201
|
Li Z, Chen Y, Wang C, Xu G, Shao Y, Zhang X, Tang S, Sun J. Construction of C-C Axial Chirality via Asymmetric Carbene Insertion into Arene C-H Bonds. Angew Chem Int Ed Engl 2021; 60:25714-25718. [PMID: 34597448 DOI: 10.1002/anie.202110430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Indexed: 01/16/2023]
Abstract
By using diazonaphthoquinones and anilines as key reagents and through a point-to-axis chiral transfer strategy, the atroposelective synthesis via asymmetric C(sp2 )-H bond insertion reaction of arenes has been realized under rhodium catalysis, providing the resulting biaryl atropisomers in moderate to excellent yields with good enantiomeric ratios (up to 99:1). Further elaboration indicates this type of axially biaryl scaffold may have promising potentials in developing novel chiral ligands.
Collapse
Affiliation(s)
- Ziyong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Chen
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogeomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chuang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, State Key Laboratory of Chemical Oncogeomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
202
|
Huang G, Shan Y, Yu JT, Pan C. Rhodium-catalyzed C-H activation/cyclization of aryl sulfoximines with iodonium ylides towards polycyclic 1,2-benzothiazines. Org Biomol Chem 2021; 19:10085-10089. [PMID: 34779813 DOI: 10.1039/d1ob02052h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis of 1,2-benzothiazine derivatives through rhodium-catalyzed C-H activation/cyclization of S-aryl sulfoximines with iodonium ylides was developed for the first time. In this report, C-H and N-H bond functionalization was realized towards a series of tricyclic and tetracyclic sulfoximine derivatives with moderate to excellent yields under simple reaction conditions.
Collapse
Affiliation(s)
- Gao Huang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Yujia Shan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China. .,School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
203
|
Tuning catalytic activity of dimolybdenum paddlewheel complexes by ligands: mechanism study on the radical addition reaction of CCl4 to 1-hexene. Struct Chem 2021. [DOI: 10.1007/s11224-021-01790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
204
|
Kuzhalmozhi Madarasi P, Sivasankar C. Grignard reagent dictated copper(I) phosphines catalyzed reductive coupling of diazo compounds: The chemistry beyond carbene generation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University Pondicherry India
| |
Collapse
|
205
|
Soam P, Kamboj P, Tyagi V. Rhodium‐Catalyzed Cascade Reactions using Diazo Compounds as a Carbene Precursor to Construct Diverse Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pooja Soam
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Priya Kamboj
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| |
Collapse
|
206
|
Kozhemyakin GL, Tyurin VS, Shkirdova AO, Belyaev ES, Kirinova ES, Ponomarev GV, Chistov AA, Aralov AV, Tafeenko VA, Zamilatskov IA. Carbene functionalization of porphyrinoids through tosylhydrazones. Org Biomol Chem 2021; 19:9199-9210. [PMID: 34633024 DOI: 10.1039/d1ob01626a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we investigated methods for carbene functionalization of porphyrinoids through metal catalyst-free thermal decomposition of their tosylhydrazones. For the first time, tetrapyrrolyl substituted carbenes were obtained via thermolysis of tosylhydrazones of the corresponding tetrapyrrolyl aldehydes and ketones in the presence of a base. The carbenes formed reacted thermally with substrates without a metal catalyst or light irradiation. Carbenes at the β-pyrrolic position of porphyrinoids reacted with styrene leading to cyclopropane derivatives of tetrapyrroles. Carbenes also reacted with 1,4-dioxane with their insertion into the C-H bond yielding a tetrapyrrole 1,4-dioxane conjugate. Thermolysis of tosylhydrazones of meso-formyl-β-octaalkylporphyrinoids led exclusively to the corresponding cyclopentane fused porphyrinoids via intramolecular carbene C-H insertion. A plausible reaction mechanism was discussed based on DFT calculations of the intermediates. The tetrapyrrolyl carbenes were found to be considerably more stable than other carbenes. The products of the functionalization of porphyrinoids via hydrazone formation and subsequent carbene reactions exhibited modified optical spectra. The method for carbene functionalization of porphyrinoids through thermal decomposition of their tosylhydrazones created a new synthetic pathway for tailoring the perimeter of tetrapyrrolic macrocycles. Moreover, this method allows the obtainment of dyes with controllable spectral optical properties. In particular, new tetrapyrrole derivatives possessing phytoporphyrin carbon skeletons which have not been accessible were obtained using a convenient straightforward procedure.
Collapse
Affiliation(s)
- Grigory L Kozhemyakin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninskiy prospect, 31-4, Moscow, 119071, Russian Federation.
| | - Vladimir S Tyurin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninskiy prospect, 31-4, Moscow, 119071, Russian Federation.
| | - Alena O Shkirdova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninskiy prospect, 31-4, Moscow, 119071, Russian Federation.
| | - Evgeny S Belyaev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninskiy prospect, 31-4, Moscow, 119071, Russian Federation.
| | - Ekaterina S Kirinova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninskiy prospect, 31-4, Moscow, 119071, Russian Federation.
| | - Gelii V Ponomarev
- Research Institute of Biomedical Chemistry, Pogodinskaya str., 10-8, 119121, Moscow, Russian Federation
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, 117997, Moscow, Russian Federation
| | - Victor A Tafeenko
- Chemistry Department, Moscow State University, Leninskiye Gory, 1-3, 119899 Moscow, Russian Federation
| | - Ilya A Zamilatskov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninskiy prospect, 31-4, Moscow, 119071, Russian Federation.
