201
|
Sorbelli D, Belanzoni P, Belpassi L. Tuning the Gold(I)‐Carbon σ Bond in Gold‐Alkynyl Complexes through Structural Modifications of the NHC Ancillary Ligand: Effect on Spectroscopic Observables and Reactivity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Diego Sorbelli
- Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| | - Paola Belanzoni
- Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC) c/o Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies “Giulio Natta” (CNR-SCITEC) c/o Department of Chemistry Biology and Biotechnology University of Perugia Via Elce di Sotto 8 I-06123 Perugia Italy
| |
Collapse
|
202
|
Affiliation(s)
- Agustí Lledós
- Departament de Química Universitat Autònoma de Barcelona Campus UAB 08193 Cerdanyola del Vallès Catalonia Spain
| |
Collapse
|
203
|
Myllys N, Myers D, Chee S, Smith JN. Molecular properties affecting the hydration of acid-base clusters. Phys Chem Chem Phys 2021; 23:13106-13114. [PMID: 34060578 DOI: 10.1039/d1cp01704g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the atmosphere, water in all phases is ubiquitous and plays important roles in catalyzing atmospheric chemical reactions, participating in cluster formation and affecting the composition of aerosol particles. Direct measurements of water-containing clusters are limited because water is likely to evaporate before detection, and therefore, theoretical tools are needed to study hydration in the atmosphere. We have studied thermodynamics and population dynamics of the hydration of different atmospherically relevant base monomers as well as sulfuric acid-base pairs. The hydration ability of a base seems to follow in the order of gas-phase base strength whereas hydration ability of acid-base pairs, and thus clusters, is related to the number of hydrogen binding sites. Proton transfer reactions at water-air interfaces are important in many environmental and biological systems, but a deeper understanding of their mechanisms remain elusive. By studying thermodynamics of proton transfer reactions in clusters containing up to 20 water molecules and a base molecule, we found that that the ability of a base to accept a proton in a water cluster is related to the aqueous-phase basicity. We also studied the second deprotonation reaction of a sulfuric acid in hydrated acid-base clusters and found that sulfate formation is most favorable in the presence of dimethylamine. Molecular properties related to the proton transfer ability in water clusters are discussed.
Collapse
Affiliation(s)
- Nanna Myllys
- Department of Chemistry, University of California, Irvine, California 92617, USA and Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland.
| | - Deanna Myers
- Department of Chemistry, University of California, Irvine, California 92617, USA
| | - Sabrina Chee
- Department of Chemistry, University of California, Irvine, California 92617, USA
| | - James N Smith
- Department of Chemistry, University of California, Irvine, California 92617, USA
| |
Collapse
|
204
|
Ghosh S, Neese F, Izsák R, Bistoni G. Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy. J Chem Theory Comput 2021; 17:3348-3359. [PMID: 34037397 PMCID: PMC8190956 DOI: 10.1021/acs.jctc.1c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Herein, we introduce a fragment-based local coupled cluster embedding approach for the accurate quantification and analysis of noncovalent interactions in molecular aggregates. Our scheme combines two different expansions of the domain-based local pair natural orbital coupled cluster (DLPNO-CCSD(T)) energy: the many-body expansion (MBE) and the local energy decomposition (LED). The low-order terms in the MBE are initially computed in the presence of an environment that is treated at a low level of theory. Then, LED is used to decompose the energy of each term in the embedded MBE into additive fragment and fragment-pairwise contributions. This information is used to quantify the total energy of the system while providing at the same time in-depth insights into the nature and cooperativity of noncovalent interactions. Two different approaches are introduced and tested, in which the environment is treated at different levels of theory: the local coupled cluster in the Hartree-Fock (LCC-in-HF) method, in which the environment is treated at the HF level; and the electrostatically embedded local coupled cluster method (LCC-in-EE), in which the environment is replaced by point charges. Both schemes are designed to preserve as much as possible the accuracy of the parent local coupled cluster method for total energies, while being embarrassingly parallel and less memory intensive. These schemes appear to be particularly promising for the study of large and complex molecular aggregates at the coupled cluster level, such as condensed phase systems and protein-ligand interactions.
Collapse
Affiliation(s)
- Soumen Ghosh
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
205
|
Rombach D, Birenheide B, Wagenknecht H. Photoredox Catalytic Pentafluorosulfanylative Domino Cyclization of α-Substituted Alkenes to Oxaheterocycles by Using SF 6. Chemistry 2021; 27:8088-8093. [PMID: 33831262 PMCID: PMC8252034 DOI: 10.1002/chem.202100767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 01/14/2023]
Abstract
Virtually inert sulfur hexafluoride becomes a precious pentafluorosulfanylation agent, if properly activated by photoredox catalysis, to access α-fluoro and α-alkoxy SF5 -compounds. This advanced protocol converts SF6 in the presence of alkynols as bifunctional C-C- and C-O-bond forming reagents directly into pentafluorosulfanylated oxygen-containing heterocycles in a single step from α-substituted alkenes. The proposed mechanism is supported by theoretical calculations and gives insights not only in the pentafluorosulfanylation step but also into formation of the carbon-carbon bond and is in full agreement with Baldwin's cyclization rules. The key step is a radical type 5-, 6- respectively 7-exo-dig-cyclization. The synthesized oxaheterocycles cannot be simply prepared by other synthetic methods, show a high level of structural complexity and significantly expand the scope of pentafluorosulfanylated building blocks valuable for medicinal and material chemistry.
Collapse
Affiliation(s)
- David Rombach
- Laboratory of Inorganic ChemistrySwiss Federal Institute of Technology (ETH)Vladimir-Prelog-Weg 1–5/108093ZürichSwitzerland
| | - Bernhard Birenheide
- Institute of Inorganic ChemistryKalsruhe Institute of Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Hans‐Achim Wagenknecht
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
206
|
Leach IF, Belpassi L, Belanzoni P, Havenith RWA, Klein JEMN. Efficient Computation of Geometries for Gold Complexes. Chemphyschem 2021; 22:1262-1268. [PMID: 33729673 PMCID: PMC8252628 DOI: 10.1002/cphc.202001052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Computationally obtaining structural parameters along a reaction coordinate is commonly performed with Kohn‐Sham density functional theory which generally provides a good balance between speed and accuracy. However, CPU times still range from inconvenient to prohibitive, depending on the size of the system under study. Herein, the tight binding GFN2‐xTB method [C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652] is investigated as an alternative to produce reasonable geometries along a reaction path, that is, reactant, product and transition state structures for a series of transformations involving gold complexes. A small mean error (1 kcal/mol) was found, with respect to an efficient composite hybrid‐GGA exchange‐correlation functional (PBEh‐3c) paired with a double‐ζ basis set, which is 2–3 orders of magnitude slower. The outlined protocol may serve as a rapid tool to probe the viability of proposed mechanistic pathways in the field of gold catalysis.
Collapse
Affiliation(s)
- Isaac F Leach
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, 9747, AG Groningen, The Netherlands
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies, "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Paola Belanzoni
- CNR Institute of Chemical Science and Technologies, "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123, Perugia, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Remco W A Havenith
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, 9747, AG Groningen, The Netherlands.,Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University, 9000, Gent, Belgium
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, AG Groningen, The Netherlands
| |
Collapse
|
207
|
Abstract
We present an EOM-CCSD-based quantum mechanical/molecular mechanical (QM/MM) study on the electron attachment process to solvated cytosine. The electron attachment in the bulk solvated cytosine occurs through a doorway mechanism, where the initial electron is localized on water. The electron is subsequently transferred to cytosine by the mixing of electronic and nuclear degrees of freedom, which occurs on an ultrafast time scale. The bulk water environment stabilizes the cytosine-bound anion by an extensive hydrogen-bond network and drastically enhances the electron transfer rate from that observed in the gas phase. Microhydration studies cannot reproduce the effect of the bulk water environment on the electron attachment process, and one needs to include a large number of water molecules in the calculation to obtain converged results. The predicted adiabatic electron affinity and electron transfer rate obtained from our QM/MM calculations are consistent with the available experimental results.
