201
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
202
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
203
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
204
|
Wilkinson AA, Jagu E, Ubych K, Coulthard S, Rushton AE, Kennefick J, Su Q, Neely RK, Fernandez-Trillo P. Site-Selective and Rewritable Labeling of DNA through Enzymatic, Reversible, and Click Chemistries. ACS CENTRAL SCIENCE 2020; 6:525-534. [PMID: 32342002 PMCID: PMC7181315 DOI: 10.1021/acscentsci.9b01023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 05/02/2023]
Abstract
Current methods for bioconjugation rely on the introduction of stable linkers that lack the required versatility to perform sequential functionalizations. However, sequential manipulations are an increasing requirement in chemical biology because they can underpin multiple analyses of the same sample to provide a wider understanding of cell behavior. Here, we present a new method to site-selectively write, remove, and rewrite chemical functionality to a biomolecule, DNA in this case. Our method combines the precision and robustness of methyltransferase-directed labeling with the reversibility of acyl hydrazones and the efficiency of click chemistry. Underpinning the method is a new S-adenosyl-l-methionine derivative to site-selectively label DNA with a bifunctional chemical handle containing an acyl hydrazone-linker and a terminal azide. Functional tags are conjugated via the azide and can be removed (i.e., untagged) when needed at the acyl hydrazone via exchange with hydroxyl amine. The formed hydrazide-labeled DNA is a versatile intermediate that can be either rewritten to reset the original chemical handle or covalently reacted with a permanent tag. This ability to write, tag, untag, and permanently tag DNA is exploited to sequentially introduce two fluorescent dyes on DNA. Finally, we demonstrate the potential of the method by developing a protocol to sort labeled DNA using magnetic beads, with subsequent amplification of the sorted DNA sample for further analysis. The presented method opens new avenues for site-selective bioconjugation and should underpin integrative approaches in chemical biology where sequential functionalizations of the same sample are required.
Collapse
Affiliation(s)
- Andrew A Wilkinson
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, U.K., B15 2TT
| | - Elodie Jagu
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, U.K., B15 2TT
| | - Krystian Ubych
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, U.K., B15 2TT
| | - Steven Coulthard
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, U.K., B15 2TT
| | - Ashleigh E Rushton
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, U.K., B15 2TT
| | - Jack Kennefick
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, U.K., B15 2TT
| | - Qiang Su
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, U.K., B15 2TT
| | - Robert K Neely
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, U.K., B15 2TT
| | | |
Collapse
|
205
|
Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs. Nat Biotechnol 2020; 38:989-999. [PMID: 32284585 DOI: 10.1038/s41587-020-0479-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022]
Abstract
A central challenge in expanding the genetic code of cells to incorporate noncanonical amino acids into proteins is the scalable discovery of aminoacyl-tRNA synthetase (aaRS)-tRNA pairs that are orthogonal in their aminoacylation specificity. Here we computationally identify candidate orthogonal tRNAs from millions of sequences and develop a rapid, scalable approach-named tRNA Extension (tREX)-to determine the in vivo aminoacylation status of tRNAs. Using tREX, we test 243 candidate tRNAs in Escherichia coli and identify 71 orthogonal tRNAs, covering 16 isoacceptor classes, and 23 functional orthogonal tRNA-cognate aaRS pairs. We discover five orthogonal pairs, including three highly active amber suppressors, and evolve new amino acid substrate specificities for two pairs. Finally, we use tREX to characterize a matrix of 64 orthogonal synthetase-orthogonal tRNA specificities. This work expands the number of orthogonal pairs available for genetic code expansion and provides a pipeline for the discovery of additional orthogonal pairs and a foundation for encoding the cellular synthesis of noncanonical biopolymers.
Collapse
|
206
|
Jang HS, Jana S, Blizzard RJ, Meeuwsen JC, Mehl RA. Access to Faster Eukaryotic Cell Labeling with Encoded Tetrazine Amino Acids. J Am Chem Soc 2020; 142:7245-7249. [PMID: 32251579 DOI: 10.1021/jacs.9b11520] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Labeling of biomolecules in live eukaryotic cells has been limited by low component stability and slow reaction rates. We show that genetically encoded tetrazine amino acids in proteins reach reaction rates of 8 × 104 M-1 s-1 with sTCO reagents, making them the fastest site-specific bioorthogonal labels in eukaryotic systems. We demonstrate that tetrazine amino acids are stable on proteins and are capable of quantitative labeling with sTCO reagents. The exceptionally high reaction rate of this ligation minimizes label concentration, allowing for substoichiometric in vivo eukaryotic protein labeling where the concentration of the label is less than the concentration of the protein. This approach offers unprecedented control over the composition and stability of the protein tag. We anticipate that this system will have a broad impact on labeling and imaging studies because it can be used where all generally orthogonal PylRS/tRNA pairs are employed.
Collapse
Affiliation(s)
- Hyo Sang Jang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Robert J Blizzard
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joseph C Meeuwsen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
207
|
Wesalo JS, Deiters A. Fast phosphine-activated control of protein function using unnatural lysine analogues. Methods Enzymol 2020; 638:191-217. [PMID: 32416913 DOI: 10.1016/bs.mie.2020.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Effective, general methods for conditionally activating proteins in their native biological environments are highly useful for biological studies. Since phosphines and azides are not found in pro- and eukaryotic cells, the Staudinger reduction can function as an excellent small molecule-controlled switch for protein activation. This methodology involves site-specifically incorporating azidobenyl-lysine analogues into proteins in live cells. When placed at a crucial position, these unnatural side chains block protein function until a phosphine trigger is added. We discuss methods for expressing caged proteins in bacterial and mammalian cells in high yields, and activating the proteins with an optimized phosphine trigger. We also discuss important considerations for safe and effective synthesis of these molecules. This methodology was used to translocate proteins to the nucleus and to turn-on a protein post-translational modification (SUMOylation) in living cells.
Collapse
Affiliation(s)
- Joshua S Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
208
|
Abstract
The genetic incorporation of noncanonical amino acids (ncAAs) into proteins has been realized in bacteria, yeast, and mammalian cells, and recently, in multicellular organisms including plants and animals. However, the addition of new building blocks to the genetic code of tissues from human origin has not yet been achieved. To this end, we report a self-replicating Epstein-Barr virus-based episomal vector for the long-term encoding of ncAAs in human hematopoietic stem cells and reconstitution of this genetically engineered hematopoietic system in mice.