| |
Collapse
|
207
|
Zhao YT, Su YX, Li XY, Yang LL, Huang MY, Zhu SF. Dirhodium-Catalyzed Enantioselective B-H Bond Insertion of gem-Diaryl Carbenes: Efficient Access to gem-Diarylmethine Boranes. Angew Chem Int Ed Engl 2021; 60:24214-24219. [PMID: 34476881 DOI: 10.1002/anie.202109447] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Indexed: 01/29/2023]
Abstract
The scarcity of reliable methods for synthesizing chiral gem-diarylmethine borons limits their applications. Herein, we report a method for highly enantioselective dirhodium-catalyzed B-H bond insertion reactions with diaryl diazomethanes as carbene precursors. These reactions afforded chiral gem-diarylmethine borane compounds in high yield (up to 99 % yield), high activity (turnover numbers up to 14 300), high enantioselectivity (up to 99 % ee) and showed unprecedented broad functional group tolerance. The borane compounds synthesized by this method could be efficiently transformed into diaryl methanol, diaryl methyl amine, and triaryl methane derivatives with good stereospecificity. Mechanistic studies suggested that the borane adduct coordinated to the rhodium catalyst and thus interfered with decomposition of the diazomethane, and that insertion of a rhodium carbene (generated from the diaryl diazomethane) into the B-H bond was most likely the rate-determining step.
Collapse
Affiliation(s)
- Yu-Tao Zhao
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xuan Su
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao-Yu Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liang-Liang Yang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Yao Huang
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shou-Fei Zhu
- Frontiers Science Center for New Organic Matter, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
208
|
Borane-catalysed S–H insertion reaction of thiophenols and thiols with α-aryl-α-diazoesters. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
209
|
Cao T, Gao C, Kirillov AM, Fang R, Yang L. DFT quest for mechanism and stereoselectivity in B(C6F5)3-catalyzed cyclopropanation of alkenes with aryldiazoacetates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
210
|
Synthesis and characterisation of dirhodium(II) tetraacetates bearing axial ferrocene ligands. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
211
|
Li F, Pei C, Koenigs RM. Photocatalytic gem-Difluoroolefination Reactions by a Formal C-C Coupling/Defluorination Reaction with Diazoacetates. Angew Chem Int Ed Engl 2021; 61:e202111892. [PMID: 34716734 PMCID: PMC9300101 DOI: 10.1002/anie.202111892] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/23/2022]
Abstract
The photolysis of diazoalkanes to conduct singlet carbene transfer reactions of colored diazoalkanes has recently attracted significant interest in organic synthesis. Herein, we describe a photocatalytic approach that allows the access of triplet carbene intermediates via energy transfer to conduct highly efficient gem‐difluoroolefination reactions with α‐trifluoromethyl styrenes. The use of a tertiary amines proved pivotal to unlock this unusual reaction pathway and to prevent undesired cyclopropanation pathways. The amine further facilitates the ultimate abstraction of fluoride to yield gem‐difluoroolefins (43 examples, up to 88 % yield), which is supported by experimental and theoretical mechanistic studies. We explored this synthesis method with a broad substrate scope, ranging from simple olefins and heterocyclic olefins towards the decoration of pharmaceutically relevant building blocks.
Collapse
Affiliation(s)
- Fang Li
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074, Aachen, Germany
| |
Collapse
|
212
|
Manoj N, Jindal G. DFT study on Ir-quinoid catalyzed C-H functionalization: new radical reactivity or direct carbene transfer? Chem Commun (Camb) 2021; 57:11370-11373. [PMID: 34647118 DOI: 10.1039/d1cc04764g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT methods are used to probe the mechanism of a newly developed Ir-quinoid catalyzed C(sp3)-H functionalization of 1,4 dienes. The lowest energy pathway proceeds via an old-school concerted C-H insertion as opposed to a unique hydrogen atom transfer process proposed previously. The concertedness of the reaction shows an intriguing dependence on sterics of the diene leading to either inserted or dehydrogenated products. We use these new insights to tune the axial ligand, and design a more efficient catalyst.
Collapse
Affiliation(s)
- Niket Manoj
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India.
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka-560012, India.