Collapse
Affiliation(s)
- Pooja Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
208
|
Wöhner K, Wulf T, Vankova N, Heine T. Strong Binding of Noble Gases to [B 12X 11] -: A Theoretical Study. J Phys Chem A 2021; 125:4760-4765. [PMID: 34036781 DOI: 10.1021/acs.jpca.1c01909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We systematically explore the stability and properties of [B12X11NG]- adducts resulting from the binding of noble gas atoms to anionic [B12X11]- clusters in the gas phase of mass spectrometers. [B12X11]- can be obtained by stripping one X- off the icosahedral closo-dodecaborate dianion [B12X12]2-. We study the binding of the noble gas atoms He, Ne, Ar, Kr, and Xe to [B12X11]- with substituents X = F, Cl, Br, I, and CN. While He cannot be captured by these clusters and Ne only binds at low temperatures, the complexes with the heavier noble gas atoms Ar, Kr, and Xe show appreciable complexation energies and exceed 1 eV at room temperature in the case of [B12(CN)11Xe]-. The predicted B-NG equilibrium distance in the complexes with Ar, Kr, and Xe is only 0.10-0.25 Å longer than the sum of the covalent radii of the two corresponding atoms, and a significant charge transfer from the noble gas atom to the icosahedral B12 cage is observed.
Collapse
Affiliation(s)
- Kevin Wöhner
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062 Dresden, Germany.,Wilhelm Ostwald Institute of Physical and Theoretical Chemistry, Faculty for Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Toshiki Wulf
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.,Wilhelm Ostwald Institute of Physical and Theoretical Chemistry, Faculty for Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Nina Vankova
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062 Dresden, Germany
| | - Thomas Heine
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062 Dresden, Germany.,Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
209
|
Wappett DA, Goerigk L. A guide to benchmarking enzymatically catalysed reactions: the importance of accurate reference energies and the chemical environment. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02770-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
210
|
Binuclear ethylenedithiolate iron carbonyls: A density functional theory study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
211
|
Mounssef Jr B, de Alcântara Morais SF, de Lima Batista AP, de Lima LW, Braga AAC. DFT study of H 2 adsorption at a Cu-SSZ-13 zeolite: a cluster approach. Phys Chem Chem Phys 2021; 23:9980-9990. [PMID: 33870397 DOI: 10.1039/d1cp00422k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work the H2 adsorption at a Cu(i)-SSZ-13 exchanged zeolite was theoretically investigated. A systematic cluster approach was used and different density functionals (B3LYP, B3LYP-D3(BJ), M06L, PBE, PBE-D3(BJ) and ωB97XD) and a def2-SVP basis set were benchmarked. In order to select the best approach to the H2 adsorption over a Cu(i)-SSZ-13 cluster with 78 atoms (16 T-sites), two main tasks were performed: (1) a comparison between theoretical and experimental structures and (2) a comparison between theoretical and experimental adsorption enthalpies. By employing the most suitable functional - the ωB97X-D - the H2 interaction with the zeolite structure was studied by means of NBO, NCI, AIM and DLPNO-CCSD(T)/LED analyses.
Collapse
Affiliation(s)
- Bassim Mounssef Jr
- GQCA - Grupo de Química Computacional Aplicada, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| | | | | | | | | |
Collapse
|
212
|
Moe MM, Benny J, Sun Y, Liu J. Experimental and theoretical assessment of protonated Hoogsteen 9-methylguanine-1-methylcytosine base-pair dissociation: kinetics within a statistical reaction framework. Phys Chem Chem Phys 2021; 23:9365-9380. [PMID: 33885080 DOI: 10.1039/d0cp06682f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated the collision-induced dissociation (CID) reactions of a protonated Hoogsteen 9-methylguanine-1-methylcytosine base pair (HG-[9MG·1MC + H]+), which aims to address the mystery of the literature reported "anomaly" in product ion distributions and compare the kinetics of a Hoogsteen base pair with its Watson-Crick isomer WC-[9MG·1MC + H]+ (reported recently by Sun et al.; Phys. Chem. Chem. Phys., 2020, 22, 24986). Product ion cross sections and branching ratios were measured as a function of center-of-mass collision energy using guided-ion beam tandem mass spectrometry, from which base-pair dissociation energies were determined. Product structures and energetics were assessed using various theories, of which the composite DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-311++G(d,p) was adopted as the best-performing method for constructing a reaction potential energy surface. The statistical Rice-Ramsperger-Kassel-Marcus theory was found to provide a useful framework for rationalizing the dominating abundance of [1MC + H]+ over [9MG + H]+ in the fragment ions of HG-[9MG·1MC + H]+. The kinetics analysis proved the necessity for incorporating into kinetics modeling not only the static properties of reaction minima and transition states but more importantly, the kinetics of individual base-pair conformers that have formed in collisional activation. The analysis also pinpointed the origin of the statistical kinetics of HG-[9MG·1MC + H]+vs. the non-statistical behavior of WC-[9MG·1MC + H]+ in terms of their distinctively different intra-base-pair hydrogen-bonds and consequently the absence of proton transfer between the N1 position of 9MG and the N3' of 1MC in the Hoogsteen base pair. Finally, the Hoogsteen base pair was examined in the presence of a water ligand, i.e., HG-[9MG·1MC + H]+·H2O. Besides the same type of base-pair dissociation as detected in dry HG-[9MG·1MC + H]+, secondary methanol elimination was observed via the SN2 reaction of water with nucleobase methyl groups.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA.
| | | | | | | |
Collapse
|
213
|
Kurfman LA, Odbadrakh TT, Shields GC. Calculating Reliable Gibbs Free Energies for Formation of Gas-Phase Clusters that Are Critical for Atmospheric Chemistry: (H 2SO 4) 3. J Phys Chem A 2021; 125:3169-3176. [PMID: 33825467 DOI: 10.1021/acs.jpca.1c00872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of atmospheric aerosols on our climate are one of the biggest uncertainties in global climate models. Calculating the pathway for the formation of pre-nucleation clusters that become aerosols is challenging, requiring a comprehensive analysis of configurational space and highly accurate Gibbs free energy calculations. We identified a large set of minimum energy configurations of (H2SO4)3 using a sampling technique based on a genetic algorithm and a stepwise density functional theory (DFT) approach and computed the thermodynamics of formation of these configurations with more accurate wavefunction-based electronic energies computed on the DFT geometries. The DLPNO-CCSD(T) methods always return more positive energies compared to the DFT energies. Within the DLPNO-CCSD(T) methods, extrapolating to the complete basis set limit gives more positive free energies compared to explicitly correlated single-point energies. The CBS extrapolation was shown to be robust as both the 4-5 inverse polynomial and Riemann zeta function schemes were within chemical accuracy of one another.
Collapse
Affiliation(s)
- Luke A Kurfman
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| | - Tuguldur T Odbadrakh
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| | - George C Shields
- Department of Chemistry, Furman University, Greenville, South Carolina 29613-0002, United States
| |
Collapse
|
214
|
Mehta N, Fellowes T, White JM, Goerigk L. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions? J Chem Theory Comput 2021; 17:2783-2806. [PMID: 33881869 DOI: 10.1021/acs.jctc.1c00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present the CHAL336 benchmark set-the most comprehensive database for the assessment of chalcogen-bonding (CB) interactions. After careful selection of suitable systems and identification of three high-level reference methods, the set comprises 336 dimers each consisting of up to 49 atoms and covers both σ- and π-hole interactions across four categories: chalcogen-chalcogen, chalcogen-π, chalcogen-halogen, and chalcogen-nitrogen interactions. In a subsequent study of DFT methods, we re-emphasize the need for using proper London dispersion corrections when treating noncovalent interactions. We also point out that the deterioration of results and systematic overestimation of interaction energies for some dispersion-corrected DFT methods does not hint at problems with the chosen dispersion correction but is a consequence of large density-driven errors. We conclude this work by performing the most detailed DFT benchmark study for CB interactions to date. We assess 109 variations of dispersion-corrected and dispersion-uncorrected DFT methods and carry out a detailed analysis of 80 of them. Double-hybrid functionals are the most reliable approaches for CB interactions, and they should be used whenever computationally feasible. The best three double hybrids are SOS0-PBE0-2-D3(BJ), revDSD-PBEP86-D3(BJ), and B2NCPLYP-D3(BJ). The best hybrids in this study are ωB97M-V, PW6B95-D3(0), and PW6B95-D3(BJ). We do not recommend using the popular B3LYP functional nor the MP2 approach, which have both been frequently used to describe CB interactions in the past. We hope to inspire a change in computational protocols surrounding CB interactions that leads away from the commonly used, popular methods to the more robust and accurate ones recommended herein. We would also like to encourage method developers to use our set for the investigation and reduction of density-driven errors in new density functional approximations.
