201
|
Abstract
Organic particles have attracted extensive attention due to their broad scientific and industrial applications. Solvents play important roles in producing organic particles with fine-tuned sizes, shapes, and surface morphologies, thus the advancement of microfluidic devices with a thorough understanding of solvent miscibility offers additional opportunities to fabricate organic particles in large quantities. In this issue of ACS Nano, Chen et al. report that solvents could play a seemingly magical role in switching both reaction directions and particle morphologies from the same starting materials. Through monitoring the particle formulation kinetics, both social self-sorting and narcissistic self-sorting mechanisms have been proposed, which offer powerful methods to yield organic particles with desirable shapes and compositions.
Collapse
Affiliation(s)
- Bing Guo
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| |
Collapse
|
202
|
Two-Dimensional and Three-Dimensional Single Particle Tracking of Upconverting Nanoparticles in Living Cells. Int J Mol Sci 2019; 20:ijms20061424. [PMID: 30901823 PMCID: PMC6471022 DOI: 10.3390/ijms20061424] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) are inorganic nanomaterials in which the lanthanide cations embedded in the host matrix can convert incident near-infrared light to visible or ultraviolet light. These particles are often used for long-term and real-time imaging because they are extremely stable even when subjected to continuous irradiation for a long time. It is now possible to image their movement at the single particle level with a scale of a few nanometers and track their trajectories as a function of time with a scale of a few microseconds. Such UCNP-based single-particle tracking (SPT) technology provides information about the intracellular structures and dynamics in living cells. Thus far, most imaging techniques have been built on fluorescence microscopic techniques (epifluorescence, total internal reflection, etc.). However, two-dimensional (2D) images obtained using these techniques are limited in only being able to visualize those on the focal planes of the objective lens. On the contrary, if three-dimensional (3D) structures and dynamics are known, deeper insights into the biology of the thick cells and tissues can be obtained. In this review, we introduce the status of the fluorescence imaging techniques, discuss the mathematical description of SPT, and outline the past few studies using UCNPs as imaging probes or biologically functionalized carriers.
Collapse
|
203
|
Cao J, Gao X, Cheng M, Niu X, Li X, Zhang Y, Liu Y, Wang W, Yuan Z. Reversible Shielding between Dual Ligands for Enhanced Tumor Accumulation of ZnPc-Loaded Micelles. NANO LETTERS 2019; 19:1665-1674. [PMID: 30801190 DOI: 10.1021/acs.nanolett.8b04645] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein, we report a ligand-reversible-shielding strategy based on the mutual shielding of dual ligands tethered to the surface of nanoparticles. To exemplify this concept, phenylboronic acid-functionalized poly(ethylene glycol)- b-poly(ε-caprolactone) (PBA-PEG-PCL) and galactose-functionalized diblock polymer (Gal-PEG-PCL) were mixed to form dual-ligand micelles (PBA/Gal). PBA and Gal residues could form a complex at pH 7.4 and mutually shield their targeting function. At pH 6.8, the binding affinity between PBA and Gal weakened, and PBA preferred to bind with the sialic acid residues on the tumor cell surface rather than to Gal on the micellar surface; furthermore, the unbound Gal recovered its targeting ability toward the asialoglycoprotein receptor. When the pH decreased from 7.4 to 6.8, enzyme-linked immunosorbent assays exhibited that the percentage of exposed Gal on the micellar surface increased 1.9-fold, and flow cytometry showed that HepG2 cellular uptake increased 4.3-fold. More importantly, this process was reversible, confirming the reversible shielding and deshielding of dual ligands. With the encapsulation of a photosensitizer, zinc phthalocyanine (ZnPc), the reversible-shielding micelles showed a 48% improvement in the half-life ( t1/2) in blood circulation, a 54% decrease in liver capture, a 40% increase in tumor accumulation, and a 10.3% improvement in the tumor inhibition rate compared to the Gal-coated irreversible micelles. This dual-ligand mutual-shielding strategy provides a new perspective on reversible tumor targeting.
Collapse
Affiliation(s)
- Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xuefeng Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Mingbo Cheng
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Xiaomin Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yapei Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
204
|
Wang R, Dong K, Xu G, Shi B, Zhu T, Shi P, Guo Z, Zhu WH, Zhao C. Activatable near-infrared emission-guided on-demand administration of photodynamic anticancer therapy with a theranostic nanoprobe. Chem Sci 2019; 10:2785-2790. [PMID: 30996998 PMCID: PMC6419941 DOI: 10.1039/c8sc04854a] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
Development of theranostic probes that can be used to identify tumors and direct the on-demand drug administration to cancers is ongoing but remains challenging. Herein, we report a theranostic platform composed of a H2S-activated imaging probe and a light-sensitive drug. The designed probe affords advantages of H2S-activated NIR emission light-up and efficient 1O2 generation, enabling the selective visualization of H2S-rich cancers and the subsequent imaging-directed on-demand light exposure to the detected cancers while leaving normal tissues untouched. Such controllable administration of photodynamic anticancer therapy maximizes the therapeutic efficiency and minimizes side effects. This work should facilitate significant advances toward precise diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rongchen Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Kaikai Dong
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China .
| | - Ge Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Ben Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China .
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| |
Collapse
|
205
|
Ou JY, Shih YC, Wang BY, Chu CC. Photodegradable coumarin-derived amphiphilic dendrons for DNA binding: Self-assembly and phototriggered disassembly in water and air-water interface. Colloids Surf B Biointerfaces 2019; 175:428-435. [PMID: 30562717 DOI: 10.1016/j.colsurfb.2018.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/28/2018] [Accepted: 12/08/2018] [Indexed: 11/24/2022]
Abstract
In this article, we demonstrate the self-assembly and photoresponive behavior of a novel coumarin-based amphiphilic dendron in both aqueous solution and air-water interface. The dendritic structure, namely C-IG1, was composed of a lipophilic cholesterol and hydrophilic poly(amido amine) (PAMAM) dendron, and the amphiphilic counterpart is interconnected by a photolabile coumarin carbonate ester, enabling the photoinduced degradation of the amphiphiles in protic solvents via SN1-like mechanism. A Nile red solubilization fluorescence assay suggests a low critical aggregation concentration for the micelle formation of C-IG1 in aqueous solutions (3.9 × 10-5 M); the Langmuir analysis further indicates that C-IG1 possesses significant compressibility in air-water interface, eventually forming homogeneous monolayers with a final molecular area (A0) of 36 Å2. Notably, the micelles and Langmuir monolayer are quite stable until photo-triggered dissociation based on the photocleavage of C-IG1 amphiphile activated by 365-nm incident light. Moreover, the transition in interfacial morphology of the Langmuir monolayer during the assembly and photodegradation processes also can be visually analyzed by incorporating Nile red probes with in situ monitoring through fluorescence microscopy. The thin film deposited on a glass substrate by the Langmuir-Blodgett technique also shows a photoresponsive behavior based on the change in the contact angles of a water droplet on the surface upon light stimulation. The binding affinity of C-IG1 and cyclic DNA determined by the fluorescence quenching analysis of the coumarin reporter suggests a ground-state macromolecular complexation process occurring through polyvalent interactions between the pseudodendrimers and biomacromolecules. The ethidium bromide displacement assay further indicates thus dendriplex formation at low nitrogen-to-phosphorous value (N/P < 1) and confirms that the decomplexation accompanied by DNA release can be achieved through an active phototriggered route under spatiotemporal control.
