% PEDV, respectively. The main pharmacokinetics parameters of Cmax, AUC0−∞, Ke, t1/2, Tmax, MRT, and Clb in plasma were not applicable value, 25.9 μg*h/ml, 0.041 h−1, 16.97 h, not available value, 22.77 h, 0.067 L/h*kg after i.v administration, 2.37 μg/ml, 18.95 μg*h/ml, 0.029 h−1, 23.50 h, 0.33 h, 30.12 h, 0.095 L/h*kg after i.m administration and 0.73 μg/ml, 9.63 μg*h/ml, 0.036 h−1, 19.46 h, 0.50 h, 26.76 h, 0.171 L/h*kg after p.o administration. The bioavailability values after i.m and p.o administrations were calculated as 73.17 and 37.18%, respectively. The i.m administration was selected for pharmacokinetics study in ileum content against PEDV. The main pharmacokinetic parameters of Cmax, AUC0−∞, Ke, t1/2, Tmax, MRT, and Clb in ileum content were 1.67 μg/ml, 78.40 μg*h/ml, 0.034 h−1, 20.16 h, 8.12 h, 36.45 h, 0.026 L/h*kg. The Cmax values in plasma (2.37 μg/ml) and ileum content (1.67 μg/ml) were higher than the effective inhibitory concentration determined in the plaque test, and this indicates that Piscidin-1 might have effective inhibition effect against PRV and PEDV after administration of 2 mg/kg i.m. The results of this study represent the first investigations toward the pharmacokinetic characteristics of piscidin-1 in plasma upon three different administration routes, among which i.m. resulted in the highest bioavailability (73.17%). Furthermore, the pharmacokinetics study of ileum content indicated Piscidin-1 might have good effect against PEDV and could be regarded as an alternative antibiotic in clinical veterinary in the future study.
Collapse
Affiliation(s)
- Zhixin Lei
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture University, Wuhan, China.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Qianying Liu
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture University, Wuhan, China
| | - Qianqian Zhu
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
| | - Ao Sun
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China.,Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi Qi
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
| | - Gopi Krishna Moku
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Yafan Su
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Jiawei Wang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agriculture University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
209
|
Tu Z, Guday G, Adeli M, Haag R. Multivalent Interactions between 2D Nanomaterials and Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706709. [PMID: 29900600 DOI: 10.1002/adma.201706709] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/15/2018] [Indexed: 05/20/2023]
Abstract
2D nanomaterials, particularly graphene, offer many fascinating physicochemical properties that have generated exciting visions of future biological applications. In order to capitalize on the potential of 2D nanomaterials in this field, a full understanding of their interactions with biointerfaces is crucial. The uptake pathways, toxicity, long-term fate of 2D nanomaterials in biological systems, and their interactions with the living systems are fundamental questions that must be understood. Here, the latest progress is summarized, with a focus on pathogen, mammalian cell, and tissue interactions. The cellular uptake pathways of graphene derivatives will be discussed, along with health risks, and interactions with membranes-including bacteria and viruses-and the role of chemical structure and modifications. Other novel 2D nanomaterials with potential biomedical applications, such as transition-metal dichalcogenides, transition-metal oxide, and black phosphorus will be discussed at the end of this review.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Guy Guday
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Mohsen Adeli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- Department of Chemistry, Faculty of Science, Lorestan University, 68151-44316, Khoramabad, Iran
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
210
|
Tan KH, Sattari S, Donskyi IS, Cuellar-Camacho JL, Cheng C, Schwibbert K, Lippitz A, Unger WES, Gorbushina A, Adeli M, Haag R. Functionalized 2D nanomaterials with switchable binding to investigate graphene-bacteria interactions. NANOSCALE 2018; 10:9525-9537. [PMID: 29744504 DOI: 10.1039/c8nr01347k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, the mechanism of multivalent interactions at the graphene-pathogen interface is not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene's structure is necessary to study the mechanism of these interactions. In this work, different graphene derivatives and also zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined exposure, in terms of polymer coverage and functionality, and isoelectric points. Then, the switchable interactions of these nanomaterials with E. coli and Bacillus cereus were investigated to study the validity of the generally proposed "trapping" and "nano-knives" mechanisms for inactivating bacteria by graphene derivatives. It was found that the antibacterial activity of graphene derivatives strongly depends on the accessible area, i.e. edges and basal plane of sheets and tightness of their agglomerations. Our data clearly confirm the authenticity of "trapping" and "nano-knives" mechanisms for the antibacterial activity of graphene sheets.