Collapse
Affiliation(s)
- Nisha Mehta
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Thomas Fellowes
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
215
|
Silva Teixeira CS, Sousa SF, Cerqueira NMFSA. An Unsual Cys-Glu-Lys Catalytic Triad is Responsible for the Catalytic Mechanism of the Nitrilase Superfamily: A QM/MM Study on Nit2. Chemphyschem 2021; 22:796-804. [PMID: 33463886 DOI: 10.1002/cphc.202000751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Nitrilase 2 (Nit2) is a representative member of the nitrilase superfamily that catalyzes the hydrolysis of α-ketosuccinamate into oxaloacetate. It has been associated with the metabolism of rapidly dividing cells like cancer cells. The catalytic mechanism of Nit2 employs a catalytic triad formed by Cys191, Glu81 and Lys150. The Cys191 and Glu81 play an active role during the catalytic process while the Lys150 is shown to play only a secondary role. The results demonstrate that the catalytic mechanism of Nit2 involves four steps. The nucleophilic attack of Cys191 to the α-ketosuccinamate, the formation of two tetrahedral enzyme adducts and the hydrolysis of a thioacyl-enzyme intermediate, from which results the formation of oxaloacetate and enzymatic turnover. The rate limiting step of the catalytic process is the formation of the first tetrahedral intermediate with a calculated activation free energy of 18.4 kcal/mol, which agrees very well with the experimental kcat (17.67 kcal/mol).
Collapse
Affiliation(s)
- Carla S Silva Teixeira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, 4200-319, Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, 4200-319, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, 4200-319, Portugal
| |
Collapse
|
216
|
Doran AE, Hirata S. Stochastic evaluation of fourth-order many-body perturbation energies. J Chem Phys 2021; 154:134114. [PMID: 33832241 DOI: 10.1063/5.0047798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A scalable, stochastic algorithm evaluating the fourth-order many-body perturbation (MP4) correction to energy is proposed. Three hundred Goldstone diagrams representing the MP4 correction are computer generated and then converted into algebraic formulas expressed in terms of Green's functions in real space and imaginary time. They are evaluated by the direct (i.e., non-Markov, non-Metropolis) Monte Carlo (MC) integration accelerated by the redundant-walker and control-variate algorithms. The resulting MC-MP4 method is efficiently parallelized and is shown to display O(n5.3) size-dependence of cost, which is nearly two ranks lower than the O(n7) dependence of the deterministic MP4 algorithm. It evaluates the MP4/aug-cc-pVDZ energy for benzene, naphthalene, phenanthrene, and corannulene with the statistical uncertainty of 10 mEh (1.1% of the total basis-set correlation energy), 38 mEh (2.6%), 110 mEh (5.5%), and 280 mEh (9.0%), respectively, after about 109 MC steps.
Collapse
Affiliation(s)
- Alexander E Doran
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
217
|
Elm J. Clusteromics I: Principles, Protocols, and Applications to Sulfuric Acid-Base Cluster Formation. ACS OMEGA 2021; 6:7804-7814. [PMID: 33778292 PMCID: PMC7992168 DOI: 10.1021/acsomega.1c00306] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 05/13/2023]
Abstract
We recently coined the term clusteromics as a holistic approach for obtaining insight into the chemical complexity of atmospheric molecular cluster formation and at the same time providing the foundation for thermochemical databases that can be utilized for developing machine learning models. Here, we present the first paper in the series that applies state-of-the-art computational methods to study multicomponent (SA)0-2(base)0-2 clusters, with SA = sulfuric acid and base = [ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA)] with all combinations of the five bases. The initial cluster configurations are obtained using the ABCluster program and the number of relevant configurations are reduced based on PM7 and ωB97X-D/6-31++G(d,p) calculations. Thermochemical parameters are calculated based on the ωB97X-D/6-31++G(d,p) cluster structures and vibrational frequencies using the quasi-harmonic approximation. The single-point energies are refined with a high-level DLPNO-CCSD(T0)/aug-cc-pVTZ calculation. Using the calculated thermochemical data, we perform kinetics simulations to evaluate the potential of these small (SA)0-2(base)0-2 clusters to grow into larger cluster sizes. In all cases we find that having more than one type of base molecule present in the cluster will increase the potential for forming larger clusters primarily due to the increased available vapor concentration.
Collapse
Affiliation(s)
- Jonas Elm
- Department of Chemistry and
iClimate, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
218
|
Crystals at a Carrefour on the Way through the Phase Space: A Middle Path. Molecules 2021; 26:molecules26061583. [PMID: 33805629 PMCID: PMC7998266 DOI: 10.3390/molecules26061583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple supramolecular functionalities of cyclic α-alkoxy tellurium-trihalides (including Te---O, Te---X (X = Br, I) and Te---π(C=C) supramolecular synthons) afford rich crystal packing possibilities, which consequently results in polymorphism or Z’ > 1 crystal structures. Example of three crystal forms of cyclohexyl-ethoxy-tellurium-trihalides, one of which combines the packing of two others, affords a unique model to observe the supramolecular synthon evolution at the early stages of crystallization, when crystals on the way find themself at a carrefour between the evolutionally close routes, but fail to choose between two energetically close packing patterns, so taking the “middle path”, which incorporates both of them (and results in two crystallographically independent molecules). In general, this allows a better understanding of the existing structures, and an instrument to search for the new polymorphic forms.
Collapse
|
219
|
Gupta D, Omont A, Bettinger HF. Energetics of Formation of Cyclacenes from 2,3-Didehydroacenes and Implications for Astrochemistry. Chemistry 2021; 27:4605-4616. [PMID: 33372718 PMCID: PMC7986185 DOI: 10.1002/chem.202003045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Indexed: 01/01/2023]
Abstract
The carriers of the diffuse interstellar bands (DIBs) are still largely unknown although polycyclic aromatic hydrocarbons, carbon chains, and fullerenes are likely candidates. A recent analysis of the properties of n-acenes of general formula C4n+2 H2n+4 suggested that these could be potential carriers of some DIBs. Dehydrogenation reactions of n-acenes after absorption of an interstellar UV photon may result in dehydroacenes. Here the reaction energies and barriers for formation of n-cyclacenes from 2,3-didehydroacenes (n-DDA) by intramolecular Diels-Alder reaction to dihydro-etheno-cyclacenes (n-DEC) followed by ejection of ethyne by retro-Diels-Alder reactions are analyzed using thermally assisted occupation density functional theory (TAO-DFT) for n=10-20. It is found that the barriers for each of the steps depend on the ring strain of the underlying n-cyclacene, and that the ring strain of n-DEC is about 75 % of that of the corresponding n-cyclacene. In each case, ethyne extrusion is the step with the highest energy barrier, but these barriers are smaller than CH bond dissociation energies, suggesting that formation of cyclacenes is an energetically conceivable fate of n-acenes after multiple absorption of UV photons.
Collapse
Affiliation(s)
- Divanshu Gupta
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Alain Omont
- Institut d'Astrophysique de ParisSorbonne Université, UPMC Université Paris 6 and CNRS, UMR 709598bis boulevard Arago75014ParisFrance
| | - Holger F. Bettinger
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
220
|
Khan A, Goepel M, Kubas A, Łomot D, Lisowski W, Lisovytskiy D, Nowicka A, Colmenares JC, Gläser R. Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran by Visible Light-Driven Photocatalysis over In Situ Substrate-Sensitized Titania. CHEMSUSCHEM 2021; 14:1351-1362. [PMID: 33453092 PMCID: PMC7986172 DOI: 10.1002/cssc.202002687] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Solar energy-driven processes for biomass valorization are priority for the growing industrialized society. To address this challenge, efficient visible light-active photocatalyst for the selective oxidation of biomass-derived platform chemical is highly desirable. Herein, selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) was achieved by visible light-driven photocatalysis over titania. Pristine titania is photocatalytically inactive under visible light, so an unconventional approach was employed for the visible light (λ=515 nm) sensitization of titania via a formation of a visible light-absorbing complex of HMF (substrate) on the titania surface. Surface-complexation of HMF on titania mediated ligand-to-metal charge transfer (LMCT) under visible light, which efficiently catalyzed the oxidation of HMF to DFF. A high DFF selectivity of 87 % was achieved with 59 % HMF conversion after 4 h of illumination. The apparent quantum yield obtained for DFF production was calculated to be 6.3 %. It was proposed that the dissociative interaction of hydroxyl groups of HMF and the titania surface is responsible for the surface-complex formation. When the hydroxyl groups of titania were modified via surface-fluorination or calcination the oxidation of HMF was inhibited under visible light, signifying that hydroxyl groups are decisive for photocatalytic activity.