| |
Collapse
|
213
|
Qiu S, Gao X, Zhu S. Dirhodium(ii)-catalysed cycloisomerization of azaenyne: rapid assembly of centrally and axially chiral isoindazole frameworks. Chem Sci 2021; 12:13730-13736. [PMID: 34760157 PMCID: PMC8549790 DOI: 10.1039/d1sc04961e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Described herein is a dirhodium(ii)-catalyzed asymmetric cycloisomerization reaction of azaenyne through a cap-tether synergistic modulation strategy, which represents the first catalytic asymmetric cycloisomerization of azaenyne. This reaction is highly challenging because of its inherent strong background reaction leading to racemate formation and the high capability of coordination of the nitrogen atom resulting in catalyst deactivation. Varieties of centrally chiral isoindazole derivatives could be prepared in up to 99 : 1 d.r., 99 : 1 er and 99% yield and diverse enantiomerically enriched atropisomers bearing two five-membered heteroaryls have been accessed by using an oxidative central-to-axial chirality transfer strategy. The tethered nitrogen atom incorporated into the starting materials enabled easy late-modifications of the centrally and axially chiral products via C–H functionalizations, which further demonstrated the appealing synthetic utilities of this powerful asymmetric cyclization. Rh(ii)-catalyzed asymmetric cycloisomerization of azaenyne through a cap-tether synergistic modulation strategy was described. Diverse centrally and axially chiral isoindazoles were prepared and directed C–H late-stage modifications were developed.![]()
Collapse
Affiliation(s)
- Shaotong Qiu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Xiang Gao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Shifa Zhu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China .,Guangdong Youmei Institute of Intelligent Bio-manufacturing Co., Ltd China
| |
Collapse
|
214
|
Mi R, Chen H, Zhou X, Li N, Ji D, Wang F, Lan Y, Li X. Rhodium-Catalyzed Atroposelective Access to Axially Chiral Olefins via C-H Bond Activation and Directing Group Migration. Angew Chem Int Ed Engl 2021; 61:e202111860. [PMID: 34677892 DOI: 10.1002/anie.202111860] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 01/12/2023]
Abstract
Axially chiral open-chain olefins represent an underexplored class of chiral platform. In this report, two classes of tetrasubstituted axially chiral acyclic olefins have been accessed in excellent enantioselectivity and regioselectivity via C-H activation of (hetero)arenes assisted by a migratable directing group en route to coupling with sterically hindered alkynes. The coupling of indoles bearing an N-aminocarbonyl directing group afforded C-N axially chiral acrylamides with the assistance of a racemic zinc carboxylate additive. DFT studies suggest a β-nitrogen elimination-reinsertion pathway for the directing group migration. Meanwhile, the employment of N-phenoxycarboxamide delivered C-C axially chiral enamides via migration of the oxidizing directing group. Experiments suggest that in both cases the (hetero)arene substrate adopts a well-defined orientation during the C-H activation, which in turn determines the disposition of the alkyne in migratory insertion. Synthetic applications of representative chiral olefins are demonstrated.
Collapse
Affiliation(s)
- Ruijie Mi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Xukai Zhou
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nan Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Danqing Ji
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
215
|
Buckley AM, Crowley DC, Brouder TA, Ford A, Rao Khandavilli UB, Lawrence SE, Maguire AR. Dirhodium Carboxylate Catalysts from 2-Fenchyloxy or 2-Menthyloxy Arylacetic Acids: Enantioselective C-H Insertion, Aromatic Addition and Oxonium Ylide Formation/Rearrangement. ChemCatChem 2021; 13:4318-4324. [PMID: 34820025 PMCID: PMC8597163 DOI: 10.1002/cctc.202100924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Indexed: 11/27/2022]
Abstract
A new class of dirhodium carboxylate catalysts have been designed and synthesized from 2-fenchyloxy or 2-menthyloxy arylacetic acids which display excellent enantioselectivity across a range of transformations of α-diazocarbonyl compounds. The catalysts were successfully applied to enantioselective C-H insertion reactions of aryldiazoacetates and α-diazo-β-oxosulfones affording the respective products in up to 93 % ee with excellent trans diastereoselectivity in most cases. Furthermore, efficient desymmetrization in an intramolecular C-H insertion was achieved. In addition, these catalysts prove highly enantioselective for intramolecular aromatic addition with up to 88 % ee, and oxonium ylide formation and rearrangement with up to 74 % ee.
Collapse
Affiliation(s)
- Aoife M. Buckley
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Daniel C. Crowley
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Thomas A. Brouder
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Alan Ford
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - U. B. Rao Khandavilli
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Simon E. Lawrence
- School of ChemistryAnalytical and Biological Chemistry Research FacilityUniversity College CorkCorkIreland
| | - Anita R. Maguire
- School of Chemistry and School of PharmacyAnalytical and Biological Chemistry Research FacilitySynthesis and Solid State Pharmaceutical CentreUniversity College CorkCorkIreland
| |
Collapse
|
216
|
Varava P, Dong Z, Scopelliti R, Fadaei-Tirani F, Severin K. Isolation and characterization of diazoolefins. Nat Chem 2021; 13:1055-1060. [PMID: 34621076 DOI: 10.1038/s41557-021-00790-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022]
Abstract
Diazoolefins tend to be highly reactive compounds that rapidly lose dinitrogen. So far, most experimental evidence for diazoolefins is indirect, via trapping experiments. Here we show that diazoolefins are observed to form in reactions of N-heterocyclic olefins with nitrous oxide. The products benefit from resonance stabilization, which enables isolation on a preparative scale, and comprehensive characterization, which includes crystallographic analyses. N-heterocyclic diazoolefins show a strong ylidic character, with a high charge density at the carbon atom next to the diazo group. Despite the presence of terminal N2 groups, N-heterocyclic diazoolefins display a good thermal stability, which surpasses that observed for most diazoalkanes. N-heterocyclic diazoolefins can bind transition and main group metal complexes without the liberation of dinitrogen, and spectroscopic data show that they are strong electron donors. They can also undergo reactions that involve the N2 group, as evidenced by cycloaddition reactions.