Collapse
Affiliation(s)
- Kok H Tan
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Li Y, Lin Z, Guo M, Zhao M, Xia Y, Wang C, Xu T, Zhu B. Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways. Int J Nanomedicine 2018; 13:2005-2016. [PMID: 29662313 PMCID: PMC5892959 DOI: 10.2147/ijn.s155994] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction As a therapeutic antiviral agent, the clinical application of amantadine (AM) is limited by the emergence of drug-resistant viruses. To overcome the drug-resistant viruses and meet the growing demand of clinical diagnosis, the use of biological nanoparticles (NPs) has increased in order to develop novel anti-influenza drugs. The antiviral activity of selenium NPs with low toxicity and excellent activities has attracted increasing attention for biomedical intervention in recent years. Methods and results In the present study, surface decoration of selenium NPs by AM (Se@AM) was designed to reverse drug resistance caused by influenza virus infection. Se@ AM with less toxicity remarkably inhibited the ability of H1N1 influenza to infect host cells through suppression of the neuraminidase activity. Moreover, Se@AM could prevent H1N1 from infecting Madin Darby Canine Kidney cell line and causing cell apoptosis supported by DNA fragmentation and chromatin condensation. Furthermore, Se@AM obviously inhibited the generation of reactive oxygen species and activation of phosphorylation of AKT. Conclusion These results demonstrate that Se@AM is a potentially efficient antiviral pharmaceutical agent for H1N1 influenza virus.
Collapse
Affiliation(s)
- Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhengfang Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Min Guo
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yu Xia
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Changbing Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
212
|
Sharma A, Varshney M, Nanda SS, Shin HJ, Kim N, Yi DK, Chae KH, Ok Won S. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
213
|
Zuo Q, Zhao R, Liu J, Zhao Q, Zhu L, Zhang B, Bi J, Yang G, Liu J, Yin G. Epidemiology and phylogeny of spike gene of porcine epidemic diarrhea virus from Yunnan, China. Virus Res 2018; 249:45-51. [PMID: 29548744 DOI: 10.1016/j.virusres.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
214
|
Du T, Liang J, Dong N, Lu J, Fu Y, Fang L, Xiao S, Han H. Glutathione-Capped Ag 2S Nanoclusters Inhibit Coronavirus Proliferation through Blockage of Viral RNA Synthesis and Budding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4369-4378. [PMID: 29337529 DOI: 10.1021/acsami.7b13811] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Development of novel antiviral reagents is of great importance for the control of virus spread. Here, Ag2S nanoclusters (NCs) were proved for the first time to possess highly efficient antiviral activity by using porcine epidemic diarrhea virus (PEDV) as a model of coronavirus. Analyses of virus titers showed that Ag2S NCs significantly suppressed the infection of PEDV by about 3 orders of magnitude at the noncytotoxic concentration at 12 h postinfection, which was further confirmed by the expression of viral proteins. Mechanism investigations indicated that Ag2S NCs treatment inhibits the synthesis of viral negative-strand RNA and viral budding. Ag2S NCs treatment was also found to positively regulate the generation of IFN-stimulating genes (ISGs) and the expression of proinflammation cytokines, which might prevent PEDV infection. This study suggest the novel underlying of Ag2S NCs as a promising therapeutic drug for coronavirus.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Nan Dong
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Jian Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Yiying Fu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, and ‡State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan 430070, P. R. China
| |
Collapse
|
215
|
Panda S, Rout TK, Prusty AD, Ajayan PM, Nayak S. Electron Transfer Directed Antibacterial Properties of Graphene Oxide on Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1702149. [PMID: 29315841 DOI: 10.1002/adma.201702149] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/27/2017] [Indexed: 05/28/2023]
Abstract
Nanomaterials such as silver nanoparticles and graphene-based composites are known to exhibit biocidal activities. However, interactions with surrounding medium or supporting substrates can significantly influence this activity. Here, it is shown that superior antimicrobial properties of natural shellac-derived graphene oxide (GO) coatings is obtained on metallic films, such as Zn, Ni, Sn, and steel. It is also found that such activities are directly correlated to the electrical conductivity of the GO-metal systems; the higher the conductivity the better is the antibacterial activity. GO-metal substrate interactions serve as an efficient electron sink for the bacterial respiratory pathway, where electrons modify oxygen containing functional groups on GO surfaces to generate reactive oxygen species (ROS). A concerted effect of nonoxidative electron transfer mechanism and consequent ROS mediated oxidative stress to the bacteria result in an enhanced antimicrobial action of naturally derived GO-metal films. The lack of germicidal effect in exposed cells for GO supported on electrically nonconductive substrates such as glass corroborates the above hypothesis. The results can lead to new GO coated antibacterial metal surfaces important for environmental and biomedical applications.