Collapse
|
209
|
Wu X, Spence JS, Das T, Yuan X, Chen C, Zhang Y, Li Y, Sun Y, Chandran K, Hang HC, Peng T. Site-Specific Photo-Crosslinking Proteomics Reveal Regulation of IFITM3 Trafficking and Turnover by VCP/p97 ATPase. Cell Chem Biol 2020; 27:571-585.e6. [PMID: 32243810 PMCID: PMC7194980 DOI: 10.1016/j.chembiol.2020.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a key interferon effector that broadly prevents infection by diverse viruses. However, the cellular factors that control IFITM3 homeostasis and antiviral activity have not been fully elucidated. Using site-specific photo-crosslinking and quantitative proteomic analysis, here we present the identification and functional characterization of VCP/p97 AAA-ATPase as a primary interaction partner of IFITM3. We show that IFITM3 ubiquitination at lysine 24 is crucial for VCP binding, trafficking, turnover, and engagement with incoming virus particles. Consistently, pharmacological inhibition of VCP/p97 ATPase activity leads to defective IFITM3 lysosomal sorting, turnover, and co-trafficking with virus particles. Our results showcase the utility of site-specific protein photo-crosslinking in mammalian cells and reveal VCP/p97 as a key cellular factor involved in IFITM3 trafficking and homeostasis. Photo-crosslinking proteomics identify VCP/p97 as an IFITM3-interacting protein Ubiquitination of IFITM3 is crucial for interaction with VCP Lysine 24 ubiquitination regulates IFITM3 trafficking and turnover Depletion or inhibition of VCP leads to delayed turnover and accumulation of IFITM3
Collapse
Affiliation(s)
- Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Xiaoqiu Yuan
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yumeng Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
210
|
Italia JS, Peeler JC, Hillenbrand CM, Latour C, Weerapana E, Chatterjee A. Genetically encoded protein sulfation in mammalian cells. Nat Chem Biol 2020; 16:379-382. [PMID: 32198493 PMCID: PMC7564891 DOI: 10.1038/s41589-020-0493-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/11/2019] [Accepted: 01/17/2020] [Indexed: 11/14/2022]
Abstract
Tyrosine sulfation is an important post-translational modification found in higher eukaryotes. Here we report an engineered tyrosyl-tRNA synthetase/tRNA pair that co-translationally incorporates O-sulfotyrosine in response to UAG codons in E. coli and mammalian cells. This platform enables recombinant expression of eukaryotic proteins homogeneously sulfated at chosen sites, which was demonstrated by expressing human heparin cofactor II in mammalian cells in different states of sulfation.
Collapse
Affiliation(s)
- James S Italia
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | | | | | | | | |
Collapse
|
211
|
Błażej P, Wnetrzak M, Mackiewicz D, Mackiewicz P. Basic principles of the genetic code extension. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191384. [PMID: 32257313 PMCID: PMC7062095 DOI: 10.1098/rsos.191384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 05/08/2023]
Abstract
Compounds including non-canonical amino acids (ncAAs) or other artificially designed molecules can find a lot of applications in medicine, industry and biotechnology. They can be produced thanks to the modification or extension of the standard genetic code (SGC). Such peptides or proteins including the ncAAs can be constantly delivered in a stable way by organisms with the customized genetic code. Among several methods of engineering the code, using non-canonical base pairs is especially promising, because it enables generating many new codons, which can be used to encode any new amino acid. Since even one pair of new bases can extend the SGC up to 216 codons generated by a six-letter nucleotide alphabet, the extension of the SGC can be achieved in many ways. Here, we proposed a stepwise procedure of the SGC extension with one pair of non-canonical bases to minimize the consequences of point mutations. We reported relationships between codons in the framework of graph theory. All 216 codons were represented as nodes of the graph, whereas its edges were induced by all possible single nucleotide mutations occurring between codons. Therefore, every set of canonical and newly added codons induces a specific subgraph. We characterized the properties of the induced subgraphs generated by selected sets of codons. Thanks to that, we were able to describe a procedure for incremental addition of the set of meaningful codons up to the full coding system consisting of three pairs of bases. The procedure of gradual extension of the SGC makes the whole system robust to changing genetic information due to mutations and is compatible with the views assuming that codons and amino acids were added successively to the primordial SGC, which evolved minimizing harmful consequences of mutations or mistranslations of encoded proteins.
Collapse
Affiliation(s)
- Paweł Błażej
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, Wrocław, Poland
| | | | | | | |
Collapse
|
212
|
Drienovská I, Roelfes G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 2020. [DOI: 10.1038/s41929-019-0410-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
213
|
Vurgun N, Nitz M. Validation of l-Tellurienylalanine as a Phenylalanine Isostere. Chembiochem 2019; 21:1136-1139. [PMID: 31742805 DOI: 10.1002/cbic.201900635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 01/21/2023]
Abstract
Mass cytometry (MC) and imaging mass cytometry (IMCTM ) have emerged as important tools for the study of biological heterogeneity. We recently demonstrated the use of l-2-tellurienylalanine (TePhe), a mimic of phenylalanine (Phe), as an MC- and IMC-compatible protein synthesis reporter. In this work, the biochemical similarity of TePhe and its cognate analogue, Phe, are examined in the context of the RNase S complex. Isothermal titration calorimetry studies show that incorporation of TePhe preserves the interaction of S-peptide with S-protein, and the dissociation constants for the interaction of the Phe and TePhe peptides are within a factor of two. The resulting RNase S complex is catalytically active without significant alterations in the enzyme's kinetic parameters. Furthermore, circular dichroism spectroscopy does not reveal any changes to the secondary structure of TePhe-substituted RNase S. These findings provide strong evidence that TePhe functions as a Phe isostere in the context of a folded protein. It is anticipated that incorporation of TePhe into peptides or peptidomimetic scaffolds will enable facile generation of MC and IMCTM probes.
Collapse
Affiliation(s)
- Nesrin Vurgun
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
214
|
Rubini R, Ivanov I, Mayer C. A Screening Platform to Identify and Tailor Biocompatible Small-Molecule Catalysts. Chemistry 2019; 25:16017-16021. [PMID: 31648409 PMCID: PMC6972700 DOI: 10.1002/chem.201904808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 01/24/2023]
Abstract
Interfacing biocompatible, small-molecule catalysis with cellular metabolism promises a straightforward introduction of new function into organisms without the need for genetic manipulation. However, identifying and optimizing synthetic catalysts that perform new-to-nature transformations under conditions that support life is a cumbersome task. To enable the rapid discovery and fine-tuning of biocompatible catalysts, we describe a 96-well screening platform that couples the activity of synthetic catalysts to yield non-canonical amino acids from appropriate precursors with the subsequent incorporation of these nonstandard building blocks into GFP (quantifiable readout). Critically, this strategy does not only provide a common readout (fluorescence) for different reaction/catalyst combinations, but also informs on the organism's fitness, as stop codon suppression relies on all steps of the central dogma of molecular biology. To showcase our approach, we have applied it to the evaluation and optimization of transition-metal-catalyzed deprotection reactions.
Collapse
Affiliation(s)
- Rudy Rubini
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Ilya Ivanov
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| |
Collapse
|
215
|
Bridge T, Shaikh SA, Thomas P, Botta J, McCormick PJ, Sachdeva A. Site-Specific Encoding of Photoactivity in Antibodies Enables Light-Mediated Antibody-Antigen Binding on Live Cells. Angew Chem Int Ed Engl 2019; 58:17986-17993. [PMID: 31609054 PMCID: PMC6973043 DOI: 10.1002/anie.201908655] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Antibodies have found applications in several fields, including, medicine, diagnostics, and nanotechnology, yet methods to modulate antibody-antigen binding using an external agent remain limited. Here, we have developed photoactive antibody fragments by genetic site-specific replacement of single tyrosine residues with photocaged tyrosine, in an antibody fragment, 7D12. A simple and robust assay is adopted to evaluate the light-mediated binding of 7D12 mutants to its target, epidermal growth factor receptor (EGFR), on the surface of cancer cells. Presence of photocaged tyrosine reduces 7D12-EGFR binding affinity by over 20-fold in two out of three 7D12 mutants studied, and binding is restored upon exposure to 365 nm light. Molecular dynamics simulations explain the difference in effect of photocaging on 7D12-EGFR interaction among the mutants. Finally, we demonstrate the application of photoactive antibodies in delivering fluorophores to EGFR-positive live cancer cells in a light-dependent manner.
