201
|
Dai N, Etzkorn FA. Cis−Trans Proline Isomerization Effects on Collagen Triple-Helix Stability Are Limited. J Am Chem Soc 2009; 131:13728-32. [DOI: 10.1021/ja904177k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nan Dai
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061
| | | |
Collapse
|
202
|
Abstract
Worldwide, HCV infection is a major cause of chronic liver disease and hepatocellular carcinoma and is often refractory to current antiviral treatments. The most effective therapy, pegylated interferon plus ribavirin, unfortunately eliminates virus only in approximately half of patients treated and is frequently poorly tolerated. The recent development of in vitro and in vivo HCV infection and replication models has resulted in breakthroughs in basic research toward the development of new antiviral agents. Currently, many therapeutic agents with different mechanisms of action are under development, and several are in late-phase clinical trials. Some of these drugs have shown promise when used in combination with the standard peginterferon and ribavirin, and others could constitute tablet-based combination therapies without standard therapy. This article reviews the current status of drug development, ongoing clinical trials and future perspectives in the field of HCV therapeutics.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Gastroenterology & Hepatology, Department for Hepatitis Control, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - George Y Wu
- Division of Gastroenterology & Hepatology, University of Connecticut Health Center, 263 Farmington Avenure, Farmington, CT 06030-1845, USA
| |
Collapse
|
203
|
The folding pathway of the antibody V(L) domain. J Mol Biol 2009; 392:1326-38. [PMID: 19647749 DOI: 10.1016/j.jmb.2009.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/22/2009] [Accepted: 07/27/2009] [Indexed: 11/23/2022]
Abstract
Antibodies are modular proteins consisting of domains that exhibit a beta-sandwich structure, the so-called immunoglobulin fold. Despite structural similarity, differences in folding and stability exist between different domains. In particular, the variable domain of the light chain V(L) is unusual as it is associated with misfolding diseases, including the pathologic assembly of the protein into fibrillar structures. Here, we have analysed the folding pathway of a V(L) domain with a view to determine features that may influence the relationship between productive folding and fibril formation. The V(L) domain from MAK33 (murine monoclonal antibody of the subtype kappa/IgG1) has not previously been associated with fibrillisation but is shown here to be capable of forming fibrils. The folding pathway of this V(L) domain is complex, involving two intermediates in different pathways. An obligatory early molten globule-like intermediate with secondary structure but only loose tertiary interactions is inferred. The native state can then be formed directly from this intermediate in a phase that can be accelerated by the addition of prolyl isomerases. However, an alternative pathway involving a second, more native-like intermediate is also significantly populated. Thus, the protein can reach the native state via two distinct folding pathways. Comparisons to the folding pathways of other antibody domains reveal similarities in the folding pathways; however, in detail, the folding of the V(L) domain is striking, with two intermediates populated on different branches of the folding pathway, one of which could provide an entry point for molecules diverted into the amyloid pathway.
Collapse
|
204
|
Martino L, He Y, Hands-Taylor KLD, Valentine ER, Kelly G, Giancola C, Conte MR. The interaction of the Escherichia coli protein SlyD with nickel ions illuminates the mechanism of regulation of its peptidyl-prolyl isomerase activity. FEBS J 2009; 276:4529-44. [PMID: 19645725 DOI: 10.1111/j.1742-4658.2009.07159.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sensitive to lysis D (SlyD) protein from Escherichia coli is related to the FK506-binding protein family, and it harbours both peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone-like activity, preventing aggregation and promoting the correct folding of other proteins. Whereas a functional role of SlyD as a protein-folding catalyst in vivo remains unclear, SlyD has been shown to be an essential component for [Ni-Fe]-hydrogenase metallocentre assembly in bacteria. Interestingly, the isomerase activity of SlyD is uniquely modulated by nickel ions, which possibly regulate its functions in response to external stimuli. In this work, we investigated the solution structure of SlyD and its interaction with nickel ions, enabling us to gain insights into the molecular mechanism of this regulation. We have revealed that the PPIase module of SlyD contains an additional C-terminal alpha-helix packed against the catalytic site of the domain; unexpectedly, our results show that the interaction of SlyD with nickel ions entails participation of the novel structural features of the PPIase domain, eliciting structural alterations of the catalytic pocket. We suggest that such conformational rearrangements upon metal binding underlie the ability of nickel ions to regulate the isomerase activity of SlyD.
Collapse
Affiliation(s)
- Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
205
|
Zhang K, Teklebrhan RB, Schreckenbach G, Wetmore S, Schweizer F. Intramolecular hydrogen bond-controlled prolyl amide isomerization in glucosyl 3'(S)-hydroxy-5'-hydroxymethylproline hybrids: influence of a C-5'-hydroxymethyl substituent on the thermodynamics and kinetics of prolyl amide cis/trans isomerization. J Org Chem 2009; 74:3735-43. [PMID: 19354261 DOI: 10.1021/jo9003458] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide mimics containing spirocyclic glucosyl-(3'-hydroxy-5'-hydroxymethyl)proline hybrids (Glc3'(S)-5'(CH(2)OH)HypHs) with a polar hydroxymethyl substituent at the C-5' position, such as C-terminal ester Ac-Glc3'(S)-5'(CH(2)OH)Hyp-OMe and C-terminal amide Ac-Glc3'(S)-5'(CH(2)OH)Hyp-N'-CH(3), were synthesized. C-Terminal esters exhibit increased cis population (23-53%) relative to Ac-3(S)HyPro-OMe (17%) or Ac-Pro-OMe (14%) in D(2)O. The prolyl amide cis population is further increased to 38-74% in the C-terminal amide form in D(2)O. Our study shows that the stereochemistry of the hydroxymethyl substituent at the C-5' position of proline permits tuning of the prolyl amide cis/trans isomer ratio. Inversion-magnetization transfer NMR experiments indicate that the stereochemistry of the hydroxymethyl substituent has a dramatic effect on the kinetics of prolyl amide cis/trans isomerization. A 200-fold difference in the trans-to-cis (k(tc)) isomerization and a 90-fold rate difference in the cis-to-trans (k(ct)) isomerization is observed between epimeric C-5' 3 and 4. When compared to reference peptide mimics Ac-Pro-OMe and Ac-3(S)Hyp-OMe, our study demonstrates that a (13-16)-fold decrease in k(tc) and k(ct) is observed for the C-5'(S), while a (5-24)-fold acceleration is observed for the C-5'(R) epimer. DFT calculations indicate that the pyrrolidine ring prefers a C(beta) exo pucker in both Ac-Glc3'(S)-5'(CH(2)OH)Hyp-OMe diastereoisomers. Computational calculations and chemical shift temperature coefficient (Delta delta/Delta T) experiments indicate that the hydroxymethyl group at C-5' in Ac-Glc3'(S)-5'(CH(2)OH)Hyp-OMe forms a stabilizing intramolecular hydrogen bond to the carbonyl of the N-acetyl group in both epimeric cis isomers. However, a competing intramolecular hydrogen bond between the hydroxymethyl groups in the pyrrolidine ring and pyran ring stabilizes the trans isomer in the C-5'(S) diastereoisomer. The dramatic differences in the kinetic properties of the diastereoisomeric peptide mimics are rationalized by the presence or absence of an intramolecular hydrogen bond between the hydroxymethyl substituent located at C-5' and the developing lone pair on the nitrogen atom of the N-acetyl group in the transition state.