Collapse
Affiliation(s)
- Sunita Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Tapan K Rout
- Tata Steel Limited, Jajpur, Odisha, 755026, India
| | - Agnish Dev Prusty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha, 751007, India
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX, 77005, USA
| | - Sasmita Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
- Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
216
|
Yang XX, Li CM, Li YF, Wang J, Huang CZ. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. NANOSCALE 2017; 9:16086-16092. [PMID: 29034936 DOI: 10.1039/c7nr06520e] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diseases attributable to viruses remain a global burden. The respiratory syncytial virus (RSV), which is considered as the major viral pathogen of the lower respiratory tract of infants, has been implicated in severe lung disease. In this contribution, we developed a β-cyclodextrin (CD) functionalized graphene oxide (GO) composite, which displayed excellent antiviral activity and could load curcumin efficiently. RSV, a negative-sense single-stranded enveloped RNA virus, was employed as a model virus to investigate the antiviral activity of multifunctional GO. Proved by the tissue culture infectious dose assay and immunofluorescence assay, the curcumin loaded functional GO was confirmed with highly efficient inhibition for RSV infection and great biocompatibility to the host cells. The results showed that the composite could prevent RSV from infecting the host cells by directly inactivating the virus and inhibiting the viral attachment, and possessed prophylactic and therapeutic effects towards the virus. Our data indicate that the composite may provide new insights into antiviral therapy for RSV infection.
Collapse
Affiliation(s)
- Xiao Xi Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.
| | | | | | | | | |
Collapse
|
217
|
Huang J, Zhou J, Zhuang J, Gao H, Huang D, Wang L, Wu W, Li Q, Yang DP, Han MY. Strong Near-Infrared Absorbing and Biocompatible CuS Nanoparticles for Rapid and Efficient Photothermal Ablation of Gram-Positive and -Negative Bacteria. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36606-36614. [PMID: 28976189 DOI: 10.1021/acsami.7b11062] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common infectious bacteria in our daily life, and seriously affect human's health. Because of the frequent and extensive use of antibiotics, the microbial strains forming drug resistance have become more and more difficult to deal with. Herein, we utilized bovine serum albumin (BSA) as the template to synthesize uniform copper sulfide (CuS) nanoparticles via a biomineralization method. The as-prepared BSA-CuS nanocomposites showed good biocompatibility and strong near-infrared absorbance performance and can be used as an efficient photothermal conversion agent for pathogenic bacteria ablation with a 980 nm laser at a low power density of 1.59 W/cm2. The cytotoxicity of BSA-CuS nanocomposite was investigated using skin fibroblast cells and displayed good biocompatibility. Furthermore, the antibacterial tests indicated that BSA-CuS nanocomposite showed no antibacterial activity without NIR irradiation. In contrast, they demonstrated satisfying killing bacterial ability in the presence of NIR irradiation. Interestingly, S. aureus and E. coli showed various antibacterial mechanisms, possibly because of the different architectures of bacterial walls. Considering the low cost, easy preparation, excellent biocompatibility and strong photothermal convention efficiency (24.68%), the BSA-CuS nanocomposites combined with NIR irradiation will shed bright light on the treatment of antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
| | - Jinfei Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Junyang Zhuang
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Hongzhi Gao
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Donghong Huang
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Lixing Wang
- The Second Affiliated Hospital of Fujian Medical University , Quanzhou 362000, Fujian Province, Pr China
| | - Wenlin Wu
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Da-Peng Yang
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
| | - Ming-Yong Han
