201
|
Arii Y, Takahashi N, Hirose M. Periplasmic secretion of native ovalbumin without signal cleavage in Escherichia coli. Biosci Biotechnol Biochem 2003; 67:368-71. [PMID: 12729000 DOI: 10.1271/bbb.67.368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Escherichia coli cells carrying wild-type ovalbumin cDNA, some of the recombinant protein was secreted into the periplasmic space. In contrast, a signal-region mutant form of ovalbumin (deletion, Gly1 to Ala39) was not detected in the periplasm despite being synthesized at the same level as the wild-type protein. Chemical and spectroscopic analyses showed that periplasmic ovalbumin assumes a conformation indistinguishable from that of native egg white ovalbumin. We concluded that a process resembling the secretion of ovalbumin process in the oviduct occurs also in bacteria.
Collapse
Affiliation(s)
- Yasuhiro Arii
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
202
|
Perlmutter DH. Liver injury in alpha1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J Clin Invest 2003. [PMID: 12464659 DOI: 10.1172/jci0216787] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- David H Perlmutter
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
203
|
Mulligan-Kehoe MJ, Kleinman HK, Drinane M, Wagner RJ, Wieland C, Powell RJ. A truncated plasminogen activator inhibitor-1 protein blocks the availability of heparin-binding vascular endothelial growth factor A isoforms. J Biol Chem 2002; 277:49077-89. [PMID: 12381729 DOI: 10.1074/jbc.m208757200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have made deletions of the porcine plasminogen activator inhibitor-1 (PAI-1) gene to obtain recombinant truncated PAI-1 proteins to examine functions of the PAI-1 isoforms. We previously reported that one recombinant truncated protein, rPAI-1(23), induces the formation of angiostatin by cleaving plasmin. The rPAI-1(23) protein is also able to bind urokinase plasminogen activator and plasminogen and then reduce the amount of plasmin that is formed. We have now prepared three different truncated rPAI-1 proteins and demonstrate that PAI-1 conformations control the release of heparin-binding vascular endothelial growth factor (VEGF) isoforms. The rPAI-1(23) isoform can regulate the functional activity of heparan sulfate-binding VEGF-A isoforms by blocking the activation of VEGF from heparan sulfate. The rPAI-1(23) conformation induced extensive apoptosis in cultured endothelial cells and thus reduced the number of proliferating cells. The rPAI-1(23) isoform inhibited migration of VEGF-stimulated sprouting from chick aortic rings by 65%, thus displaying a role in anti-angiogenic mechanisms. This insight into anti-angiogenic functions related to PAI-1 conformational changes could provide potential intervention points in angiogenesis associated with atherosclerotic plaques and cancer.
Collapse
Affiliation(s)
- Mary Jo Mulligan-Kehoe
- Department of Surgery, Vascular Surgery Section, Dartmouth Medical School, Dartmouth College, Hanover, New Hampshire 03756, USA.
| | | | | | | | | | | |
Collapse
|
204
|
Perlmutter DH. Liver injury in alpha1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. J Clin Invest 2002; 110:1579-83. [PMID: 12464659 PMCID: PMC151639 DOI: 10.1172/jci16787] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- David H Perlmutter
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
205
|
Im H, Woo MS, Hwang KY, Yu MH. Interactions Causing the Kinetic Trap in Serpin Protein Folding. J Biol Chem 2002; 277:46347-54. [PMID: 12244055 DOI: 10.1074/jbc.m207682200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational transition is fundamental to the mechanism of functional regulation in proteins, and serpins (serine protease inhibitors) can provide insight into this process. Serpins are metastable in their native forms, and they ordinarily undergo conformational transition to a stable state only when they form a tight complex with target proteases. The metastable native form is thus considered to be a kinetically trapped folding intermediate. We sought to understand the nature of the serpin kinetic trap as a step toward discovering how conformational transition is regulated. We found that mutations of the B/C beta-barrel of native alpha(1)-antitrypsin, a prototypical serpin, allowed conversion of the molecule into a more stable state. A 2.2 A resolution crystal structure of the stable form (PDB code, ) showed that the reactive site loop is inserted into an A beta-sheet, as in the latent plasminogen activator inhibitor-1. Mutational analyses suggest strongly that interactions not found in the final stable form cause the kinetic trap in serpin protein folding.
Collapse
Affiliation(s)
- Hana Im
- National Creative Research Initiatives, Protein Strain Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea
| | | | | | | |
Collapse
|
206
|
Hook VYH, Yasothornsrikul S, Hwang SR. Novel chromaffin granule serpins, endopin 1 and endopin 2: endogenous protease inhibitors with distinct target protease specificities. Ann N Y Acad Sci 2002; 971:426-44. [PMID: 12438161 DOI: 10.1111/j.1749-6632.2002.tb04505.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endopin 1 and endopin 2 represent two novel serpin protease inhibitors localized within chromaffin granules, secretory vesicles of adrenomedullary chromaffin cells that represent a model neuroendocrine cell for synthesis and secretion of peptide neurotransmitters. This chapter describes the molecular features of the primary sequences of endopin 1 and endopin 2 that provided prediction of their distinct target protease specificities. Endopin 1 inhibits trypsin that cleaves at basic residues. In contrast, endopin 2 possesses cross-class inhibition of papain and elastase that represent cysteine and serine proteases, respectively. Cell biological studies indicate that endopin 1 and endopin 2 are localized within chromaffin granules. These results implicate endopin 1 inhibition in vivo of trypsin-like proteases in secretory vesicles, and endopin 2 inhibition of papain- or elastase-like proteases. Indeed, endopin 2 inhibits the endogenous cysteine protease PTP (prohormone thiol protease), present in chromaffin granules, that participates in the proteolytic processing of proenkephalin. These findings indicate the presence of endogenous endopin 1 and endopin 2 in secretory vesicle function.
Collapse
Affiliation(s)
- Vivian Y H Hook
- Buck Institute for Age Research, Novato, California 94945, USA.
| | | | | |
Collapse
|
207
|
Abstract
Platelet-activating factor (PAF) is a potent bioactive lipid that is generated in the cornea after injury and whose actions are mediated through specific receptors. Studies from our laboratory have shown that PAF interactions with its receptor activate several transmembrane signals involved in inflammation, wound healing, and apoptosis. The wide variety of responses to PAF implicate this lipid as a central player in many responses of the cornea after a pathologic stimulus. An exciting facet of PAF is that it induces the expression of specific genes involved in the remodeling of components of the extracellular matrix, such as some metalloproteinases, urokinase plasminogen activator, and selective inhibitors of metalloproteinases. These enzymes, when overexpressed, could lead to corneal ulceration. Continuous exposure to PAF during prolonged inflammation produces increase keratocyte apoptosis and inhibition of epithelial adhesion to the basement membrane. As a consequence, there is a marked delay in wound healing, which is not countered by the actions of growth factors. In this review, we present data mainly from our laboratory showing actions of PAF in corneal epithelium in vivo and in vitro in corneal models of injury as well as in cells in culture. We also discuss the signal-transduction mechanisms involved in the different actions of PAF. A therapeutic role for PAF antagonists in blocking the effects of PAF is guaranteed in the future.
Collapse
Affiliation(s)
- Haydee Bazan
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | |
Collapse
|
208
|
Plotnick MI, Rubin H, Schechter NM. The effects of reactive site location on the inhibitory properties of the serpin alpha(1)-antichymotrypsin. J Biol Chem 2002; 277:29927-35. [PMID: 12055188 DOI: 10.1074/jbc.m202374200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The large size of the serpin reactive site loop (RSL) suggests that the role of the RSL in protease inhibition is more complex than that of presenting the reactive site (P1 residue) to the protease. This study examines the effect on inhibition of relocating the reactive site (Leu-358) of the serpin alpha(1)-antichymotrypsin either one residue closer (P2) or further (P1') from the base of the RSL (Glu-342). alpha(1)-Antichymotrypsin variants were produced by mutation within the P4-P2' region; the sequence ITLLSA was changed to ITLSSA to relocate the reactive site to P2 (Leu-357) and to ITITLS to relocate it to P1' (Leu-359). Inhibition of the chymotrypsin-like proteases human chymase and chymotrypsin and the non-target protease human neutrophil elastase (HNE) were analyzed. The P2 variant inhibited chymase and chymotrypsin but not HNE. Relative to P1, interaction at P2 was characterized by greater complex stability, lower inhibition rate constants, and increased stoichiometry of inhibition values. In contrast, the P1' variant inhibited HNE (stoichiometry of inhibition = 4) but not chymase or chymotrypsin. However, inhibition of HNE was by interaction with Ile-357, the P2 residue. The P1' site was recognized by all proteases as a cleavage site. Covalent-complexes resistant to SDS-PAGE were observed in all inhibitory reactions, consistent with the trapping of the protease as a serpin-acyl protease complex. The complete loss in inhibitory activity associated with lengthening the Glu-342-reactive site distance by a single residue and the enhanced stability of complexes associated with shortening this distance by a single residue are compatible with the distorted-protease model of inhibition requiring full insertion of the RSL into the body of the serpin and translocation of the linked protease to the pole opposite from that of encounter.