Collapse
Affiliation(s)
- Kaidong Zhang
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
206
|
Candel AM, Cobos ES, Conejero-Lara F, Martinez JC. Evaluation of folding co-operativity of a chimeric protein based on the molecular recognition between polyproline ligands and SH3 domains. Protein Eng Des Sel 2009; 22:597-606. [PMID: 19617233 DOI: 10.1093/protein/gzp041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In previous work, we designed a chimeric protein, named SPCp41, to evaluate the thermodynamics of the interaction between SH3 domains and proline-rich ligands by combining thermal unfolding measurements and mutagenesis. Here, we have investigated the energetic integrity of the chain extension corresponding to the ligand sequence into the native structure, since the opposite will produce changes in the folding mechanism of the SH3 domain that may give rise to undesirable contributions to the thermodynamic parameters. We have analysed the folding-unfolding kinetics under standard conditions (50 mM phosphate pH 7). Kinetic evolutions are well described by a bi-exponential where, on top of the main kinetic phase, a low-populated slower phase appears as a consequence of cis-trans isomerisation of Pro39, as demonstrated by the influence of prolyl isomerases and by mutational analysis. There is also a burst phase possibly due to a productive formation of some helical ensembles. The main evolution, accounting for the true folding kinetics of SPCp41, can be considered as a two-state process, where the folding transition state produces essentially the same picture shown by the circular permutant S19-P20s (the 'nucleus' of the design) and the ligand will dock at the latter stages of the two-state process. Thus, all conclusions argue in favour of the effectiveness of SPCp41 to study energetic, dynamic and structural aspects of SH3-ligand interactions.
Collapse
Affiliation(s)
- Adela M Candel
- Departamento de Quimica Fisica e Instituto de Biotecnologia, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | | | | |
Collapse
|
207
|
A remote prolyl isomerization controls domain assembly via a hydrogen bonding network. Proc Natl Acad Sci U S A 2009; 106:12335-40. [PMID: 19617535 DOI: 10.1073/pnas.0902102106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Prolyl cis/trans isomerizations determine the rates of protein folding reactions and can serve as molecular switches and timers. In the gene-3-protein of filamentous phage, Pro-213 trans --> cis isomerization in a hinge region controls the assembly of the 2 domains N1 and N2 and, in reverse, the activation of the phage for infection. We elucidated the structural and energetic basis of this proline-limited domain assembly at the level of individual residues by real-time 2D NMR. A local cluster of inter-domain hydrogen bonds, remote from Pro-213, is stabilized up to 3,000-fold by trans --> cis isomerization. This network of hydrogen bonds mediates domain assembly and is connected with Pro-213 by rigid backbone segments. Thus, proline cis/trans switching is propagated in a specific and directional fashion to change the protein structure and stability at a distant position.
Collapse
|
208
|
Skelton AA, Liang T, Walsh TR. Interplay of sequence, conformation, and binding at the Peptide-titania interface as mediated by water. ACS APPLIED MATERIALS & INTERFACES 2009; 1:1482-1491. [PMID: 20355952 DOI: 10.1021/am9001666] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The initial stages of the adsorption of a hexapeptide at the aqueous titania interface are modeled using atomistic molecular dynamics simulations. This hexapeptide has been identified by experiment [Sano, K. I.; Shiba, K. J. Am. Chem. Soc. 2003, 125, 14234] to bind to Ti particles. We explore the current hypothesis presented by these authors that binding at this peptide-titania interface is the result of electrostatic interactions and find that contact with the surface appears to take place via a pair of oppositely charged groups in the peptide. Our data indicate that the peptide may initially recognize the water layers at the interface, not the titania surface itself, via these charged groups. We also report results of simulations for hexapeptide sequences with selected single-point mutations for alanine and compare these behaviors with those suggested from observed binding affinities from existing alanine scan experiments. Our results indicate that factors in addition to electrostatics also contribute, with the structural rigidity conferred by proline suggested to play a significant role. Finally, our findings suggest that intrapeptide interaction may provide mechanisms for surface detachment that could be detrimental to binding at the interface.
Collapse
Affiliation(s)
- Adam A Skelton
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, UK.
| | | | | |
Collapse
|
209
|
Spatara M, Roberts C, Robinson A. Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states. Biophys Chem 2009; 141:214-21. [DOI: 10.1016/j.bpc.2009.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
210
|
Laufer B, Chatterjee J, Frank AO, Kessler H. Can N-methylated amino acids serve as substitutes for prolines in conformational design of cyclic pentapeptides? J Pept Sci 2009; 15:141-6. [PMID: 18985637 DOI: 10.1002/psc.1076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The incorporation of proline into cyclic peptides seems to be the most promising way to induce beta-turn structures. Recently, however, it was shown that N-methylated amino acids might be even better suited than proline for introducing turn structures. Another property of proline, the ability to effect cis-peptide bonds, has also been reported for N-methylated amino acids. These findings raise the question if it might be possible to replace a proline by an N-methylated amino acid without altering the desired conformational features. The most important benefit of replacing proline by an N-methylated residue is that one recovers the side-chain functionalities, which could be used for enhancing binding selectivity, or to tune a cyclic peptide concerning its pharmacological properties.Here, we compare cyclic peptides containing one or two prolines or N-methylated alanines and a combination of both with respect to preferred conformations and cis-peptide bonds. In addition, the positions have been investigated where an N-alkylated amino acid has to be incorporated to mimic structural aspects usually introduced by proline residues.