- Fujian Province Key Laboratory for Preparation and Function Development of Active Substances from Marine Algae, College of Chemical Engineering and Materials Science, Quanzhou Normal University , Quanzhou 362000, Fujian Province, PR China
- Institute of Materials Research and Engineering , Singapore 138634
| |
Collapse
|
218
|
Wang X, Wu CX, Song XR, Chen HC, Liu ZF. Comparison of pseudorabies virus China reference strain with emerging variants reveals independent virus evolution within specific geographic regions. Virology 2017; 506:92-98. [DOI: 10.1016/j.virol.2017.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
|
219
|
Ziem B, Azab W, Gholami MF, Rabe JP, Osterrieder N, Haag R. Size-dependent inhibition of herpesvirus cellular entry by polyvalent nanoarchitectures. NANOSCALE 2017; 9:3774-3783. [PMID: 28266670 DOI: 10.1039/c7nr00611j] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon-based architectures, especially graphene and its derivatives, have recently attracted much attention in the field of biomedicine and biotechnology for their use as pathogen inhibitors or biosensors. One of the major problems in the development of novel virus inhibitor systems is the adaption of the inhibitor to the size of virus particles. We here report the synthesis and biological testing of carbon-based inhibitors differing in size for evaluating the potential size effect on the inhibition of virus entry and replication. In this context, different sized nanomaterials were functionalized with polygylcerol through a "grafting from" polymerization to form new polyvalent nanoarchitectures which can operate as viral inhibitor systems after post-modification. For this purpose a polysulfation was carried out to mimic the heparan sulfates present on cell surfaces that we reasoned would compete with the binding sites of herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1), which both cause major global health issues. Our results clearly demonstrate that the inhibitory efficiency is regulated by the size of the polymeric nanomaterials and the degree of sulfation. The best inhibiting graphene sheets were ∼300 nm in size and had a degree of sulfation of ∼10%. Furthermore, it turned out that the derivatives inhibited virus infection at an early stage during entry but did not affect cell-to-cell spread. Overall, tunable polyvalent nanomaterials are promising and efficient virus entry inhibitors, which can likely be used for a broad spectrum of enveloped viruses.
Collapse
Affiliation(s)
- B Ziem
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - W Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| | - M F Gholami
- Department of Physics & IRIS Adlershof, Humboldt-Universität Berlin, D-12489 Berlin, Germany
| | - J P Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität Berlin, D-12489 Berlin, Germany
| | - N Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| | - R Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
220
|
Deokar AR, Nagvenkar AP, Kalt I, Shani L, Yeshurun Y, Gedanken A, Sarid R. Graphene-Based "Hot Plate" for the Capture and Destruction of the Herpes Simplex Virus Type 1. Bioconjug Chem 2017; 28:1115-1122. [PMID: 28177606 DOI: 10.1021/acs.bioconjchem.7b00030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of graphene-based antivirals is still at a nascent stage and the photothermal antiviral properties of graphene have yet to be studied. Here, we design and synthesize sulfonated magnetic nanoparticles functionalized with reduced graphene oxide (SMRGO) to capture and photothermally destroy herpes simplex virus type 1 (HSV-1). Graphene sheets were uniformly anchored with spherical magnetic nanoparticles (MNPs) of varying size between ∼5 and 25 nm. Fourier-transform infrared spectroscopy (FT-IR) confirmed the sulfonation and anchoring of MNPs on the graphene sheets. Upon irradiation of the composite with near-infrared light (NIR, 808 nm, 7 min), SMRGO (100 ppm) demonstrated superior (∼99.99%) photothermal antiviral activity. This was probably due to the capture efficiency, unique sheet-like structure, high surface area, and excellent photothermal properties of graphene. In addition, electrostatic interactions of MNPs with viral particles appear to play a vital role in the inhibition of viral infection. These results suggest that graphene composites may help to combat viral infections including, but not only, HSV-1.