Collapse
Affiliation(s)
- Michael I Plotnick
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
209
|
Odero-Marah VA, Khalkhali-Ellis Z, Schneider GB, Seftor EA, Seftor REB, Koland JG, Hendrix MJC. Tyrosine phosphorylation of maspin in normal mammary epithelia and breast cancer cells. Biochem Biophys Res Commun 2002; 295:800-5. [PMID: 12127964 DOI: 10.1016/s0006-291x(02)00764-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maspin is a 42kDa tumor suppressor protein that belongs to the serine protease inhibitor (serpin) family. It inhibits cell motility and invasion in vitro, and tumor growth and metastasis in nude mice; however, maspin's molecular mechanism of action has remained elusive. Maspin contains several tyrosine residues and we hypothesized that phosphorylation of maspin could play a role in its biological function. Our study reveals that maspin is phosphorylated on tyrosine moiety(ies) in normal mammary epithelial cells endogenously expressing maspin. In addition, transfection of the maspin gene, using either a stable or inducible system into maspin-deficient breast cancer cell lines, yields a protein product that is phosphorylated on tyrosine residue(s). Furthermore, recombinant maspin protein can be tyrosine-phosphorylated by the kinase domain from the epidermal growth factor receptor in vitro. These novel observations suggest that maspin, which deviates from the classical serpin, may be an important signal transduction molecule in its phosphorylated form.
Collapse
Affiliation(s)
- Valerie A Odero-Marah
- Department of Anatomy and Cell Biology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
210
|
Chipuk JE, Stewart LV, Ranieri A, Song K, Danielpour D. Identification and characterization of a novel rat ov-serpin family member, trespin. J Biol Chem 2002; 277:26412-21. [PMID: 11986314 DOI: 10.1074/jbc.m201244200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serpins are responsible for regulating a variety of proteolytic processes through a unique irreversible suicide substrate mechanism. To discover novel genes regulated by transforming growth factor-beta1 (TGF-beta 1), we performed differential display reverse transcriptase-PCR analysis of NRP-152 rat prostatic epithelial cells and cloned a novel rat serpin that is transcriptionally down-regulated by TGF-beta and hence named trespin (TGF-beta-repressible serine proteinase inhibitor (trespin). Trespin is a 397-amino acid member of the ov-serpin clade with a calculated molecular mass of 45.2 kDa and 72% amino acid sequence homology to human bomapin; however, trespin exhibits different tissue expression, cellular localization, and proteinase specificity compared with bomapin. Trespin mRNA is expressed in many tissues, including brain, heart, kidney, liver, lung, prostate, skin, spleen, and stomach. FLAG-trespin expressed in HEK293 cells is localized predominantly in the cytoplasm and is not constitutively secreted. The presence of an arginine at the P1 position of trespin's reactive site loop suggests that trespin inhibits trypsin-like proteinases. Accordingly, in vitro transcribed and translated trespin forms detergent-stable and thermostable complexes with plasmin and elastase but not subtilisin A, trypsin, chymotrypsin, thrombin, or papain. Trespin interacts with plasmin at a near 1:1 stoichiometry, and immunopurified mammal-expressed trespin inhibits plasmin in a dose-dependent manner. These data suggest that trespin is a novel and functional member of the rat ov-serpin family.
Collapse
Affiliation(s)
- Jerry E Chipuk
- Ireland Cancer Center Research Laboratories and Department of Pharmacology, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
211
|
Griffiths SW, King J, Cooney CL. The reactivity and oxidation pathway of cysteine 232 in recombinant human alpha 1-antitrypsin. J Biol Chem 2002; 277:25486-92. [PMID: 11991955 DOI: 10.1074/jbc.m203089200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative damage to the sulfur-containing amino acids, methionine and cysteine, is a major concern in biotechnology and medicine. alpha1-Antitrypsin, which is a metastable and conformationally flexible protein that belongs to the serpin family of protease inhibitors, contains nine methionines and a single cysteine in its primary sequence. Although it is known that methionine oxidation in the protein active site results in a loss of biological activity, there is little specific knowledge regarding the reactivity of its unpaired thiol, Cys-232. In this study, the thiol-modifying reagent NBD-Cl (7-chloro-4-nitrobenz-2-oxa-1,3-diazole) was used to label peroxide-modified alpha1-antitrypsin and demonstrate that the Cys-232 in vitro oxidation pathway begins with a stable sulfenic acid intermediate and is followed by the formation of sulfinic and cysteic acid in successive steps. pH-dependent reactivity with hydrogen peroxide showed that Cys-232 has a pK(a) of 6.86 +/- 0.05, a value that is more than 1.5 pH units lower than that of a typical protein thiol. pH-induced conformational changes in the region surrounding Cys-232 were also examined and indicate that mildly acidic conditions induce a conformation that enhances Cys-232 reactivity. In summary, this work provides new insights into alpha1-antitrypsin reactivity in oxidizing environments and shows that a unique structural environment renders its unpaired thiol, Cys-232, its most reactive amino acid.
Collapse
Affiliation(s)
- Steven W Griffiths
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | |
Collapse
|
212
|
Hayakawa Y, Hirashima Y, Kurimoto M, Hayashi N, Hamada H, Kuwayama N, Endo S. Contribution of basic residues of the A helix of heparin cofactor II to heparin- or dermatan sulfate-mediated thrombin inhibition. FEBS Lett 2002; 522:147-50. [PMID: 12095635 DOI: 10.1016/s0014-5793(02)02930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inhibition of thrombin by heparin cofactor II (HCII) is accelerated 1000-fold by heparin or dermatan sulfate. To investigate the contribution of basic residues of the A helix of HCII to this activation, we constructed amino acid substitutions (K101Q, R103L, and R106L) by site-directed mutagenesis. K101Q greatly reduced heparin cofactor activity and required a more than 10-fold higher concentration of dermatan sulfate to accelerate thrombin inhibition compared with wild-type recombinant HCII. Thrombin inhibition by R106L was not significantly stimulated by dermatan sulfate. These results provide evidence that basic residues of the A helix of HCII (Lys(101) and Arg(106)) are necessary for heparin- or dermatan sulfate-accelerated thrombin inhibition.
Collapse
Affiliation(s)
- Yumiko Hayakawa
- Department of Neurosurgery, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Japan.
| | | | | | | | | | | | | |
Collapse
|
213
|
Hook VYH, Hwang SR. Novel secretory vesicle serpins, endopin 1 and endopin 2: endogenous protease inhibitors with distinct target protease specificities. Biol Chem 2002; 383:1067-74. [PMID: 12437089 DOI: 10.1515/bc.2002.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Secretory vesicles of neuroendocrine cells possess multiple proteases for proteolytic processing of proteins into biologically active peptide components, such as peptide hormones and neurotransmitters. The importance of proteases within secretory vesicles predicts the presence of endogenous protease inhibitors in this subcellular compartment. Notably, serpins represent a diverse class of endogenous protease inhibitors that possess selective target protease specificities, defined by the reactive site loop domains (RSL). In the search for endogenous serpins in model secretory vesicles of neuroendocrine chromaffin cells, the presence of serpins related to alpha1-antichymotrypsin (ACT) was detected by Western blots with anti-ACT. Molecular cloning revealed the primary structures of two unique serpins, endopin 1 and endopin 2, that possess homology to ACT. Of particular interest was the observation that distinct RSL domains of these new serpins predicted that endopin 1 would inhibit trypsin-like serine proteases cleaving at basic residues, and endopin 2 would inhibit both elastase and papain that represent serine and cysteine proteases, respectively. Endopin 1 showed selective inhibition of trypsin, but did not inhibit chymotrypsin, elastase, or subtilisin. Endopin 2 demonstrated cross-class inhibition of the cysteine protease papain and the serine protease elastase. Endopin 2 did not inhibit chymotrypsin, trypsin, plasmin, thrombin, furin, or cathepsin B. Endopin 1 and endopin 2 each formed SDS-stable complexes with target proteases, a characteristic property of serpins. In neuroendocrine chromaffin cells from adrenal medulla, endopin 1 and endopin 2 were both localized to secretory vesicles. Moreover, the inhibitory activity of endopin 2 was optimized under reducing conditions, which required reduced Cys-374; this property is consistent with the presence of endogenous reducing agents in secretory vesicles in vivo. These new findings demonstrate the presence of unique secretory vesicle serpins, endopin 1 and endopin 2, which possess distinct target protease selectivities. Endopin 1 inhibits trypsin-like proteases; endopin 2 possesses cross-class inhibition for inhibition of papain-like cysteine proteases and elastase-like serine proteases. It will be of interest in future studies to define the endogenous protease targets of these two novel secretory vesicle serpins.
Collapse
|
214
|
Abstract
Familial conformational diseases occur when a mutation alters the conformation of a protein resulting in abnormal intermolecular interactions, protein aggregation, and consequent tissue damage. The molecular mechanisms of conformational disease are best understood for the serine protease inhibitor (serpin) superfamily of proteins. The serpinopathies include alpha(1)-antitrypsin (SERPINA1) deficiency and the newly characterized familial encephalopathy with neuroserpin inclusion bodies (FENIB) resulting from mutations in the neuroserpin (SERPINI1) gene. This review discusses how insights gained from the study of the serpins may be used to guide our research into other common diseases such as Alzheimer disease, Huntington disease, and Parkinson disease.