Collapse
Affiliation(s)
- Burkhardt Laufer
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching, D-85747 Germany
| | | | | | | |
Collapse
|
211
|
Hamelberg D, McCammon JA. Mechanistic insight into the role of transition-state stabilization in cyclophilin A. J Am Chem Soc 2009; 131:147-52. [PMID: 19128175 PMCID: PMC2651649 DOI: 10.1021/ja806146g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidyl prolyl cis-trans isomerases (PPIases) are ubiquitous enzymes in biology that catalyze the cis-trans isomerization of the proline imide peptide bond in many cell signaling pathways. The local change of the isomeric state of the prolyl peptide bond acts as a switching mechanism in altering the conformation of proteins. A complete understanding of the mechanism of PPIases is still lacking, and current experimental techniques have not been able to provide a detailed atomistic picture. Here we have carried out several accelerated molecular dynamics simulations with explicit solvent, and we have provided a detailed description of cis-trans isomerization of the free and cyclophilin A-catalyzed process. We show that the catalytic mechanism of cyclophilin is due mainly to the stabilization and preferential binding of the transition state that is achieved by a favorable hydrogen bond interaction with a backbone NH group. We also show that the substrate in the transition state interacts more favorably with the enzyme than the cis isomer, which in turn interacts more favorably than the trans isomer. The stability of the enzyme-substrate complex is directly correlated with the interaction the substrate makes with a highly conserved arginine residue. Finally, we show that catalysis is achieved through the rotation of the carbonyl oxygen on the N-terminal of the prolyl peptide bond in a predominately unidirectional fashion.
Collapse
Affiliation(s)
- Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, USA
| | | |
Collapse
|
212
|
Nunes CA, Dias-Cabral ACM. Angiotensin I retention behavior on Butyl-Sepharose under linear loading chromatographic conditions. J Chromatogr A 2009; 1216:2332-8. [DOI: 10.1016/j.chroma.2009.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/27/2008] [Accepted: 01/02/2009] [Indexed: 11/28/2022]
|
213
|
Jakob RP, Schmid FX. Molecular determinants of a native-state prolyl isomerization. J Mol Biol 2009; 387:1017-31. [PMID: 19232524 DOI: 10.1016/j.jmb.2009.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/06/2009] [Accepted: 02/10/2009] [Indexed: 11/30/2022]
Abstract
Prolyl cis/trans isomerizations determine the rates of many protein-folding reactions, and they can serve as molecular switches and timers. The energy required to shift the prolyl cis/trans equilibrium during these processes originates from conformational reactions that are linked structurally and energetically with prolyl isomerization. We used the N2 domain of the gene-3-protein of phage fd to elucidate how such an energetic linkage develops in the course of folding. The Asp160-Pro161 bond at the tip of a beta hairpin of N2 is cis in the crystal structure, but in fact, it exists as a mixture of conformers in folded N2. During refolding, about 10 kJ mol(-1) of conformational energy becomes available for a 75-fold shift of the cis/trans equilibrium constant at Pro161, from 7/93 in the unfolded to 90/10 in the folded form. We combined single- and double-mixing kinetic experiments with a mutational analysis to identify the structural origin of this proline shift energy and to elucidate the molecular path for the transfer of this energy to Pro161. It originates largely, if not entirely, from the two-stranded beta sheet at the base of the Pro161 hairpin. The two strands improve their stabilizing interactions when Pro161 is cis, and this stabilization is propagated to Pro161, because the connector peptides between the beta strands and Pro161 are native-like folded when Pro161 is cis. In the presence of a trans-Pro161, the connector peptides are locally unfolded, and thus, Pro161 is structurally and energetically uncoupled from the beta sheet. Such interrelations between local folding and prolyl isomerization and the potential modulation by prolyl isomerases might also be used to break and reestablish slow communication pathways in proteins.
Collapse
Affiliation(s)
- Roman P Jakob
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
214
|
Kumari S, Singh P, Singla-Pareek SL, Pareek A. Heterologous expression of a salinity and developmentally regulated rice cyclophilin gene (OsCyp2) in E. coli and S. cerevisiae confers tolerance towards multiple abiotic stresses. Mol Biotechnol 2009; 42:195-204. [PMID: 19214808 DOI: 10.1007/s12033-009-9153-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/26/2009] [Indexed: 11/26/2022]
Abstract
Cyclophilin 2 (OsCyp2) is a cytosolic member of immunophilin family from rice. We have isolated its full length cDNA (1,056 bp) with an open reading frame of 519 bp encoding a polypeptide of 172 amino acids and an estimated pI of 8.61. Peptidyl prolyl cis-trans isomerase activity of the protein was determined using N-succinyl-ala-ala-pro-phe-p-nitroanilidine as peptide substrate. It has a catalytic efficiency (K (cat)/K (m)) of 4.5 x 10(6)/(mol/l)/s, which is comparable to known cyclophilins from plants. Its activity is specifically inhibited by cyclosporin A, a macrolide drug inhibitor of cyclophilins. Transcript analysis showed it to be a developmentally and differentially regulated gene; showing changes in abundance at seedling, tillering and heading stage under non-stress and salinity stress conditions. Expression of OsCyp2 enhances the ability of Escherichia coli to survive under diverse abiotic stresses viz. salinity, high temperature, osmotic stress (mannitol) and oxidative stress (H(2)O(2)). OsCyp2 was able to complement the yeast mutant lacking native Cyp2 and also improved the growth of wild type yeast under above-mentioned stress conditions. Based on these results, we propose that OsCyp2 may serve as a 'suitable candidate' for raising transgenic plants for enhanced multiple abiotic stress tolerance.
Collapse
|
215
|
Schmidt M, Zahn S, Carella M, Ohlenschläger O, Görlach M, Kothe E, Weston J. Solution structure of a functional biomimetic and mechanistic implications for nickel superoxide dismutases. Chembiochem 2009; 9:2135-46. [PMID: 18690655 DOI: 10.1002/cbic.200800017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nickel complex of a synthetic nonapeptide (HCDLPCFVY-NH2) is capable of catalytically disproportionating O2(.-) and is thus a functional biomimetic for nickel superoxide dismutases. This represents a simplification as compared to a NiSOD "maquette" that is based on a dodecapeptide that was recently reported [Inorg. Chem. 2006, 45, 2358]. The 3D solution structure reveals that the first six residues form a stable macrocyclic structure with a preformed binding site for Ni(II). Proline 5 exhibits a trans peptide linkage in the biomimetic and a cis conformation in NiSOD enzymes. DFT calculations reveal the source of this preference. Mechanistic consequences for the mode of action (identity of the fifth ligand) are discussed. The SOD activity is compared to enzymatic systems, and selected modifications allowed the biomimetic to be reduced to a functional minimal motif of only six amino acids (ACAAPC-NH2).