Collapse
Affiliation(s)
- Archana R Deokar
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Anjani P Nagvenkar
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Lior Shani
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Yosef Yeshurun
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan 5290002, Israel
| |
Collapse
|
221
|
Paul T, Bera SC, Agnihotri N, Mishra PP. Single-Molecule FRET Studies of the Hybridization Mechanism during Noncovalent Adsorption and Desorption of DNA on Graphene Oxide. J Phys Chem B 2016; 120:11628-11636. [DOI: 10.1021/acs.jpcb.6b06017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tapas Paul
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Subhas Chandra Bera
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Nidhi Agnihotri
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| | - Padmaja P. Mishra
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF
Bidhannagar, Kolkata 700064, India
| |
Collapse
|
222
|
Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L, Wang H, Xia H, Zhu B. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24385-93. [PMID: 27588566 DOI: 10.1021/acsami.6b06613] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As the therapeutic agent for antiviral applications, the clinical use of oseltamivir is limited with the appearance of drug-resistant viruses. It is important to explore novel anti-influenza drugs. The antiviral activity of silver nanoparticles (AgNPs) has attracted increasing attention in recent years and was a possibility to be employed as a biomedical intervention. Herein, we describe the synthesis of surface decoration of AgNPs by using oseltamivir (OTV) with antiviral properties and inhibition of drug resistance. Compared to silver and oseltamivir, oseltamivir-modified AgNPs (Ag@OTV) have remarkable inhibition against H1N1 infection, and less toxicity was found for MDCK cells by controlled-potential electrolysis (CPE), MTT, and transmission electron microscopy (TEM). Furthermore, Ag@OTV inhibited the activity of neuraminidase (NA) and hemagglutinin (HA) and then prevented the attachment of the H1N1 influenza virus to host cells. The investigations of the mechanism revealed that Ag@OTV could block H1N1 from infecting MDCK cells and prevent DNA fragmentation, chromatin condensation, and the activity of caspase-3. Ag@OTV remarkably inhibited the accumulation of reactive oxygen species (ROS) by the H1N1 virus and activation of AKT and p53 phosphorylation. Silver nanoparticle based codelivery of oseltamivir inhibits the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. These findings demonstrate that Ag@OTV is a novel promising efficient virucide for H1N1.
Collapse
Affiliation(s)
- Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Zhengfang Lin
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Tiantian Xu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Changbing Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Liang Hua
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Chinese Academy of Sciences , Wuhan, P.R. China
| | - Huimin Xia
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University , Guangzhou, P.R. China
| |
Collapse
|
223
|
Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep 2016; 6:28443. [PMID: 27324288 PMCID: PMC4914938 DOI: 10.1038/srep28443] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022] Open
Abstract
Graphene oxide (GO) is extensively proposed as an effective antibacterial agent in commercial product packaging and for various biomedical applications. However, the antibacterial mode of action of GO is yet hypothetical and unclear. Here we developed a new and sensitive fingerprint approach to study the antibacterial activity of GO and underlying mechanism, using Raman spectroscopy. Spectroscopic signatures obtained from biomolecules such as Adenine and proteins from bacterial cultures with different concentrations of GO, allowed us to probe the antibacterial activity of GO with its mechanism at the molecular level. Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were used as model micro-organisms for all the experiments performed. The observation of higher intensity Raman peaks from Adenine and proteins in GO treated E. coli and E. faecalis; correlated with induced death, confirmed by Scanning electron Microscopy (SEM) and Biological Atomic Force Microscopy (Bio-AFM). Our findings open the way for future investigations of the antibacterial properties of different nanomaterial/GO composites using Raman spectroscopy.
Collapse
|
224
|
Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials 2016; 89:38-55. [PMID: 26946404 DOI: 10.1016/j.biomaterials.2016.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
|
225
|
Chen YN, Hsueh YH, Hsieh CT, Tzou DY, Chang PL. Antiviral Activity of Graphene-Silver Nanocomposites against Non-Enveloped and Enveloped Viruses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:430. [PMID: 27104546 PMCID: PMC4847092 DOI: 10.3390/ijerph13040430] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/24/2023]
Abstract
The discovery of novel antiviral materials is important because many infectious diseases are caused by viruses. Silver nanoparticles have demonstrated strong antiviral activity, and graphene is a potential antimicrobial material due to its large surface area, high carrier mobility, and biocompatibility. No studies on the antiviral activity of nanomaterials on non-enveloped viruses have been reported. To investigate the antiviral activity of graphene oxide (GO) sheets and GO sheets with silver particles (GO-Ag) against enveloped and non-enveloped viruses, feline coronavirus (FCoV) with an envelope and infectious bursal disease virus (IBDV) without an envelope were chosen. The morphology and sizes of GO and GO-Ag were characterized by transmission, scanning electron microscopy, and X-ray diffraction. A virus inhibition assay was used to identify the antiviral activity of GO and GO-Ag. Go-Ag inhibited 25% of infection by FCoV and 23% by IBDV, whereas GO only inhibited 16% of infection by FCoV but showed no antiviral activity against the infection by IBDV. Further application of GO and GO-Ag can be considered for personal protection equipment to decrease the transmission of viruses.