Collapse
Affiliation(s)
- Ayesha Khan
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Michael Goepel
- Institute of Chemical TechnologyLeipzig UniversityLeipzig04103Germany
| | - Adam Kubas
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Dariusz Łomot
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Wojciech Lisowski
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Dmytro Lisovytskiy
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | - Ariadna Nowicka
- Institute of Physical ChemistryPolish Academy of SciencesWarsaw01-224Poland
| | | | - Roger Gläser
- Institute of Chemical TechnologyLeipzig UniversityLeipzig04103Germany
| |
Collapse
|
221
|
Sandler I, Chen J, Taylor M, Sharma S, Ho J. Accuracy of DLPNO-CCSD(T): Effect of Basis Set and System Size. J Phys Chem A 2021; 125:1553-1563. [PMID: 33560853 DOI: 10.1021/acs.jpca.0c11270] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The DLPNO-CCSD(T) method is designed to study large molecular systems at significantly reduced cost relative to its canonical counterpart. However, the error in this approach is also size-extensive and relies on cancellation of errors for the calculation of relative energies. This work provides a direct comparison of canonical CCSD(T) and TightPNO DLPNO-CCSD(T) calculations of reaction energies and barriers of a broad range of chemical reactions. The dataset includes acidities, anion binding affinities, enolization, Diels-Alder, nucleophilic substitution, and atom transfer reactions and complements existing theoretical datasets in terms of system size as well as new reaction types (e.g., anion binding affinities and chlorine atom transfer reactions). The performance of DLPNO-CCSD(T) was further examined with respect to systematic variation of basis set and system size and amounts of nonbonded interaction present in the system. The errors in the DLPNO-CCSD(T) were found to be relatively insensitive to the choice of basis set for small systems but increase monotonically with system size. Additionally, calculations of barriers appear to be more challenging than reaction energies with errors exceeding 5 kJ mol-1 for many Diels-Alder reactions. Further tests on three realistic organic reactions reveal the impact of the DLPNO approximation in calculating absolute and relative barriers that are important for predictions such as stereoselectivity.
Collapse
Affiliation(s)
- Isolde Sandler
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Junbo Chen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mackenzie Taylor
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shaleen Sharma
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
222
|
Chawla M, Gorle S, Shaikh AR, Oliva R, Cavallo L. Replacing thymine with a strongly pairing fifth Base: A combined quantum mechanics and molecular dynamics study. Comput Struct Biotechnol J 2021; 19:1312-1324. [PMID: 33738080 PMCID: PMC7940798 DOI: 10.1016/j.csbj.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
The non-natural ethynylmethylpyridone C-nucleoside (W), a thymidine (T) analogue that can be incorporated in oligonucleotides by automated synthesis, has recently been reported to form a high fidelity base pair with adenosine (A) and to be well accommodated in B-DNA duplexes. The enhanced binding affinity for A of W, as compared to T, makes it an ideal modification for biotechnological applications, such as efficient probe hybridization for the parallel detection of multiple DNA strands. In order to complement the experimental study and rationalize the impact of the non-natural W nucleoside on the structure, stability and dynamics of DNA structures, we performed quantum mechanics (QM) calculations along with molecular dynamics (MD) simulations. Consistently with the experimental study, our QM calculations show that the A:W base pair has an increased stability as compared to the natural A:T pair, due to an additional CH-π interaction. Furthermore, we show that mispairing between W and guanine (G) causes a distortion in the planarity of the base pair, thus explaining the destabilization of DNA duplexes featuring a G:W pair. MD simulations show that incorporation of single or multiple consecutive A:W pairs in DNA duplexes causes minor changes to the intra- and inter-base geometrical parameters, while a moderate widening/shrinking of the major/minor groove of the duplexes is observed. QM calculations applied to selected stacks from the MD simulations also show an increased stacking energy for W, over T, with the neighboring bases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdul Rajjak Shaikh
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
223
|
Sun Y, Tsai M, Moe MM, Liu J. Dynamics and Multiconfiguration Potential Energy Surface for the Singlet O2 Reactions with Radical Cations of Guanine, 9-Methylguanine, 2′-Deoxyguanosine, and Guanosine. J Phys Chem A 2021; 125:1564-1576. [DOI: 10.1021/acs.jpca.1c00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
224
|
Modrzejewski M, Yourdkhani S, Śmiga S, Klimeš J. Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage. J Chem Theory Comput 2021; 17:804-817. [PMID: 33445879 DOI: 10.1021/acs.jctc.0c00966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The many-body expansion (MBE) of energies of molecular clusters or solids offers a way to detect and analyze errors of theoretical methods that could go unnoticed if only the total energy of the system was considered. In this regard, the interaction between the methane molecule and its enclosing dodecahedral water cage, CH4···(H2O)20, is a stringent test for approximate methods, including density functional theory (DFT) approximations. Hybrid and semilocal DFT approximations behave erratically for this system, with three- and four-body nonadditive terms having neither the correct sign nor magnitude. Here, we analyze to what extent these qualitative errors in different MBE contributions are conveyed to post-Kohn-Sham random-phase approximation (RPA), which uses approximate Kohn-Sham orbitals as its input. The results reveal a correlation between the quality of the DFT input states and the RPA results. Moreover, the renormalized singles energy (RSE) corrections play a crucial role in all orders of the many-body expansion. For dimers, RSE corrects the RPA underbinding for every tested Kohn-Sham model: generalized-gradient approximation (GGA), meta-GGA, (meta-)GGA hybrids, as well as the optimized effective potential at the correlated level. Remarkably, the inclusion of singles in RPA can also correct the wrong signs of three- and four-body nonadditive energies as well as mitigate the excessive higher-order contributions to the many-body expansion. The RPA errors are dominated by the contributions of compact clusters. As a workable method for large systems, we propose to replace those compact contributions with CCSD(T) energies and to sum up the remaining many-body contributions up to infinity with supermolecular or periodic RPA. As a demonstration of this approach, we show that for RPA(PBE0)+RSE it suffices to apply CCSD(T) to dimers and 30 compact, hydrogen-bonded trimers to get the methane-water cage interaction energy to within 1.6% of the reference value.
Collapse
Affiliation(s)
- Marcin Modrzejewski
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Pasteura 1, Poland.,Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| | - Sirous Yourdkhani
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| | - Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| | - Jiří Klimeš
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
225
|
Ni Z, Guo Y, Neese F, Li W, Li S. Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems. J Chem Theory Comput 2021; 17:756-766. [PMID: 33410327 DOI: 10.1021/acs.jctc.0c00831] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cluster-in-molecule (CIM) local correlation approach with an accurate distant pair correlation energy correction is presented. For large systems, the inclusion of distant pair correlation energies is essential for the accurate prediction of absolute correlation energies and relative energies. Here, we propose a simple and efficient scheme for evaluating the distant pair correlation energy correction for the CIM approaches. The corrections can be readily extracted from electron correlation calculations of clusters with almost no additional effort. Benchmark calculations show that the improved CIM approach can recover more than 99.94% of the correlation energy calculated by the parent method. By combining the CIM approach with the domain-based local pair natural orbital (DLPNO) local correlation approach, we have provided accurate binding energies at the CIM-DLPNO-CCSD(T) level for a test set consisting of eight weakly bound complexes ranging in size from 200 to 1027 atoms. With these results as the reference data, the accuracy and applicability of other electron correlation methods and a few density functional methods for large systems have been assessed.