Collapse
Affiliation(s)
- Matthias Schmidt
- Leibniz-Institut für Altersforschung, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
216
|
NAGARAJ R, VENKATACHALAPATHI Y, BALARAM P. ROTATIONAL ISOMERISM ABOUT THE Cα-CO BOND IN PROLINE DERIVATIVES. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1399-3011.1980.tb02589.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
217
|
Kantharaju, Raghothama S, Raghavender US, Aravinda S, Shamala N, Balaram P. Conformations of heterochiral and homochiral proline-pseudoproline segments in peptides: Context dependentcis-transpeptide bond isomerization. Biopolymers 2009; 92:405-16. [DOI: 10.1002/bip.21207] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
218
|
Da Silva P, Strzepa A, Jouvensal L, Rahioui I, Gressent F, Delmas AF. A folded and functional synthetic PA1b: an interlocked entomotoxic miniprotein. Biopolymers 2009; 92:436-44. [PMID: 19399851 DOI: 10.1002/bip.21217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PA1b (Pea Albumin 1, subunit b) is a hydrophobic, 37-amino acid miniprotein isolated from pea seeds (Pivum sativum), crosslinked by three interlocked disulfide bridges, signature of the ICK (inhibitory cystine-knot) family. It acts as an entomotoxic factor against major insect pests in stored crops and vegetables, making it a promising bioinsecticide. Here we report an efficient and simple protocol for the production of large quantities of highly pure, biologically active synthetic PA1b. The features of PA1b oxidative refolding revealed the off-pathway products and competitive aggregation processes. The efficiency of the oxidative folding can be significantly improved by using hydrophobic alcoholic cosolvents and decreasing the temperature. The homogeneity of the synthetic oxidized PA1b was established by reversed-phase HPLC. The correct pairing of the three disulfide bridges, as well as the three-dimensional structure of synthetic PA1b was assessed by NMR. Synthetic PA1b binds to microsomal proteins from Sitophilus oryzae with a Kd of 8 nM, a figure quite similar to that determined for PA1b extracted from its natural source. Moreover, the synthetic miniprotein was as potent as the extracted one towards the sensitive strains of weevils. Our findings will open the way to the production of PA1b analogues by chemical means to an in-depth understanding of the PA1b mechanism of action.
Collapse
Affiliation(s)
- Pedro Da Silva
- Université de Lyon, INRA, INSA-Lyon, IFR-41, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
219
|
Zoldák G, Carstensen L, Scholz C, Schmid FX. Consequences of domain insertion on the stability and folding mechanism of a protein. J Mol Biol 2008; 386:1138-52. [PMID: 19136015 DOI: 10.1016/j.jmb.2008.12.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/30/2022]
Abstract
SlyD, the sensitive-to-lysis protein from Escherichia coli, consists of two domains. They are not arranged successively along the protein chain, but one domain, the "insert-in-flap" (IF) domain, is inserted internally as a guest into a surface loop of the host domain, which is a prolyl isomerase of the FK506 binding protein (FKBP) type. We used SlyD as a model to elucidate how such a domain insertion affects the stability and folding mechanism of the host and the guest domain. For these studies, the two-domain protein was compared with a single-domain variant SlyDDeltaIF, SlyD* without the chaperone domain (residues 1-69 and 130-165) in which the IF domain was removed and replaced by a short loop, as present in human FKBP12. Equilibrium unfolding and folding kinetics followed an apparent two-state mechanism in the absence and in the presence of the IF domain. The inserted domain decreased, however, the stability of the host domain in the transition region and decelerated its refolding reaction by about 10-fold. This originates from the interruption of the chain connectivity by the IF domain and its inherent instability. To monitor folding processes in this domain selectively, a Trp residue was introduced as fluorescent probe. Kinetic double-mixing experiments revealed that, in intact SlyD, the IF domain folds and unfolds about 1000-fold more rapidly than the FKBP domain, and that it is strongly stabilized when linked with the folded FKBP domain. The unfolding limbs of the kinetic chevrons of SlyD show a strong downward curvature. This deviation from linearity is not caused by a transition-state movement, as often assumed, but by the accumulation of a silent unfolding intermediate at high denaturant concentrations. In this kinetic intermediate, the FKBP domain is still folded, whereas the IF domain is already unfolded.
Collapse
Affiliation(s)
- Gabriel Zoldák
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
220
|
Abstract
One of the most striking topological features to be found in a protein is that of a distinct knot formed by the path of the polypeptide backbone. Such knotted structures represent some of the smallest "self-tying" knots observed in Nature. Proteins containing a knot deep within their structure add an extra complication to the already challenging protein-folding problem; it is not obvious how, during the process of folding, a substantial length of polypeptide chain manages to spontaneously thread itself through a loop. Here, we probe the folding mechanism of YibK, a homodimeric alpha/beta-knot protein containing a deep trefoil knot at its carboxy terminus. By analyzing the effect of mutations made in the knotted region of the protein we show that the native structure in this area remains undeveloped until very late in the folding reaction. Single-site destabilizing mutations made in the knot structure significantly affect only the folding kinetics of a late-forming intermediate and the slow dimerization step. Furthermore, we find evidence to suggest that the heterogeneity observed in the denatured state is not caused by isomerization of the single cis proline bond as previously thought, but instead could be a result of the knotting mechanism. These results allow us to propose a folding model for YibK where the threading of the polypeptide chain and the formation of native structure in the knotted region of the protein occur independently as successive events.
Collapse
|
221
|
Substrate promiscuity of pyruvate kinase on various deoxynucleoside diphosphates for synthesis of deoxynucleoside triphosphates. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
222
|
A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc Natl Acad Sci U S A 2008; 105:16386-91. [PMID: 18845687 DOI: 10.1073/pnas.0808204105] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclophilins belong to a large family of enzymes called "peptidyl prolyl isomerases" that assist protein folding and assembly. The cyclophilin CYP20-3 (also known as "ROC4") is the only member of this group located in the stroma (soluble phase) of chloroplasts. In the present study we isolated mutant Arabidopsis plants defective in the CYP20-3 gene and found them to be hypersensitive to oxidative stress conditions created by high light levels, rose bengal, high salt levels, and osmotic shock. Chloroplast serine acetyltransferase (SAT1), a rate-limiting enzyme in cysteine biosynthesis, was identified as an interacting partner for CYP20-3 by protein interaction analyses. In the present experiments, SAT1 activity increased significantly under conditions of light and oxidative stress in concert with total thiols in wild-type plants. By contrast, these parameters changed only marginally in experiments with the cyp20-3 mutant, suggesting that CYP20-3 links light and stress to SAT1 activity and cysteine biosynthesis. In further support of this conclusion, our analyses showed that the salt-hypersensitive phenotype of the mutant developed under illumination and not in the dark. Together with the earlier report that CYP20-3 foldase activity is enhanced by thioredoxin-mediated reduction, our findings suggest that CYP20-3 links photosynthetic electron transport and redox regulation to the folding of SAT1, thereby enabling the cysteine-based thiol biosynthesis pathway to adjust to light and stress conditions.