Collapse
Affiliation(s)
- Jia-Yu Ou
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City, Taiwan
| | - Yu-Chan Shih
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City, Taiwan
| | - Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua County, Taiwan; School of Medicine, Chung Shan Medical University, Taichung City, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung City, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung City, Taiwan; Center of General Education, Ming Dao University, Changhua County, Taiwan.
| | - Chih-Chien Chu
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
206
|
Odda AH, Xu Y, Lin J, Wang G, Ullah N, Zeb A, Liang K, Wen LP, Xu AW. Plasmonic MoO 3-x nanoparticles incorporated in Prussian blue frameworks exhibit highly efficient dual photothermal/photodynamic therapy. J Mater Chem B 2019; 7:2032-2042. [PMID: 32254807 DOI: 10.1039/c8tb03148g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of near infrared (NIR) light-responsive nanomaterials for high performance multimodal phototherapy within a single nanoplatform is still challenging in technology and biomedicine. Herein, a new phototherapeutic nanoagent based on FDA-approved Prussian blue (PB) functionalized oxygen-deficient molybdenum oxide nanoparticles (MoO3-x NPs) is strategically designed and synthesized by a facile one-pot size/morphology-controlled process. The as-prepared PB-MoO3-x nanocomposites (NCs) with a uniform particle size of ∼90 nm and high water dispersibility exhibited strong optical absorption in the first biological window, which is induced by plasmon resonance in an oxygen-deficient MoO3-x semiconductor. More importantly, PB-MoO3-x NCs not only exhibited a high photothermal conversion efficiency of ∼63.7% and photostability but also offered a further approach for the generation of reactive oxygen species (ROS) upon singular NIR light irradiation which significantly improved the therapeutic efficiency of the PB agent. Furthermore, PB-MoO3-x NCs showed a negligible cytotoxic effect in the dark, but an excellent therapeutic effect toward two triple-negative breast cancer (TNBC) cell lines at a low concentration (20 μg mL-1) of NCs and a moderate NIR laser power density. Additionally, efficient tumor ablation and metastasis inhibition in a 4T1 TNBC mouse tumor model can also be realized by synergistic photothermal/photodynamic therapy (PTT/PDT) under a single continuous NIR wave laser. Taken together, this study paved the way for the use of a single nanosystem for multifunctional therapy.
Collapse
Affiliation(s)
- Atheer Hameid Odda
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital, University of Science and Technology of China, Hefei 230026, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Tang Y, Lu X, Yin C, Zhao H, Hu W, Hu X, Li Y, Yang Z, Lu F, Fan Q, Huang W. Chemiluminescence-initiated and in situ-enhanced photoisomerization for tissue-depth-independent photo-controlled drug release. Chem Sci 2019; 10:1401-1409. [PMID: 30809357 PMCID: PMC6354828 DOI: 10.1039/c8sc04012e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023] Open
Abstract
Tissue-penetration-depth-independent self-luminescence is highly expected to perform photoisomerization-related bioapplications in vivo to overcome the limitation of shallow tissue-penetration from external photoexcitation. However, it remains extremely challenging because of lacking a target-specific high-intensity self-luminescence to precisely and effectively drive the photoisomerization. Here, we first report a target-specific tissue-depth-independent photoisomerization in vivo by developing a target-specific initiated and in situ-enhanced chemiluminescence (one of self-luminescence) strategy that overcomes the limitation of lacking target-specific high-intensity self-luminescence. Considering that photoisomerization shows boundless glamour in drug-controlled release for disease-specific chemotherapy, we demonstrated applicability of our strategy to apply it in tumor-specific self-luminescence-controlled drug chemotherapy. Specifically, a chemiluminescence substrate and chemiluminescence fluorophore (antitumor drug, CPT) were co-encapsulated in host-guest carriers composed of cyclodextrin and the photoisomerization molecule azobenzene. Tumor-specific H2O2-induced chemiluminescence preliminarily isomerizes azobenzene, triggering the partial dissociation of host-guest carriers and CPT release. Particularly, the initially released CPT again functions as a chemiluminescence enhancer to achieve in situ enhanced chemiluminescence, assuring target-specific enhanced isomerization and CPT release. With high tumor-inhibition-rate (73%) and no obvious therapy-side-effect in vivo indicates the good efficiency and target-specificity of our chemiluminescence-driven photoisomerization. Although we only demonstrated one example of a photoisomerization-related bioapplication, namely photoisomerization-controlled drug chemotherapy, our work provides guidelines to design various target-specific tissue-depth-independent photoisomerization for bioapplications.
Collapse
Affiliation(s)
- Yufu Tang
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (Nanjing Tech) , Nanjing 211816 , China
| | - Chao Yin
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Hui Zhao
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Wenbo Hu
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Xiaoming Hu
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Yuanyuan Li
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Zhen Yang
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays , Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications (NUPT) , Nanjing 210023 , China .
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (Nanjing Tech) , Nanjing 211816 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , China
| |
Collapse
|
208
|
Wawrzyńczyk D, Bazylińska U, Lamch Ł, Kulbacka J, Szewczyk A, Bednarkiewicz A, Wilk KA, Samoć M. Förster Resonance Energy Transfer-Activated Processes in Smart Nanotheranostics Fabricated in a Sustainable Manner. CHEMSUSCHEM 2019; 12:706-719. [PMID: 30134014 DOI: 10.1002/cssc.201801441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Multilayer nanocarriers loaded with optically activated payloads are gaining increasing attention due to their anticipated crucial role for providing new mechanisms of energy transfers in the health-oriented applications, as well as for energy storage and environmental protection. The combination of careful selection of optical components for efficient Förster resonance energy transfer, and surface engineering of the nanocarriers, allowed us to synthesize and characterize novel theranostic nanosystems for diagnosis and therapy of deep-seated tumors. The cargo, constrained within the oil core of the nanocapsules, composed of NaYF4 :Tm+3 , Yb+3 up-converting nanoparticles together with a second-generation porphyrin-based photosensitizing agent-Verteporfin, assured requisite diagnostic and therapeutic functions under near-IR laser excitation. The outer polyaminoacid shell of the nanocapsules was functionalized with a ligand-poly(l-glutamic acid) functionalized by PEG-ylated folic acid-to ensure both a "stealth" effect and active targeting towards human breast cancer cells. The preparation criteria of all nanocarrier building blocks meet the requirements for sustainable and green chemistry practices. The multifunctionality of the proposed nanocarriers is a consequence of both the surface-functionalized organic exterior part, which was accessible for selective accumulation in cancer cells, and the hydrophobic optically active interior, which shows phototoxicity upon irradiation within the first biological window.
Collapse
Affiliation(s)
- Dominika Wawrzyńczyk
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Urszula Bazylińska
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556, Wrocław, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556, Wrocław, Poland
| | | | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
209
|
Brega V, Scaletti F, Zhang X, Wang LS, Li P, Xu Q, Rotello VM, Thomas SW. Polymer Amphiphiles for Photoregulated Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2814-2820. [PMID: 30582802 PMCID: PMC6623983 DOI: 10.1021/acsami.8b18099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report the synthesis of amphiphilic polymers featuring lipophilic stearyl chains and hydrophilic poly(ethylene glycol) polymers that are connected through singlet oxygen-cleavable alkoxyanthracene linkers. These amphiphilic polymers assembled in water to form micelles with diameters of ∼20 nm. Reaction of the alkoxyanthracene linkers with light and O2 cleaved the ether C-O bonds, resulting in formation of the corresponding 9,10-anthraquinone derivatives and concomitant disruption of the micelles. These micelles were loaded with the chemotherapeutic agent doxorubicin, which was efficiently released upon photo-oxidation. The drug-loaded reactive micelles were effective at killing cancer cells in vitro upon irradiation at 365 nm, functioning through both doxorubicin release and photodynamic mechanisms.