Collapse
Affiliation(s)
- Damian C Crowther
- University of Cambridge Neurology Unit, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
215
|
Piotrowska U, Adler G, Gardas A, Gietka-Czernel M, Kaniewski M, Banga JP. Cross-reactivity of a monoclonal antibody to the amino terminal region of thyrotropin receptor with the serum protein alpha(1)-antitrypsin. Thyroid 2002; 12:563-70. [PMID: 12193299 DOI: 10.1089/105072502320288401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In a study designed to detect the presence of soluble, secreted A subunit of thyrotropin hormone receptor (TSHR) in serum, using anti-TSHR murine antibodies (mAbs) and peptide specific antiserum for Western blotting of human serum proteins fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) it was consistently observed that only one mAb, termed A10, reacted strongly with the 53 kd serum protein. The reaction was specific with the mAb A10 only, but not with another mAb or polyclonal antiserum. Furthermore, A10 immunoreactivity was documented in a variety of sera from healthy donors and patients, including patients whose thyroid gland was ablated during treatment for thyroid cancer. This suggests that the A10 cross-reactive protein was not derived from thyroid cells. The A10 cross-reactive protein was purified from normal serum and subjected to N-terminal sequence analysis, which identified the protein as alpha(1)-antitrypsin. Further experiments by enzyme-linked immunosorbent assay (ELISA) and the binding of antibody with deglycosylated or elastase-treated purified serum protein confirmed the cross-reactivity of mAb A10 with alpha(1)-antitrypsin. Alignment of the TSHR amino acid sequence with that of alpha(1)-antitrypsin identified five identical amino acids in a short stretch of residues 34-39 (EEDFRV) in TSHR and residues 205-210 (EEDFHV) in alpha(1)-antitrypsin. Analysis of the structural model of alpha(1)-antitrypsin revealed that these residues were exposed on the surface of alpha(1)-antitrypsin and were accessible for antibodies. Autoantibodies in patients with Graves' disease do not appear to recognize this region of the receptor and hence do not react with serum alpha(1)-antitrypsin.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Biochemistry, Medical Centre of Postgraduate Education, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
216
|
Grasberger H, Golcher HMB, Fingerhut A, Janssen OE. Loop variants of the serpin thyroxine-binding globulin: implications for hormone release upon limited proteolysis. Biochem J 2002; 365:311-6. [PMID: 11931635 PMCID: PMC1222644 DOI: 10.1042/bj20020014] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Revised: 03/04/2002] [Accepted: 04/03/2002] [Indexed: 01/20/2023]
Abstract
Thyroxine-binding globulin (TBG) and corticosteroid-binding globulin are unique among non-inhibitory members of the superfamily of serine-proteinase inhibitors (serpins) in undergoing a dramatic increase in stability [stressed-to-relaxed (S-->R) transition] after proteolytic cleavage within their exposed reactive-site-loop (RSL) equivalent. This structural rearrangement involves the insertion of the cleaved loop as a new strand into the beta-sheet A and is accompanied by a decrease in hormone binding. To define the mechanism that leads to disruption of hormone binding of TBG after proteolytic cleavage, the effect of partial loop deletions and replacements by the alpha(1)-proteinase inhibitor homologues of TBG were evaluated. Unexpectedly, deletion of the loop's C-terminus, thought to be important for thyroxine binding, improved the binding affinity over that of normal TBG. Proteolytic cleavage of this variant revealed an intact S-->R transition and reduced its binding activity to that of cleaved TBG. In contrast, a chimaera with C-terminal loop extension mimicked the decreased binding affinity of cleaved TBG and had a thermal stability intermediate between that of native and cleaved serpins. This variant was still susceptible to loop cleavage and underwent an S-->R transition, yet without changing its binding affinity. Our data exclude a direct involvement of loop residues in thyroxine binding of native TBG. Limited insertion of the RSL into beta-sheet A appears to trigger hormone release after proteolytic cleavage. In support of this concept, residues within the hinge region of the TBG loop are phylogenetically highly conserved, suggestive of their physiological role as a functional switch in vivo.
Collapse
Affiliation(s)
- Helmut Grasberger
- Howard Hughes Medical Institute, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
217
|
Jensen S, Kirkegaard T, Pedersen KE, Busse M, Preissner KT, Rodenburg KW, Andreasen PA. The role of beta-strand 5A of plasminogen activator inhibitor-1 in regulation of its latency transition and inhibitory activity by vitronectin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:301-10. [PMID: 12044908 DOI: 10.1016/s0167-4838(02)00312-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. It circulates in plasma in a complex with vitronectin (VN). We have studied biochemical mechanisms for PAI-1 neutralisation and its modulation by VN, using site-directed mutagenesis and limited proteolysis. We demonstrate that VN, besides delaying conversion of PAI-1 to the inactive latent form, also protects PAI-1 against cold- and detergent-induced substrate behaviour and counteracts conversion of PAI-1 to inert forms by certain amphipathic organochemical compounds. VN protection against cold- and detergent-induced substrate behaviour is associated with inhibition of the proteolytic susceptibility of beta-strand 5A. Alanine substitution of a lysine residue placed centrally in beta-strand 5A implied a VN-induced acceleration of latency transition, instead of the normal delay. This substitution not only protects PAI-1 against neutralisation, but also counteracts VN-induced protection against neutralisation. We conclude that beta-strand 5A plays a crucial role in VN-regulation of PAI-1 activity.
Collapse
Affiliation(s)
- Signe Jensen
- Laboratory of Cellular Protein Science, Department of Molecular and Structural Biology, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
218
|
Mitchell JW, Church FC. Aspartic acid residues 72 and 75 and tyrosine-sulfate 73 of heparin cofactor II promote intramolecular interactions during glycosaminoglycan binding and thrombin inhibition. J Biol Chem 2002; 277:19823-30. [PMID: 11856753 DOI: 10.1074/jbc.m200630200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used site-directed mutagenesis to investigate the role of Glu(69), Asp(70), Asp(71), Asp(72), Tyr-sulfate(73), and Asp(75) in the second acidic region (AR2) of the serpin heparin cofactor II (HCII) during formation of the thrombin.HCII complex with and without glycosaminoglycans. E69Q/D70N/D71N recombinant (r)HCII, D72N/Y73F/D75N rHCII, and E69Q/D70N/D71N/D72N/Y73F/D75N rHCII were prepared to localize acidic residues important for thrombin inhibition. Interestingly, D72N/Y73F/D75N rHCII had significantly enhanced thrombin inhibition without glycosaminoglycan (4-fold greater) and with heparin (6-fold greater), showing maximal activity at 2 microg/ml heparin compared with wild-type recombinant HCII (wt-rHCII) with maximal activity at 20 microg/ml heparin. The other rHCII mutants had lesser-enhanced activities, but they all eluted from heparin-Sepharose at significantly higher ionic strengths compared with wt-rHCII. Neutralizing and reversing the charge of Asp(72), Tyr-sulfate(73), and Asp(75) were done to characterize their individual contribution to HCII activity. Only Y73K rHCII and D75K rHCII have significantly increased heparin cofactor activity compared with wt-rHCII; however, all of the individual rHCII mutants required substantially less glycosaminoglycan at maximal inhibition than did wt-rHCII. Inhibition of either alpha-thrombin/hirugen or gamma(T)-thrombin (both with an altered anion-binding exosite-1) by the AR2 rHCII mutants was similar to wt-rHCII. D72N/Y73F/D75N rHCII and D75K rHCII were significantly more active than wt-rHCII in a plasma-based thrombin inhibition assay with glycosaminoglycans. These results indicate that improved thrombin inhibition in the AR2 HCII mutants is mediated by enhanced interactions between the acidic domain and anion-binding exosite-1 of thrombin and that AR2 may be a "molecular rheostat" to promote thrombin inhibition in the presence of glycosaminoglycans.
Collapse
Affiliation(s)
- Jennifer W Mitchell
- Department of Pathology, Center for Thrombosis and Hemostasis, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina 27599-7035, USA
| | | |
Collapse
|
219
|
Seo EJ, Lee C, Yu MH. Concerted regulation of inhibitory activity of alpha 1-antitrypsin by the native strain distributed throughout the molecule. J Biol Chem 2002; 277:14216-20. [PMID: 11834734 DOI: 10.1074/jbc.m110272200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The native forms of common globular proteins are in their most stable state but the native forms of plasma serpins (serine protease inhibitors) show high energy state interactions. The high energy state strain of alpha(1)-antitrypsin, a prototype serpin, is distributed throughout the whole molecule, but the strain that regulates the function directly appears to be localized in the region where the reactive site loop is inserted during complex formation with a target protease. To examine the functional role of the strain at other regions of alpha(1)-antitrypsin, we increased the stability of the molecule greatly via combining various stabilizing single amino acid substitutions that did not affect the activity individually. The results showed that a substantial increase of stability, over 13 kcal mol(-1), affected the inhibitory activity with a correlation of 11% activity loss per kcal mol(-1). Addition of an activity affecting single residue substitution in the loop insertion region to these very stable substitutions caused a further activity decrease. The results suggest that the native strain of alpha(1)-antitrypsin distributed throughout the molecule regulates the inhibitory function in a concerted manner.