Collapse
|
223
|
Sakata M, Chatani E, Kameda A, Sakurai K, Naiki H, Goto Y. Kinetic Coupling of Folding and Prolyl Isomerization of β2-Microglobulin Studied by Mutational Analysis. J Mol Biol 2008; 382:1242-55. [DOI: 10.1016/j.jmb.2008.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/28/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
224
|
Anbanandam A, Albarado DC, Tirziu DC, Simons M, Veeraraghavan S. Molecular basis for proline- and arginine-rich peptide inhibition of proteasome. J Mol Biol 2008; 384:219-27. [PMID: 18823992 DOI: 10.1016/j.jmb.2008.09.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/05/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
PR39, a naturally occurring and cell-permeable proline- and arginine-rich peptide, blocks the degradation of inhibitor of nuclear factor kappaB (IkappaBalpha), thereby attenuating inflammation. It is a noncompetitive and reversible inhibitor of 20S proteasome. To identify its basis of action, we used solution NMR spectroscopy and mutational analyses of the active fragment, PR11, which identified amino acids required for human 20S proteasome inhibiting activity. We then examined PR11-mediated changes in the expression of nuclear factor kappaB-dependent genes in situ. The results provide prerequisites for proteasome inhibition by proline- and arginine-rich peptides, providing a powerful new tool to investigate inflammatory processes. These findings offer new leads in developing drugs to treat heart diseases or stroke.
Collapse
Affiliation(s)
- Asokan Anbanandam
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Medical School, 6431 Fannin St., Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
225
|
Kloss E, Barrick D. Thermodynamics, kinetics, and salt dependence of folding of YopM, a large leucine-rich repeat protein. J Mol Biol 2008; 383:1195-209. [PMID: 18793647 DOI: 10.1016/j.jmb.2008.08.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 08/19/2008] [Accepted: 08/22/2008] [Indexed: 12/30/2022]
Abstract
Small globular proteins have many contacts between residues that are distant in primary sequence. These contacts create a complex network between sequence-distant segments of secondary structure, which may be expected to promote the cooperative folding of globular proteins. Although repeat proteins, which are composed of tandem modular units, lack sequence-distant contacts, several of considerable length have been shown to undergo cooperative two-state folding. To explore the limits of cooperativity in repeat proteins, we have studied the unfolding of YopM, a leucine-rich repeat (LRR) protein of over 400 residues. Despite its large size and modular architecture (15 repeats), YopM equilibrium unfolding is highly cooperative, and shows a very strong dependence on the concentration of urea. In contrast, kinetic studies of YopM folding indicate a mechanism that includes one or more transient intermediates. The urea dependence of the folding and unfolding rates suggests a relatively small transition state ensemble. As with the urea dependence, we have found an extreme dependence of the free energy of unfolding on the concentration of salt. This salt dependence likely results from general screening of a large number of unfavorable columbic interactions in the folded state, rather than from specific cation binding.
Collapse
Affiliation(s)
- Ellen Kloss
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
226
|
Muraki M. Improved secretion of human Fas ligand extracellular domain by N-terminal part truncation in Pichia pastoris and preparation of the N-linked carbohydrate chain trimmed derivative. Protein Expr Purif 2008; 60:205-13. [PMID: 18501631 DOI: 10.1016/j.pep.2008.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 01/10/2023]
|
227
|
Jamet H, Jourdan M, Dumy P. NMR and Theoretical Calculations: A Unified View of the Cis/Trans Isomerization of 2-Substituted Thiazolidines Containing Peptides. J Phys Chem B 2008; 112:9975-81. [DOI: 10.1021/jp7118982] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helene Jamet
- Département de Chimie Moléculaire, UMR-5250, ICMG FR-2607,CNRS, 301 rue de la Chimie, 38041 Grenoble Cedex 9, France
| | - Muriel Jourdan
- Département de Chimie Moléculaire, UMR-5250, ICMG FR-2607,CNRS, 301 rue de la Chimie, 38041 Grenoble Cedex 9, France
| | - Pascal Dumy
- Département de Chimie Moléculaire, UMR-5250, ICMG FR-2607,CNRS, 301 rue de la Chimie, 38041 Grenoble Cedex 9, France
| |
Collapse
|
228
|
Tsong TY, Hu CK, Wu MC. Hydrophobic condensation and modular assembly model of protein folding. Biosystems 2008; 93:78-89. [DOI: 10.1016/j.biosystems.2008.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/01/2008] [Accepted: 04/07/2008] [Indexed: 11/26/2022]
|
229
|
Kathuria SV, Day IJ, Wallace LA, Matthews CR. Kinetic traps in the folding of beta alpha-repeat proteins: CheY initially misfolds before accessing the native conformation. J Mol Biol 2008; 382:467-84. [PMID: 18619461 DOI: 10.1016/j.jmb.2008.06.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/21/2008] [Accepted: 06/19/2008] [Indexed: 11/15/2022]
Abstract
The beta alpha-repeat class of proteins, represented by the (beta alpha)(8) barrel and the alpha/beta/alpha sandwich, are among the most common structural platforms in biology. Previous studies on the folding mechanisms of these motifs have revealed or suggested that the initial event involves the submillisecond formation of a kinetically trapped species that must at least partially unfold before productive folding to the respective native conformation can occur. To test the generality of these observations, CheY, a bacterial response regulator, was subjected to an extensive analysis of its folding reactions. Although earlier studies had proposed the formation of an off-pathway intermediate, the data available were not sufficient to rule out an alternative on-pathway mechanism. A global analysis of single- and double-jump kinetic data, combined with equilibrium unfolding data, was used to show that CheY folds and unfolds through two parallel channels defined by the state of isomerization of a prolyl peptide bond in the active site. Each channel involves a stable, highly structured folding intermediate whose kinetic properties are better described as the properties of an off-pathway species. Both intermediates subsequently flow through the unfolded state ensemble and adopt the native cis-prolyl isomer prior to forming the native state. Initial collapse to off-pathway folding intermediates is a common feature of the folding mechanisms of beta alpha-repeat proteins, perhaps reflecting the favored partitioning to locally determined substructures that cannot directly access the native conformation. Productive folding requires the dissipation of these prematurely folded substructures as a prelude to forming the larger-scale transition state that leads to the native conformation. Results from Gō-modeling studies in the accompanying paper elaborate on the topological frustration in the folding free-energy landscape of CheY.