Collapse
Affiliation(s)
- Zhigang Ni
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China.,College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, China
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.,FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
226
|
Moulder CA, Kafle K, Zhou CX, Cundari TR. Thermochemistry of Tungsten-3p Elements for Density Functional Theory, Caveat Lector! J Phys Chem A 2021; 125:681-690. [PMID: 33405918 DOI: 10.1021/acs.jpca.0c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are two primary foci in this research on WE (E = Si, P, and S) bonds: prediction of their bond dissociation enthalpies (BDEs), including σ- and π-bond energy components, and assessing the uncertainty of these BDE predictions for levels of theory commonly used in the literature. The internal standards for computational accuracy include metal-element bond lengths (mean absolute error = 1.8 ± 1.2%), main group homolog BDEs versus higher levels of ab initio theory (W1U and G4 BDEs, R2 = 0.98), and DLPNO-CCSD(T)/def2-QZVPP calculations for metal-ligand BDEs (R2 = 0.88). The W═Si first π-bond is underreported for density functional theory (DFT)/MP2 methods versus DLPNO-CCSD(T), while the latter shows negligible strength for the W;Si second π-bond, consistent with the literature. This research highlights clear issues with the underlying assumptions required for the use of perturbation theory methods for the fragments derived from W-P homolysis. The difficulties associated with modeling the metal thermochemistry with DFT (and MP2) levels of theory are manifest in the broad standard deviations observed. However, the average BDEs found using 48 popular DFT and MP2 levels of theory are reliable, 10.8 ± 6.8% mean absolute error (with W-P removed) versus DLPNO-CCSD(T), with the caveat that the individual basis set/pseudopotential/valence basis set combination can vary wildly. Analysis of the absolute error percentages with respect to the level of theory indicates little benefit to going higher on Jacob's Ladder, as simpler methods have lower error versus high-level ab initio techniques such as G4 and DLPNO-CCSD(T).
Collapse
Affiliation(s)
- Catherine A Moulder
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Kristina Kafle
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Christopher X Zhou
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
227
|
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. J Chem Theory Comput 2021; 17:902-926. [PMID: 33405921 DOI: 10.1021/acs.jctc.0c01129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present explicitly correlated open-shell pair natural orbital local coupled-cluster methods, PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. The methods are extensions of our previously reported PNO-R/UCCSD methods (J. Chem. Theory Comput., 2020, 16, 3135-3151, https://pubs.acs.org/doi/10.1021/acs.jctc.0c00192) with additions of explicit correlation and perturbative triples corrections. The explicit correlation treatment follows the spin-orbital CCSD-F12b theory using Ansatz 3*A, which is found to yield comparable or better basis set convergence than the more rigorous Ansatz 3C in computed ionization potentials and reaction energies using double- to quaduple-ζ basis sets. The perturbative triples correction is adapted from the spin-orbital (T) theory to use triples natural orbitals (TNOs). To address the coupling due to off-diagonal Fock matrix elements, the local triples amplitudes are iteratively solved using small domains of TNOs, and a semicanonical (T0) domain correction with larger domains is applied to reduce the domain errors. The performance of the methods is demonstrated through benchmark calculations on ionization potentials, radical stabilization energies, reaction energies of fragmentations and rearrangements in radical cations, and spin-state energy differences of iron complexes. For a few test sets where canonical calculations are feasible, PNO-RCCSD(T)-F12 results agree with the canonical ones to within 0.4 kcal mol-1, and this maximum error is reduced to below 0.2 kcal mol-1 when large local domains are used. For larger systems, results using different thresholds for the local approximations are compared to demonstrate that 1 kcal mol-1 level of accuracy can be achieved using our default settings. For a couple of difficult cases, it is demonstrated that the errors from individual approximations are only a fraction of 1 kcal mol-1, and the overall accuracy of the method does not rely on error compensations. In contrast to canonical calculations, the use of spin-orbitals does not lead to a significant increase of computational time and memory usage in the most expensive steps of PNO-R/UCCSD(T)-F12 calculations. The only exception is the iterative solution of the (T) amplitudes, which can be avoided without significant errors by using a perturbative treatment of the off-diagonal coupling, known as (T1) approximation. For most systems, even the semicanonical approximation (T0) leads only to small errors in relative energies. Our program is well parallelized and capable of computing accurate correlation energies for molecules with 100-200 atoms using augmented triple-ζ basis sets in less than a day of elapsed time on a small computer cluster.
Collapse
Affiliation(s)
- Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
228
|
Dorofeeva OV, Ryzhova ON. Accurate estimation of enthalpies of formation for C-, H-, O-, and N-containing compounds using DLPNO-CCSD(T1)/CBS method. Struct Chem 2021. [DOI: 10.1007/s11224-020-01681-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
229
|
Vennelakanti V, Qi HW, Mehmood R, Kulik HJ. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem Sci 2021; 12:1147-1162. [PMID: 35382134 PMCID: PMC8908278 DOI: 10.1039/d0sc05084a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrogen bonds (HBs) play an essential role in the structure and catalytic action of enzymes, but a complete understanding of HBs in proteins challenges the resolution of modern structural (i.e., X-ray diffraction) techniques and mandates computationally demanding electronic structure methods from correlated wavefunction theory for predictive accuracy. Numerous amino acid sidechains contain functional groups (e.g., hydroxyls in Ser/Thr or Tyr and amides in Asn/Gln) that can act as either HB acceptors or donors (HBA/HBD) and even form simultaneous, ambifunctional HB interactions. To understand the relative energetic benefit of each interaction, we characterize the potential energy surfaces of representative model systems with accurate coupled cluster theory calculations. To reveal the relationship of these energetics to the balance of these interactions in proteins, we curate a set of 4000 HBs, of which >500 are ambifunctional HBs, in high-resolution protein structures. We show that our model systems accurately predict the favored HB structural properties. Differences are apparent in HBA/HBD preference for aromatic Tyr versus aliphatic Ser/Thr hydroxyls because Tyr forms significantly stronger O–H⋯O HBs than N–H⋯O HBs in contrast to comparable strengths of the two for Ser/Thr. Despite this residue-specific distinction, all models of residue pairs indicate an energetic benefit for simultaneous HBA and HBD interactions in an ambifunctional HB. Although the stabilization is less than the additive maximum due both to geometric constraints and many-body electronic effects, a wide range of ambifunctional HB geometries are more favorable than any single HB interaction. Correlated wavefunction theory predicts and high-resolution crystal structure analysis confirms the important, stabilizing effect of simultaneous hydrogen bond donor and acceptor interactions in proteins.![]()
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Helena W. Qi
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Rimsha Mehmood
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
230
|
Muravyev NV, Monogarov KA, Melnikov IN, Pivkina AN, Kiselev VG. Learning to fly: thermochemistry of energetic materials by modified thermogravimetric analysis and highly accurate quantum chemical calculations. Phys Chem Chem Phys 2021; 23:15522-15542. [PMID: 34286759 DOI: 10.1039/d1cp02201f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The standard state enthalpy of formation and the enthalpy of sublimation are essential thermochemical parameters determining the performance and application prospects of energetic materials (EM). Direct experimental measurements of these properties are complicated by low volatility and high heat release in bomb calorimetry experiments. As a result, the uncertainties in the reported enthalpies of formation for a number of even well-known CHNO-containing compounds might amount up to tens kJ mol-1, while for some novel high-nitrogen molecules they reach even hundreds of kJ mol-1. The present study reports a facile approach to determining the solid-state formation enthalpies comprised of complementary high-level quantum chemical calculations of the gas-phase thermochemistry and advanced thermal analysis techniques yielding sublimation enthalpies. The thermogravimetric procedure for the measurement of sublimation enthalpy was modified by using low external pressures (down to 0.2 Pa). This allows for observing sublimation/vaporization instead of thermal decomposition of the compounds studied. Extensive benchmarking on nonenergetic and energetic compounds reveals the average and maximal absolute errors of the sublimation enthalpies of 3.3 and 11.0 kJ mol-1, respectively. The comparison of the results with those obtained from the widely used Trouton-Williams empirical equation shows that the latter underestimates the sublimation enthalpy up to 140 kJ mol-1. Therefore, we performed a reparametrization of the latter equation with simple chemical descriptors that reduces the mean error down to 30 kJ mol-1. Highly accurate multi-level procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach were used to calculate theoretically the gas-phase formation enthalpies. In several cases, the DLPNO-CCSD(T) enthalpies of isodesmic reactions were also employed to obtain the gas-phase thermochemistry for medium-sized important EMs. Combining the obtained thermochemical properties, we determined the solid-state enthalpies of formation for nearly 60 species containing various important explosophoric groups, from common nitroaromatics, nitroethers, and nitramines to novel nitrogen-rich heterocyclic species (e.g., the derivatives of pyrazole, tetrazole, furoxan, etc.). The large-scale benchmarking against the available experimental solid-state enthalpies of formation yielded the maximal inaccuracy of the proposed method of 25 kJ mol-1.