Collapse
Affiliation(s)
- Eun Joo Seo
- National Creative Research Initiatives, Protein Strain Research Center, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul 130-650, Korea
| | | | | |
Collapse
|
220
|
Arii Y, Hirose M. Probing the serpin structural-transition mechanism in ovalbumin mutant R339T by proteolytic-cleavage kinetics of the reactive-centre loop. Biochem J 2002; 363:403-9. [PMID: 11931671 PMCID: PMC1222492 DOI: 10.1042/0264-6021:3630403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A mutant ovalbumin (R339T), but not the wild-type protein, is transformed into the canonical loop-inserted, thermostabilized form after the P1-P1' cleavage [Yamasaki, Arii, Mikami and Hirose (2002) J. Mol. Biol. 315, 113-120]. The loop-insertion mechanism in the ovalbumin mutant was investigated by proteolytic-cleavage kinetics. The nature of the inserted loop prevented further cleavage of the P1-P1' pre-cleaved R339T mutant by subtilisin, which cleaved the second P8-P7 loop site in the P1-P1' pre-cleaved wild-type protein. After subtilisin proteolysis of the intact R339T, however, two final products that corresponded to the single P1-P1' and double P1-P1'/P8-P7 cleavages were generated with variable ratios depending on the proteolysis conditions. This was accounted for by the occurrence of two mutually competitive reactions: the loop-insertion reaction and the proteolytic cleavage of the second P8-P7 site in the immediate intermediate after the P1-P1' cleavage. The competitive nature of the two reactions enabled us to establish a kinetic method to determine the rate constants of the reactions. The first-order rate constant for the loop insertion was determined to be 4.0 x 10(-3)/s in the R339T mutant. The second-order rate constant for the P8-P7 cleavage in the immediate P1-P1' cleavage product for the R339T mutant was >10 times compared with that for its wild-type counterpart. This highly accessible loop nature may play a crucial role in the loop-insertion mechanism for R339T mutant ovalbumin.
Collapse
Affiliation(s)
- Yasuhiro Arii
- Division of Applied Life Sciences, The Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | |
Collapse
|
221
|
Abstract
Serpins (serine protease inhibitors) inhibit target proteases by forming a stable covalent complex in which the cleaved reactive site loop of the serpin is inserted into beta-sheet A of the serpin with concomitant translocation of the protease to the opposite of the initial binding site. Despite recent determination of the crystal structures of a Michaelis protease-serpin complex as well as a stable covalent complex, details on the kinetic mechanism remain unsolved mainly due to difficulties in measuring kinetic parameters of acylation, protease translocation, and deacylation steps. To address the problem, we applied a mathematical model developed on the basis of a suicide inhibition mechanism to the stopped-flow kinetics of fluorescence resonance energy transfer during complex formation between alpha(1)-antitrypsin, a prototype serpin, and proteases. Compared with the hydrolysis of a peptide substrate, acylation of the protease by alpha(1)-antitrypsin is facilitated, whereas deacylation of the acyl intermediate is strongly suppressed during the protease translocation. The results from nucleophile susceptibility of the acyl intermediate suggest strongly that the active site of the protease is already perturbed during translocation.
Collapse
Affiliation(s)
- Jong-Shik Shin
- National Creative Research Initiatives, Protein Strain Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Sungbuk-Ku, Seoul 136-791, Korea
| | | |
Collapse
|
222
|
Belzar KJ, Zhou A, Carrell RW, Gettins PGW, Huntington JA. Helix D elongation and allosteric activation of antithrombin. J Biol Chem 2002; 277:8551-8. [PMID: 11741963 DOI: 10.1074/jbc.m110807200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antithrombin requires allosteric activation by heparin for efficient inhibition of its target protease, factor Xa. A pentasaccharide sequence found in heparin activates antithrombin by inducing conformational changes that affect the reactive center of the inhibitor resulting in optimal recognition by factor Xa. The mechanism of transmission of the activating conformational change from the heparin-binding region to the reactive center loop remains unresolved. To investigate the role of helix D elongation in the allosteric activation of antithrombin, we substituted a proline residue for Lys(133). Heparin binding affinity was reduced by 25-fold for the proline variant compared with the control, and a significant decrease in the associated intrinsic fluorescence enhancement was also observed. Rapid kinetic studies revealed that the main reason for the reduced affinity for heparin was an increase in the rate of the reverse conformational change step. The pentasaccharide-accelerated rate of factor Xa inhibition for the proline variant was 10-fold lower than control, demonstrating that the proline variant cannot be fully activated toward factor Xa. We conclude that helix D elongation is critical for the full conversion of antithrombin to its high affinity, activated state, and we propose a mechanism to explain how helix D elongation is coupled to allosteric activation.
Collapse
Affiliation(s)
- Klara J Belzar
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Rd., Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
223
|
Ottino P, Taheri F, Bazan HEP. Platelet-activating factor induces the gene expression of TIMP-1, -2, and PAI-1: imbalance between the gene expression of MMP-9 and TIMP-1 and -2. Exp Eye Res 2002; 74:393-402. [PMID: 12014920 DOI: 10.1006/exer.2001.1135] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies in the laboratory have shown that platelet-activating factor (PAF), a potent inflammatory mediator that accumulates rapidly in the cornea after an injury, stimulates the expression of urokinase (uPA) and matrix metalloproteinase-1 (MMP-1) and -9 (MMP-9). Tissue inhibitors of MMPs (TIMPs) and plasminogen activator inhibitor (PAI-1) are produced in conjunction with these enzymes and are important regulators of their activity. Here, the authors investigated how PAF affects the expression of PAI-1, TIMP-1 and -2 relative to that of uPA, MMP-1, and -9 in rabbit corneal epithelial cells. Rabbit corneas were incubated in MEM medium containing 100 nM cPAF. To block the effects of PAF in some studies, corneas were preincubated for 1 hr in the presence of the PAF antagonist BN50730 (10 microM). At several time intervals, mRNA was extracted from epithelial cells and the levels of gene expression for the enzymes and their inhibitors were determined by real-time PCR. All quantitations were normalized to the 18s rRNA values (endogenous control) and changes in gene expression were reported as fold increase relative to untreated controls. PAF produced a 20-fold increase in the gene expression of PAI-1 at 8 hr, while similar fold increases in uPA mRNA expression occurred at 2 hr. PAF treatment also stimulated the expression of TIMP-1 and -2 genes, with a six-fold increase in TIMP-1 expression occurring at 36 hr and a four-fold increase in TIMP-2 expression at 24 hr. Maximal induction of MMP-1 and -9 mRNA, on the other hand, occurred at 4 and 8 hr, respectively. Induction of MMP-1 gene expression was similar to that of its inhibitors TIMP-1 and -2, while MMP-9 mRNA induction exceeded that of these inhibitors by 100-fold. The PAF-induced expression of PAI-1, TIMP-1 and -2 mRNAs was abolished by pre-treatment with BN50730. These data indicate that PAF activates the gene expression of TIMP-1, -2, and PAI-1 in corneal epithelium by a receptor-mediated mechanism. Furthermore, PAF induced overexpression of MMP-9 mRNA relative to that of TIMP-1 and -2, suggesting an imbalance between the expression of this proteolytic enzyme and its inhibitors, which may contribute to changes in the wound-healing process and ultimately lead to corneal ulcer development.
Collapse
Affiliation(s)
- Paulo Ottino
- Department of Ophthalmology and Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
224
|
Abstract
The influence of sulfonated polyisoprene (SPIP) on coagulation factors and human blood cells was investigated to elucidate and compare its anticoagulant mechanism with that of heparin. While the number of red cells was unaffected, the number of platelets decreased dramatically in the presence of SPIP due to aggregation. Using a synthetic peptide substrate to assay thrombin activity in the presence of its natural inhibitor, antithrombin (AT), we observed no stimulation by SPIP of AT-mediated inhibition. Nevertheless, thrombin cleavage of its natural substrate fibrinogen to fibrin peptide A was slightly inhibited. SPIP altered the electrophoretic mobility of fibrinogen and completely inhibited fibrinogen from clotting. We detected no significant influence of SPIP on factors II, VII, IX, and X, while factor XI and factors V and VIII were only slightly affected. Therefore, the main mechanism of SPIP's anticoagulant activity appears to be a strong interaction with fibrinogen and fibrin monomer, first, to prevent proteolytic conversion of the former to the latter and second, to inhibit polymerization of the fibrin monomer, once formed.
Collapse
Affiliation(s)
- Yasushi Tamada
- Tsukuba Research Laboratories, JSR Corporation, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
225
|
Jaswal SS, Sohl JL, Davis JH, Agard DA. Energetic landscape of alpha-lytic protease optimizes longevity through kinetic stability. Nature 2002; 415:343-6. [PMID: 11797014 DOI: 10.1038/415343a] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During the evolution of proteins the pressure to optimize biological activity is moderated by a need for efficient folding. For most proteins, this is accomplished through spontaneous folding to a thermodynamically stable and active native state. However, in the extracellular bacterial alpha-lytic protease (alphaLP) these two processes have become decoupled. The native state of alphaLP is thermodynamically unstable, and when denatured, requires millennia (t1/2 approximately 1,800 years) to refold. Folding is made possible by an attached folding catalyst, the pro-region, which is degraded on completion of folding, leaving alphaLP trapped in its native state by a large kinetic unfolding barrier (t1/2 approximately 1.2 years). alphaLP faces two very different folding landscapes: one in the presence of the pro-region controlling folding, and one in its absence restricting unfolding. Here we demonstrate that this separation of folding and unfolding pathways has removed constraints placed on the folding of thermodynamically stable proteins, and allowed the evolution of a native state having markedly reduced dynamic fluctuations. This, in turn, has led to a significant extension of the functional lifetime of alphaLP by the optimal suppression of proteolytic sensitivity.