Collapse
Affiliation(s)
- Sagar V Kathuria
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
230
|
Lorenz T, Reinstein J. The influence of proline isomerization and off-pathway intermediates on the folding mechanism of eukaryotic UMP/CMP Kinase. J Mol Biol 2008; 381:443-55. [PMID: 18602116 DOI: 10.1016/j.jmb.2008.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
The globular 22-kDa protein UMP/CMP from Dictyostelium discoideum (UmpK) belongs to the family of nucleoside monophosphate (NMP) kinases. These enzymes not only show high sequence and structure similarities but also share the alpha/beta-fold, a very common protein topology. We investigated the protein folding mechanism of UmpK as a representative for this ubiquitous enzyme class. Equilibrium stability towards urea and the unfolding and refolding kinetics were studied by means of fluorescence and far-UV CD spectroscopy. Although the unfolding can be described by a two-state process, folding kinetics are rather complex with four refolding phases that can be resolved and an additional burst phase. Moreover, two of these phases exhibit a pronounced rollover in the refolding limb that cannot be explained by aggregation. Whilst secondary structure formation is not observed in the burst phase reaction, folding to the native structure is strongly influenced by the slowest phase, since 30% of the alpha-helical CD signal is restored therein. This process can be assigned to proline isomerization and is strongly accelerated by the Escherichia coli peptidyl-prolyl isomerase trigger factor. The analysis of our single-mixing and double-mixing experiments suggests the occurrence of an off-pathway intermediate and an unproductive collapsed structure, which appear to be rate limiting for the folding of UmpK.
Collapse
Affiliation(s)
- Thorsten Lorenz
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | |
Collapse
|
231
|
Cao X, Antonyuk SV, Seetharaman SV, Whitson LJ, Taylor AB, Holloway SP, Strange RW, Doucette PA, Valentine JS, Tiwari A, Hayward LJ, Padua S, Cohlberg JA, Hasnain SS, Hart PJ. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem 2008; 283:16169-77. [PMID: 18378676 PMCID: PMC2414278 DOI: 10.1074/jbc.m801522200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 12/11/2022] Open
Abstract
Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Xiaohang Cao
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Svetlana V. Antonyuk
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Sai V. Seetharaman
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Lisa J. Whitson
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Alexander B. Taylor
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Stephen P. Holloway
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Richard W. Strange
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Peter A. Doucette
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Joan Selverstone Valentine
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Ashutosh Tiwari
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Lawrence J. Hayward
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Shelby Padua
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Jeffrey A. Cohlberg
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - S. Samar Hasnain
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - P. John Hart
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| |
Collapse
|
232
|
Affiliation(s)
- Robert L. Baldwin
- Biochemistry Department, Beckman Center, Stanford University Medical Center, Stanford, California 94305; e-mail:
| |
Collapse
|
233
|
Petzold K, Öhman A, Backman L. Folding of the αΙΙ-spectrin SH3 domain under physiological salt conditions. Arch Biochem Biophys 2008; 474:39-47. [PMID: 18358826 DOI: 10.1016/j.abb.2008.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
|
234
|
Abstract
Monitoring the cooperative unfolding transition induced when a protein is exposed to elevated temperature or a chemical denaturant is an important strategy for characterizing the conformational properties of a globular protein. This transition may be analyzed quantitatively by a variety of spectroscopic techniques, but a simpler alternative is described in this unit: urea-gradient gel electrophoresis. The pattern produced in the resulting gel can be used to estimate both the free energy change for unfolding and the rate of the unfolding transition. In addition, the technique can help identify either covalent or conformational heterogeneity in a protein sample. Because urea-gradient gel patterns are sensitive to several parameters, including hydrodynamic volume, net charge, and conformational stability, the technique can be particularly useful for comparing two forms of a protein, e.g., a natural form and the product of recombinant bacteria.
Collapse
|
235
|
Jakob RP, Schmid FX. Energetic Coupling Between Native-State Prolyl Isomerization and Conformational Protein Folding. J Mol Biol 2008; 377:1560-75. [DOI: 10.1016/j.jmb.2008.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/02/2008] [Accepted: 02/06/2008] [Indexed: 01/17/2023]
|
236
|
Dai N, Wang XJ, Etzkorn FA. The effect of a trans-locked Gly-Pro alkene isostere on collagen triple helix stability. J Am Chem Soc 2008; 130:5396-7. [PMID: 18366169 DOI: 10.1021/ja711021m] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An alkene isostere of Gly-trans-Pro was synthesized and incorporated into a host Ac-(Gly-Pro-Hyp)8-Gly-Gly-Tyr-NH2 peptide to investigate the effect of locking a proline amide bond. Proline amide bond isomerization is the slow step in collagen folding. By locking the amide, we hypothesized an increase in stability of the collagen triple helix. The substitution instead destabilized the collagen host peptide. The Tm value of the host control peptide was 50.0 degrees C, while the peptide containing the isostere, Ac-(Gly-Pro-Hyp)3-Gly-psi[(E)CH C]-Pro-Hyp-(Gly-Pro-Hyp)4-Gly-Gly-Tyr-NH2, had a Tm value of 28.3 degrees C. There are clearly factors that contribute to collagen stability and folding that we do not yet understand.
Collapse
Affiliation(s)
- Nan Dai
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061-0212, USA
| | | | | |
Collapse
|
237
|
Courtemanche N, Barrick D. Folding thermodynamics and kinetics of the leucine-rich repeat domain of the virulence factor Internalin B. Protein Sci 2008; 17:43-53. [PMID: 18156467 DOI: 10.1110/ps.073166608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although the folding of alpha-helical repeat proteins has been well characterized, much less is known about the folding of repeat proteins containing beta-sheets. Here we investigate the folding thermodynamics and kinetics of the leucine-rich repeat (LRR) domain of Internalin B (InlB), an extracellular virulence factor from the bacterium Lysteria monocytogenes. This domain contains seven tandem leucine-rich repeats, of which each contribute a single beta-strand that forms a continuous beta-sheet with neighboring repeats, and an N-terminal alpha-helical capping motif. Despite its modular structure, InlB folds in an equilibrium two-state manner, as reflected by the identical thermodynamic parameters obtained by monitoring its sigmoidal urea-induced unfolding transition by different spectroscopic probes. Although equilibrium two-state folding is common in alpha-helical repeat proteins, to date, InlB is the only beta-sheet-containing repeat protein for which this behavior is observed. Surprisingly, unlike other repeat proteins exhibiting equilibrium two-state folding, InlB also folds by a simple two-state kinetic mechanism lacking intermediates, aside from the effects of prolyl isomerization on the denatured state. However, like other repeat proteins, InlB also folds significantly more slowly than expected from contact order. When plotted against urea, the rate constants for the fast refolding and single unfolding phases constitute a linear chevron that, when fitted with a kinetic two-state model, yields thermodynamic parameters matching those observed for equilibrium folding. Based on these kinetic parameters, the transition state is estimated to comprise 40% of the total surface area buried upon folding, indicating that a large fraction of the native contacts are formed in the rate-limiting step to folding.