Collapse
Affiliation(s)
- Paul Varava
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zhaowen Dong
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
217
|
Zhao Y, Su Y, Li X, Yang L, Huang M, Zhu S. Dirhodium‐Catalyzed Enantioselective B−H Bond Insertion of
gem
‐Diaryl Carbenes: Efficient Access to
gem
‐Diarylmethine Boranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu‐Tao Zhao
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu‐Xuan Su
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Yu Li
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Liang‐Liang Yang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ming‐Yao Huang
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shou‐Fei Zhu
- Frontiers Science Center for New Organic Matter State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
218
|
Pulcinella A, Mazzarella D, Noël T. Homogeneous catalytic C(sp 3)-H functionalization of gaseous alkanes. Chem Commun (Camb) 2021; 57:9956-9967. [PMID: 34495026 DOI: 10.1039/d1cc04073a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of light alkanes into bulk chemicals is becoming an important challenge as it effectively avoids the use of prefunctionalized alkylating reagents. The implementation of such processes is, however, hampered by their gaseous nature and low solubility, as well as the low reactivity of the C-H bonds. Efforts have been made to enable both polar and radical processes to activate these inert compounds. In addition, these methodologies also benefit significantly from the development of a suitable reactor technology that intensifies gas-liquid mass transfer. In this review, we critically highlight these developments, both from a conceptual and a practical point of view. The recent expansion of these mechanistically-different methods have enabled the use of various gaseous alkanes for the development of different bond-forming reactions, including C-C, C-B, C-N, C-Si and C-S bonds.
Collapse
Affiliation(s)
- Antonio Pulcinella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Daniele Mazzarella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
219
|
Kotovshchikov YN, Voloshkin VA, Latyshev GV, Lukashev NV, Beletskaya IP. Cascade Transformations of [1,2,3]Triazolo[1,5-a]pyridines as Convenient Precursors of Diazo Compounds and Metal Carbenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021080029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
220
|
Musolino SF, Pei Z, Bi L, DiLabio GA, Wulff JE. Structure-function relationships in aryl diazirines reveal optimal design features to maximize C-H insertion. Chem Sci 2021; 12:12138-12148. [PMID: 34667579 PMCID: PMC8457397 DOI: 10.1039/d1sc03631a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022] Open
Abstract
Diazirine reagents allow for the ready generation of carbenes upon photochemical, thermal, or electrical stimulation. Because carbenes formed in this way can undergo rapid insertion into any nearby C-H, O-H or N-H bond, molecules that encode diazirine functions have emerged as privileged tools in applications ranging from biological target identification and proteomics through to polymer crosslinking and adhesion. Here we use a combination of experimental and computational methods to complete the first comprehensive survey of diazirine structure-function relationships, with a particular focus on thermal activation methods. We reveal a striking ability to vary the activation energy and activation temperature of aryl diazirines through the rational manipulation of electronic properties. Significantly, we show that electron-rich diazirines have greatly enhanced efficacy toward C-H insertion, under both thermal and photochemical activation conditions. We expect these results to lead to significant improvements in diazirine-based chemical probes and polymer crosslinkers.
Collapse
Affiliation(s)
| | - Zhipeng Pei
- Department of Chemistry, University of British Columbia Kelowna BC V1V-1V7 Canada
| | - Liting Bi
- Department of Chemistry, University of Victoria Victoria BC V8W-3V6 Canada
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia Kelowna BC V1V-1V7 Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria Victoria BC V8W-3V6 Canada
| |
Collapse
|
221
|
Debnath S, Lu M, Liang L, Shi Y. A Tandem Nucleophilic Aminopalladation and Carbene Insertion Sequence for Indole Fused Polycycles. Org Lett 2021; 23:7118-7122. [PMID: 34491766 DOI: 10.1021/acs.orglett.1c02512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient tandem nucleophilic aminopalladation and carbene insertion sequence is described for the synthesis of indole fused polycycles. The reaction process provides a variety of substituted indeno[1,2-b]indoles in up to 99% yields.
Collapse
Affiliation(s)
- Sudarshan Debnath
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Mei Lu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Lingli Liang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
222
|
Zhang M, Li H, Zhao J, Li Y, Zhang Q. Copper-catalyzed [3 + 1] cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides: facile synthesis of α,α-difluoro-β-lactam derivatives. Chem Sci 2021; 12:11805-11809. [PMID: 34659719 PMCID: PMC8442724 DOI: 10.1039/d1sc02930d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
We have developed a novel copper-catalyzed cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides, efficiently synthesizing a series of α,α-difluoro-β-lactams in moderate to excellent yields under mild reaction conditions. This reaction represents the first example of [3 + 1] cyclization for the synthesis of β-lactams utilizing a metal carbene intermediate as the C1 synthon. A copper-catalyzed [3 + 1] cyclization of cyclopropenes and bromodifluoroacetamides/diazo compounds has been successfully developed, efficiently synthesizing a wide range of α,α-difluoro-β-lactams.![]()
Collapse
Affiliation(s)
- Mengru Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Hexin Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Jinbo Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China .,Department of Chemistry, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology Changchun 130012 China
| | - Yan Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
223
|
Roy S, Kumar G, Chatterjee I. Photoinduced Diverse Reactivity of Diazo Compounds with Nitrosoarenes. Org Lett 2021; 23:6709-6713. [PMID: 34474577 DOI: 10.1021/acs.orglett.1c02279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A diverse reactivity of diazo compounds with nitrosoarene in an oxygen-transfer process and a formal [2 + 2] cycloaddition is reported. Nitosoarene has been exploited as a mild oxygen source to oxidize an in situ generated carbene intermediate under visible-light irradiation. UV-light-mediated in situ generated ketenes react with nitosoarenes to deliver oxazetidine derivatives. These operationally simple processes exemplify a transition-metal-free and catalyst-free protocol to give structurally diverse α-ketoesters or oxazetidines.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Gourav Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|
224
|
Caló FP, Bistoni G, Auer AA, Leutzsch M, Fürstner A. Triple Resonance Experiments for the Rapid Detection of 103Rh NMR Shifts: A Combined Experimental and Theoretical Study into Dirhodium and Bismuth-Rhodium Paddlewheel Complexes. J Am Chem Soc 2021; 143:12473-12479. [PMID: 34351134 PMCID: PMC8377716 DOI: 10.1021/jacs.1c06414] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A H(C)Rh triple resonance
NMR experiment makes the rapid detection
of 103Rh chemical shifts possible, which were previously
beyond reach. It served to analyze a series of dirhodium and bismuth–rhodium
paddlewheel complexes of the utmost importance for metal–carbene
chemistry. The excellent match between the experimental and computed 103Rh shifts in combination with a detailed analysis of the
pertinent shielding tensors forms a sound basis for a qualitative
and quantitative interpretation of these otherwise (basically) inaccessible
data. The observed trends clearly reflect the influence exerted by
the equatorial ligands (carboxylate versus carboxamidate), the axial
ligands (solvents), and the internal “metalloligand”
(Rh versus Bi) on the electronic estate of the reactive Rh(II) center.