Collapse
Affiliation(s)
- Nikita V Muravyev
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Konstantin A Monogarov
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Igor N Melnikov
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Alla N Pivkina
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia.
| | - Vitaly G Kiselev
- Semenov Federal Research Center for Chemical Physics, RAS, 4 Kosygina Str., 119991 Moscow, Russia. and Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia and Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| |
Collapse
|
231
|
Wulf T, Warneke J, Heine T. B 12X 11(H 2) −: exploring the limits of isotopologue selectivity of hydrogen adsorption. RSC Adv 2021; 11:28466-28475. [PMID: 35478551 PMCID: PMC9038111 DOI: 10.1039/d1ra06322g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
We study the isotopologue-selective binding of dihydrogen at the undercoordinated boron site of B12X11− (X = H, F, Cl, Br, I, CN) using ab initio quantum chemistry. With a Gibbs free energy of H2 attachment reaching up to 80 kJ mol−1 (ΔG at 300 K for X = CN), these sites are even more attractive than most undercoordinated metal centers studied so far. We thus believe that they can serve as an edge case close to the upper limit of isotopologue-selective H2 adsorption sites. Differences of the zero-point energy of attachment average 5.0 kJ mol−1 between D2 and H2 and 2.7 kJ mol−1 between HD and H2, resulting in hypothetical isotopologue selectivities as high as 2.0 and 1.5, respectively, even at 300 K. Interestingly, even though attachment energies vary substantially according to the chemical nature of X, isotopologue selectivities remain very similar. We find that the H–H activation is so strong that it likely results in the instantaneous heterolytic dissociation of H2 in all cases (except, possibly, for X = H), highlighting the extremely electrophilic nature of B12X11− despite its negative charge. Unfortunately, this high reactivity also makes B12X11− unsuitable for practical application in the field of dihydrogen isotopologue separation. Thus, this example stresses the two-edged nature of strong H2 affinity, yielding a higher isotopologue selectivity on the one hand but risking dissociation on the other, and helps define a window of adsorption energies into which a material for selective adsorption near room temperature should ideally fall. The extreme H2 affinity of B12X11− gives a glimpse of how higher selectivities in adsorptive isotopologue separation may be achieved.![]()
Collapse
Affiliation(s)
- Toshiki Wulf
- Wilhelm Ostwald Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, 04103 Leipzig, Germany
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jonas Warneke
- Wilhelm Ostwald Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, 04103 Leipzig, Germany
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Thomas Heine
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, 04318 Leipzig, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
232
|
Bălăiu C, Attia AA, Lupan A, Bruce King R. Iron carbonyl complexes of a rigid chelating dicarbene: A density functional theory study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
233
|
Mukherjee M, Tripathi D, Brehm M, Riplinger C, Dutta AK. Efficient EOM-CC-based Protocol for the Calculation of Electron Affinity of Solvated Nucleobases: Uracil as a Case Study. J Chem Theory Comput 2020; 17:105-116. [DOI: 10.1021/acs.jctc.0c00655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Divya Tripathi
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Martin Brehm
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
234
|
Larin AA, Bystrov DM, Fershtat LL, Konnov AA, Makhova NN, Monogarov KA, Meerov DB, Melnikov IN, Pivkina AN, Kiselev VG, Muravyev NV. Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives. Molecules 2020; 25:molecules25245836. [PMID: 33322001 PMCID: PMC7764251 DOI: 10.3390/molecules25245836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/03/2022] Open
Abstract
In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4′-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3′-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.
Collapse
Affiliation(s)
- Alexander A. Larin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Dmitry M. Bystrov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Leonid L. Fershtat
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Alexey A. Konnov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Nina N. Makhova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 119991 Moscow, Russia; (A.A.L.); (D.M.B.); (L.L.F.); (A.A.K.); (N.N.M.)
| | - Konstantin A. Monogarov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
| | - Dmitry B. Meerov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
| | - Igor N. Melnikov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
| | - Alla N. Pivkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
| | - Vitaly G. Kiselev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
- Novosibirsk State University, 1 Pirogova Str., 630090 Novosibirsk, Russia
- Institute of Chemical Kinetics and Combustion SB RAS, 3 Institutskaya Str., 630090 Novosibirsk, Russia
| | - Nikita V. Muravyev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Str., 119991 Moscow, Russia; (K.A.M.); (D.B.M.); (I.N.M.); (A.N.P.); (V.G.K.)
- Correspondence: ; Tel.: +7-499-137-8203
| |
Collapse
|
235
|
Semidalas E, Martin JML. Canonical and DLPNO-Based Composite Wavefunction Methods Parametrized against Large and Chemically Diverse Training Sets. 2: Correlation-Consistent Basis Sets, Core-Valence Correlation, and F12 Alternatives. J Chem Theory Comput 2020; 16:7507-7524. [PMID: 33200931 PMCID: PMC7735707 DOI: 10.1021/acs.jctc.0c01106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A hierarchy
of wavefunction composite methods (cWFT), based on
G4-type cWFT methods available for elements H through Rn, was recently
reported by the present authors [2020, 16, 4238]. We extend this hierarchy
by considering the inner-shell correlation energy in the second-order
Møller–Plesset correction and replacing the Weigend–Ahlrichs
def2-mZVPP(D) basis sets used with complete basis
set extrapolation from augmented correlation-consistent core–valence
triple-ζ, aug-cc-pwCVTZ(-PP), and quadruple-ζ, aug-cc-pwCVQZ(-PP),
basis sets, thus creating cc-G4-type methods. For the large and chemically
diverse GMTKN55 benchmark suite, they represent a substantial further
improvement and bring WTMAD2 (weighted mean absolute deviation) down
below 1 kcal/mol. Intriguingly, the lion’s share of the improvement
comes from better capture of valence correlation; the inclusion of
core–valence correlation is almost an order of magnitude less
important. These robust correlation-consistent cWFT methods approach
the CCSD(T) complete basis limit with just one or a few fitted parameters.
Particularly, the DLPNO variants such as cc-G4-T-DLPNO are applicable
to fairly large molecules at a modest computational cost, as is (for
a reduced range of elements) a different variant using MP2-F12/cc-pVTZ-F12
for the MP2 component.
Collapse
Affiliation(s)
- Emmanouil Semidalas
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Jan M L Martin
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
236
|
Vaddypally S, Kiselev VG, Byrne AN, Goldsmith CF, Zdilla MJ. Transition-metal-mediated reduction and reversible double-cyclization of cyanuric triazide to an asymmetric bitetrazolate involving cleavage of the six-membered aromatic ring. Chem Sci 2020; 12:2268-2275. [PMID: 34163993 PMCID: PMC8179262 DOI: 10.1039/d0sc04949b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyanuric triazide reacts with several transition metal precursors, extruding one equivalent of N2 and reducing the putative diazidotriazeneylnitrene species by two electrons, which rearranges to N-(1'H-[1,5'-bitetrazol]-5-yl)methanediiminate (biTzI2-) dianionic ligand, which ligates the metal and dimerizes, and is isolated from pyridine as [M(biTzI)]2Py6 (M = Mn, Fe, Zn, Cu, Ni). Reagent scope, product analysis, and quantum chemical calculations were combined to elucidate the mechanism of formation as a two-electron reduction preceding ligand rearrangement.
Collapse
Affiliation(s)
| | - Vitaly G Kiselev
- School of Engineering, Brown University 184 Hope St. Providence RI 02912 USA .,Novosibirsk State University 1 Pirogova Str. 630090 Novosibirsk Russia.,Institute of Chemical Kinetics and Combustion SB RAS 3 Institutskaya Str. 630090 Novosibirsk Russia.,Semenov Federal Research Center for Chemical Physics RAS 4 Kosygina Str. 119991 Moscow Russia
| | - Alex N Byrne
- Temple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | | | | |
Collapse
|
237
|
Minenkova I, Osina EL, Cavallo L, Minenkov Y. Gas-Phase Thermochemistry of MX 3 and M 2X 6 (M = Sc, Y; X = F, Cl, Br, I) from a Composite Reaction-Based Approach: Homolytic versus Heterolytic Cleavage. Inorg Chem 2020; 59:17084-17095. [PMID: 33210914 DOI: 10.1021/acs.inorgchem.0c02292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A domain-based local-pair natural-orbital coupled-cluster approach with single, double, and improved linear-scaling perturbative triple correction via an iterative algorithm, DLPNO-CCSD(T1), was applied within the framework of the Feller-Peterson-Dixon approach to derive gas-phase heats of formation of scandium and yttrium trihalides and their dimers via a set of homolytic and heterolytic dissociation reactions. All predicted heats of formation moderately depend on the reaction type with the most and least negative values obtained for homolytic and heterolytic dissociation, respectively. The basis set size dependence, as well as the influence of static correlation effects not covered by the standard (DLPNO-)CCSD(T) approach, suggests that exploitation of the heterolytic dissociation reactions with the formation of M3+ and X- ions leads to the most robust heats of formation. The gas-phase formation enthalpies ΔHf°(0 K)/ΔHf°(298.15 K) and absolute entropies S°(298.15 K) were obtained for the first time for the Sc2F6, Sc2Br6, and Sc2I6 species. For ScBr3, ScI3, Sc2Cl6, and Y2Cl6, we suggest a reexamination of the experimental heats of formation available in the literature. For other compounds, the predicted values were found to be in good agreement with the experimental estimates. Extracted MX3 (M = Sc, Y; X = F, Cl, Br, and I) 0 K atomization enthalpies indicate weaker bonding when moving from fluorine to iodine and from yttrium to scandium. Likewise, the stability of yttrium trihalide dimers degrades when going from fluorine to iodine. Respective scandium trihalide dimers are less stable, with 0 K dimer dissociation energy decreasing in the row fluorine - chlorine - bromine ≈ iodine. Correlation of the (n - 1)s2p6 electrons on bromine and iodine, inclusion of zero-point energy, relativistic effects, and the effective-core-potential correction as well as amelioration of the DLPNO localization inaccuracy are shown to be of similar magnitude, which is critical if accurate heats of formation are a goal.