Collapse
Affiliation(s)
- Sheila S Jaswal
- Department of Biochemistry and Biophysics, University of California at San Francisco, 94143-0448, USA
| | | | | | | |
Collapse
|
226
|
Janssen OE, Lahner H, Grasberger H, Spring SA, Saller B, Mann K, Refetoff S, Einspanier R. Characterization and primary structures of bovine and porcine thyroxine-binding globulin. Mol Cell Endocrinol 2002; 186:27-35. [PMID: 11850119 DOI: 10.1016/s0303-7207(01)00679-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thyroxine-binding globulin (TBG) is the major serum transport protein for iodothyronines in most of the large, omni- or herbivorous mammals. Characterization of human TBG (hTBG), including its 20 known natural variants, allowed the identification of the ligand-binding site and a correlation of diminished synthesis or loss of function with mutations in the TBG gene. Further refinement of the structure-function correlation, especially the high binding affinity and heat stability, requires characterization of other mammalian TBGs, of which only rat and sheep TBG were available. We now present some of the chemical and physical properties of bovine TBG (bTBG) and porcine TBG (pTBG) and their primary structures deduced from their cDNA sequences. The serum concentrations of bTBG and pTBG estimated by Scatchard analysis of T(4)-binding were similar to hTBG. The T(4)-binding affinity of human, bovine and porcine TBGs were all similar, at 1.2x10(10) M(-1). However, heat stability of the animal TBGs was reduced, with a half life of denaturation of 7 min (bTBG) and 5 min (pTBG) at 55 degreeC, compared with 21 min for hTBG. Nucleotide alignment revealed identity with hTBG of 85.5% (bTBG) and 83.7% (pTBG) and amino acid identity of 82.8% (bTBG) and 82.6% (pTBG). As expected, the relevant parts of the ligand-binding domain (amino acids 215-291, and 363-395) were highly conserved at more than 95% similarity. Comparison of the five known mammalian TBGs allows focusing of future mutagenesis experiments to further characterize the properties of the molecule.
Collapse
Affiliation(s)
- Onno E Janssen
- Department of Medicine, Division of Endocrinology, Universitatsklinikum Essen, Hufelandstrasse 55, D-45122, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Rezaie AR. Partial activation of antithrombin without heparin through deletion of a unique sequence on the reactive site loop of the serpin. J Biol Chem 2002; 277:1235-9. [PMID: 11707451 DOI: 10.1074/jbc.m108544200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Native antithrombin (AT) has an inactive reactive site loop conformation unless it is activated by a unique pentasaccharide fragment of heparin (H(5)). Structural data suggests that this may be due to preinsertion of two N-terminal residues of the reactive site loop of the serpin into the A-beta-sheet of the molecule. Relative to alpha(1)-antitrypsin, the reactive site loop of AT has three additional residues, Arg(399), Val(400), and Thr(401), at the C-terminal P' end of the loop. To determine whether a longer reactive site loop of AT is responsible for loop preinsertion in the native conformation, mutants of the serpin were expressed in which these residues were individually or in combination deleted. Kinetic analysis suggested that deletion of two residues, Val(400) and Thr(401), changed the solution equilibrium of the serpin in favor of the active conformation, thereby enhancing the inhibition of factor Xa by an order of magnitude independent of H(5). Interestingly, the reactivity of this mutant with thrombin was impaired by the same order of magnitude in the absence, but not in the presence of H(5). These results suggest that a longer reactive site loop in AT is responsible for its inactive native conformation toward factor Xa, while at same time AT requires this feature to regulate the activity of thrombin.
Collapse
Affiliation(s)
- Alireza R Rezaie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA.
| |
Collapse
|
228
|
Yamasaki M, Arii Y, Mikami B, Hirose M. Loop-inserted and thermostabilized structure of P1-P1' cleaved ovalbumin mutant R339T. J Mol Biol 2002; 315:113-20. [PMID: 11779232 DOI: 10.1006/jmbi.2001.5056] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovalbumin is a member of a superfamily of serine proteinase inhibitors, known as the serpins. It is, however, non-inhibitory towards serine proteinases, and lacks the loop insertion mechanism common to the serpins due to unknown structural factors. Mutant ovalbumin, R339T, in which the P14 hinge residue is replaced, was produced and analyzed for its thermostability and three-dimensional structure. Differential scanning calorimetry revealed that the mutant ovalbumin, but not the wild-type protein, undergoes a marked thermostabilization (DeltaT(m)=15.8 degrees C) following the P1-P1' cleavage. Furthermore, the crystal structure, solved at 2.3 A resolution, clearly proved that the P1-P1' cleaved form assumes the fully loop-inserted conformation as seen in serpin that possess inhibitory activity. We therefore conclude that ovalbumin acquires the structural transition mechanism into the loop-inserted, thermostabilized form by the single hinge mutation. The mutant protein does not, however, possess inhibitory activity. The solved structure displays the occurrence of specific interactions that may prevent the smooth motion, relative to sheet A, of helices E and F and of the loop that follows helix F. These observations provide crucial insights into the question why R339T is still non-inhibitory.
Collapse
|
229
|
Affiliation(s)
- Robin W Carrell
- Department of Hematology, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom.
| | | |
Collapse
|
230
|
Abstract
The plasminogen activating system is important for extracellular proteolysis and plays a regulatory role in interactions with other tissue degrading systems. Studies on the plasminogen activating system in gingival crevicular fluid (GCF) as well as gingival tissue are reviewed. t-PA, u-PA, PAI-1 and PAI-2 have all been detected in GCF. Especially t-PA and PAI-2 are found in high concentrations. In tissue studies fibrinolytic activity has been found in the gingival pocket epithelium in humans and in animal studies. t-PA and PAI-2 have been detected there immunohistochemically. Local production of the PAs and PAls has been verified with in situ hybridization. In inflammation, a more intense and widespread immunohistochemical staining of t-PA and PAI-2 is seen. Higher concentrations of t-PA and PAI-2 are found in GCF but the balance between them seems to be constant. A systemically disturbed balance of the plasminogen activating system in GCF has been observed during pregnancy, with a possible protective function of PAI-2. In studies of periodontitis, the production of PAI-2 seemed to be locally lowered at impaired sites. In a study of children, a higher inflammatory response to bacterial plaque was accompanied by a higher fibrinolytic ativity in GCF samples. Bacterial LPS has been found to change the ratio of t-PA to PAI-2 in cultured gingival fibroblasts. Interactions between PAI-2 and a protease in the gingival epithelium has been verified through the immunohistochemical detection of relaxed PAI-2.
Collapse
Affiliation(s)
- Bertil Kinnby
- Department of Oral Biology, Faculty of Odontology, Malmö University, Sweden
| |
Collapse
|
231
|
Wind T, Hansen M, Jensen JK, Andreasen PA. The molecular basis for anti-proteolytic and non-proteolytic functions of plasminogen activator inhibitor type-1: roles of the reactive centre loop, the shutter region, the flexible joint region and the small serpin fragment. Biol Chem 2002; 383:21-36. [PMID: 11928815 DOI: 10.1515/bc.2002.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The serine proteinase inhibitor plasminogen activator inhibitor type-1 (PAI-1) is the primary physiological inhibitor of the tissue-type and the urokinase-type plasminogen activator (tPA and uPA, respectively) and as such an important regulator of proteolytic events taking place in the circulation and in the extracellular matrix. Moreover, a few non-proteolytic functions have been ascribed to PAI-1, mediated by its interaction with vitronectin or the interaction between the uPA-PAI-1 complex bound to the uPA receptor and members of the low density lipoprotein receptor family. PAI-1 belongs to the serpin family, characterised by an unusual conformational flexibility, which governs its molecular interactions. In this review we describe the anti-proteolytic and non-proteolytic functions of PAI-1 from both a biological and a biochemical point of view. We will relate the various biological roles of PAI-1 to its biochemistry in general and to the different conformations of PAI-1 in particular. We put emphasis on the intramolecular rearrangements of PAI-1 that are required for its antiproteolytic as well as its non-proteolytic functions.
Collapse
Affiliation(s)
- Troels Wind
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
232
|
Fujita M, Izutani W, Takahashi K, Nishizawa K, Shirono H, Koga J. Role of each Asn-linked glycan in the anticoagulant activity of human protein C inhibitor. Thromb Res 2002; 105:95-102. [PMID: 11864713 DOI: 10.1016/s0049-3848(01)00398-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The N-glycosylation site mutants of human protein C inhibitor (PCI; N230S, N243Q, N319Q, N230S/N243Q, and N230S/N319Q) were prepared by amino acid replacement of the asparagine residue with a serine or glutamine residue using site-directed mutagenesis and expressed in the baculovirus/insect cell expression system. To examine the importance of each Asn-linked glycan in the activity of PCI, we compared wtPCI with the mutants of N-glycosylation site(s) in terms of the procoagulant protease-inhibitory and anticoagulant activities. The inhibitory activities of N230S, N319Q, and N230S/N319Q toward human thrombin and plasma kallikrein were significantly increased compared with wtPCI, but those of N243Q and N230S/N243Q were reduced. The inhibitory activity of N230S toward human plasma coagulation was significantly increased compared with wtPCI, and that of N230S/N319Q was also significantly increased compared with N319Q. Furthermore, the procoagulant protease-inhibitory and anticoagulant activities of N230S/N319Q (glycosylated on Asn243 only) compared favorably with those of N230S, and both of the mutants possessed highest activities in the purified mutants. These results suggest that the Asn243-linked glycan in PCI molecule possesses critical roles for its anticoagulant activity in the circulation, and the Asn230-linked glycan down-regulates the activity of PCI.