Collapse
Affiliation(s)
- Valentina Brega
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford MA 02155, United States
| | - Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst MA 01003, United States
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst MA 01003, United States
| | - Li-Sheng Wang
- Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst MA 01003, United States
| | - Prudence Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford MA 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford MA 02155, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 Nt. Pleasant Street, Amherst MA 01003, United States
| | - Samuel W. Thomas
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford MA 02155, United States
- Corresponding Author: (S.W.T.)
| |
Collapse
|
210
|
Peng X, Zhu H, Chen H, Feng X, Liu R, Huang Z, Shen Q, Ma Y, Wang L. Eco-friendly porous iron(iii) oxide micromotors for efficient wastewater cleaning. NEW J CHEM 2019. [DOI: 10.1039/c9nj02592h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eco-friendly porous iron(iii) oxide micromotors obtained by calcining octahedral PB microcrystals are used for efficient adsorption of organic pollutants in water.
Collapse
Affiliation(s)
- Xia Peng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Hongli Zhu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Huijun Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Xiaomiao Feng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Ruiqing Liu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Zhendong Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Qingming Shen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Yanwen Ma
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
211
|
Xu C, Li H, Zhang K, Binzel DW, Yin H, Chiu W, Guo P. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. NANO RESEARCH 2019; 12:41-48. [PMID: 31258852 PMCID: PMC6599617 DOI: 10.1007/s12274-018-2174-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Stimuli-responsive release of drugs from a nanocarrier in spatial-, temporal-, and dosage-controlled fashions is of great interest in the pharmaceutical industry. Paclitaxel is one of the most effective and popular chemotherapeutic drugs against a number of cancers such as metastatic or nonmetastatic breast cancer, non-small cell lung cancer, refractory ovarian cancer, AIDS-related Kaposi's sarcoma, and head and neck cancers. Here, by taking the advantage of RNA nanotechnology in biomedical and material science, we developed a three-dimensional pyramid-shaped RNA nanocage for a photocontrolled release of cargo, using paclitaxel as a model drug. The light-triggered release of paclitaxel or fluorophore Cy5 was achieved by incorporation of photocleavable spacers into the RNA nanoparticles. Upon irradiation with ultraviolet light, cargos were rapidly released (within 5 min). In vitro treatment of breast cancer cells with the RNA nanoparticles harboring photocleavable paclitaxel showed higher cytotoxicity as compared to RNA nanoparticles without the photocleavable spacer. The methodology provides proof of concept for the application of the light-triggered controlled release of drugs from RNA nanocages.
Collapse
Affiliation(s)
- Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kaiming Zhang
- Departments of Bioengineering, Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wah Chiu
- Departments of Bioengineering, Microbiology and Immunology, and James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
212
|
Du C, Ding Y, Qian J, Zhang R, Dong CM. Achieving traceless ablation of solid tumors without recurrence by mild photothermal-chemotherapy of triple stimuli-responsive polymer–drug conjugate nanoparticles. J Mater Chem B 2019; 7:415-432. [DOI: 10.1039/c8tb02432d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We put forward an innovative strategy to leverage hyperthermia and a high drug-loading capacity for mild PT-CT, which achieved traceless ablation of solid MCF-7 tumors without recurrence within 50 days.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Ding
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Rong Zhang
- Joint Research Center for Precision Medicine
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus
- Shanghai Fengxian Central Hospital
- Shanghai 201400
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
213
|
Pei P, Sun C, Tao W, Li J, Yang X, Wang J. ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials 2019; 188:74-82. [DOI: 10.1016/j.biomaterials.2018.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
214
|
M SM, Veeranarayanan S, Maekawa T, D SK. External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv Drug Deliv Rev 2019; 138:18-40. [PMID: 30321621 DOI: 10.1016/j.addr.2018.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023]
Abstract
Cancer is a highly intelligent system of cells, that works together with the body to thrive and subsequently overwhelm the host in order for its survival. Therefore, treatment regimens should be equally competent to outsmart these cells. Unfortunately, it is not the case with current therapeutic practices, the reason why it is still one of the most deadly adversaries and an imposing challenge to healthcare practitioners and researchers alike. With rapid nanotechnological interventions in the medical arena, the amalgamation of diagnostic and therapeutic functionalities into a single platform, theranostics provides a never before experienced hope of enhancing diagnostic accuracy and therapeutic efficiency. Additionally, the ability of these nanotheranostic agents to perform their actions on-demand, i.e. can be controlled by external stimulus such as light, magnetic field, sound waves and radiation has cemented their position as next generation anti-cancer candidates. Numerous reports exist of such stimuli-responsive theranostic nanomaterials against cancer, but few have broken through to clinical trials, let alone clinical practice. This review sheds light on the pros and cons of a few such theranostic nanomaterials, especially inorganic nanomaterials which do not require any additional chemical moieties to initiate the stimulus. The review will primarily focus on preclinical and clinical trial approved theranostic agents alone, describing their success or failure in the respective stages.
Collapse
Affiliation(s)
- Sheikh Mohamed M
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan
| | | | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan.
| | - Sakthi Kumar D
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan.
| |
Collapse
|
215
|
Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond) 2019; 14:93-126. [PMID: 30451076 PMCID: PMC6391637 DOI: 10.2217/nnm-2018-0120] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
There has been a revolution in nanotechnology and nanomedicine. Since 1980, there has been a remarkable increase in approved nano-based pharmaceutical products. These novel nano-based systems can either be therapeutic agents themselves, or else act as vehicles to carry different active pharmaceutical agents into specific parts of the body. Currently marketed nanostructures include nanocrystals, liposomes and lipid nanoparticles, PEGylated polymeric nanodrugs, other polymers, protein-based nanoparticles and metal-based nanoparticles. A range of issues must be addressed in the development of these nanostructures. Ethics, market size, possibility of market failure, costs and commercial development, are some topics which are on the table to be discussed. After passing all the ethical and biological assessments, and satisfying the investors as to future profitability, only a handful of these nanoformulations, successfully obtained marketing approval. We survey the range of nanomedicines that have received regulatory approval and are marketed. We discuss ethics, costs, commercial development and possible market failure. We estimate the global nanomedicine market size and future growth. Our goal is to summarize the different approved nanoformulations on the market, and briefly cover the challenges and future outlook.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Amir Ghasemi
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
- Advances Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14496-4535, Iran
| | - Omid Gohari
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran 11365-9466, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Science, Shiraz 71348-14336, Iran
| | - Mahdi Karimi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard – MIT Division of Health Sciences & Technology, Cambridge, MA 02139, USA
| |
Collapse
|
216
|
Li J, Pu K. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chem Soc Rev 2019; 48:38-71. [DOI: 10.1039/c8cs00001h] [Citation(s) in RCA: 709] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in developing organic semiconducting materials (OSMs) for deep-tissue optical imaging, cancer phototherapy and biological photoactivation is summarized.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| |
Collapse
|
217
|
Kabanov V, Ghosh S, Lovell JF, Heyne B. Singlet oxygen partition between the outer-, inner- and membrane-phases of photo/chemotherapeutic liposomes. Phys Chem Chem Phys 2019; 21:25054-25064. [DOI: 10.1039/c9cp05159g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, we developed a strategy to quantify the fraction of singlet oxygen lifetime spent in the three distinct local liposomal environments through the combination of direct and indirect singlet oxygen detection approaches.