Collapse
Affiliation(s)
- Irina Minenkova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
| | - Evgeniya L Osina
- Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2 Izhorskaya Street, Moscow 125412, Russia
| | - Luigi Cavallo
- Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yury Minenkov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2 Izhorskaya Street, Moscow 125412, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina Street 4, Moscow 119991, Russia
| |
Collapse
|
238
|
Heterocyclopentanediyls vs Heterocyclopentadienes: A Question of Silyl Group Migration. J Org Chem 2020; 85:14435-14445. [PMID: 32393023 DOI: 10.1021/acs.joc.0c00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of the singlet biradical [P(μ-NHyp)]2 (Hyp = hypersilyl, (Me3Si)3Si) with different isonitriles afforded a series of five-membered N2P2C heterocycles. Depending on the steric bulk of the substituent at the isonitrile, migration of a Hyp group was observed, resulting in two structurally similar but electronically very different isomers. As evidenced by comprehensive spectroscopic and theoretical studies, the heterocyclopentadiene isomer may be regarded as a rather unreactive closed-shell singlet species with one localized N═P and one C═P double bond, whereas the heterocyclopentanediyl isomer represents an open-shell singlet biradical with interesting photochemical properties, such as photoisomerization under irradiation with red light to a [2.1.0]-housane-type species.
Collapse
|
239
|
Torubaev YV, Skabitsky IV. Halogen bonding in crystals of free 1,2-diiodo-ethene (C2H2I2) and its π-complex [CpMn(CO)2](π-C2H2I2). Z KRIST-CRYST MATER 2020. [DOI: 10.1515/zkri-2020-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
1,2-trans-diiodo-ethene (C2H2I2) – is an overlooked halogen bond donor, which demonstrate the distinct similarity of the geometry and directionality of I···I halogen bonds around the iodine atoms in its native and CpMn(CO)2(C2H2I2) π-complex crystals. Distortion of the planar geometry of C2H2I2 upon the π-coordination result the distortion of the native planar layered geometry of C2H2I2, so that [CpMn(CO)2](π-C2H2I2) features more complex I···I XB assisted 3D network. Unusual structural parallels between the native C2H2I2 crystals and solid iodine are discussed.
Collapse
Affiliation(s)
- Yury V. Torubaev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Moscow , Russia
| | - Ivan V. Skabitsky
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
240
|
Beer H, Bresien J, Michalik D, Schulz A, Villinger A. Reversible switching between housane and cyclopentanediyl isomers: an isonitrile-catalysed thermal reverse reaction. Dalton Trans 2020; 49:13986-13992. [PMID: 32869789 DOI: 10.1039/d0dt02688c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The photo-isomerization of an isolable five-membered singlet biradical based on C, N, and P ([TerNP]2CNDmp, 2a) selectively afforded a closed-shell housane-type isomer (3a) by forming a transannular P-P bond. In the dark, the housane-type species re-isomerized to the biradical, resulting in a fully reversible overall process. In the present study, the influence of tBuNC on the thermal reverse reaction was investigated: the isonitrile acted as a catalyst, thus allowing control over the thermal reaction rate. Moreover, tBuNC also reacted with the biradical to form an adduct species ([TerNP]2CNDmp·CNtBu, 4a), which can be regarded as the resting state of the system. The reactive species 2a and 3a could be re-generated in situ by irradiation with red light. The results of this study extend our understanding of this new class of molecular switches.
Collapse
Affiliation(s)
- Henrik Beer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Jonas Bresien
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Dirk Michalik
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. and Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. and Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, 18059 Rostock, Germany and Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| | - Alexander Villinger
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| |
Collapse
|
241
|
Dorofeeva OV. Accurate prediction of norbornadiene cycle enthalpies by DLPNO-CCSD(T 1 )/CBS method. J Comput Chem 2020; 41:2352-2364. [PMID: 32798279 DOI: 10.1002/jcc.26394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 11/06/2022]
Abstract
The DLPNO-CCSD(T1 )/CBS method combined with simple reactions containing small reference species leads to an improvement in the accuracy of theoretically evaluated enthalpies of formation of medium-sized polyalicyclic hydrocarbons when compared with the widely used composite approach. The efficiency of the DLPNO-CCSD(T1 )/CBS method is most vividly demonstrated by comparing with the results of G4 calculations for adamantane. The most important factor in choosing appropriate working reaction is the same number of species on both sides of the equation. Among these reactions, the reactions with small enthalpy change usually provide a better cancellation of errors. The DLPNO-CCSD(T1 )/CBS method was used to calculate the enthalpies of formation of compounds belonging to the norbornadiene cycle (norbornadiene, quadricyclane, norbornene, nortricyclane, and norbornane). The most reliable experimental enthalpies of formation are recommended for these compounds by comparing calculated values with conflicting experimental data.
Collapse
Affiliation(s)
- Olga V Dorofeeva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
242
|
Scott CJC, Di Remigio R, Crawford TD, Thom AJW. Theory and implementation of a novel stochastic approach to coupled cluster. J Chem Phys 2020; 153:144117. [DOI: 10.1063/5.0026513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Charles J. C. Scott
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - T. Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
- Molecular Sciences Software Institute, Blacksburg, Virginia 24060, USA
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
243
|
Tribedi S, Chakraborty A, Maitra R. Formulation of a Dressed Coupled-Cluster Method with Implicit Triple Excitations and Benchmark Application to Hydrogen-Bonded Systems. J Chem Theory Comput 2020; 16:6317-6328. [PMID: 32794747 DOI: 10.1021/acs.jctc.0c00736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we present a coupled-cluster theory based on a double-exponential wave operator ansatz, which is capable of mimicking the effects of connected triple excitations in an iterative manner. The triply excited manifold is spanned via the action of a set of scattering operators on doubly excited determinants, whereas their action annihilates the Hartree-Fock reference determinant. The effect of triple excitations is included at a computational scaling slightly higher than that of conventional coupled-cluster singles and doubles. Furthermore, we demonstrate two approximate schemes, which arise naturally, and argue that both these schemes come equipped with certain renormalization terms capable of handling nonbonding interactions due to robust inclusion of the screened Coulomb interaction. We justify our claims from both a theoretical perspective and a number of numerical applications to prototypical water clusters, in a number of basis functions. Our methods show overall comparable performance to the canonical coupled-cluster theory with singles, doubles, and perturbative triples (CCSD(T)) and allied methods, however, at a lower computational scaling.