Collapse
Affiliation(s)
- Mitsugu Fujita
- Development and Research Laboratories, JCR Pharmaceuticals Co., Ltd., 2-2-10 Murotani, Nishi-ku, Kobe 651-2241, Japan.
| | | | | | | | | | | |
Collapse
|
233
|
Hansen M, Busse MN, Andreasen PA. Importance of the amino-acid composition of the shutter region of plasminogen activator inhibitor-1 for its transitions to latent and substrate forms. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6274-83. [PMID: 11733024 DOI: 10.1046/j.0014-2956.2001.02582.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The serpins are of general protein chemical interest due to their ability to undergo a large conformational change consisting of the insertion of the reactive centre loop (RCL), which becomes strand 4, into the central beta sheet A. To make space for the incoming RCL, the 'shutter region' opens by the beta strands 3A and 5A sliding apart over the underlying alpha helix B. Loop insertion occurs during the formation of complexes of serpins with their target serine proteinases and during latency transition. This type of loop insertion is unique to plasminogen activator inhibitor-1 (PAI-1). We report here that amino-acid substitutions in a buried cluster of three residues forming a hydrogen bonding network in the shutter region drastically accelerate PAI-1 latency transition; that the rate was in all cases normalized by the PAI-1 binding protein vitronectin; and that substitution of an adjacent beta strand 5A Lys residue, believed to anchor beta strand 5A to other secondary structural elements, had differential effects on the rates of latency transition in the absence and the presence of vitronectin, respectively. An overlapping, but not identical set of substitutions resulted in an increased tendency to substrate behaviour of PAI-1 at reaction with its target proteinases. These findings show that vitronectin regulates the movements of the RCL through conformational changes of the shutter region and beta strand 5A, are in agreement with RCL insertion proceeding by different routes during latency transition and complex formation, and contribute to the biochemical basis for the potential use of PAI-1 as a therapeutic target in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- M Hansen
- Laboratory of Cellular Protein Science, Department of Molecular and Structural Biology, University of Aarhus, Denmark.
| | | | | |
Collapse
|
234
|
Jankova L, Harrop SJ, Saunders DN, Andrews JL, Bertram KC, Gould AR, Baker MS, Curmi PM. Crystal structure of the complex of plasminogen activator inhibitor 2 with a peptide mimicking the reactive center loop. J Biol Chem 2001; 276:43374-82. [PMID: 11546761 DOI: 10.1074/jbc.m103021200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of the serpin, plasminogen activator inhibitor type-2 (PAI-2), in a complex with a peptide mimicking its reactive center loop (RCL) has been determined at 1.6-A resolution. The structure shows the relaxed state serpin structure with a prominent six-stranded beta-sheet. Clear electron density is seen for all residues in the peptide. The P1 residue of the peptide binds to a well defined pocket at the base of PAI-2 that may be important in determining the specificity of protease inhibition. The stressed-to-relaxed state (S --> R) transition in PAI-2 can be modeled as the relative motion between a quasirigid core domain and a smaller segment comprising helix hF and beta-strands s1A, s2A, and s3A. A comparison of the Ramachandran plots of the stressed and relaxed state PAI-2 structures reveals the location of several hinge regions connecting these two domains. The hinge regions cluster in three locations on the structure, ensuring a cooperative S --> R transition. We hypothesize that the hinge formed by the conserved Gly(206) on beta-strand s3A in the breach region of PAI-2 effects the S --> R transition by altering its backbone torsion angles. This torsional change is due to the binding of the P14 threonine of the RCL to the open breach region of PAI-2.
Collapse
Affiliation(s)
- L Jankova
- Initiative in Biomolecular Structure, School of Physics, University of New South Wales, Sydney New South Wales 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
235
|
Deng G, Curriden SA, Hu G, Czekay RP, Loskutoff DJ. Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedin B domain of vitronectin. J Cell Physiol 2001; 189:23-33. [PMID: 11573201 DOI: 10.1002/jcp.1133] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) binds to the somatomedin B (SMB) domain of vitronectin. It inhibits the adhesion of U937 cells to vitronectin by competing with the urokinase receptor (uPAR; CD87) on these cells for binding to the same domain. Although the inhibitor also blocks integrin-mediated cell adhesion, the molecular basis of this effect is unclear. In this study, the effect of the inhibitor on the adhesion of a variety of cells (e.g., U937, MCF7, HT-1080, and HeLa) to vitronectin was assessed, and the importance of the SMB domain in these interactions was determined. Although PAI-1 blocked the adhesion of all of these cells to vitronectin-coated wells, it did not block adhesion to a variant of vitronectin which lacked the SMB domain. Interestingly, HT-1080 and U937 cells attached avidly to microtiter wells coated with purified recombinant SMB (which does not contain the RGD sequence), and this adhesion was again blocked by the inhibitor. These results affirm that PAI-1 can inhibit both uPAR- and integrin-mediated cell adhesion, and demonstrate that the SMB domain of vitronectin is required for these effects. They also show that multiple cell types can employ uPAR as an adhesion receptor. The use of purified recombinant SMB should help to further define this novel adhesive pathway, and to delineate its relationship with integrin-mediated adhesive events.
Collapse
Affiliation(s)
- G Deng
- The Scripps Research Institute, Department of Vascular Biology, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
236
|
Izutani W, Fujita M, Nishizawa K, Koga J. The trimannosyl cores of N-glycans are important for the procoagulant protease-inhibitory activity of urinary protein C inhibitor. Thromb Res 2001; 104:65-74. [PMID: 11583740 DOI: 10.1016/s0049-3848(01)00342-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We investigated the relationship between the procoagulant protease-inhibitory activity and the N-glycan structures in urinary protein C inhibitor (uPCI) by sequential exoglycosidase digestions based on the N-glycan structures elucidated in this report. uPCI was glycosylated on the three potential N-glycosylation sites, asparagines 230, 243 and 319 (N230, N243 and N319) in the molecule and had four biantennary complex type sugar chains. The inhibitory activities of uPCI toward thrombin and plasma kallikrein were little changed by the sequential removal of N-acetylneuraminic acid and galactose residues from the termini and N-acetylglucosamine residues from the branches of the N-glycans. However, the inhibitory activities were markedly decreased by further removing alpha-mannose residues from the trimannosyl cores of the N-glycans. These results suggest that the trimannosyl cores of N-glycans are important for uPCI to inhibit the procoagulant protease.
Collapse
Affiliation(s)
- W Izutani
- Development and Research Laboratories, JCR Pharmaceuticals Co., Ltd., 2-2-10 Murotani, Nishi-ku, Kobe 651-2241, Japan.
| | | | | | | |
Collapse
|
237
|
Lee C, Seo EJ, Yu MH. Role of the connectivity of secondary structure segments in the folding of alpha(1)-antitrypsin. Biochem Biophys Res Commun 2001; 287:636-41. [PMID: 11563842 DOI: 10.1006/bbrc.2001.5638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The native form of serpins (serine protease inhibitors) is metastable, which is critical to their biological functions. Spontaneous conversion from the native form of serpins into a more stable conformation, called the "latent" form, is restricted. To examine whether the connectivity of strand 1 of beta-sheet C to the hydrophobic core is critical to the serpin's preferential folding to the metastable native conformation, we designed a circularly-permuted mutant of alpha(1)-antitrypsin, the prototype serpin, in which strand 1C is disconnected from the hydrophobic core. Conformation of the circular permutant was similar to that of the latent form, as revealed by equilibrium unfolding, limited proteolysis, and spectroscopic properties. Our results support the notion that rapid folding of the hydrophobic core with concomitant incorporation of strand 1C into beta-sheet C traps the serpin molecule into its native metastable conformation.
Collapse
Affiliation(s)
- C Lee
- National Creative Research Initiatives, Korea Institute of Science and Technology, Cheongryang, Seoul, 130-650, Korea
| | | | | |
Collapse
|
238
|
Simonovic M, Gettins PG, Volz K. Crystal structure of human PEDF, a potent anti-angiogenic and neurite growth-promoting factor. Proc Natl Acad Sci U S A 2001; 98:11131-5. [PMID: 11562499 PMCID: PMC58695 DOI: 10.1073/pnas.211268598] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2001] [Indexed: 11/18/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), a noninhibitory member of the serpin superfamily, is the most potent inhibitor of angiogenesis in the mammalian ocular compartment. It also has neurotrophic activity, both in the retina and in the central nervous system, and is highly up-regulated in young versus senescent fibroblasts. To provide a structural basis for understanding its many biological roles, we have solved the crystal structure of glycosylated human PEDF to 2.85 A. The structure revealed the organization of possible receptor and heparin-binding sites, and showed that, unlike any other previously characterized serpin, PEDF has a striking asymmetric charge distribution that might be of functional importance. These results provide a starting point for future detailed structure/function analyses into possible mechanisms of PEDF action that could lead to development of therapeutics against uncontrolled angiogenesis.