Collapse
Affiliation(s)
- Thomas Bridge
- School of ChemistryUniversity of East AngliaNorwichNR4 7TJUK
| | - Saher A. Shaikh
- School of ChemistryUniversity of East AngliaNorwichNR4 7TJUK
| | - Paul Thomas
- The Henry Wellcome Laboratory of Cell ImagingUniversity of East AngliaNorwichNR4 7TJUK
| | - Joaquin Botta
- Centre of EndocrinologyWilliam Harvey Research InstituteQueen Mary University LondonCharterhouse SquareLondonEC1M 6BQUK
| | - Peter J. McCormick
- Centre of EndocrinologyWilliam Harvey Research InstituteQueen Mary University LondonCharterhouse SquareLondonEC1M 6BQUK
| | - Amit Sachdeva
- School of ChemistryUniversity of East AngliaNorwichNR4 7TJUK
| |
Collapse
|
216
|
Gupta K, Toombes GE, Swartz KJ. Exploring structural dynamics of a membrane protein by combining bioorthogonal chemistry and cysteine mutagenesis. eLife 2019; 8:50776. [PMID: 31714877 PMCID: PMC6850778 DOI: 10.7554/elife.50776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The functional mechanisms of membrane proteins are extensively investigated with cysteine mutagenesis. To complement cysteine-based approaches, we engineered a membrane protein with thiol-independent crosslinkable groups using azidohomoalanine (AHA), a non-canonical methionine analogue containing an azide group that can selectively react with cycloalkynes through a strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. We demonstrate that AHA can be readily incorporated into the Shaker Kv channel in place of methionine residues and modified with azide-reactive alkyne probes in Xenopus oocytes. Using voltage-clamp fluorometry, we show that AHA incorporation permits site-specific fluorescent labeling to track voltage-dependent conformational changes similar to cysteine-based methods. By combining AHA incorporation and cysteine mutagenesis in an orthogonal manner, we were able to site-specifically label the Shaker Kv channel with two different fluorophores simultaneously. Our results identify a facile and straightforward approach for chemical modification of membrane proteins with bioorthogonal chemistry to explore their structure-function relationships in live cells. Living cells can sense cues from their environment via molecules located at the interface between the inside and the outside of the cell. These molecules are mostly proteins and are made up of building blocks known as amino acids. To understand how these proteins work, fluorescent probes can be attached to amino acids within them – which can then tell when different parts of proteins move in response to a signal. Scientists often target fluorescent probes at the amino acid cysteine, because it has a chemically reactive side group and is rare enough so that unique positions can be labeled in the protein of interest. However, being able to target other amino acids would allow scientists to ask, and potentially solve, more precise questions about these proteins. Methionine is another amino acid that has a low abundance in most proteins. Previous research has shown that the cell’s normal protein-building machinery can incorporate synthetic versions of methionine into proteins. This suggested that the introduction of chemically reactive alternatives to methionine could offer a way to label membrane proteins with fluorescent probes and free up the cysteines to be targeted with other approaches. Gupta et al. set out to develop a straightforward method to achieve this and started with a well-studied membrane protein, called Shaker, and cells from female African clawed frogs, which are widely used to study membrane proteins. Gupta et al. found that the cells could readily take up a chemically reactive methionine alternative called azidohomoalanine (AHA) from their surrounding solution and incorporate it within the Shaker protein. The AHA took the place of the methionines that are normally found in Shaker, and just like in cysteine-based methods, fluorescent probes could be easily attached to the AHAs in this membrane protein. Shaker is a protein that allows potassium ions to flow across the cell membrane by changing shape in response to the membrane voltage. The fluorescence from those probes also changed with the membrane voltage in a way that was comparable to cysteine-mediated approaches. This indicated that the AHA modification could also be used to track structural changes in the Shaker protein. Finally, Gupta et al. showed that AHA- and cysteine-mediated labeling approaches could be combined to attach two different fluorescent probes onto the Shaker protein. This method will expand the toolbox for researchers studying the relationship between the structure and function of membrane proteins in live cells. In future, it could be applied more widely once the properties of the fluorescent probes for AHA-mediated labeling can be optimized.
Collapse
Affiliation(s)
- Kanchan Gupta
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| | - Gilman Es Toombes
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
217
|
Qin X, Tang H, Cao W, Dai Z, Hu L, Huang Y, Liu T. An Orthogonal Tyrosyl-tRNA Synthetase/tRNA Pair from a Thermophilic Bacterium for an Expanded Eukaryotic Genetic Code. Biochemistry 2019; 59:90-99. [DOI: 10.1021/acs.biochem.9b00757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuewen Qin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hongting Tang
- Center for Synthetic Biochemistry, Chinese Academy of Sciences, Shenzhen Institutes for Advanced Technologies, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Wenbing Cao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Dai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Liming Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yujia Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
218
|
Bridge T, Shaikh SA, Thomas P, Botta J, McCormick PJ, Sachdeva A. Site‐Specific Encoding of Photoactivity in Antibodies Enables Light‐Mediated Antibody–Antigen Binding on Live Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas Bridge
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ UK
| | - Saher A. Shaikh
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ UK
| | - Paul Thomas
- The Henry Wellcome Laboratory of Cell ImagingUniversity of East Anglia Norwich NR4 7TJ UK
| | - Joaquin Botta
- Centre of EndocrinologyWilliam Harvey Research InstituteQueen Mary University London Charterhouse Square London EC1M 6BQ UK
| | - Peter J. McCormick
- Centre of EndocrinologyWilliam Harvey Research InstituteQueen Mary University London Charterhouse Square London EC1M 6BQ UK
| | - Amit Sachdeva
- School of ChemistryUniversity of East Anglia Norwich NR4 7TJ UK
| |
Collapse
|
219
|
Travis CR, King EA, Gaunt GH, Young DD. Genetic Encoding of a Bioconjugation Handle for [2+2+2] Cycloaddition Reactions. Chembiochem 2019; 21:310-314. [PMID: 31298807 DOI: 10.1002/cbic.201900391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 01/08/2023]
Abstract
Protein bioconjugates have many critical applications, especially in the development of therapeutics. Consequently, the design of novel methodologies to prepare protein bioconjugates is of great importance. Herein we present the development and optimization of a novel strategy to prepare bioconjugates through a genetically encoded [2+2+2] cycloaddition reaction. To do this, a novel unnatural amino acid (UAA) containing a dipropargyl amine functionality was synthesized and incorporated site specifically. This UAA-containing protein was reacted with an alkyne-containing fluorophore to afford a covalently linked, well-defined protein bioconjugate. This reaction is convenient with an optimized reaction time of just two hours at room temperature and yields a stable, polysubstituted benzene ring. Overall, this work contributes a new bioconjugation strategy to the growing toolbox of reactions to develop protein bioconjugates, which have a myriad of applications.