Collapse
Affiliation(s)
- Fabio P Caló
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim, Germany
| | | | | | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim, Germany
| |
Collapse
|
225
|
Ko GH, Maeng C, Jeong H, Han SH, Han GU, Lee K, Noh HC, Lee PH. Rhodium(III)-Catalyzed Sequential C-H Activation and Cyclization from N-Methoxyarylamides and 3-Diazooxindoles for the Synthesis of Isochromenoindolones. Chem Asian J 2021; 16:3179-3187. [PMID: 34387948 DOI: 10.1002/asia.202100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Indexed: 12/22/2022]
Abstract
An efficient synthetic method for structurally various isochromenoindolones has been demonstrated through Rh(III)-catalyzed C-H activation followed by a cyclization reaction of N-methoxyarylamides with 3-diazooxindoles. The sequential reaction involves the streamlined formation of C-C and C-O bonds in one pot. The present method provides a broad range of isochromenoindolones as a new privileged scaffold in moderate to good yields with the release of methoxyamine and molecular nitrogen and has the benefits of a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Haneal Jeong
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| |
Collapse
|
226
|
Crowley DC, Brouder TA, Kearney AM, Lynch D, Ford A, Collins SG, Maguire AR. Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations. J Org Chem 2021; 86:13955-13982. [PMID: 34379975 PMCID: PMC8524431 DOI: 10.1021/acs.joc.1c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Generation and use
of triflyl azide in flow enables efficient synthesis
of a range of α-diazocarbonyl compounds, including α-diazoketones,
α-diazoamides, and an α-diazosulfonyl ester, via both
Regitz-type diazo transfer and deacylative/debenzoylative diazo-transfer
processes with excellent yields and offers versatility in the solvent
employed, in addition to addressing the hazards associated with handling
of this highly reactive sulfonyl azide. Telescoping the generation
of triflyl azide and diazo-transfer process with highly enantioselective
copper-mediated intramolecular aromatic addition and C–H insertion
processes demonstrates that the reaction stream containing the α-diazocarbonyl
compound can be obtained in sufficient purity to pass directly over
the immobilized copper bis(oxazoline) catalyst without detrimentally
impacting the catalyst enantioselectivity.
Collapse
Affiliation(s)
- Daniel C Crowley
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Thomas A Brouder
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Aoife M Kearney
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Denis Lynch
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Alan Ford
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Stuart G Collins
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Anita R Maguire
- School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
227
|
Russo TVC, Sá MM. One‐Pot Synthesis of α‐Diazo‐γ,δ‐unsaturated Esters as Versatile Building Blocks for Functionalized Dienes, Cyclopentenes, and 5,7‐Fused Bicycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Theo V. C. Russo
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis SC 88040-900 Brazil
| | - Marcus M. Sá
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis SC 88040-900 Brazil
| |
Collapse
|
228
|
Abstract
Herein, we report on the tris(pentafluorophenyl)borane-catalyzed reaction of carbazole heterocycles with aryldiazoacetates. We could demonstrate that selective N-H functionalization occurs in the case of an unprotected carbazole, other N-heterocycles, and secondary amines in good yields. In contract, the protected carbazole undergoes C-H functionalization at the C-3 position in a good yield. The application of both approaches was studied in 41 examples with up to a 97% yield.
Collapse
Affiliation(s)
- Feifei He
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
229
|
Ma N, Guo L, Qi D, Gao F, Yang C, Xia W. Visible-Light-Induced Multicomponent Synthesis of γ-Amino Esters with Diazo Compounds. Org Lett 2021; 23:6278-6282. [PMID: 34351163 DOI: 10.1021/acs.orglett.1c02071] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-induced multicomponent reaction of ethyl diazoacetate, diarylamines, and styrene-type alkenes is described. This novel 1,2-difunctionalization of alkenes can be readily achieved under a simple operation and mild conditions, affording γ-amino esters as major products. The reaction proceeds through the generation of carbon-centered radicals from diazo compounds by a visible-light-promoted proton-coupled electron transfer (PCET) process. The carbon radicals then add to diverse alkenes, delivering new carbon radical species, and the final products are formed with N-centered radicals via a radical-radical coupling.