Collapse
Affiliation(s)
| | - Sanjana Ghosh
- Department of Biomedical Engineering
- University at Buffalo
- Buffalo
- USA
| | | | - Belinda Heyne
- Department of Chemistry
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
218
|
Zhang J, Qiao Z, Liu HY, Song J, Yin J. Positively charged helical chain-modified stimuli-responsive nanoassembly capable of targeted drug delivery and photoacoustic imaging-guided chemo-photothermal synergistic therapy. Biomater Sci 2019; 7:2050-2060. [DOI: 10.1039/c9bm00055k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor targeted size-switchable CPT/IR780@H30-PCL-PPI(L−)/PEI(–COOH/FA) nanoassembly with a “pomegranate” construction was designed, which could efficiently expand the penetration depth and accelerate the cell internalization.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Zhu Qiao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Huan-Ying Liu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Jun Yin
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| |
Collapse
|
219
|
Wang L, Cai Y, An Z, Gu W, Chen P, Cai Q. ZnO-functionalized mesoporous inner-empty nanotheranostic platform: upconversion imaging guided chemotherapy with pH-triggered drug delivery. NANOTECHNOLOGY 2018; 29:505101. [PMID: 30207290 DOI: 10.1088/1361-6528/aae0b6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here we report a novel drug delivery system using mesoporous inner-empty upconversion microspheres carrying drugs with ZnO quantum dots (UCMPS@ZnO) acting as a 'door-keeper' for pH-triggered drug release. Compared to other upconversion drug delivery systems, it is smarter, simpler, more efficient and more biocompatible. In particular, the UCMPS@ZnO microspheres show low cytotoxicity, are simple to produce and have a high drug loading rate (15%). Promisingly, a mice treatment experiment demonstrated that the multifunctional nanoparticles have efficient inhibition of tumor growth after a 14-day treatment. This makes UCMPS@DOX-ZnO microspheres a promising theranostic candidate in cancer treatment and clinical trials.
Collapse
Affiliation(s)
- Lijia Wang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
220
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
221
|
Wang X, Liu X, Wang L, Tang CY, Law WC, Zhang G, Liao Y, Liu C, Liu Z. Synthesis of Yolk–Shell Polymeric Nanocapsules Encapsulated with Monodispersed Upconversion Nanoparticle for Dual-Responsive Controlled Drug Release. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01770] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaotao Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Xiaoping Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Li Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Chak-Yin Tang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Gaowen Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Yonggui Liao
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chuang Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Zuifang Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| |
Collapse
|
222
|
Sinha S, Saha ND, Sasmal R, Joshi D, Chandrasekhar S, Bosco MS, Agasti SS. Reversible encapsulations and stimuli-responsive biological delivery from a dynamically assembled cucurbit[7]uril host and nanoparticle guest scaffold. J Mater Chem B 2018; 6:7329-7334. [PMID: 32226626 PMCID: PMC7100906 DOI: 10.1039/c8tb01596a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The positive outcome of any therapeutic molecule requires control over its delivery rate. When delivered without control, administration of large doses is required to stimulate a therapeutic effect, frequently leading to increased toxicity or undesirable side effects. Recent advances introduced "smart" materials that actively release drugs in response to environmental stimuli. Although a variety of endogenous and exogenous triggers are reported, they are either difficult to control or lack tissue penetration depth. We report here a dynamic drug delivery scaffold based on a cucurbit[7]uril (CB[7]) host and benzylammonium functionalized gold nanoparticle (AuNP) guest that utilizes a bioorthogonal small molecule to achieve therapeutic control. In addition to their ability to reach deep tissue, small molecule activation is benefitted by their external controllability. Through cell culture studies we demonstrate that the host-guest supramolecular scaffold provides a nontoxic platform that effectively encapsulates a variety of therapeutic molecules and controls the payload release upon exposure to a high-affinity competitive guest molecule. This study presents a new strategy for controlling drug release rate through the use of competitive interactions of orthogonally presented guest molecules with immediate advantages in dosage control.
Collapse
Affiliation(s)
- Santu Sinha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Nilanjana Das Saha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Divyesh Joshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Soumya Chandrasekhar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Monica Swetha Bosco
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sarit S. Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
223
|
Kokan Z, Chmielewski MJ. A Photoswitchable Heteroditopic Ion-Pair Receptor. J Am Chem Soc 2018; 140:16010-16014. [DOI: 10.1021/jacs.8b08689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zoran Kokan
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
- Division of Materials Chemistry, Rud̵er Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Michał J. Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| |
Collapse
|
224
|
Togari Y, Hirota S, Kitagawa H, Tsukamoto Y, Kobayashi K. Hydrogen-bonded six-component assembly for capsule formation based on tetra(4-pyridyl)cavitand and isophthalic acid linker and its application to photoresponsive capsule. Org Biomol Chem 2018; 16:7626-7635. [PMID: 30283949 DOI: 10.1039/c8ob02115e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two molecules of tetra(4-pyridyl)cavitand 1 and four molecules of isophthalic acid linker 2a with a triethylene glycol monomethyl ether (TEG) group self-assembled into a six-component capsule 12·2a4 through eight pyNHO2C hydrogen bonds, which encapsulates one molecule of guest G such as bis(4-acetoxyphenyl)acetylene and hexakis(4-iodophenyl)benzene to form G@(12·2a4). Guest-encapsulation ability and selectivity of 12·2a4 were revealed. trans-5-(p-Substituted-phenylazo)isophthalic acid with two dichotomous branching TEG groups trans-2b serves as a photoresponsive linker to form 12·(trans-2b)4, which moderately reduced guest-encapsulation ability upon photoisomerization (at the photostationary state, 10% guest release upon subunit-trans-2b/subunit-cis-2b = 18 : 82).
Collapse
Affiliation(s)
- Yuka Togari
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Shiori Hirota
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Hitomi Kitagawa
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Yoshimi Tsukamoto
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Kenji Kobayashi
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
225
|
Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018; 261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
This up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles - nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e., self-aggregation, interfacial deposition, interfacial polymerization, or core-shell entrapment along with physical adsorption) or covalent (chemical immobilization or conjugation) processes. These PS loading approaches should provide chemical and physical stability to PS payloads. Their hydrophilic surfaces, capable of appreciable surface interactions with biological systems, can be further modified using functional groups (stealth effect) to achieve prolonged circulation in the body after administration and/or grafted by targeting agents (such as ligands, which bind to specific receptors uniquely expressed on the cell surface) or stimuli (e.g., pH, temperature, and light)-responsive moieties to improve their action and targeting efficiency. These attempts may in principle permit efficacious PDT, combination therapies, molecular diagnosis, and - in the case of nanotheranostics - simultaneous monitoring and treatment. Nanophotosensitizers (nano-PSs) should possess appropriate morphologies, sizes, unimodal distributions and surface processes to be successfully delivered to the place of action after systemic administration and should be accumulated in certain tumors by passive and/or active targeting. Additionally, physically facilitating drug delivery systems emerge as a promising approach to enhancing drug delivery, especially for the non-invasive treatment of deep-seated malignant tissues. Recent advances in nano-PSs are scrutinized, with an emphasis on design principles, via the promising use of colloid chemistry and nanotechnology.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agata Pucek
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Medical University of Wrocław, Borowska 211A, 50-556 Wrocław, Poland
| | - Michał Chudy
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Jastrzębska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Magdalena Bułka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Zbigniew Brzózka
- The Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
226
|