Collapse
Affiliation(s)
- Christopher R Travis
- Department of Chemistry, College of William & Mary, PO Box 8795, Williamsburg, VA, 23187, USA
| | - Elizabeth A King
- Department of Chemistry, College of William & Mary, PO Box 8795, Williamsburg, VA, 23187, USA
| | - Gillian H Gaunt
- Department of Chemistry, College of William & Mary, PO Box 8795, Williamsburg, VA, 23187, USA
| | - Douglas D Young
- Department of Chemistry, College of William & Mary, PO Box 8795, Williamsburg, VA, 23187, USA
| |
Collapse
|
220
|
Yu J, Li J, Gao X, Zeng S, Zhang H, Liu J, Jiao Q. Dynamic Kinetic Resolution for Asymmetric Synthesis of L-Noncanonical Amino Acids from D-Ser Using Tryptophan Synthase and Alanine Racemase. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Shuiyun Zeng
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Hongjuan Zhang
- School of Pharmacy; Nanjing Medical University; 211166 Nanjing China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| |
Collapse
|
221
|
Israeli B, Vaserman L, Amiram M. Multi‐Site Incorporation of Nonstandard Amino Acids into Protein‐Based Biomaterials. Isr J Chem 2019. [DOI: 10.1002/ijch.201900043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bar Israeli
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Livne Vaserman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| |
Collapse
|
222
|
Koh M, Yao A, Gleason PR, Mills JH, Schultz PG. A General Strategy for Engineering Noncanonical Amino Acid Dependent Bacterial Growth. J Am Chem Soc 2019; 141:16213-16216. [PMID: 31580059 DOI: 10.1021/jacs.9b08491] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synthetic auxotrophy in which bacterial viability depends on the presence of a synthetic amino acid provides a robust strategy for the containment of genetically modified organisms and the development of safe, live vaccines. However, a simple, general strategy to evolve essential proteins to be dependent on synthetic amino acids is lacking. Using a temperature-sensitive selection system, we evolved an Escherichia coli (E. coli) sliding clamp variant with an orthogonal protein-protein interface, which contains a Leu273 to p-benzoylphenyl alanine (pBzF) mutation. The E. coli strain with this variant DNA clamp has a very low escape frequency (<10-10), and its growth is strictly dependent on the presence of pBzF. This selection strategy can be generally applied to create ncAA dependence of other organisms with DNA clamp homologues.
Collapse
Affiliation(s)
- Minseob Koh
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Anzhi Yao
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Patrick R Gleason
- School of Molecular Sciences and The Biodesign Center for Molecular Design and Biomimetics , Arizona State University , Tempe , Arizona 85281 , United States
| | - Jeremy H Mills
- School of Molecular Sciences and The Biodesign Center for Molecular Design and Biomimetics , Arizona State University , Tempe , Arizona 85281 , United States
| | - Peter G Schultz
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
223
|
Koh M, Cho HY, Yu C, Choi S, Lee KB, Schultz PG. Site-Specific Incorporation of a Dithiolane Containing Amino Acid into Proteins. Bioconjug Chem 2019; 30:2102-2105. [PMID: 31319026 DOI: 10.1021/acs.bioconjchem.9b00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have genetically encoded a dithiolane containing amino acid (dtF) in Escherichia coli (E. coli) using a polyspecific aminoacyl-tRNA synthetase (aaRS)/amber suppressor tRNA pair. To demonstrate the utility of dtF for bioapplications, we synthesized gold nanoparticle (AuNP) constructs with a mutant superfolder green fluorescent protein (sfGFP) [sfGFP-AuNP] as a model for the protein-metal conjugation. The resulting sfGFP-AuNP constructs show directional homogeneity and enhanced chemical durability compared to their cysteine analogues toward excess environmental 1,4-dithiothreitol (DTT).
Collapse
Affiliation(s)
- Minseob Koh
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Chenguang Yu
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Seihyun Choi
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States.,Department of Life and Nanopharmaceutical Science, College of Pharmacy , Kyung Hee University , Seoul 02447 , Republic of Korea
| | - Peter G Schultz
- Department of Chemistry and Skaggs Institute for Chemical Biology , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
224
|
Oller‐Salvia B, Chin JW. Efficient Phage Display with Multiple Distinct Non‐Canonical Amino Acids Using Orthogonal Ribosome‐Mediated Genetic Code Expansion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Benjamí Oller‐Salvia
- Medical Research Council Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| |
Collapse
|
225
|
Ad O, Hoffman KS, Cairns AG, Featherston AL, Miller SJ, Söll D, Schepartz A. Translation of Diverse Aramid- and 1,3-Dicarbonyl-peptides by Wild Type Ribosomes in Vitro. ACS CENTRAL SCIENCE 2019; 5:1289-1294. [PMID: 31403077 PMCID: PMC6661870 DOI: 10.1021/acscentsci.9b00460] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 05/21/2023]
Abstract
Here, we report that wild type Escherichia coli ribosomes accept and elongate precharged initiator tRNAs acylated with multiple benzoic acids, including aramid precursors, as well as malonyl (1,3-dicarbonyl) substrates to generate a diverse set of aramid-peptide and polyketide-peptide hybrid molecules. This work expands the scope of ribozyme- and ribosome-catalyzed chemical transformations, provides a starting point for in vivo translation engineering efforts, and offers an alternative strategy for the biosynthesis of polyketide-peptide natural products.
Collapse
Affiliation(s)
- Omer Ad
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kyle S. Hoffman
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Andrew G. Cairns
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Aaron L. Featherston
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Dieter Söll
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Alanna Schepartz
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| |
Collapse
|
226
|
Oller-Salvia B, Chin JW. Efficient Phage Display with Multiple Distinct Non-Canonical Amino Acids Using Orthogonal Ribosome-Mediated Genetic Code Expansion. Angew Chem Int Ed Engl 2019; 58:10844-10848. [PMID: 31157495 PMCID: PMC6771915 DOI: 10.1002/anie.201902658] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Indexed: 11/10/2022]
Abstract
Phage display is a powerful approach for evolving proteins and peptides with new functions, but the properties of the molecules that can be evolved are limited by the chemical diversity encoded. Herein, we report a system for incorporating non-canonical amino acids (ncAAs) into proteins displayed on phage using the pyrrolysyl-tRNA synthetase/tRNA pair. We improve the efficiency of ncAA incorporation using an evolved orthogonal ribosome (riboQ1), and encode a cyclopropene-containing ncAA (CypK) at diverse sites on a displayed single-chain antibody variable fragment (ScFv), in response to amber and quadruplet codons. CypK and an alkyne-containing ncAA are incorporated at distinct sites, enabling the double labeling of ScFv with distinct probes, through mutually orthogonal reactions, in a one-pot procedure. These advances expand the number of functionalities that can be encoded on phage-displayed proteins and provide a foundation to further expand the scope of phage display applications.