Collapse
Affiliation(s)
- Na Ma
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Dan Qi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fei Gao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
230
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
231
|
Xie J, Xu P, Zhu Y, Wang J, Lee WCC, Zhang XP. New Catalytic Radical Process Involving 1,4-Hydrogen Atom Abstraction: Asymmetric Construction of Cyclobutanones. J Am Chem Soc 2021; 143:11670-11678. [PMID: 34292709 PMCID: PMC8399868 DOI: 10.1021/jacs.1c04968] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While alkyl radicals have been well demonstrated to undergo both 1,5- and 1,6-hydrogen atom abstraction (HAA) reactions, 1,4-HAA is typically a challenging process both entropically and enthalpically. Consequently, chemical transformations based on 1,4-HAA have been scarcely developed. Guided by the general mechanistic principles of metalloradical catalysis (MRC), 1,4-HAA has been successfully incorporated as a key step, followed by 4-exo-tet radical substitution (RS), for the development of a new catalytic radical process that enables asymmetric 1,4-C-H alkylation of diazoketones for stereoselective construction of cyclobutanone structures. The key to success is the optimization of the Co(II)-based metalloradical catalyst through judicious modulation of D2-symmetric chiral amidoporphyrin ligand to adopt proper steric, electronic, and chiral environments that can utilize a network of noncovalent attractive interactions for effective activation of the substrate and subsequent radical intermediates. Supported by an optimal chiral ligand, the Co(II)-based metalloradical system, which operates under mild conditions, is capable of 1,4-C-H alkylation of α-aryldiazoketones with varied electronic and steric properties to construct chiral α,β-disubstituted cyclobutanones in good to high yields with high diastereoselectivities and enantioselectivities, generating dinitrogen as the only byproduct. Combined computational and experimental studies have shed light on the mechanistic details of the new catalytic radical process, including the revelation of facile 1,4-HAA and 4-exo-tet-RS steps. The resulting enantioenriched α,β-disubstituted cyclobutanones, as showcased with several enantiospecific transformations to other types of cyclic structures, may find useful applications in stereoselective organic synthesis.
Collapse
Affiliation(s)
- Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Pan Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
232
|
Lu W, Zhu X, Yang L, Wu X, Xie X, Zhang Z. Distinct Catalytic Performance of Dirhodium(II) Complexes with ortho-Metalated DPPP in Dehydrosilylation of Styrene Derivatives with Alkoxysilanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenkui Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaomin Xie
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
233
|
Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2,3-dihydrobenzofuran derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
234
|
|
235
|
Computational Investigations on the Transition-Metal-Catalyzed Cross-Coupling of Enynones with Diazo Compounds. Top Catal 2021. [DOI: 10.1007/s11244-021-01484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
236
|
Zheng H, Wang K, Faghihi I, Griffith WP, Arman H, Doyle MP. Diverse Reactions of Vinyl Diazo Compounds with Quinone Oxonium Ions, Quinone Imine Ketals, and Eschenmoser’s Salt. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Haifeng Zheng
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Kan Wang
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Isa Faghihi
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
237
|
Qi X, Lan Y. Recent Advances in Theoretical Studies on Transition-Metal-Catalyzed Carbene Transformations. Acc Chem Res 2021; 54:2905-2915. [PMID: 34232609 DOI: 10.1021/acs.accounts.1c00075] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metal carbene plays a vital role in modern organic synthesis. The neutral divalent carbon of metal carbene renders it an active intermediate throughout a range of reactions. In experiments, diverse metal carbene-related transformation reactions have been established, including transition-metal-catalyzed cross-coupling reactions using N-heterocyclic carbenes as ligands, metal carbene insertion into σ bonds, cyclopropanations, ylide formation, and so forth. The remarkable progress achieved in synthetic chemistry, in turn, has increased the demand for mechanistic studies of carbene chemistry. A thorough understanding of reaction mechanisms can extend the application scope of metal carbene compounds and inspire the rational design of new carbene transformation reactions.Density functional theory (DFT) calculations have been performed in our group to gain more mechanistic insights into metal carbene-related reactions. This account focuses on computational studies of transition-metal-catalyzed carbene transformation reactions with nucleophiles. The generation of metal carbene or metal-ligated free carbene and subsequent carbene transformation pathways is discussed. According to our mechanistic studies of carbene transformation with nucleophiles, three generalized reaction models are summarized, including the intramolecular migratory insertion of metal carbene, intermolecular nucleophilic addition toward metal carbene, and outer-sphere nucleophilic addition to the metal-ligated free carbene.In general, the intermolecular nucleophilic addition mechanism is commonly proposed since metal carbene has an electrophilic carbene carbon. From a mechanistic point of view, the intramolecular migratory insertion mechanism is also widely used because metal carbene insertion into σ bonds formally occurs through this mechanism. An outer-sphere nucleophilic addition mechanism is proposed for reactions that form a metal-ligated free carbene complex instead of the commonly proposed metal carbene. The metal-ligated free carbene complex contains a naked carbene carbon that is not coordinated with the metal center. In this case, a transition-metal catalyst is used only as a Lewis acid, and nucleophilic addition occurs directly at the free carbene carbon. Our computational results suggested that outer-sphere nucleophilic addition is a facile step because metal ligation could stabilize the transition state as well as the generated intermediate. The intramolecular migratory insertion mechanism also has a low energy barrier due to the lack of an entropy penalty. Carbene formation from carbene precursors is usually the rate-determining step, except in intermolecular nucleophilic addition, and the reactivity of nucleophiles has a significant influence on the overall reaction rate. We can also envision that the weak nucleophilicity of nucleophiles would suppress outer-sphere nucleophilic addition. These computational studies showcase the characteristics of three carbene transformation models, and we hope that it will spur the development of mechanistic studies of carbene chemistry.