Sun Y, Yao Y, Wang H, Fu W, Chen C, Saha ML, Zhang M, Datta S, Zhou Z, Yu H, Li X, Stang PJ. Self-Assembly of Metallacages into Multidimensional Suprastructures with Tunable Emissions. J Am Chem Soc 2018; 140:12819-12828. [PMID: 30212221 PMCID: PMC6372098 DOI: 10.1021/jacs.8b05809] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cubic metallacages were arranged into multidimensional (one-, two-, and three-dimensional) suprastructures via multistep assembly. Four new shape-controllable, hybrid metallacages with modified substituents and tunable electronic properties were prepared using dicarboxylate ligands with various substituents (sodium sulfonate, nitro, methoxyl, and amine), tetra-(4-pyridylphenyl) ethylene, and cis-(PEt3)2Pt(OTf)2. The as-prepared metallacages were used as building blocks for further assembly. Diverse suprastructures with tunable emissions (λmax from 451 to 519 nm) and various substituents (-SO3Na, -NO2, -OCH3, and -NH2) were prepared depending on the substituents and solvents used.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Yong Yao
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Heng Wang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Wenxin Fu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Manik Lal Saha
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Mingming Zhang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Sougata Datta
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Huaxu Yu
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Peter. J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
227
|
Li X, Liu D, Wang Y, Xu S, Liu H. Water dispersive upconversion nanoparticles for intelligent drug delivery system. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
228
|
Ren S, Yang J, Ma L, Li X, Wu W, Liu C, He J, Miao L. Ternary-Responsive Drug Delivery with Activatable Dual Mode Contrast-Enhanced in Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31947-31958. [PMID: 30179443 DOI: 10.1021/acsami.8b10564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Designing a smart nanotheranostic system has recently attracted tremendous attention and is highly desirable for realizing targeted cancer therapy and early diagnosis. Herein we report the fabrication of smart nanotheranostic system using multiresponsive gatekeeping protocol of mesoporous silica nanoparticles (MSN). Acid, oxidative stress and redox sensitive manganese oxide (MnO x) coated superparamagnetic iron oxide nanoparticle (SPION) were employed as nanolids to regulate the camptothecin drug release from the channels of mesoporous silica and achieve responsive dual-mode MRI contrast. The nonvehicle showed high magnetization and T2 contrast in magnetic resonance imaging (MRI) due to the significant density of SPION onto the surface of MSN, and at the same time the MnO x shell degradation release Mn2+ which enhanced the T1MRI visualization. The efficacy of responsive drug delivery system was investigated on pancreatic cancer cells and tumor-bearing mice, and results reinforced that MnO x-SPION@MSN@CPT nonvehicle is efficacious against cancer cells. We envision that our unique and multiresponsive nanoplatform may find applications in effective delivering of imaging and therapeutic agents to wide range of diseases besides cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medical School , Nanjing 210008 , China
| | | |
Collapse
|
229
|
Pourrahimi AM, Pumera M. Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances. NANOSCALE 2018; 10:16398-16415. [PMID: 30178795 DOI: 10.1039/c8nr05196h] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent progress in autonomous self-propelled multifunctional Janus nano/micromotors, which are able to convert chemical or light energy into mechanical motion, is presented. This technology of moving micro- and nanodevices is at the forefront of materials research and is a promising and growing technology with the possibility of using these motors in both biomedical and environmental applications. The development of novel multifunctional Janus motors together with their motion mechanisms is discussed. Different preparation and synthesis routes are compared. The effects of the size, interfacial structures and porosity on the directional motion and the speed of Janus micromotors are discussed. For light-derived Janus micromotors, newly developed techniques that are able to observe directly the interfaces' charge distribution on a nanometer scale are presented in order to clarify the underlying electrophoresis motion mechanism. This review aims to encourage further research in the field of micromotors using new and facile methodologies for obtaining novel Janus motors with enhanced motion and activity.
Collapse
Affiliation(s)
- Amir Masoud Pourrahimi
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| | | |
Collapse
|
230
|
An N, Lin H, Qu F. Synthesis of a GNRs@mSiO2
-ICG-DOX@Se-Se-FA Nanocomposite for Controlled Chemo-/Photothermal/Photodynamic Therapy. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Na An
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials; Heilongjiang Province; College of Chemistry and Chemical Engineering; Harbin Normal University; 150025 Harbin P. R. China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials; Heilongjiang Province; College of Chemistry and Chemical Engineering; Harbin Normal University; 150025 Harbin P. R. China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials; Heilongjiang Province; College of Chemistry and Chemical Engineering; Harbin Normal University; 150025 Harbin P. R. China
| |
Collapse
|
231
|
Fu X, Hosta-Rigau L, Chandrawati R, Cui J. Multi-Stimuli-Responsive Polymer Particles, Films, and Hydrogels for Drug Delivery. Chem 2018. [DOI: 10.1016/j.chempr.2018.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
232
|
Li J, Zhen X, Lyu Y, Jiang Y, Huang J, Pu K. Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. ACS NANO 2018; 12:8520-8530. [PMID: 30071159 DOI: 10.1021/acsnano.8b04066] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phototheranostic nanoagents are promising for early diagnosis and precision therapy of cancer. However, their imaging ability and therapeutic efficacy are often limited due to the presence of delivery barriers in the tumor microenvironment. Herein, we report the development of organic multimodal phototheranostic nanoagents that can biomimetically target cancer-associated fibroblasts in the tumor microenvironment for enhanced multimodal imaging-guided cancer therapy. Such biomimetic nanocamouflages comprise a near-infrared (NIR) absorbing semiconducting polymer nanoparticle (SPN) coated with the cell membranes of activated fibroblasts. The homologous targeting mechanism allows the activated fibroblast cell membrane coated SPN (AF-SPN) to specifically target cancer-associated fibroblasts, leading to enhanced tumor accumulation relative to the uncoated and cancer cell membrane coated counterparts after systemic administration in living mice. As such, AF-SPN not only provides stronger NIR fluorescence and photoacoustic signals to detect tumors but also generates enhanced cytotoxic heat and singlet oxygen to exert combinational photothermal and photodynamic therapy, ultimately leading to an antitumor efficacy higher than that of the counterparts. This study introduces an organic phototheranostic system that biomimetically targets the component in the tumor microenvironment for enhanced multimodal cancer theranostics.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Xu Zhen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Yan Lyu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| |
Collapse
|
233
|
Zhang Y, Huang P, Wang D, Chen J, Liu W, Hu P, Huang M, Chen X, Chen Z. Near-infrared-triggered antibacterial and antifungal photodynamic therapy based on lanthanide-doped upconversion nanoparticles. NANOSCALE 2018; 10:15485-15495. [PMID: 29881851 DOI: 10.1039/c8nr01967c] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An alarming worldwide increase in microbial resistance to traditional drugs and classical pharmacophores has spurred the search for new antimicrobial compounds. Antimicrobial photodynamic therapy (aPDT) has recently emerged as an effective modality for the selective destruction of bacteria and other pathogenic microorganisms. However, some of the factors, including the aggregation of the hydrophobic photosensitizer (PS) in aqueous media and the inefficient biodistribution of PS limit its expansion to clinical conditions. In addition, the photoactivation under visible-light irradiation limits the therapeutic effect of aPDT for deep-tissue infection. To overcome these limitations, a PS (β-carboxyphthalocyanine zinc, CPZ) delivery system with lanthanide-doped upconversion nanoparticles (UCNPs, LiYF4:Yb/Er) and polyvinylpyrrolidone (PVP) was prepared and its antimicrobial (antibacterial and antifungal) activities were investigated. Such a near-infrared (NIR) triggered UCNPs-CPZ-PVP system significantly reduced the aggregation of CPZ and presented a high anti-infectious activity against multi-drug resistant (MDR) bacteria (methicillin-resistant Staphylococcus aureus by 4.7 log10 and MDR Escherichia coli by 2.1 log10) post aPDT (at 50 μg mL-1 UCNPs-CPZ-PVP with 0.5 W cm-2 980 nm light). In particular, UCNPs-CPZ-PVP showed high antifungal efficacy against Candida albicans. In vivo aPDT experiments were further carried out using an MDR bacterial infection murine model in the presence of 5 mm thick tissue specimens, demonstrating the great potential of UCNPs-CPZ-PVP against infections in deep tissue. Altogether, we reveal an efficient NIR-triggered nano-photosensitizer with promising antifungal and antibacterial efficacy for clinical antimicrobial therapy.