Collapse
Affiliation(s)
- Benjamí Oller-Salvia
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
227
|
Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237-266. [PMID: 31092687 PMCID: PMC6610526 DOI: 10.1042/ebc20180042] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Collapse
Affiliation(s)
| | - Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
228
|
Addy PS, Zheng Y, Italia JS, Chatterjee A. A "Quenchergenic" Chemoselective Protein Labeling Strategy. Chembiochem 2019; 20:1659-1663. [PMID: 30740850 PMCID: PMC6663590 DOI: 10.1002/cbic.201800817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Indexed: 12/21/2022]
Abstract
Dynamic changes in protein structure can be monitored by using a fluorescent probe and a dark quencher. This approach is contingent upon the ability to precisely introduce a fluorophore/quencher pair into two specific sites of a protein of interest. Despite recent advances, there is continued demand for new and convenient approaches to site-selectively label proteins with such optical probes. We have recently developed a chemoselectively rapid azo-coupling reaction (CRACR) for site-specific protein labeling; it relies on rapid coupling between a genetically encoded 5-hydroxytryptophan residue and various aromatic diazonium ions. Herein, it is reported that the product of this conjugation reaction, a highly chromophoric biarylazo group, is a potent fluorescence quencher. The absorption properties of this azo product can be tuned by systematically altering the structure of the aryldiazonium species. A particular "quenchergenic" aryldiazonium has been identified that, upon conjugation, efficiently quenches the fluorescence of green fluorescent protein, which is a widely used genetically encoded fluorescent probe that can be terminally attached to target proteins. This fluorophore/quencher pair was used to evaluate the protein-labeling kinetics of CRACR, as well as to monitor the proteolysis of a fusion protein.
Collapse
Affiliation(s)
- Partha Sarathi Addy
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| | - Yunan Zheng
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| | - James S Italia
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
229
|
Miao H, Yu C, Yao A, Xuan W. Rational design of a function-based selection method for genetically encoding acylated lysine derivatives. Org Biomol Chem 2019; 17:6127-6130. [PMID: 31172146 DOI: 10.1039/c9ob00992b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A foundation of genetic code expansion is the evolution of orthogonal aminoacyl-tRNA synthetase to recognize a non-canonical amino acid, which typically involves read-through of amber stop codon in the genes used in selection. The process is time-consuming, labor-intensive, and susceptible to certain bias. As a complementation, herein, we rationally designed a function-based method to directed evolution of aminoacyl-tRNA synthetase for acylated lysine derivatives.
Collapse
Affiliation(s)
- Hui Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | |
Collapse
|
230
|
Lee KJ, Kang D, Park HS. Site-Specific Labeling of Proteins Using Unnatural Amino Acids. Mol Cells 2019; 42:386-396. [PMID: 31122001 PMCID: PMC6537655 DOI: 10.14348/molcells.2019.0078] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Labeling of a protein with a specific dye or tag at defined positions is a critical step in tracing the subtle behavior of the protein and assessing its cellular function. Over the last decade, many strategies have been developed to achieve selective labeling of proteins in living cells. In particular, the site-specific unnatural amino acid (UAA) incorporation technique has gained increasing attention since it enables attachment of various organic probes to a specific position of a protein in a more precise way. In this review, we describe how the UAA incorporation technique has expanded our ability to achieve site-specific labeling and visualization of target proteins for functional analyses in live cells.
Collapse
Affiliation(s)
- Kyung Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Deokhee Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
231
|
Boknevitz K, Italia JS, Li B, Chatterjee A, Liu SY. Synthesis and characterization of an unnatural boron and nitrogen-containing tryptophan analogue and its incorporation into proteins. Chem Sci 2019; 10:4994-4998. [PMID: 31183048 PMCID: PMC6524624 DOI: 10.1039/c8sc05167d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
A boron and nitrogen containing unnatural analogue of tryptophan is synthesized and incorporated into proteins.
A boron and nitrogen containing unnatural analogue of tryptophan is synthesized through the functionalization of BN-indole. The spectroscopic properties of BN-tryptophan are reported with respect to the natural tryptophan, and the incorporation of BN-tryptophan into proteins expressed in E. coli using selective pressure incorporation is described. This work shows that a cellular system can recognize the unnatural, BN-containing tryptophan. More importantly, it presents the first example of an azaborine containing amino acid being incorporated into proteins.
Collapse
Affiliation(s)
- Katherine Boknevitz
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - James S Italia
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Bo Li
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Abhishek Chatterjee
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Shih-Yuan Liu
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| |
Collapse
|
232
|
Ko W, Kumar R, Kim S, Lee HS. Construction of Bacterial Cells with an Active Transport System for Unnatural Amino Acids. ACS Synth Biol 2019; 8:1195-1203. [PMID: 30971082 DOI: 10.1021/acssynbio.9b00076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Engineered organisms with an expanded genetic code have attracted much attention in chemical and synthetic biology research. In this work, engineered bacterial organisms with enhanced unnatural amino acid (UAA) uptake abilities were developed by screening periplasmic binding protein (PBP) mutants for recognition of UAAs. A FRET-based assay was used to identify a mutant PBP (LBP-AEL) with excellent binding affinity ( Kd ≈ 500 nM) to multiple UAAs from 37 mutants. Bacterial cells expressing LBP-AEL showed up to 5-fold enhanced uptake of UAAs, which was determined by genetic incorporation of UAAs into a green fluorescent protein and measuring UAA concentration in cell lysates. To the best of our knowledge, this work is the first report of engineering cellular uptake of UAAs and could provide an impetus for designing advanced unnatural organisms with an expanded genetic code, which function with the efficiency comparable to that of natural organisms. The system would be useful to increase mutant protein yield from lower concentrations of UAAs for industrial and large-scale applications. In addition, the techniques used in this report such as the sensor design and the measurement of UAA concentration in cell lysates could be useful for other biochemical applications.
Collapse
Affiliation(s)
- Wooseok Ko
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Rahul Kumar
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
233
|
Joiner CM, Breen ME, Mapp AK. Electron-deficient p-benzoyl-l-phenylalanine derivatives increase covalent chemical capture yields for protein-protein interactions. Protein Sci 2019; 28:1163-1170. [PMID: 30977234 DOI: 10.1002/pro.3621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
The photoactivatable amino acid p-benzoyl-l-phenylalanine (pBpa) has been used for the covalent capture of protein-protein interactions (PPIs) in vitro and in living cells. However, this technique often suffers from poor photocrosslinking yields due to the low reactivity of the active species. Here we demonstrate that the incorporation of halogenated pBpa analogs into proteins leads to increased crosslinking yields for protein-protein interactions. The analogs can be incorporated into live yeast and upon irradiation capture endogenous PPIs. Halogenated pBpas will extend the scope of PPIs that can be captured and expand the toolbox for mapping PPIs in their native environment.