Collapse
Affiliation(s)
- Yi-Ning Chen
- Department of Bioscience Technology, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
| | - Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Chung Li District, Taoyuan City 32003, Taiwan.
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung Li District, Taoyuan City 32003, Taiwan.
| | - Dong-Ying Tzou
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung Li District, Taoyuan City 32003, Taiwan.
| | - Pai-Ling Chang
- Division of General Pathology, Taoyuan General Hospital, Ministry of Health and Welfare, 1492 Zhongshan Road, Taoyuan City 33004, Taiwan.
| |
Collapse
|
226
|
Zhang M, Zhao Y, Yan L, Peltier R, Hui W, Yao X, Cui Y, Chen X, Sun H, Wang Z. Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8834-40. [PMID: 27007980 DOI: 10.1021/acsami.6b01396] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Environmental biofouling caused by the formation of biofilm has been one of the most urgent global concerns. Silver nanoparticles (NPs), owing to their wide-spectrum antimicrobial property, have been widely explored to combat biofilm, but their extensive use has raised growing concern because they persist in the environment. Here we report a novel hybrid nanocomposite that imparts enhanced antimicrobial activity and low cytotoxicity yet with the advantage of reduced silver loading. The nanocomposite consists of Pt/Ag bimetallic NPs (BNPs) decorated on the porous reduced graphene oxide (rGO) nanosheets. We demonstrate that the enhanced antimicrobial property against Escherichia coli is ascribed to the intricate control of the interfaces between metal compositions, rGO matrix, and bacteria, where the BNPs lead to a rapid release of silver ions, and the trapping of bacteria by the porous rGO matrix further provides high concentration silver ion sites for efficient bacteria-bactericide interaction. We envision that our facile approach significantly expands the design space for the creation of silver-based antimicrobial materials to achieve a wide spectrum of functionalities.
Collapse
Affiliation(s)
| | | | | | | | - Wenli Hui
- The College of Life Sciences, Northwest University , Xi'an, Shaanxi Province China
| | | | - Yali Cui
- The College of Life Sciences, Northwest University , Xi'an, Shaanxi Province China
| | | | | | | |
Collapse
|
227
|
Wang Z, Zhu W, Qiu Y, Yi X, von dem Bussche A, Kane A, Gao H, Koski K, Hurt R. Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 2016; 45:1750-80. [PMID: 26923057 PMCID: PMC4820079 DOI: 10.1039/c5cs00914f] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the "bio-nanosheet" interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials.
Collapse
Affiliation(s)
| | | | | | - Xin Yi
- School of Engineering, USA.
| | | | - Agnes Kane
- Department of Pathology and Laboratory Medicine, USA. and Institute for Molecular and Nanoscale Innovation, USA
| | | | - Kristie Koski
- Department of Chemistry, Brown University, Providence, RI 02912, USA.
| | - Robert Hurt
- School of Engineering, USA. and Institute for Molecular and Nanoscale Innovation, USA
| |
Collapse
|
228
|
Sharma VK, McDonald TJ, Kim H, Garg VK. Magnetic graphene-carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv Colloid Interface Sci 2015; 225:229-40. [PMID: 26498500 DOI: 10.1016/j.cis.2015.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
One of the biggest challenges of the 21st century is to provide clean and affordable water through protecting source and purifying polluted waters. This review presents advances made in the synthesis of carbon- and iron-based nanomaterials, graphene-carbon nanotubes-iron oxides, which can remove pollutants and inactivate virus and bacteria efficiently in water. The three-dimensional graphene and graphene oxide based nanostructures exhibit large surface area and sorption sites that provide higher adsorption capacity to remove pollutants than two-dimensional graphene-based adsorbents and other conventional adsorbents. Examples are presented to demonstrate removal of metals (e.g., Cu, Pb, Cr(VI), and As) and organics (e.g., dyes and oil) by grapheme-based nanostructures. Inactivation of Gram-positive and Gram-negative bacterial species (e.g., Escherichia coli and Staphylococcus aureus) is also shown. A mechanism involving the interaction of adsorbents and pollutants is briefly discussed. Magnetic graphene-based nanomaterials can easily be separated from the treated water using an external magnet; however, there are challenges in implementing the graphene-based nanotechnology in treating real water.
Collapse
|