Collapse
Affiliation(s)
- M Simonovic
- Department of Biochemistry, College of Medicine, University of Illinois, Chicago, IL 60612-7334, USA
| | | | | |
Collapse
|
239
|
Petersen HH, Hansen M, Schousboe SL, Andreasen PA. Localization of epitopes for monoclonal antibodies to urokinase-type plasminogen activator: relationship between epitope localization and effects of antibodies on molecular interactions of the enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4430-9. [PMID: 11502203 DOI: 10.1046/j.1432-1327.2001.02365.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We localized the epitopes for several murine mAbs to human urokinase-type plasminogen activator (uPA) by Ala scanning mutagenesis and related the localization to the effects of the mAbs on the molecular interactions of uPA. Several antibodies against the serine proteinase domain (SPD) were found to have overlapping epitopes composed of variable combinations of Arg178, Arg179, His180, Arg181, Tyr209, Lys211, and Asp214 in the so-called 37-loop and 60-loop, located near the active site and taking part in the binding of uPA to plasminogen activator inhibitor-1 (PAI-1). Besides inhibiting uPA-catalysed plasminogen activation, all antibodies to SPD strongly delayed the binding of uPA to PAI-1, decreasing the second-order rate constant 15- to 6500-fold. There was no correlation between the relative effects of the 37-loop and 60-loop substitutions on the second-order rate constant and on the binding of the antibodies, indicating that the antibodies did not delay complex formation by blocking residues of specific importance for the uPA-PAI-1 reaction, but rather by steric hindrance of the access of PAI-1 to the active site. The affinity of the SPD antibodies for the uPA-PAI-1 complex was only slightly lower than that for free uPA, indicating that the 37-loop and 60-loop are exposed in the complex. The epitopes for two antibodies to the kringle included Arg108, Arg109, and Arg110. The ability of these antibodies to block the binding of uPA to polyanions correlated with a reduced uPA-polyanion affinity after substitution of the three Arg residues.
Collapse
Affiliation(s)
- H H Petersen
- Laboratory of Cellular Protein Science, Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
240
|
Atchley WR, Lokot T, Wollenberg K, Dress A, Ragg H. Phylogenetic analyses of amino acid variation in the serpin proteins. Mol Biol Evol 2001; 18:1502-11. [PMID: 11470841 DOI: 10.1093/oxfordjournals.molbev.a003936] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogenetic analyses of 110 serpin protein sequences revealed clades consistent with independent phylogenetic analyses based on exon-intron structure and diagnostic amino acid sites. Trees were estimated by maximum likelihood, neighbor joining, and partial split decomposition using both the BLOSUM 62 and Jones-Taylor-Thornton substitution matrices. Neighbor-joining trees gave results closest to those based on independent analyses using genomic and chromosomal data. The maximum-likelihood trees derived using the quartet puzzling algorithm were very conservative, producing many small clades that separated groups of proteins that other results suggest were related. Independent analyses based on exon-intron structure suggested that a neighbor-joining tree was more accurate than maximum-likelihood trees obtained using the quartet puzzling algorithm.
Collapse
Affiliation(s)
- W R Atchley
- Department of Genetics, North Carolina State University, Raleigh 27695-7614, USA.
| | | | | | | | | |
Collapse
|
241
|
Zhou A, Carrell RW, Huntington JA. The serpin inhibitory mechanism is critically dependent on the length of the reactive center loop. J Biol Chem 2001; 276:27541-7. [PMID: 11325972 DOI: 10.1074/jbc.m102594200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recent crystallographic structure of a serpin-protease complex revealed that protease inactivation results from a disruption of the catalytic site architecture caused by the displacement of the catalytic serine. We hypothesize that inhibition depends on the length of the N-terminal portion of the reactive center loop, to which the active serine is covalently attached. To test this, alpha(1)-antitrypsin Pittsburgh variants were prepared with lengthened and shortened reactive center loops. The rates of inhibition of factor Xa and of complex dissociation were measured. The addition of one residue reduced the stability of the complex more than 200,000-fold, and the addition of two residues reduced it by more than 1,000,000-fold, whereas the deletion of one or two residues lowered the efficiency of inhibition and increased the stability of the complex (2-fold). The deletion of more than two residues completely converted the serpin into a substrate. Similar results were obtained for the alpha(1)-antitrypsin variants with thrombin and for PAI-1 and PAI-2 with their common target tissue plasminogen activator. We conclude that the length of the serpin reactive center loop is critical for its mechanism of inhibition and is precisely regulated to balance the efficiency of inhibition and stability of the final complex.
Collapse
Affiliation(s)
- A Zhou
- Department of Haematology, University of Cambridge, Wellcome Trust Center for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | |
Collapse
|
242
|
Lee C, Maeng JS, Kocher JP, Lee B, Yu MH. Cavities of alpha(1)-antitrypsin that play structural and functional roles. Protein Sci 2001; 10:1446-53. [PMID: 11420446 PMCID: PMC2374102 DOI: 10.1110/ps.840101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The native form of inhibitory serine protease inhibitors (serpins) is strained, which is critical for their inhibitory activity. Previous studies on stabilizing mutations of alpha(1)-antitrypsin, a prototype of serpins, indicated that cavities provide a structural basis for the native strain of the molecule. We have systematically mapped the cavities of alpha(1)-antitrypsin that play such structural and functional roles by designing cavity-filling mutations at residues that line the walls of the cavities. Results show that energetically unfavorable cavities are distributed throughout the alpha(1)-antitrypsin molecule, and the cavity-filling mutations stabilized the native conformation at 8 out of 10 target sites. The stabilization effect of the individual cavity-filling mutations of alpha(1)-antitrypsin varied (0.2-1.9 kcal/mol for each additional methylene group) and appeared to depend largely on the structural flexibility of the cavity environment. Cavity-filling mutations that decreased inhibitory activity of alpha(1)-antitrypsin were localized in the loop regions that interact with beta-sheet A distal from the reactive center loop. The results are consistent with the notion that beta-sheet A and the structure around it mobilize when alpha(1)-antitrypsin forms a complex with a target protease.
Collapse
Affiliation(s)
- C Lee
- National Creative Research Initiatives, Protein Strain Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Korea
| | | | | | | | | |
Collapse
|
243
|
Tran ST, Shrake A. The folding of alpha-1-proteinase inhibitor: kinetic vs equilibrium control. Arch Biochem Biophys 2001; 385:322-31. [PMID: 11368013 DOI: 10.1006/abbi.2000.2186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous folding studies of alpha-1-proteinase inhibitor (alpha1-PI), which regulates the activity of the serine protease human neutrophil elastase, show an intermediate state at approximately 1.5 M guanidine-HCl (Gu). For the normal form of alpha1-PI, we demonstrate the reversible formation of the same stable distribution of monomeric and polymeric intermediates after approximately 1 h in 1.5 M Gu at approximately 23 degrees C from fully folded or fully unfolded alpha1-PI at similar final total concentrations and show that the stable distribution of monomeric and polymeric intermediates conforms with the law of mass action. We attribute these observations to an apparent equilibrium among intermediates. Our CD data are compatible with the intermediates having slightly relaxed structures relative to that of fully folded alpha1-PI and, thus, with the polymeric intermediates having a loop-sheet structure. Furthermore, we observe that the rates of folding (fast and slow terms) from the intermediate state are the same as those from the fully unfolded state, thereby supporting the contention that this intermediate state is on the folding pathway. We attribute the tendency of the Z mutant protein to polymerize/aggregate to an increased rate of the monomeric intermediate to form the apparent equilibrium distribution of intermediate species relative to its rate of folding to give intact alpha1-PI.
Collapse
Affiliation(s)
- S T Tran
- Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
244
|
Suminami Y, Kishi F, Murakami A, Sakaguchi Y, Nawata S, Numa F, Kato H. Novel forms of squamous cell carcinoma antigen transcripts produced by alternative splicing. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:122-6. [PMID: 11406281 DOI: 10.1016/s0167-4781(01)00208-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Squamous cell carcinoma antigen (SCCA) is a member of the ovalbumin serine protease inhibitor family, and the serum level of SCCA is a tumor marker of squamous cell carcinoma. Reverse transcription (RT)-PCR of the squamous cell carcinoma cell line showed the existence of a 156 base shorter transcript compared with that of SCCA1 cDNA. By inverse PCR, we cloned the full length cDNA of this SCCA (SCCA1b). Sequence analysis of the complete 1541 bp SCCA1b cDNA showed that it coded for 338 amino acids and had no typical signal sequence in the NH(2) terminus. The cDNA was expressed in Escherichia coli and the product was detected using Western blotting with antibodies against SCCA. Furthermore, RT-PCR of the full coding region of SCCA2 cDNA from cancer tissue showed the existence of a 63 base short transcript (SCCA2b). A comparison of SCCA1b and SCCA2b cDNA with the SCCA1 and SCCA2 genes showed that these messages were derived from each gene by an alternative splicing mechanism.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Carcinoma, Squamous Cell/immunology
- Cloning, Molecular
- DNA, Complementary/biosynthesis
- DNA, Complementary/chemistry
- Escherichia coli/metabolism
- Exons
- Humans
- Introns
- Molecular Sequence Data
- Protein Isoforms/genetics
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Serpins/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Suminami
- Department of Obstetrics and Gynecology, Yamaguchi University School of Medicine, Minamikogushi, Ube, Japan.