Collapse
Affiliation(s)
- Soumi Tribedi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anish Chakraborty
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rahul Maitra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
244
|
Döntgen M, Kopp WA, vom Lehn F, Kröger LC, Pitsch H, Leonhard K, Heufer KA. Updated thermochemistry for renewable transportation fuels: New groups and group values for acetals and ethers, their radicals, and peroxy species. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Malte Döntgen
- Physico‐Chemical Fundamentals of Combustion RWTH Aachen University Aachen Germany
| | - Wassja A. Kopp
- Chair of Technical Thermodynamics RWTH Aachen University Aachen Germany
| | - Florian vom Lehn
- Institute for Combustion Technology RWTH Aachen University Aachen Germany
| | - Leif C. Kröger
- Chair of Technical Thermodynamics RWTH Aachen University Aachen Germany
| | - Heinz Pitsch
- Institute for Combustion Technology RWTH Aachen University Aachen Germany
| | - Kai Leonhard
- Chair of Technical Thermodynamics RWTH Aachen University Aachen Germany
| | - K. Alexander Heufer
- Physico‐Chemical Fundamentals of Combustion RWTH Aachen University Aachen Germany
| |
Collapse
|
245
|
Coburger P, Wolf R, Grützmacher H. Isomerism and Biradical Character of Tetrapnictide Dianions: A Computational Study. Eur J Inorg Chem 2020; 2020:3580-3586. [PMID: 33132751 PMCID: PMC7590082 DOI: 10.1002/ejic.202000422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/17/2022]
Abstract
We present a computational study on tetrapnictide dianions Pn42– (Pn = P, As, Sb, Bi), using density functional theory (DFT), coupled‐cluster [DLPNO‐CCSD(T)] and complete active space self‐consistent field (CASSCF) methods. Environmental effects such as solvation and coordination of counterions are included. The calculations reveal that out of three isomers (square‐planar, butterfly and capped‐triangle), the square planar isomers are generally the most stable. The counterion (Li+ and Mg2+) used in the calculations have a substantial effect on the relative stabilities. The square planar isomers show considerable biradical character. Calculated reactions toward alkenes indicate that this unusual electronic structure has significant implications on the reactivity of the Pn42– dianions.
Collapse
Affiliation(s)
- Peter Coburger
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany.,Laboratory of Inorganic Chemistry ETH Zurich 8093 Zürich Switzerland
| | - Robert Wolf
- Institute of Inorganic Chemistry University of Regensburg 93040 Regensburg Germany
| | | |
Collapse
|
246
|
Mallick S, Roy B, Kumar P. A comparison of DLPNO-CCSD(T) and CCSD(T) method for the determination of the energetics of hydrogen atom transfer reactions. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112934] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
247
|
Altun A, Neese F, Bistoni G. Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations. J Chem Theory Comput 2020; 16:6142-6149. [PMID: 32897712 PMCID: PMC7586325 DOI: 10.1021/acs.jctc.0c00344] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The domain-based
local pair natural orbital (PNO) coupled-cluster
DLPNO-CCSD(T) method allows one to perform single point energy calculations
for systems with hundreds of atoms while retaining essentially the
accuracy of its canonical counterpart, with errors that are typically
smaller than 1 kcal/mol for relative energies. Crucial to the accuracy
and efficiency of the method is a proper definition of the virtual
space in which the coupled-cluster equations are solved, which is
spanned by a highly compact set of pair natural orbitals (PNOs) that
are specific for each electron pair. The dimension of the PNO space
is controlled by the TCutPNO threshold:
only PNOs with an occupation number greater than TCutPNO are included in the correlation space of a given
electron pair, whilst the remaining PNOs are discarded. To keep the
error of the method small, a conservative TCutPNO value is used in standard DLPNO-CCSD(T) calculations. This often
leads to unnecessarily large PNO spaces, which limits the efficiency
of the method. Herein, we introduce a new computational strategy to
approach the complete PNO space limit (for a given basis set) that
consists in extrapolating the results obtained with different TCutPNO values. The method is validated on the
GMTKN55 set using canonical CCSD(T) data as the reference. Our results
demonstrate that a simple two-point extrapolation scheme can be used
to significantly increase the efficiency and accuracy of DLPNO-CCSD(T)
calculations, thus extending the range of applicability of the technique.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
248
|
Kalra K, Gorle S, Cavallo L, Oliva R, Chawla M. Occurrence and stability of lone pair-π and OH-π interactions between water and nucleobases in functional RNAs. Nucleic Acids Res 2020; 48:5825-5838. [PMID: 32392301 PMCID: PMC7293021 DOI: 10.1093/nar/gkaa345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023] Open
Abstract
We identified over 1000 instances of water-nucleobase stacking contacts in a variety of RNA molecules from a non-redundant set of crystal structures with resolution ≤3.0 Å. Such contacts may be of either the lone pair-π (lp-π) or the OH-π type, in nature. The distribution of the distances of the water oxygen from the nucleobase plane peaks at 3.5 Å for A, G and C, and approximately at 3.1-3.2 Å for U. Quantum mechanics (QM) calculations confirm, as expected, that the optimal energy is reached at a shorter distance for the lp-π interaction as compared to the OH-π one (3.0 versus 3.5 Å). The preference of each nucleobase for either type of interaction closely correlates with its electrostatic potential map. Furthermore, QM calculations show that for all the nucleobases a favorable interaction, of either the lp-π or the OH-π type, can be established at virtually any position of the water molecule above the nucleobase skeleton, which is consistent with the uniform projection of the OW atoms over the nucleobases ring we observed in the experimental occurrences. Finally, molecular dynamics simulations of a model system for the characterization of water-nucleobase stacking contacts confirm the stability of these interactions also under dynamic conditions.
Collapse
Affiliation(s)
- Kanav Kalra
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
249
|
Gao Y, Zhao Y, Guan Q, Wang F. Ab initio kinetics predictions for the role of pre-reaction complexes in hydrogen abstraction from 2-butanone by OH radicals. RSC Adv 2020; 10:33205-33212. [PMID: 35547632 PMCID: PMC9088179 DOI: 10.1039/d0ra05332e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
The existence of pre- and post-reaction complexes has been proposed to influence hydrogen abstraction reaction kinetics, but the significance still remains controversial. A theoretical study is presented to discuss the effects of complexes on hydrogen abstraction from 2-butanone by OH radicals based on the detailed PESs at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2x-D3/may-cc-pVTZ level with five pre-reaction complexes at the entrance of the channels and four post-reaction complexes at the exit. The hydrogen bond interactions, steric effects, and contributions to the bonding orbital of the OH radical species and 2-butanone species in the complex structures were visualized and investigated by wavefunction analyses. Three kinds of mechanisms-the general bimolecular reaction, the reaction with the complexes considered, and the well-skipping reaction-were compared based on high-pressure-limit rate constants, predicted branching ratios, and fractional populations of reactants and products in the temperature range of 250-2000 K. The existence of complexes was proved to be crucial in the kinetics and mechanisms of the hydrogen abstraction from 2-butanone molecules by OH radicals.
Collapse
Affiliation(s)
- Yi Gao
- Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University Beijing 100084 China
| | - Yang Zhao
- Soft Materials, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 P. R. China
| | - Fuke Wang
- Soft Materials, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| |
Collapse
|
250
|
Cormanich RA, Zeoly LA, Santos H, Camilo NS, Bühl M, Coelho F. Origin of the Diastereoselectivity of the Heterogeneous Hydrogenation of a Substituted Indolizine. J Org Chem 2020; 85:11541-11548. [PMID: 32786618 PMCID: PMC7498159 DOI: 10.1021/acs.joc.0c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this work, the stereoselective
heterogeneous hydrogenation of
a tetrasubstituted indolizine was studied. Partial hydrogenation products
were obtained in three steps from a substituted pyridine-2-carboxaldehyde
prepared from commercial pyridoxine hydrochloride. The hydrogenation
of the indolizine ring was shown to be diastereoselective, forming trans-6b and cis-9. Theoretical calculations (ab initio and DFT) were
used to rationalize the unusual trans stereoselectivity
for 6b, and a keto–enol tautomerism under kinetic
control has been proposed as the source of diastereoselectivity.
Collapse
Affiliation(s)
- Rodrigo A Cormanich
- University of Campinas, Institute of Chemistry, Department of Organic Chemistry, PO Box 6154, 13083-970, Campinas, São Paulo, Brazil
| | - Lucas A Zeoly
- University of Campinas, Institute of Chemistry, Department of Organic Chemistry, PO Box 6154, 13083-970, Campinas, São Paulo, Brazil
| | - Hugo Santos
- University of Campinas, Institute of Chemistry, Department of Organic Chemistry, PO Box 6154, 13083-970, Campinas, São Paulo, Brazil
| | - Nilton S Camilo
- University of Campinas, Institute of Chemistry, Department of Organic Chemistry, PO Box 6154, 13083-970, Campinas, São Paulo, Brazil
| | - Michael Bühl
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY169ST, U.K
| | - Fernando Coelho
- University of Campinas, Institute of Chemistry, Department of Organic Chemistry, PO Box 6154, 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|