Collapse
Affiliation(s)
- Naomi Courtemanche
- T.C Jenkins Department of Biophysics, The John Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
238
|
Krishnamurthy VM, Kaufman GK, Urbach AR, Gitlin I, Gudiksen KL, Weibel DB, Whitesides GM. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding. Chem Rev 2008; 108:946-1051. [PMID: 18335973 PMCID: PMC2740730 DOI: 10.1021/cr050262p] [Citation(s) in RCA: 565] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Vijay M. Krishnamurthy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George K. Kaufman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Adam R. Urbach
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Irina Gitlin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Katherine L. Gudiksen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - Douglas B. Weibel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
239
|
Schlepckow K, Wirmer J, Bachmann A, Kiefhaber T, Schwalbe H. Conserved folding pathways of alpha-lactalbumin and lysozyme revealed by kinetic CD, fluorescence, NMR, and interrupted refolding experiments. J Mol Biol 2008; 378:686-98. [PMID: 18377934 DOI: 10.1016/j.jmb.2008.02.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 02/04/2008] [Accepted: 02/08/2008] [Indexed: 11/17/2022]
Abstract
In this report, it is shown by a combination of stopped-flow CD, fluorescence, and time-resolved NMR studies that the Ca(2+)-induced refolding of bovine alpha-lactalbumin (BLA) at constant denaturant concentration (4 M urea) exhibits triple-exponential kinetics. In order to distinguish between parallel folding pathways and a strictly sequential formation of the native state, interrupted refolding experiments were conducted. We show here that the Ca(2+)-induced refolding of BLA involves parallel pathways and the transient formation of a folding intermediate on the millisecond timescale. Our data furthermore suggest that the two structurally homologous proteins BLA and hen egg white lysozyme share a common folding mechanism. We provide evidence that the guiding role of long-range interactions in the unfolded state of lysozyme in mediating intersubdomain interactions during folding is replaced in the case of BLA by the Ca(2+)-binding site. Time-resolved NMR spectroscopy, in combination with fast ion release from caged compounds, enables the measurement of complex protein folding kinetics at protein concentrations as low as 100 microM and the concomitant detection of conformational transitions with rate constants of up to 8 s(-1).
Collapse
Affiliation(s)
- Kai Schlepckow
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Str. 7, D-60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
240
|
Cadamuro S, Reichold R, Kusebauch U, Musiol HJ, Renner C, Tavan P, Moroder L. Conformational Properties of 4-Mercaptoproline and Related Derivatives. Angew Chem Int Ed Engl 2008; 47:2143-6. [DOI: 10.1002/anie.200704310] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
241
|
Cadamuro S, Reichold R, Kusebauch U, Musiol HJ, Renner C, Tavan P, Moroder L. Konformationseigenschaften des 4-Mercaptoprolins und verwandter Derivate. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
242
|
Steiner T, Hess P, Bae JH, Wiltschi B, Moroder L, Budisa N. Synthetic biology of proteins: tuning GFPs folding and stability with fluoroproline. PLoS One 2008; 3:e1680. [PMID: 18301757 PMCID: PMC2243022 DOI: 10.1371/journal.pone.0001680] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/27/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Proline residues affect protein folding and stability via cis/trans isomerization of peptide bonds and by the C(gamma)-exo or -endo puckering of their pyrrolidine rings. Peptide bond conformation as well as puckering propensity can be manipulated by proper choice of ring substituents, e.g. C(gamma)-fluorination. Synthetic chemistry has routinely exploited ring-substituted proline analogs in order to change, modulate or control folding and stability of peptides. METHODOLOGY/PRINCIPAL FINDINGS In order to transmit this synthetic strategy to complex proteins, the ten proline residues of enhanced green fluorescent protein (EGFP) were globally replaced by (4R)- and (4S)-fluoroprolines (FPro). By this approach, we expected to affect the cis/trans peptidyl-proline bond isomerization and pyrrolidine ring puckering, which are responsible for the slow folding of this protein. Expression of both protein variants occurred at levels comparable to the parent protein, but the (4R)-FPro-EGFP resulted in irreversibly unfolded inclusion bodies, whereas the (4S)-FPro-EGFP led to a soluble fluorescent protein. Upon thermal denaturation, refolding of this variant occurs at significantly higher rates than the parent EGFP. Comparative inspection of the X-ray structures of EGFP and (4S)-FPro-EGFP allowed to correlate the significantly improved refolding with the C(gamma)-endo puckering of the pyrrolidine rings, which is favored by 4S-fluorination, and to lesser extents with the cis/trans isomerization of the prolines. CONCLUSIONS/SIGNIFICANCE We discovered that the folding rates and stability of GFP are affected to a lesser extent by cis/trans isomerization of the proline bonds than by the puckering of pyrrolidine rings. In the C(gamma)-endo conformation the fluorine atoms are positioned in the structural context of the GFP such that a network of favorable local interactions is established. From these results the combined use of synthetic amino acids along with detailed structural knowledge and existing protein engineering methods can be envisioned as a promising strategy for the design of complex tailor-made proteins and even cellular structures of superior properties compared to the native forms.
Collapse
Affiliation(s)
- Thomas Steiner
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Hess
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jae Hyun Bae
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Luis Moroder
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
243
|
|
244
|
Mallam AL, Jackson SE. Use of protein engineering techniques to elucidate protein folding pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:57-113. [PMID: 19121700 DOI: 10.1016/s0079-6603(08)00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Anna L Mallam
- Department of Chemistry, Cambridge, CB2 1EW, United Kingdom
| | | |
Collapse
|
245
|
Doose S, Neuweiler H, Barsch H, Sauer M. Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix. Proc Natl Acad Sci U S A 2007; 104:17400-5. [PMID: 17956989 PMCID: PMC2077268 DOI: 10.1073/pnas.0705605104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Indexed: 11/18/2022] Open
Abstract
Polyprolines are well known for adopting a regular polyproline type II helix in aqueous solution, rendering them a popular standard as molecular ruler in structural molecular biology. However, single-molecule spectroscopy studies based on Förster resonance energy transfer (FRET) have revealed deviations of experimentally observed end-to-end distances of polyprolines from theoretical predictions, and it was proposed that the discrepancy resulted from dynamic flexibility of the polyproline helix. Here, we probe end-to-end distances and conformational dynamics of poly-l-prolines with 1-10 residues using fluorescence quenching by photoinduced-electron transfer (PET). A single fluorophore and a tryptophan residue, introduced at the termini of polyproline peptides, serve as sensitive probes for distance changes on the subnanometer length scale. Using a combination of ensemble fluorescence and fluorescence correlation spectroscopy, we demonstrate that polyproline samples exhibit static structural heterogeneity with subpopulations of distinct end-to-end distances that do not interconvert on time scales from nano- to milliseconds. By observing prolyl isomerization through changes in PET quenching interactions, we provide experimental evidence that the observed heterogeneity can be explained by interspersed cis isomers. Computer simulations elucidate the influence of trans/cis isomerization on polyproline structures in terms of end-to-end distance and provide a structural justification for the experimentally observed effects. Our results demonstrate that structural heterogeneity inherent in polyprolines, which to date are commonly applied as a molecular ruler, disqualifies them as appropriate tool for an accurate determination of absolute distances at a molecular scale.