Collapse
Affiliation(s)
- Yuxiang Zhang
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Liu Y, Zhao L, Xing R, Jiao T, Song W, Yan X. Covalent Assembly of Amphiphilic Bola-Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy. Chem Asian J 2018; 13:3526-3532. [DOI: 10.1002/asia.201800825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/05/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 China
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
- Hebei Key Laboratory of Applied Chemistry; School of Environmental and Chemical Engineering; Yanshan University; Qinhuangdao 066004 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology; Yanshan University; Qinhuangdao 066004 China
- Hebei Key Laboratory of Applied Chemistry; School of Environmental and Chemical Engineering; Yanshan University; Qinhuangdao 066004 China
| | - Weixing Song
- Department of Chemistry; Capital Normal University; Beijing 100048 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
235
|
Bao YW, Hua XW, Chen X, Wu FG. Platinum-doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: Multi-organelle-targeted photothermal therapy. Biomaterials 2018; 183:30-42. [PMID: 30149228 DOI: 10.1016/j.biomaterials.2018.08.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
Tumor growth and metastasis are two main causes of cancer-related deaths. Here, we simultaneously investigated the effects of nanoparticles on cancer cell viability and migration using polyethylene glycol (PEG)-modified, platinum-doped (<4 mol %) carbon nanoparticles (denoted as PEG-PtCNPs). The bare PtCNPs were prepared by the facile one-step hydrothermal treatment of p-phenylenediamine and K2PtCl4 in aqueous solution. After PEGylation, the obtained PEG-PtCNPs can serve as an excellent photothermal nanoagent for cell migration inhibition, laser-triggered nuclear delivery, effective tumor accumulation, and imaging-guided tumor ablation with improved therapeutic efficacy and reduced side effects. In the absence of laser exposure, the positively charged PEG-PtCNPs with a hydrodynamic diameter of ∼19 nm easily entered the cells by endocytosis and were located in multiple organelles (including mitochondrion, endoplasmic reticulum, lysosome, and Golgi apparatus), causing a slight increase in the expression level of nuclear protein lamin A/C. Upon mild laser irradiation (0.3 W cm-2), the fragmented cytoskeletal structures and overexpression of lamin A/C were observed, thus inhibiting cancer cell migration. Furthermore, hyperthermia induced by PEG-PtCNPs plus laser irradiation at a higher power density (1.0 W cm-2) could cause irreversible damage to the nuclear membranes and then facilitate the nuclear delivery of the nanoagents without the introduction of nuclear targeting ligands. Taken together, this work develops a facile synthetic approach of platinum-based carbon nanoparticles with excellent photothermal properties, and demonstrates their potential applications for modulating tumor metastasis and realizing multi-organelle-targeted tumor ablation.
Collapse
Affiliation(s)
- Yan-Wen Bao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China
| | - Xian-Wu Hua
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China
| | - Xiaokai Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, Jiangsu, PR China.
| |
Collapse
|
236
|
Zhang L, Wang D, Yang K, Sheng D, Tan B, Wang Z, Ran H, Yi H, Zhong Y, Lin H, Chen Y. Mitochondria-Targeted Artificial "Nano-RBCs" for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800049. [PMID: 30128231 PMCID: PMC6097143 DOI: 10.1002/advs.201800049] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/08/2018] [Indexed: 05/03/2023]
Abstract
Phototherapy has emerged as a novel therapeutic modality for cancer treatment, but its low therapeutic efficacy severely hinders further extensive clinical translation and application. This study reports amplifying the phototherapeutic efficacy by constructing a near-infrared (NIR)-responsive multifunctional nanoplatform for synergistic cancer phototherapy by a single NIR irradiation, which can concurrently achieve mitochondria-targeting phototherapy, synergistic photothermal therapy (PTT)/photodynamic therapy (PDT), self-sufficient oxygen-augmented PDT, and multiple-imaging guidance/monitoring. Perfluorooctyl bromide based nanoliposomes are constructed for oxygen delivery into tumors, performing the functions of red blood cells (RBCs) for oxygen delivery ("Nano-RBC" nanosystem), which can alleviate the tumor hypoxia and enhance the PDT efficacy. The mitochondria-targeting performance for enhanced and synergistic PDT/PTT is demonstrated as assisted by nanoliposomes. In particular, these "Nano-RBCs" can also act as the contrast agents for concurrent computed tomography, photoacoustic, and fluorescence multiple imaging, providing the potential imaging capability for phototherapeutic guidance and monitoring. This provides a novel strategy to achieve high therapeutic efficacy of phototherapy by the rational design of multifunctional nanoplatforms with the unique performances of mitochondria targeting, synergistic PDT/PTT by a single NIR irradiation (808 nm), self-sufficient oxygen-augmented PDT, and multiple-imaging guidance/monitoring.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Ultrasoundthe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Dong Wang
- Department of Ultrasoundthe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Ke Yang
- Pediatric Research InstituteChildren's Hospital of Chongqing Medical UniversityChongqing400014China
| | - Danli Sheng
- Institute of Ultrasound Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Bin Tan
- Pediatric Research InstituteChildren's Hospital of Chongqing Medical UniversityChongqing400014China
| | - Zhigang Wang
- Institute of Ultrasound Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Haitao Ran
- Institute of Ultrasound Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Hengjing Yi
- Institute of Ultrasound Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Yixin Zhong
- Institute of Ultrasound Imagingthe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructuresShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| |
Collapse
|
237
|
Zhao T, Chen L, Li Q, Li X. Near-infrared light triggered drug release from mesoporous silica nanoparticles. J Mater Chem B 2018; 6:7112-7121. [PMID: 32254627 DOI: 10.1039/c8tb01548a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stimuli triggered drug delivery systems enable controlled release of drugs at the optimal space and time, thus achieving optimal therapeutic effects. As one of the most important stimuli used in bioapplications, near-infrared (NIR) light possesses unique advantages such as deep tissue penetration with minimum auto-fluorescence & tissue scattering and high biosafety. Mesoporous silica nanoparticles (MSNs) are one of the most studied nanocarriers; apart from having a high surface area and large pore volume for loading of drugs, they can be easily functionalized with inorganic nanomaterials and stimuli responsive polymers or organic switch molecules, creating possibilities for designing complex stimuli triggered drug delivery systems. Considering the high tissue penetration depth of NIR light and the unique mesoporous structure of MSNs, NIR responsive inorganic nanoparticle functionalized MSNs can be further combined with stimuli responsive materials to form smart "nano-devices" for controlled drug delivery toward tumors, and to date much progress has been made. In this article, recent advances in the design of NIR triggered mesoporous silica drug delivery systems are systematically summarized and some outstanding studies are highlighted. We will also discuss the shortcomings, challenges and opportunities in the field.