Collapse
Affiliation(s)
- Xiaotian Qi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
238
|
Wang F, Jing J, Zhao Y, Zhu X, Zhang XP, Zhao L, Hu P, Deng WQ, Li X. Rhodium-Catalyzed C-H Activation-Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew Chem Int Ed Engl 2021; 60:16628-16633. [PMID: 34008279 DOI: 10.1002/anie.202105093] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Reported herein is asymmetric [3+2] annulation of arylnitrones with different classes of alkynes catalyzed by chiral rhodium(III) complexes, with the nitrone acting as an electrophilic directing group. Three classes of chiral indenes/indenones have been effectively constructed, depending on the nature of the substrates. The coupling system features mild reaction conditions, excellent enantioselectivity, and high atom-economy. In particular, the coupling of N-benzylnitrones and different classes of sterically hindered alkynes afforded C-C or C-N atropochiral pentatomic biaryls with a C-centered point-chirality in excellent enantio- and diastereoselectivity (45 examples, average 95.6 % ee). These chiral center and axis are disposed in a distal fashion and they are constructed via two distinct migratory insertions that are stereo-determining and are under catalyst control.
Collapse
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
239
|
Ohnishi R, Ohta H, Mori S, Hayashi M. Cationic Dirhodium Complexes Bridged by 2-Phosphinopyridines Having an Exquisitely Positioned Axial Shielding Group: A Molecular Design for Enhancing the Catalytic Activity of the Dirhodium Core. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ryuhei Ohnishi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Hidetoshi Ohta
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shigeki Mori
- Division of Material Science, Advanced Research Support Center (ADRES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Minoru Hayashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
240
|
Sadaphal VA, Liu RS. Gold-Catalyzed Synthesis of Diaza-hexatrienes Via Diazo Attack at Vinylgold Carbenes: An Easy Access to 1 H-Pyrazolo[4,3- b]pyridine-5-ones. Org Lett 2021; 23:5496-5500. [PMID: 34232046 DOI: 10.1021/acs.orglett.1c01835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work reports a gold-catalyzed stereoselective synthesis of highly substituted E-configured 2,3-diaza-1,3,5-hexatrienes using α-diazo nitriles and cyclopropene derivatives; such products arise from an atypical diazo attack of α-aryldiazo nitriles at vinylgold carbenes. For these 2,3-diaza-1,3,5-hexatrienes, we develop a novel anionic cyclization of derivatives of one family to form 1H-pyrazolo[4,3-b]pyridine-5-ones.
Collapse
Affiliation(s)
- Vikas Ashokrao Sadaphal
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Rai-Shung Liu
- Frontier Research Center of Matter Science and Technology, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| |
Collapse
|
241
|
Ping Y, Chang T, Wang J. Carbene insertion into acyl C-H bonds: Rh(III)-catalyzed cross-coupling of 2-aminobenzaldehydes with conjugated enynones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
242
|
Wang F, Jing J, Zhao Y, Zhu X, Zhang X, Zhao L, Hu P, Deng W, Li X. Rhodium‐Catalyzed C−H Activation‐Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xue‐Peng Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Panjie Hu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Wei‐Qiao Deng
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|
243
|
Li W, Xu H, Zhou L. Acid-catalyzed oxidative cross-coupling of acridans with silyl diazoenolates and a Rh-catalyzed rearrangement: two-step synthesis of γ-(9-acridanylidene)-β-keto esters. Org Biomol Chem 2021; 19:5649-5657. [PMID: 34105567 DOI: 10.1039/d1ob00691f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MsOH-catalyzed oxidative cross-coupling of acridans and silyl diazoenolates and a Rh2(OAc)4-catalyzed rearrangement of the resultant diazo products are described. The reactions provide various γ-(9-acridanylidene)-β-keto esters in good yields, which bear an active α-methylene unit for further functionalization.
Collapse
Affiliation(s)
- Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hao Xu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
244
|
Cui XY, Zhao YL, Chen YM, Dong SZ, Zhou F, Wu HH, Zhou J. Au-Catalyzed Formal Allylation of Diazo(thio)oxindoles: Application to Tandem Asymmetric Synthesis of Quaternary Stereocenters. Org Lett 2021; 23:4864-4869. [PMID: 34080874 DOI: 10.1021/acs.orglett.1c01399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report an efficient Au(I)-catalyzed formal allylation of diazo(thio)oxindoles using allyltrimethylsilane to give 3-allyl (thio)oxindoles, which are difficult to access by using traditional alkylation methods under basic conditions. The approach enables a highly stereoselective synthesis of quaternary (thio)oxindoles via a formal allylation-asymmetric Michael addition sequence. These adducts are versatile synthons for spirocyclic (thio)oxindoles. Initial biological studies reveal that chiral thiooxindoles show promising antiproliferation activity that is better than that of the corresponding oxindoles.