Collapse
Affiliation(s)
- Cassandra M Joiner
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Meghan E Breen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
234
|
Italia JS, Addy PS, Erickson SB, Peeler JC, Weerapana E, Chatterjee A. Mutually Orthogonal Nonsense-Suppression Systems and Conjugation Chemistries for Precise Protein Labeling at up to Three Distinct Sites. J Am Chem Soc 2019; 141:6204-6212. [PMID: 30909694 DOI: 10.1021/jacs.8b12954] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into a protein is an emerging technology with tremendous potential. It relies on mutually orthogonal engineered aminoacyl-tRNA synthetase/tRNA pairs that suppress different nonsense/frameshift codons. So far, up to two distinct ncAAs have been incorporated into proteins expressed in E. coli, using archaea-derived tyrosyl and pyrrolysyl pairs. Here we report that the E. coli derived tryptophanyl pair can be combined with the archaeal tyrosyl or the pyrrolysyl pair in ATMW1 E. coli to incorporate two different ncAAs into one protein with high fidelity and efficiency. By combining all three orthogonal pairs, we further demonstrate simultaneous site-specific incorporation of three different ncAAs into one protein. To use this technology for chemoselectively labeling proteins with multiple distinct entities at predefined sites, we also sought to identify different bioconjugation handles that can be coincorporated into proteins as ncAA-side chains and subsequently functionalized through mutually compatible labeling chemistries. To this end, we show that the recently developed chemoselective rapid azo-coupling reaction (CRACR) directed to 5-hydroxytryptophan (5HTP) is compatible with strain-promoted azide-alkyne cycloaddition (SPAAC) targeted to p-azidophenylalanine (pAzF) and strain-promoted inverse electron-demand Diels-Alder cycloaddition (SPIEDAC) targeted to cyclopropene-lysine (CpK) for rapid, catalyst-free protein labeling at multiple sites. Combining these mutually orthogonal nonsense suppression systems and the mutually compatible bioconjugation handles they incorporate, we demonstrate site-specific labeling of recombinantly expressed proteins at up to three distinct sites.
Collapse
Affiliation(s)
- James S Italia
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Partha Sarathi Addy
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Sarah B Erickson
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Jennifer C Peeler
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Eranthie Weerapana
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Abhishek Chatterjee
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
235
|
Travis CR, Mazur LE, Peairs EM, Gaunt GH, Young DD. Mechanistic investigation and further optimization of the aqueous Glaser-Hay bioconjugation. Org Biomol Chem 2019; 17:3396-3402. [PMID: 30869108 PMCID: PMC6482449 DOI: 10.1039/c9ob00327d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Glaser-Hay bioconjugation has recently emerged as an efficient and attractive method to generate stable, useful bioconjugates with numerous applications, specifically in the field of therapeutics. Herein, we investigate the mechanism of the aqueous Glaser-Hay coupling to better understand optimization strategies. In doing so, it was identified that catalase is able to minimize protein oxidation and improve coupling efficiency, suggesting that hydrogen peroxide is produced during the aqueous Glaser-Hay bioconjugation. Further, several new ligands were investigated to minimize protein oxidation and maximize coupling efficiency. Finally, two novel strategies to streamline the Glaser-Hay bioconjugation and eliminate the need for secondary purification have been developed.
Collapse
Affiliation(s)
- Christopher R Travis
- Department of Chemistry, College of William & Mary, PO Box 8795, Williamsburg, VA, USA 23185.
| | | | | | | | | |
Collapse
|
236
|
Mayer C. Selection, Addiction and Catalysis: Emerging Trends for the Incorporation of Noncanonical Amino Acids into Peptides and Proteins in Vivo. Chembiochem 2019; 20:1357-1364. [PMID: 30618145 PMCID: PMC6563710 DOI: 10.1002/cbic.201800733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/22/2022]
Abstract
Expanding the genetic code of organisms by incorporating noncanonical amino acids (ncAAs) into target proteins through the suppression of stop codons in vivo has profoundly impacted how we perform protein modification or detect proteins and their interaction partners in their native environment. Yet, with genetic code expansion strategies maturing over the past 15 years, new applications that make use—or indeed repurpose—these techniques are beginning to emerge. This Concept article highlights three of these developments: 1) The incorporation of ncAAs for the biosynthesis and selection of bioactive macrocyclic peptides with novel ring architectures, 2) synthetic biocontainment strategies based on the addiction of microorganisms to ncAAs, and 3) enzyme design strategies, in which ncAAs with unique functionalities enable the catalysis of new‐to‐nature reactions. Key advances in all three areas are presented and potential future applications discussed.
Collapse
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
237
|
Substituting the catalytic proline of 4-oxalocrotonate tautomerase with non-canonical analogues reveals a finely tuned catalytic system. Sci Rep 2019; 9:2697. [PMID: 30804446 PMCID: PMC6389900 DOI: 10.1038/s41598-019-39484-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/03/2019] [Indexed: 12/21/2022] Open
Abstract
The enzyme 4-oxalocrotonate tautomerase shows remarkable catalytic versatility due to the secondary amine of its N-terminal proline moiety. In this work, we incorporated a range of proline analogues into the enzyme and examined the effects on structure and activity. While the structure of the enzyme remained unperturbed, its promiscuous Michael-type activity was severely affected. This finding demonstrates how atomic changes in a biocatalytic system can abolish its activity. Our work provides a toolbox for successful generation of enzyme variants with non-canonical catalytic proline analogues.
Collapse
|
238
|
Reetz MT. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts? Acc Chem Res 2019; 52:336-344. [PMID: 30689339 DOI: 10.1021/acs.accounts.8b00582] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition metal catalysts mediate a wide variety of chemo-, stereo-, and regioselective transformations, and therefore play a pivotal role in modern synthetic organic chemistry. Steric and electronic effects of ligands provide organic chemists with an exceedingly useful tool. More than four decades ago, chemists began to think about a different approach, namely, embedding achiral ligand/metal moieties covalently or noncovalently in protein hosts with formation of artificial metalloenzymes. While structurally fascinating, this approach led in each case only to a single (bio)catalyst, with its selectivity and activity being a matter of chance. In order to solve this fundamental problem, my group proposed in 2000-2002 the idea of directed evolution of artificial metalloenzymes. In earlier studies, we had already demonstrated that directed evolution of enzymes constitutes a viable method for enhancing and inverting the stereoselectivity of enzymes as catalysts in organic chemistry. We speculated that it should also be possible to manipulate selectivity and activity of artificial metalloenzymes, which would provide organic chemists with a tool for optimizing essentially any transition metal catalyzed reaction type. In order to put this vision into practice, we first turned to the Whitesides system for artificial metalloenzyme formation, comprising a biotinylated diphosphine/Rh moiety, which is anchored noncovalently to avidin or streptavidin. Following intensive optimization, proof of principle was finally demonstrated in 2006, which opened the door to a new research area. This personal Account critically assesses these early studies as well as subsequent efforts from my group focusing on different protein scaffolds, and includes briefly some of the most important current contributions of other groups. Two primary messages emerge: First, since organic chemists continue to be extremely good at designing and implementing man-made transition metal catalysts, often on a large scale, those scientists that are active in the equally intriguing field of directed evolution of artificial metalloenzymes should be moderate when generalizing claims. All factors required for a truly viable catalytic system need to be considered, especially activity and ease of upscaling. Second, the most exciting and thus far very rare cases of directed evolution of artificial metalloenzymes are those that focus on selective transformations that are not readily possible using state of the art transition metal catalysts.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim Germany
| |
Collapse
|
239
|
Mayer C, Dulson C, Reddem E, Thunnissen AWH, Roelfes G. Directed Evolution of a Designer Enzyme Featuring an Unnatural Catalytic Amino Acid. Angew Chem Int Ed Engl 2019; 58:2083-2087. [PMID: 30575260 PMCID: PMC6519144 DOI: 10.1002/anie.201813499] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 11/15/2022]
Abstract
The impressive rate accelerations that enzymes display in nature often result from boosting the inherent catalytic activities of side chains by their precise positioning inside a protein binding pocket. Such fine-tuning is also possible for catalytic unnatural amino acids. Specifically, the directed evolution of a recently described designer enzyme, which utilizes an aniline side chain to promote a model hydrazone formation reaction, is reported. Consecutive rounds of directed evolution identified several mutations in the promiscuous binding pocket, in which the unnatural amino acid is embedded in the starting catalyst. When combined, these mutations boost the turnover frequency (kcat ) of the designer enzyme by almost 100-fold. This results from strengthening the catalytic contribution of the unnatural amino acid, as the engineered designer enzymes outperform variants, in which the aniline side chain is replaced with a catalytically inactive tyrosine residue, by more than 200-fold.