Collapse
Affiliation(s)
- Tiancong Zhao
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
238
|
Ju P, Hu J, Li F, Cao Y, Li L, Shi D, Hao Y, Zhang M, He J, Ni P. A biodegradable polyphosphoester-functionalized poly(disulfide) nanocarrier for reduction-triggered intracellular drug delivery. J Mater Chem B 2018; 6:7263-7273. [PMID: 32254638 DOI: 10.1039/c8tb01566j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimuli-responsive and biodegradable polymeric carriers are of great importance for safe delivery and efficient release of chemotherapeutic agents. In this work, given the unique advantages of poly(disulfide)s and biodegradable polyphosphoesters, we designed and constructed a reduction-sensitive amphiphilic triblock copolymer poly(ethyl ethylene phosphate)-b-poly(disulfide)-b-poly(ethyl ethylene phosphate) (PEEP-PDS-PEEP) by combining thiol-disulfide polycondensation and ring-opening polymerization (ROP). The thiol-disulfide polycondensation between 1,6-hexanedithiol and 2,2'-dithiodipyridine yielded the linear telechelic pyridyl disulfide-terminated poly(disulfide)s, followed by the treatment with 2-mercaptoethanol to quantitatively produce dihydroxyl-terminated poly(disulfide)s, which was used to initiate the ROP reaction of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane, generating ABA-type amphiphilic triblock copolymers. The chemical structures of various polymers were thoroughly characterized and verified using nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy. The resultant amphiphilic PEEP-PDS-PEEP could self-assemble into spherical nanoparticles in aqueous solution as evidenced from dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. Hydrophobic anti-tumor drug doxorubicin (DOX) was used to study the encapsulation capacity of nanoparticles, the drug loading content (DLC) and drug loading efficiency (DLE) values were determined to be 11.2% and 31.5%, respectively. In vitro release studies indicated that DOX was released much faster under reductive conditions compared to physiological conditions, confirming their reduction-responsive release behavior owing to the scission of the poly(disulfide) segment and subsequent disintegration of nanoparticles. The cellular uptake study using a live cell imaging system demonstrated that this DOX-loaded nanoparticle can be internalized into HeLa cells and release DOX over time. Methyl thiazolyl tetrazolium (MTT) assay revealed the favorable cytocompatibility of a bare triblock copolymer toward both L929 and HeLa cells, whereas the DOX-loaded copolymer nanoparticles exhibited the lower inhibitory ability against HeLa and HepG2 cell proliferation than free DOX. This finding presents a strategy for the construction of biocompatible and reduction-responsive polymeric drug carriers.
Collapse
Affiliation(s)
- Pengfei Ju
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Anderson ED, Sova S, Ivanic J, Kelly L, Schnermann MJ. Defining the conditional basis of silicon phthalocyanine near-IR ligand exchange. Phys Chem Chem Phys 2018; 20:19030-19036. [PMID: 29971294 PMCID: PMC6344126 DOI: 10.1039/c8cp03842b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bond cleavage reactions initiated by long-wavelength light are needed to extend the scope of the caged-uncaged paradigm into complex physiological settings. Axially unsymmetrical silicon phthalocyanines (SiPcs) undergo efficient release of phenol ligands in a reaction contingent on three factors - near-IR light (690 nm), hypoxia, and a thiol reductant. These studies detail efforts to define the mechanistic basis for this unique conditionally-dependent bond cleavage reaction. Spectroscopic studies provide evidence for the formation of a key phthalocyanine radical anion intermediate formed from the triplet state in a reductant-dependent manner. Computational chemistry studies indicate that phenol ligand solvolysis proceeds through a heptacoordinate silicon transition state and that this solvolytic process is favored following SiPc radical anion formation. These results provide insight regarding the central role that radical anion intermediates formed through photoinduced electron transfer with biological reductants can play in long-wavelength uncaging reactions.
Collapse
Affiliation(s)
- Erin D Anderson
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, USA.
| | | | | | | | | |
Collapse
|
240
|
Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, Beyzavi A, Karimi M, Hamblin MR. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36:968-985. [PMID: 29499341 PMCID: PMC5971145 DOI: 10.1016/j.biotechadv.2018.02.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as "S-layer", bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Biomaterials Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Beyzavi
- Koch institute of MIT, 500 Main Street, Cambridge, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
241
|
Kortekaas L, Chen J, Jacquemin D, Browne WR. Proton-Stabilized Photochemically Reversible E/ Z Isomerization of Spiropyrans. J Phys Chem B 2018; 122:6423-6430. [PMID: 29847129 PMCID: PMC6150689 DOI: 10.1021/acs.jpcb.8b03528] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spiropyrans undergo Cspiro-O bond breaking to their ring-open protonated E-merocyanine form upon protonation and irradiation via an intermediate protonated Z-merocyanine isomer. We show that the extent of acid-induced ring opening is controlled by matching both the concentration and strength of the acid used and with strong acids full ring opening to the Z-merocyanine isomer occurs spontaneously allowing its characterization by 1H NMR spectroscopy as well as UV/vis spectroscopy, and reversible switching between Z/ E-isomerization by irradiation with UV and visible light. Under sufficiently acidic conditions, both E- and Z-isomers are thermally stable. Judicious choice of acid such that its p Ka lies between that of the E- and Z-merocyanine forms enables thermally stable switching between spiropyran and E-merocyanine forms and hence pH gating between thermally irreversible and reversible photochromic switching.
Collapse
Affiliation(s)
- L Kortekaas
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| | - J Chen
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| | - D Jacquemin
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM) , UMR CNRS no. 6230, Université de Nantes , BP 92208, 2, Rue de la Houssinière , 44322 Nantes Cedex 3, France
| | - W R Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , 9747AG Groningen , The Netherlands
| |
Collapse
|
242
|
Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
243
|
Li H, Lei W, Wu J, Li S, Zhou G, Liu D, Yang X, Wang S, Li Z, Zhang J. An upconverting nanotheranostic agent activated by hypoxia combined with NIR irradiation for selective hypoxia imaging and tumour therapy. J Mater Chem B 2018; 6:2747-2757. [PMID: 32254227 DOI: 10.1039/c8tb00637g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel upconverting nanotheranostic agent, UCNP-CAE-FDU/NO2, activated by both hypoxia (internal stimuli) and NIR irradiation (external stimuli) was designed and synthesized for simultaneous imaging and chemotherapy of solid tumours. The devised theranostic agent consists of an active drug, floxuridine (FDU), upconverting nanoparticles (UCNP: NaYF4:Yb3+/Tm3+, multifunctional carriers for upconverting 980 nm NIR light to 365 nm UV light and tumour-targeted drug delivery), (E)-o-hydroxycinnamic acid (CAE, a UV-photo trigger and a fluorescence dye precursor), and a 4-nitrobenzyl group (a hypoxic trigger). In addition, FDU was modified by CAE, and CAE was modified by the 4-nitrobenzyl group; moreover, CAE was conjugated to UCNPs by covalent bonds to form a novel UCNP-CAE-FDU/NO2 platform. In normal cells, the platform is "locked", whereas in tumour cells, hypoxia combined with NIR illumination (980 nm) "unlocks" the platform, based on a series of reactions including the reduction of UCNP-CAE-FDU/NO2 catalyzed by over-expression of nitroreductase (NTR), 1,6-rearrangement-elimination, the photo-isomerization of UCNP-CAE-FDU caused by absorption of NIR irradiation and emission at 365 nm of UCNP-CAE-FDU/NO2, and intramolecular esterification, which initiate the fluorescent dye in conjugation with UCNP (UCNP-CM) formation and FDU release with high spatio-temporal control. The amounts of FDU and UCNP-CM released can be accurately tuned by controlling the NIR illumination time. UCNP-CAE-FDU/NO2 showed excellent selectivity for hypoxic cells, exhibited high cytotoxicity against cancer cells and almost no cytotoxicity to normal cells, presented significant inhibition of tumour growth in vivo, and displayed sensitive detection of the hypoxic status and the amount of FDU released. The excellent properties of UCNP-CAE-FDU/NO2 endow it with great potential applications for precise imaging of tumour cells and personalized solid tumour treatment.