Collapse
Affiliation(s)
- Sören Doose
- Applied Laser Physics and Laser Spectroscopy, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Hannes Neuweiler
- Applied Laser Physics and Laser Spectroscopy, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Hannes Barsch
- Applied Laser Physics and Laser Spectroscopy, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Markus Sauer
- Applied Laser Physics and Laser Spectroscopy, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
246
|
Schulenburg C, Martinez-Senac MM, Löw C, Golbik R, Ulbrich-Hofmann R, Arnold U. Identification of three phases in Onconase refolding. FEBS J 2007; 274:5826-33. [DOI: 10.1111/j.1742-4658.2007.06106.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
247
|
Tam A, Arnold U, Soellner MB, Raines RT. Protein prosthesis: 1,5-disubstituted[1,2,3]triazoles as cis-peptide bond surrogates. J Am Chem Soc 2007; 129:12670-1. [PMID: 17914828 PMCID: PMC2531141 DOI: 10.1021/ja075865s] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
248
|
Multiple tryptophan probes reveal that ubiquitin folds via a late misfolded intermediate. J Mol Biol 2007; 374:791-805. [PMID: 17949746 DOI: 10.1016/j.jmb.2007.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/22/2007] [Accepted: 09/06/2007] [Indexed: 11/22/2022]
Abstract
Much of our understanding of protein folding mechanisms is derived from experiments using intrinsic fluorescence of natural or genetically inserted tryptophan (Trp) residues to monitor protein refolding and site-directed mutagenesis to determine the energetic role of amino acids in the native (N), intermediate (I) or transition (T) states. However, this strategy has limited use to study complex folding reactions because a single fluorescence probe may not detect all low-energy folding intermediates. To overcome this limitation, we suggest that protein refolding should be monitored with different solvent-exposed Trp probes. Here, we demonstrate the utility of this approach by investigating the controversial folding mechanism of ubiquitin (Ub) using Trp probes located at residue positions 1, 28, 45, 57, and 66. We first show that these Trp are structurally sensitive and minimally perturbing fluorescent probes for monitoring folding/unfolding of the protein. Using a conventional stopped-flow instrument, we show that ANS and Trp fluorescence detect two distinct transitions during the refolding of all five Trp mutants at low concentrations of denaturant: T(1), a denaturant-dependent transition and T(2), a slower transition, largely denaturant-independent. Surprisingly, some Trp mutants (Ub(M1W), Ub(S57W)) display Trp fluorescence changes during T(1) that are distinct from the expected U-->N transition suggesting that the denaturant-dependent refolding transition of Ub is not a U-->N transition but represents the formation of a structurally distinct I-state (U-->I). Alternatively, this U-->I transition could be also clearly distinguished by using a combination of two Trp mutations Ub(F45W-T66W) for which the two Trp probes that display fluorescence changes of opposite sign during T(1) and T(2) (Ub(F45W-T66W)). Global fitting of the folding/unfolding kinetic parameters and additional folding-unfolding double-jump experiments performed on Ub(M1W), a mutant with enhanced fluorescence in the I-state, demonstrate that the I-state is stable, compact, misfolded, and on-pathway. These results illustrate how transient low-energy I-states can be characterized efficiently in complex refolding reactions using multiple Trp probes.
Collapse
|
249
|
Jin X, Zhang J, Dai H, Sun H, Wang D, Wu J, Shi Y. Investigation of the four cooperative unfolding units existing in the MICAL-1 CH domain. Biophys Chem 2007; 129:269-78. [PMID: 17662518 DOI: 10.1016/j.bpc.2007.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/14/2007] [Accepted: 06/14/2007] [Indexed: 11/18/2022]
Abstract
The solution structure of human MICAL-1 calpolnin homology (CH) domain is composed of six alpha helices and one 3(10) helix. To study the unfolding of this domain, we carry out native-state hydrogen exchange, intrinsic fluorescence and far-UV circular dichroism experiments. The free energy of unfolding, DeltaG(H2O), is calculated to be 7.11+/-0.58 kcal mol(-1) from GuHCl denaturation at pH 6.5. Four cooperative unfolding units are found using native-state hydrogen exchange experiment. Forty-seven slow-exchange residues can be studied by native-state hydrogen exchange experiments. From the concentration dependence of exchange rates, free energy of amide hydrogen with solvent, DeltaG(HX) and m-value (sensitivity of exposure to denaturant) are obtained, which reveal four cooperative unfolding units. The slowest exchanging protons are distributed throughout the whole hydrophobic core of the protein, which might be the folding core. These results will help us understand the structure of MICAL-1 CH domain more deeply.
Collapse
Affiliation(s)
- Xianju Jin
- Hefei National Laboratory for Physical Sciences at Microscale, and School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
250
|
Andrews BT, Schoenfish AR, Roy M, Waldo G, Jennings PA. The rough energy landscape of superfolder GFP is linked to the chromophore. J Mol Biol 2007; 373:476-90. [PMID: 17822714 PMCID: PMC2695656 DOI: 10.1016/j.jmb.2007.07.071] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/18/2007] [Accepted: 07/29/2007] [Indexed: 10/22/2022]
Abstract
Many green fluorescent protein (GFP) variants have been developed for use as fluorescent tags, and recently a superfolder GFP (sfGFP) has been developed as a robust folding reporter. This new variant shows increased stability and improved folding kinetics, as well as 100% recovery of native protein after denaturation. Here, we characterize sfGFP, and find that this variant exhibits hysteresis as unfolding and refolding equilibrium titration curves are non-coincident even after equilibration for more than eight half-lives as estimated from kinetic unfolding and refolding studies. This hysteresis is attributed to trapping in a native-like intermediate state. Mutational studies directed towards inhibiting chromophore formation indicate that the novel backbone cyclization is responsible for the hysteresis observed in equilibrium titrations of sfGFP. Slow equilibration and the presence of intermediates imply a rough landscape. However, de novo folding in the absence of the chromophore is dominated by a smoother energy landscape than that sampled during unfolding and refolding of the post-translationally modified polypeptide.
Collapse
Affiliation(s)
- Benjamin T. Andrews
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0375
| | - Andrea R. Schoenfish
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0375
| | - Melinda Roy
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0375
| | | | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0375
- Corresponding author, E-mail:
| |
Collapse
|