Collapse
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Christopher Dulson
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Eswar Reddem
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| | - Andy‐Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474AGGroningenThe Netherlands
| |
Collapse
|
240
|
Mayer C, Dulson C, Reddem E, Thunnissen AMWH, Roelfes G. Directed Evolution of a Designer Enzyme Featuring an Unnatural Catalytic Amino Acid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Clemens Mayer
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Christopher Dulson
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Eswar Reddem
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 4 9474 AG Groningen The Netherlands
| |
Collapse
|
241
|
Peciak K, Laurine E, Tommasi R, Choi JW, Brocchini S. Site-selective protein conjugation at histidine. Chem Sci 2019; 10:427-439. [PMID: 30809337 PMCID: PMC6354831 DOI: 10.1039/c8sc03355b] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Site-selective conjugation generally requires both (i) molecular engineering of the protein of interest to introduce a conjugation site at a defined location and (ii) a site-specific conjugation technology. Three N-terminal interferon α2-a (IFN) variants with truncated histidine tags were prepared and conjugation was examined using a bis-alkylation reagent, PEG(10kDa)-mono-sulfone 3. A histidine tag comprised of two histidines separated by a glycine (His2-tag) underwent PEGylation. Two more IFN variants were then prepared with the His2-tag engineered at different locations in IFN. Another IFN variant was prepared with the His-tag introduced in an α-helix, and required three contiguous histidines to ensure that two histidine residues in the correct conformation would be available for conjugation. Since histidine is a natural amino acid, routine methods of site-directed mutagenesis were used to generate the IFN variants from E. coli in soluble form at titres comparable to native IFN. PEGylation conversions ranged from 28-39%. A single step purification process gave essentially the pure PEG-IFN variant (>97% by RP-HPLC) in high recovery with isolated yields ranging from 21-33%. The level of retained bioactivity was strongly dependent on the site of PEG conjugation. The highest biological activity of 74% was retained for the PEG10-106(HGHG)-IFN variant which is unprecedented for a PEGylated IFN. The His2-tag at 106(HGHG)-IFN is engineered at the flexible loop most distant from IFN interaction with its dimeric receptor. The biological activity for the PEG10-5(HGH)-IFN variant was determined to be 17% which is comparable to other PEGylated IFN conjugates achieved at or near the N-terminus that have been previously described. The lowest retained activity (10%) was reported for PEG10-120(HHH)-IFN which was prepared as a negative control targeting a IFN site thought to be involved in receptor binding. The presence of two histidines as a His2-tag to generate a site-selective target for bis-alkylating PEGylation is a feasible approach for achieving site-selective PEGylation. The use of a His2-tag to strategically engineer a conjugation site in a protein location can result in maximising the retention of the biological activity following protein modification.
Collapse
Affiliation(s)
- Karolina Peciak
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | | | - Rita Tommasi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Ji-Won Choi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Steve Brocchini
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
| |
Collapse
|
242
|
Addy PS, Erickson SB, Italia JS, Chatterjee A. Labeling Proteins at Site-Specifically Incorporated 5-Hydroxytryptophan Residues Using a Chemoselective Rapid Azo-Coupling Reaction. Methods Mol Biol 2019; 2033:239-251. [PMID: 31332758 DOI: 10.1007/978-1-4939-9654-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemoselective protein labeling is a valuable tool in the arsenal of modern chemical biology. The unnatural amino acid mutagenesis technology provides a powerful way to site-specifically introduce nonnatural chemical functionalities into recombinant proteins, which can be subsequently functionalized in a chemoselective manner. Even though several strategies currently exist to selectively label recombinant proteins in this manner, there is considerable interest for the development of additional chemoselective reactions that are fast, catalyst-free, use readily available reagents, and are compatible with existing conjugation chemistries. Here we describe a method to express recombinant proteins in E. coli site-specifically incorporating 5-hydroxytryptophan, followed by the chemoselective labeling of this residue using a chemoselective rapid azo-coupling reaction.
Collapse
Affiliation(s)
| | | | - James S Italia
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
243
|
Sengupta S, Chandrasekaran S. Modifications of amino acids using arenediazonium salts. Org Biomol Chem 2019; 17:8308-8329. [DOI: 10.1039/c9ob01471c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aryl transfer reactions from arenediazonium salts have started to make their impact in chemical biology with initial forays in the arena of arylative modifications and bio-conjugations of amino acids, peptides and proteins.
Collapse
Affiliation(s)
- Saumitra Sengupta
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | |
Collapse
|
244
|
Almhjell PJ, Boville CE, Arnold FH. Engineering enzymes for noncanonical amino acid synthesis. Chem Soc Rev 2018; 47:8980-8997. [PMID: 30280154 PMCID: PMC6434697 DOI: 10.1039/c8cs00665b] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The standard proteinogenic amino acids grant access to a myriad of chemistries that harmonize to create life. Outside of these twenty canonical protein building blocks are countless noncanonical amino acids (ncAAs), either found in nature or created by man. Interest in ncAAs has grown as research has unveiled their importance as precursors to natural products and pharmaceuticals, biological probes, and more. Despite their broad applications, synthesis of ncAAs remains a challenge, as poor stereoselectivity and low functional-group compatibility stymie effective preparative routes. The use of enzymes has emerged as a versatile approach to prepare ncAAs, and nature's enzymes can be engineered to synthesize ncAAs more efficiently and expand the amino acid alphabet. In this tutorial review, we briefly outline different enzyme engineering strategies and then discuss examples where engineering has generated new 'ncAA synthases' for efficient, environmentally benign production of a wide and growing collection of valuable ncAAs.