Collapse
Affiliation(s)
- Hongliang Li
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Wang D, Ge N, Yang T, Peng F, Qiao Y, Li Q, Liu X. NIR-Triggered Crystal Phase Transformation of NiTi-Layered Double Hydroxides Films for Localized Chemothermal Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700782. [PMID: 29721424 PMCID: PMC5908485 DOI: 10.1002/advs.201700782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/17/2017] [Indexed: 05/20/2023]
Abstract
Construction of localized drug-eluting systems with synergistic chemothermal tumor-killing abilities is promising for biomedical implants directly contacting with tumor tissues. In this study, an intelligent and biocompatible drug-loading platform, based on a gold nanorods-modified butyrate-inserted NiTi-layered double hydroxides film (Au@LDH/B), is prepared on the surface of nitinol alloy. The prepared films function as drug-loading "sponges," which pump butyrate out under near-infrared (NIR) irradiation and resorb drugs in water when the NIR laser is shut off. The stimuli-responsive release of butyrate is verified to be related with the NIR-triggered crystal phase transformation of Au@LDH/B. In vitro and in vivo studies reveal that the prepared films possess excellent biosafety and high efficiency in synergistic thermochemo tumor therapy, showing a promising application in the construction of localized stimuli-responsive drug-delivery systems.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- University of Chinese Academy of SciencesBeijing100049China
| | - Naijian Ge
- Intervention CenterEastern Hepatobiliary Surgery Hospitalthe Second Military Medical UniversityShanghai200438China
| | - Tingting Yang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- University of Chinese Academy of SciencesBeijing100049China
| | - Feng Peng
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Qianwen Li
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| |
Collapse
|
245
|
Xu J, Han W, Cheng Z, Yang P, Bi H, Yang D, Niu N, He F, Gai S, Lin J. Bioresponsive and near infrared photon co-enhanced cancer theranostic based on upconversion nanocapsules. Chem Sci 2018; 9:3233-3247. [PMID: 29844897 PMCID: PMC5931193 DOI: 10.1039/c7sc05414a] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/31/2018] [Indexed: 12/27/2022] Open
Abstract
Developing nanotheranostics responsive to tumor microenvironments has attracted tremendous attention for on-demand cancer diagnosis and treatment. Herein, a facile Mn-doping strategy was adopted to transform mesoporous silica coated upconversion nanoparticles (UCNPs) to yolk-like upconversion nanostructures which possess a tumor-responsive biodegradation nature. The huge internal space of the innovated nanocarriers is suitable for doxorubicin (DOX) storage, besides, the Mn-doped shell is sensitive to the intratumoral acidity and reducibility, which enables shell biodegradation and further accelerates the breakage of Si-O-Si bonds within the silica framework. This tumor-responsive shell degradation is beneficial for realizing tumor-specific DOX release. Subsequently, polyoxometalate (POM) nanoclusters that can enhance photothermal conversion in response to the tumor reducibility and acidity were modified on the surface of the silica shell, thereby achieving NIR-enhanced shell degradation and also preventing premature DOX leakage. The as-produced thermal effect of the POM couples with the chemotherapy effect of the released DOX to perform a synergetic chemo-photothermal therapy. Additionally, the shell degradation brings size shrinkage to the nanocarriers, allowing faster nanoparticle diffusion and deeper tumor penetration, which is significant for improving theranostic outcomes. Also, the drastic decline of the red/green (R/G) ratio caused by the DOX release can be used to monitor the DOX release content through a fluorescence resonance energy transfer (FRET) method. The MRI effect caused by Mn release together with the MRI/CT/UCL imaging derived from Gd3+/Yb3+/Nd3+/Er3+ co-doped UCNPs under 808 nm laser excitation endow the nanosystem with multiple imaging capability, thus realizing imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China .
| | - Wei Han
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China .
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130021 , P. R. China .
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China .
| | - Huiting Bi
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China .
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China .
| | - Na Niu
- College of Sciences , Northeast Forestry University , Harbin 150050 , P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China .
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology , Ministry of Education , College of Materials Science and Chemical Engineering , Harbin Engineering University , Harbin , 150001 , P. R. China .
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130021 , P. R. China .
| |
Collapse
|
246
|
Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800511] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| |
Collapse
|
247
|
Li J, Xie C, Huang J, Jiang Y, Miao Q, Pu K. Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer Therapy. Angew Chem Int Ed Engl 2018; 57:3995-3998. [PMID: 29417709 DOI: 10.1002/anie.201800511] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 11/09/2022]
Abstract
Regulation of enzyme activity is fundamentally challenging but practically meaningful for biology and medicine. However, noninvasive remote control of enzyme activity in living systems has been rarely demonstrated and exploited for therapy. Herein, we synthesize a semiconducting polymer nanoenzyme with photothermic activity for enhanced cancer therapy. Upon near-infrared (NIR) light irradiation, the activity of the nanoenzyme can be enhanced by 3.5-fold to efficiently digest collagen in the tumor extracellular matrix (ECM), leading to enhanced nanoparticle accumulation in tumors and consequently improved photothermal therapy (PTT). This study thus provides a promising strategy to remotely regulate enzyme activity for cancer therapy.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
248
|
Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 2018; 47:1044-1097. [PMID: 29251304 DOI: 10.1039/c7cs00630f] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to manipulate the structure and function of promising nanosystems via energy input and external stimuli is emerging as an attractive paradigm for developing reconfigurable and programmable nanomaterials and multifunctional devices. Light stimulus manifestly represents a preferred external physical and chemical tool for in situ remote command of the functional attributes of nanomaterials and nanosystems due to its unique advantages of high spatial and temporal resolution and digital controllability. Photochromic moieties are known to undergo reversible photochemical transformations between different states with distinct properties, which have been extensively introduced into various functional nanosystems such as nanomachines, nanoparticles, nanoelectronics, supramolecular nanoassemblies, and biological nanosystems. The integration of photochromism into these nanosystems has endowed the resultant nanostructures or advanced materials with intriguing photoresponsive behaviors and more sophisticated functions. In this Review, we provide an account of the recent advancements in reversible photocontrol of the structures and functions of photochromic nanosystems and their applications. The important design concepts of such truly advanced materials are discussed, their fabrication methods are emphasized, and their applications are highlighted. The Review is concluded by briefly outlining the challenges that need to be addressed and the opportunities that can be tapped into. We hope that the review of the flourishing and vibrant topic with myriad possibilities would shine light on exploring the future nanoworld by encouraging and opening the windows to meaningful multidisciplinary cooperation of engineers from different backgrounds and scientists from the fields such as chemistry, physics, engineering, biology, nanotechnology and materials science.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA.
| | | |
Collapse
|
249
|
Ullah A, Zhang Y, Iqbal Z, Zhang Y, Wang D, Chen J, Hu P, Chen Z, Huang M. Household light source for potent photo-dynamic antimicrobial effect and wound healing in an infective animal model. BIOMEDICAL OPTICS EXPRESS 2018; 9. [PMID: 29541500 PMCID: PMC5846510 DOI: 10.1364/boe.9.001006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Photodynamic antimicrobial chemotherapy (PACT) is considered a promising alternative to conventional antibiotic approach. We have previously developed a novel PS containing five lysine amino acids, pentalysine-β-carbonylphthalocyanine Zinc (ZnPc(Lys)5), which in the presence of light, is highly toxic against a range of bacterial strains, including hospital isolated, drug resistant Acinetobacter baumannii. Here, we study the effect of light fluence of the two light sources on the PACT potency of ZnPc(Lys)5. We observed that an exposure of E.coli to a red LED light for only 2 seconds (light fluence of 0.15 J/cm2) in the presence of ZnPc(Lys)5 significantly eradicated 80% of the E.coli. We further demonstrated that a light fluence of 4.5 J/cm2 from a household light source induced a noticeable photodynamic effect in vitro and in vivo animal model. This study points to a new research direction of reducing light illumination time by increasing potency of PS.
Collapse
Affiliation(s)
- Azeem Ullah
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China, 100049
- The first two authors contributed equally to this work
| | - Yuxiang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China, 100049
- The first two authors contributed equally to this work
| | - Zafar Iqbal
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan, 22060
| | - Yaxin Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China, 100049
| | - Dong Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China, 100049
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
| | - Ping Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, China, 100049
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, Fujian, China, 350002
- Fuzhou University, Fujian, China, 350002
| |
Collapse
|
250
|
Shan C, Wang B, Hu B, Liu W, Tang Y. Smart yolk-shell type luminescent nanocomposites based on rare-earth complex for NIR–NIR monitor of drug release in chemotherapy. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|