| | | | | | | | | | | | | |
Collapse
|
245
|
Egelund R, Einholm AP, Pedersen KE, Nielsen RW, Christensen A, Deinum J, Andreasen PA. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands. Ligand-induced serpin polymerization. J Biol Chem 2001; 276:13077-86. [PMID: 11278457 DOI: 10.1074/jbc.m009024200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the neutralization of the inhibitory activity of the serpin plasminogen activator inhibitor-1 (PAI-1) by a number of structurally distinct organochemicals, including compounds with environment-sensitive spectroscopic properties. In contrast to latent and reactive center-cleaved PAI-1 and PAI-1 in complex with urokinase-type plasminogen activator (uPA), active PAI-1 strongly increased the fluorescence of the PAI-1-neutralizing compounds 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-bisnaphthyl-5,5'-disulfonic acid. The fluorescence increase could be competed by all tested nonfluorescent neutralizers, indicating that all neutralizers bind to a common hydrophobic area preferentially accessible in active PAI-1. Activity neutralization proceeded through two consecutive steps as follows: first step is conversion to forms displaying substrate behavior toward uPA, and second step is to forms inert to uPA. With some neutralizers, the second step was associated with PAI-1 polymerization. Vitronectin reduced the susceptibility to the neutralizers. Changes in sensitivity to activity neutralization by point mutations were compatible with the various neutralizers having overlapping, but not identical, binding sites in the region around alpha-helices D and E and beta-strand 1A, known to act as a flexible joint when beta-sheet A opens and the reactive center loop inserts as beta-strand 4A during reaction with target proteinases. The defined binding area may be a target for development of compounds for neutralizing PAI-1 in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- R Egelund
- Laboratory of Cellular Protein Science, Department of Molecular and Structural Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
246
|
Ragg H, Lokot T, Kamp PB, Atchley WR, Dress A. Vertebrate serpins: construction of a conflict-free phylogeny by combining exon-intron and diagnostic site analyses. Mol Biol Evol 2001; 18:577-84. [PMID: 11264410 DOI: 10.1093/oxfordjournals.molbev.a003838] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A combination of three independent biological features, genomic organization, diagnostic amino acid sites, and rare indels, was used to elucidate the phylogeny of the vertebrate serpin (serine protease inhibitor) superfamily. A strong correlation between serpin gene families displaying (1) a conserved exon-intron pattern and (2) family-specific combinations of amino acid residues at specific sites suggests that present-day vertebrates encompass six serpin gene families which evolved from primordial genes by massive intron insertion before or during early vertebrate radiation. Introns placed at homologous positions in the gene sequences in combination with diagnostic sequence characters may also constitute a reliable kinship indicator for other protein superfamilies.
Collapse
Affiliation(s)
- H Ragg
- Faculty of Technology and Faculty of Mathematics, University of Bielefeld, Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
247
|
Mulligan-Kehoe MJ, Wagner R, Wieland C, Powell R. A truncated plasminogen activator inhibitor-1 protein induces and inhibits angiostatin (kringles 1-3), a plasminogen cleavage product. J Biol Chem 2001; 276:8588-96. [PMID: 11113116 DOI: 10.1074/jbc.m006434200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a serpin protease inhibitor that binds plasminogen activators (uPA and tPA) at a reactive center loop located at the carboxyl-terminal amino acid residues 320-351. The loop is stretched across the top of the active PAI-1 protein maintaining the molecule in a rigid conformation. In the latent PAI-1 conformation, the reactive center loop is inserted into one of the beta sheets, thus making the reactive center loop unavailable for interaction with the plasminogen activators. We truncated porcine PAI-1 at the amino and carboxyl termini to eliminate the reactive center loop, part of a heparin binding site, and a vitronectin binding site. The region we maintained corresponds to amino acids 80-265 of mature human PAI-1 containing binding sites for vitronectin, heparin (partial), uPA, tPA, fibrin, thrombin, and the helix F region. The interaction of "inactive" PAI-1, rPAI-1(23), with plasminogen and uPA induces the formation of a proteolytic protein with angiostatin properties. Increasing amounts of rPAI-1(23) inhibit the proteolytic angiostatin fragment. Endothelial cells exposed to exogenous rPAI-1(23) exhibit reduced proliferation, reduced tube formation, and 47% apoptotic cells within 48 h. Transfected endothelial cells secreting rPAI-1(23) have a 30% reduction in proliferation, vastly reduced tube formation, and a 50% reduction in cell migration in the presence of VEGF. These two studies show that rPAI-1(23) interactions with uPA and plasminogen can inhibit plasmin by two mechanisms. In one mechanism, rPAI-1(23) cleaves plasmin to form a proteolytic angiostatin-like protein. In a second mechanism, rPAI-1(23) can bind uPA and/or plasminogen to reduce the number of uPA and plasminogen interactions, hence reducing the amount of plasmin that is produced.
Collapse
Affiliation(s)
- M J Mulligan-Kehoe
- Division of Vascular Surgery, Department of Surgery, Dartmouth Medical School, Dartmouth College, Hanover, New Hampshire 03756, USA.
| | | | | | | |
Collapse
|
248
|
Gaspar LP, Terezan AF, Pinheiro AS, Foguel D, Rebello MA, Silva JL. The metastable state of nucleocapsids of enveloped viruses as probed by high hydrostatic pressure. J Biol Chem 2001; 276:7415-21. [PMID: 11092899 DOI: 10.1074/jbc.m010037200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enveloped viruses fuse their membranes with cellular membranes to transfer their genomes into cells at the beginning of infection. What is not clear, however, is the role of the envelope (lipid bilayer and glycoproteins) in the stability of the viral particle. To address this question, we compared the stability between enveloped and nucleocapsid particles of the alphavirus Mayaro using hydrostatic pressure and urea. The effects were monitored by intrinsic fluorescence, light scattering, and binding of fluorescent dyes, including bis(8-anilinonaphthalene-1-sulfonate) and ethidium bromide. Pressure caused a drastic dissociation of the nucleocapsids as determined by tryptophan fluorescence, light scattering, and gel filtration chromatography. Pressure-induced dissociation of the nucleocapsids was poorly reversible. In contrast, when the envelope was present, pressure effects were much less marked and were highly reversible. Binding of ethidium bromide occurred when nucleocapsids were dissociated under pressure, indicating exposure of the nucleic acid, whereas enveloped particles underwent no changes. Overall, our results demonstrate that removal of the envelope with the glycoproteins leads the particle to a metastable state and, during infection, may serve as the trigger for disassembly and delivery of the genome. The envelope acts as a "Trojan horse," gaining entry into the host cell to allow release of a metastable nucleocapsid prone to disassembly.
Collapse
Affiliation(s)
- L P Gaspar
- Programa de Biologia Estrutural, Departamento de Bioquimica Médica, Instituto de Ciências Biomédicas, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
249
|
Abts HF, Welss T, Scheuring S, Scott FL, Irving JA, Michel G, Bird PI, Ruzicka T. Sequence, organization, chromosomal localization, and alternative splicing of the human serine protease inhibitor gene hurpin (PI13) which is upregulated in psoriasis. DNA Cell Biol 2001; 20:123-31. [PMID: 11313015 DOI: 10.1089/104454901300068924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hurpin (protease inhibitor 13; PI13) is the most recently identified member of the ovalbumin family of serine protease inhibitors (serpins). It is expressed in human epidermal keratinocytes and is downregulated by exposure to ultraviolet irradiation. A role for hurpin in the proliferation or differentiation of keratinocytes has been proposed because of its strong expression in proliferating cells and its deregulated expression in the lesional epidermis of psoriatic patients. Here, we report the cloning, chromosomal localization, and complete sequence of the human hurpin gene. By PCR-based screening of the GeneBridge 4 radiation hybrid panel, we mapped the gene to chromosome 18q21.3, close to a known cluster of ov-serpin genes. Using the full-length cDNA for hurpin, we identified two clones from an arrayed genomic P1 placental library that contain the entire hurpin gene. Sequencing revealed that the gene covers 12.253 kb and is comprised of eight exons and seven introns. The exon--intron boundaries are identical in position and phasing to those in other members of the 18q serpin gene cluster, and analysis of hurpin variants indicated that modified functional inhibitors, differing only in the CD interhelical loop, can be generated by differential splicing of exon 3. These data show that hurpin is a typical member of the 18q ovalbumin-serpins most closely related to the serpins squamous-cell carcinoma antigens 1 and 2.
Collapse
Affiliation(s)
- H F Abts
- Department of Dermatology and Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Di Nucci H, Nerli B, Picó G. Comparison between the thermodynamic features of alpha1-antitrypsin and human albumin partitioning in aqueous two-phase systems of polyethyleneglycol-dextran. Biophys Chem 2001; 89:219-29. [PMID: 11254214 DOI: 10.1016/s0301-4622(00)00237-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The partitioning features of human serum albumin and alpha1-antitrypsin in aqueous two-phase systems of dextran and polyethyleneglycol were studied. The effect of factors that affect the electrostatic term of Albertsson equation such as pH, ionic strength, presence of neutral salts as well as those which affect the non-electrostatic term such as polyethyleneglycol mol. wt. and temperature were assayed. At room temperature, the positive entropy and enthalpy changes associated to the partition may be due to a release of part of the structured water in the domain of proteins caused by H-bonds rupture when the proteins are transferred to the upper phase. This behaviour may be explained on the basis of a preferential hydration of the proteins in presence of dextran (bottom phase) and a preferential interaction of polyethyleneglycols with the protein domain (top phase). The electrostatic interactions were similar for both proteins due to the proximity of their isoelectric point and similar dissociation profiles of their prototropic groups.
Collapse
Affiliation(s)
- H Di Nucci
- Facultad de Ciencias Bioquímicas y Farmacéuticas and Conicet, Universidad Nacional de Rosario, Argentina
| | | | | |
Collapse
|