Collapse
Affiliation(s)
- Patrick J Almhjell
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA.
| | | | | |
Collapse
|
245
|
Versatility of Synthetic tRNAs in Genetic Code Expansion. Genes (Basel) 2018; 9:genes9110537. [PMID: 30405060 PMCID: PMC6267555 DOI: 10.3390/genes9110537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Transfer RNA (tRNA) is a dynamic molecule used by all forms of life as a key component of the translation apparatus. Each tRNA is highly processed, structured, and modified, to accurately deliver amino acids to the ribosome for protein synthesis. The tRNA molecule is a critical component in synthetic biology methods for the synthesis of proteins designed to contain non-canonical amino acids (ncAAs). The multiple interactions and maturation requirements of a tRNA pose engineering challenges, but also offer tunable features. Major advances in the field of genetic code expansion have repeatedly demonstrated the central importance of suppressor tRNAs for efficient incorporation of ncAAs. Here we review the current status of two fundamentally different translation systems (TSs), selenocysteine (Sec)- and pyrrolysine (Pyl)-TSs. Idiosyncratic requirements of each of these TSs mandate how their tRNAs are adapted and dictate the techniques used to select or identify the best synthetic variants.
Collapse
|
246
|
Grassi L, Roschger C, Stanojlović V, Cabrele C. An explorative study towards the chemical synthesis of the immunoglobulin G1 Fc CH3 domain. J Pept Sci 2018; 24:e3126. [PMID: 30346065 PMCID: PMC6646916 DOI: 10.1002/psc.3126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies, fusion proteins including the immunoglobulin fragment c (Ig Fc) CH2‐CH3 domains, and engineered antibodies are prominent representatives of an important class of drugs and drug candidates, which are referred to as biotherapeutics or biopharmaceuticals. These recombinant proteins are highly heterogeneous due to their glycosylation pattern. In addition, enzyme‐independent reactions, like deamidation, dehydration, and oxidation of sensitive side chains, may contribute to their heterogeneity in a minor amount. To investigate the biological impact of a spontaneous chemical modification, especially if found to be recurrent in a biotherapeutic, it would be necessary to reproduce it in a homogeneous manner. Herein, we undertook an explorative study towards the chemical synthesis of the IgG1 Fc CH3 domain, which has been shown to undergo spontaneous changes like succinimide formation and methionine oxidation. We used Fmoc‐solid‐phase peptide synthesis (SPPS) and native chemical ligation (NCL) to test the accessibility of large fragments of the IgG1 Fc CH3 domain. In general, the incorporation of pseudoproline dipeptides improved the quality of the crude peptide precursors; however, sequences larger than 44 residues could not be achieved by standard stepwise elongation with Fmoc‐SPPS. In contrast, the application of NCL with cysteine residues, which were either native or introduced ad hoc, allowed the assembly of the C‐terminal IgG1 Fc CH3 sequence 371 to 450. The syntheses reported here show advantages and limitations of the chemical approaches chosen for the preparation of the synthetic IgG1 Fc CH3 domain and will guide future plans towards the synthesis of both the native and selectively modified full‐length domain.
Collapse
Affiliation(s)
- Luigi Grassi
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Cornelia Roschger
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlović
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| |
Collapse
|
247
|
Fang KY, Lieblich SA, Tirrell DA. Replacement of ProB28 by pipecolic acid protects insulin against fibrillation and slows hexamer dissociation. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Katharine Y. Fang
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena California 91125
| | - Seth A. Lieblich
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena California 91125
| | - David A. Tirrell
- Division of Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena California 91125
| |
Collapse
|
248
|
Di Ventura B, Mootz HD. Switchable inteins for conditional protein splicing. Biol Chem 2018; 400:467-475. [DOI: 10.1515/hsz-2018-0309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Abstract
Synthetic biologists aim at engineering controllable biological parts such as DNA, RNA and proteins in order to steer biological activities using external inputs. Proteins can be controlled in several ways, for instance by regulating the expression of their encoding genes with small molecules or light. However, post-translationally modifying pre-existing proteins to regulate their function or localization leads to faster responses. Conditional splicing of internal protein domains, termed inteins, is an attractive methodology for this purpose. Here we discuss methods to control intein activity with a focus on those compatible with applications in living cells.
Collapse
Affiliation(s)
- Barbara Di Ventura
- Faculty of Biology, University of Freiburg , 79104 Freiburg , Germany
- BIOSS – Centre for Biological Signalling Studies, University of Freiburg , 79104 Freiburg , Germany
| | - Henning D. Mootz
- Department Chemistry and Pharmacy , Institute of Biochemistry, University of Münster , Münster D-48149 , Germany
| |
Collapse
|
249
|
Dien VT, Morris SE, Karadeema RJ, Romesberg FE. Expansion of the genetic code via expansion of the genetic alphabet. Curr Opin Chem Biol 2018; 46:196-202. [PMID: 30205312 DOI: 10.1016/j.cbpa.2018.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
Current methods to expand the genetic code enable site-specific incorporation of non-canonical amino acids (ncAAs) into proteins in eukaryotic and prokaryotic cells. However, current methods are limited by the number of codons possible, their orthogonality, and possibly their effects on protein synthesis and folding. An alternative approach relies on unnatural base pairs to create a virtually unlimited number of genuinely new codons that are efficiently translated and highly orthogonal because they direct ncAA incorporation using forces other than the complementary hydrogen bonds employed by their natural counterparts. This review outlines progress and achievements made towards developing a functional unnatural base pair and its use to generate semi-synthetic organisms with an expanded genetic alphabet that serves as the basis of an expanded genetic code.
Collapse
Affiliation(s)
- Vivian T Dien
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sydney E Morris
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebekah J Karadeema
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
250
|
Zimmerman SM, Kon Y, Hauke AC, Ruiz BY, Fields S, Phizicky EM. Conditional accumulation of toxic tRNAs to cause amino acid misincorporation. Nucleic Acids Res 2018; 46:7831-7843. [PMID: 30007351 PMCID: PMC6125640 DOI: 10.1093/nar/gky623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 12/16/2022] Open
Abstract
To develop a system for conditional amino acid misincorporation, we engineered tRNAs in the yeast Saccharomyces cerevisiae to be substrates of the rapid tRNA decay (RTD) pathway, such that they accumulate when RTD is turned off. We used this system to test the effects on growth of a library of tRNASer variants with all possible anticodons, and show that many are lethal when RTD is inhibited and the tRNA accumulates. Using mass spectrometry, we measured serine misincorporation in yeast containing each of six tRNA variants, and for five of them identified hundreds of peptides with serine substitutions at the targeted amino acid sites. Unexpectedly, we found that there is not a simple correlation between toxicity and the level of serine misincorporation; in particular, high levels of serine misincorporation can occur at cysteine residues without obvious growth defects. We also showed that toxic tRNAs can be used as a tool to identify sequence variants that reduce tRNA function. Finally, we generalized this method to another tRNA species, and generated conditionally toxic tRNATyr variants in a similar manner. This method should facilitate the study of tRNA biology and provide a tool to probe the effects of amino acid misincorporation on cellular physiology.
Collapse
Affiliation(s)
| | - Yoshiko Kon
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Alayna C Hauke
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Bianca Y Ruiz
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY 14642, USA
| |
Collapse
|