Collapse
Affiliation(s)
| | - Yu-Lei Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | | | | | | | | | - Jian Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| |
Collapse
|
245
|
Guranova N, Dar'in D, Kantin G, Krasavin M. Oxonium Ylides Generated from 1,4‐Disubstituted α‐Diazo Glutaconimides: a Rich Source of Diverse Oxygen Heterocyclic Frameworks. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Natalia Guranova
- Dr. Saint Petersburg State University 199034 Saint Petersburg Russian Federation
| | - Dmitry Dar'in
- Dr. Saint Petersburg State University 199034 Saint Petersburg Russian Federation
| | - Grigory Kantin
- Dr. Saint Petersburg State University 199034 Saint Petersburg Russian Federation
| | - Mikhail Krasavin
- Dr. Saint Petersburg State University 199034 Saint Petersburg Russian Federation
| |
Collapse
|
246
|
Zhu XQ, Hong P, Zheng YX, Zhen YY, Hong FL, Lu X, Ye LW. Copper-catalyzed asymmetric cyclization of alkenyl diynes: method development and new mechanistic insights. Chem Sci 2021; 12:9466-9474. [PMID: 34349921 PMCID: PMC8278876 DOI: 10.1039/d1sc02773e] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Metal carbenes have proven to be one of the most important and useful intermediates in organic synthesis, but catalytic asymmetric reactions involving metal carbenes are still scarce and remain a challenge. Particularly, the mechanistic pathway and chiral induction model in these asymmetric transformations are far from clear. Described herein is a copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization, which constitutes the first asymmetric vinylic C(sp2)–H functionalization through cyclopentannulation. Significantly, based on extensive mechanistic studies including control experiments and theoretical calculations, a revised mechanism involving a novel type of endocyclic copper carbene via remote-stereocontrol is proposed, thus providing new mechanistic insight into the copper-catalyzed asymmetric diyne cyclization and representing a new chiral control pattern in asymmetric catalysis based on remote-stereocontrol and vinyl cations. This method enables the practical and atom-economical construction of an array of valuable chiral polycyclic-pyrroles in high yields and enantioselectivities. A copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization is reported, enabling the construction of various valuable chiral polycyclic-pyrroles in high yields and enantioselectivities.![]()
Collapse
Affiliation(s)
- Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yan-Xin Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ying-Ying Zhen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Feng-Lin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
247
|
Jana S, Pei C, Empel C, Koenigs RM. Photochemical Carbene Transfer Reactions of Aryl/Aryl Diazoalkanes-Experiment and Theory*. Angew Chem Int Ed Engl 2021; 60:13271-13279. [PMID: 33687781 PMCID: PMC8252492 DOI: 10.1002/anie.202100299] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/08/2021] [Indexed: 01/20/2023]
Abstract
Controlling the reactivity of carbene intermediates is a key parameter in the development of selective carbene transfer reactions and is usually achieved by metal complexes via singlet metal-carbene intermediates. In this combined experimental and computational studies, we show that the reactivity of free diaryl carbenes can be controlled by the electronic properties of the substituents without the need of external additives. The introduction of electron-donating and -withdrawing groups results in a significant perturbation of singlet triplet energy splitting of the diaryl carbene intermediate and of activation energies of consecutive carbene transfer reactions. This strategy now overcomes a long-standing paradigm in the reactivity of diaryl carbenes and allows the realization of highly chemoselective carbene transfer reactions with alkynes. We could show that free diaryl carbenes can be readily accessed via photolysis of the corresponding diazo compounds and that these carbenes can undergo highly chemoselective cyclopropenation, cascade, or C-H functionalization reactions. Experimental and theoretical mechanistic analyses confirm the participation of different carbene spin states and rationalize for the observed reactivity.
Collapse
Affiliation(s)
- Sripati Jana
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Chao Pei
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Claire Empel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
248
|
Cheng X, Cai BG, Mao H, Lu J, Li L, Wang K, Xuan J. Divergent Synthesis of Aziridine and Imidazolidine Frameworks under Blue LED Irradiation. Org Lett 2021; 23:4109-4114. [PMID: 33989004 DOI: 10.1021/acs.orglett.1c00979] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We develop a visible light-promoted divergent cycloaddition of α-diazo esters with hexahydro-1,3,5-triazines, leading to a series of aziridine and imidazolidine frameworks in average good yield, by simply changing the reaction media used. It is noteworthy that the reaction occurs under sole visible light irradiation without the need for exogenous photoredox catalysts. More significantly, a reasonable reaction mechanism was proposed on the basis of the control experiments and density functional theory calculation results.
Collapse
Affiliation(s)
- Xiao Cheng
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Hui Mao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Juan Lu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Kun Wang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, People's Republic of China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
249
|
Dong C, Zhang C, Wang X, Shen R. Rhodium‐Catalyzed O−H Bond Insertion Reaction between H‐Phosphoryl Compounds and 2‐Pyridyl Carbenes Generated from Pyridotriazoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Can Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
250
|
Sar S, Das R, Sen S. Blue LED Induced Manganese (I) Catalysed Direct C2−H Activation of Pyrroles with Aryl Diazoesters. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Saibal Sar
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| | - Ranajit Das
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences Shiv Nadar University, Dadri, Chithera, Gautam Budh Nagar Uttar Pradesh 201314 India
| |
Collapse
|