201
|
Wagner RT, Xu X, Yi F, Merrill BJ, Cooney AJ. Canonical Wnt/β-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells 2011; 28:1794-804. [PMID: 20734354 PMCID: PMC2996860 DOI: 10.1002/stem.502] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Delineating the signaling pathways that underlie ESC pluripotency is paramount for development of ESC applications in both the research and clinical settings. In culture pluripotency is maintained by leukemia inhibitory factor (LIF) stimulation of two separate signaling axes: Stat3/Klf4/Sox2 and PI3K/Tbx3/Nanog, which converge in the regulation of Oct4 expression. However, LIF signaling is not required in vivo for self-renewal, thus alternate signaling axes likely mediate these pathways. Additional factors that promote pluripotency gene expression have been identified, including the direct regulation of Oct4 by liver receptor homolog-1 (Lrh-1) and β-catenin regulation of Nanog. Here, we present genetic, molecular, and pharmacological studies identifying a signaling axis in which β-catenin promotes pluripotency gene expression in an Lrh-1-dependent manner. Furthermore, Lrh-1 was identified as a novel β-catenin target gene, and Lrh-1 regulation is required for maintaining proper levels of Oct4, Nanog, and Tbx3. Elucidation of this pathway provides an alternate mechanism by which the primary pluripotency axis may be regulated in vivo and may pave the way for small molecule applications to manipulate pluripotency or improve the efficiency of somatic cell reprogramming.
Collapse
Affiliation(s)
- Ryan T Wagner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
202
|
Hayes JM, Skamnaki VT, Archontis G, Lamprakis C, Sarrou J, Bischler N, Skaltsounis AL, Zographos SE, Oikonomakos NG. Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Proteins 2010; 79:703-19. [PMID: 21287607 DOI: 10.1002/prot.22890] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022]
Abstract
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC₅₀ > 50 μM), indirubin-3'-oxime (IC₅₀ = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schrödinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.
Collapse
Affiliation(s)
- Joseph M Hayes
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Design, synthesis and anti-proliferative studies of a novel series of indirubin derivatives. CHINESE CHEM LETT 2010. [DOI: 10.1016/j.cclet.2010.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
204
|
Schwaiberger AV, Heiss EH, Cabaravdic M, Oberan T, Zaujec J, Schachner D, Uhrin P, Atanasov AG, Breuss JM, Binder BR, Dirsch VM. Indirubin-3′-Monoxime Blocks Vascular Smooth Muscle Cell Proliferation by Inhibition of Signal Transducer and Activator of Transcription 3 Signaling and Reduces Neointima Formation In Vivo. Arterioscler Thromb Vasc Biol 2010; 30:2475-81. [DOI: 10.1161/atvbaha.110.212654] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andrea V. Schwaiberger
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Elke H. Heiss
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Muris Cabaravdic
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Tina Oberan
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Jan Zaujec
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Daniel Schachner
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Pavel Uhrin
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Atanas G. Atanasov
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Johannes M. Breuss
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Bernd R. Binder
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| | - Verena M. Dirsch
- From the Department of Pharmacognosy, University of Vienna, A-1090 Vienna, Austria (A.V.S., E.H.H., T.O., D.S., A.G.A., V. M. D.); Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, A-1090 Vienna, Austria (M.C., J.Z., P.U., J.M.B., B.R.B.). Dr Binder died on August 28, 2010. Dr Schwaiberger and Dr Heiss contributed equally to this work
| |
Collapse
|
205
|
Karapetyan G, Chakrabarty K, Hein M, Langer P. Synthesis and Bioactivity of Carbohydrate Derivatives of Indigo, Its Isomers and Heteroanalogues. ChemMedChem 2010; 6:25-37. [DOI: 10.1002/cmdc.201000374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
206
|
Zhang A, Yu M, Lan T, Liu Z, Mao Z. Novel Synthesis of 4- or 6-Substituted Indirubin Derivatives. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903318591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
207
|
Ewan K, Pajak B, Stubbs M, Todd H, Barbeau O, Quevedo C, Botfield H, Young R, Ruddle R, Samuel L, Battersby A, Raynaud F, Allen N, Wilson S, Latinkic B, Workman P, McDonald E, Blagg J, Aherne W, Dale T. A useful approach to identify novel small-molecule inhibitors of Wnt-dependent transcription. Cancer Res 2010; 70:5963-73. [PMID: 20610623 DOI: 10.1158/0008-5472.can-10-1028] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Wnt signaling pathway is frequently deregulated in cancer due to mutations in genes encoding APC, beta-catenin, and axin. To identify small-molecule inhibitors of Wnt signaling as potential therapeutics, a diverse chemical library was screened using a transcription factor reporter cell line in which the activity of the pathway was induced at the level of Disheveled protein. A series of deconvolution studies was used to focus on three compound series that selectively killed cancer cell lines with constitutive Wnt signaling. Activities of the compounds included the ability to induce degradation of beta-catenin that had been stabilized by a glycogen synthase kinase-3 (GSK-3) inhibitor. This screen illustrates a practical approach to identify small-molecule inhibitors of Wnt signaling that can seed the development of agents suitable to treat patients with Wnt-dependent tumors.
Collapse
Affiliation(s)
- Kenneth Ewan
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Koledova Z, Kafkova LR, Krämer A, Divoky V. DNA damage-induced degradation of Cdc25A does not lead to inhibition of Cdk2 activity in mouse embryonic stem cells. Stem Cells 2010; 28:450-61. [PMID: 20104581 DOI: 10.1002/stem.311] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cyclin-dependent kinase two (Cdk2) is the major regulator of the G1/S transition and the target of an activated G1 checkpoint in somatic cells. In the presence of DNA damage, Cdk2 kinase activity is abrogated by a deficiency of Cdc25A phosphatase, which is marked by Chk1/Chk2 for proteasomal degradation. Embryonic stem cells (ESCs) lack a G1 checkpoint response. In this study, we analyzed the G1 checkpoint pathways in mouse ESCs (mESCs) in the presence of DNA double-strand breaks evoked by ionizing radiation (IR). We show that checkpoint pathways, which operate during G1 phase in somatic cells, are activated in mESCs after IR; however, Cdk2 activity is not abolished. We demonstrate that Cdc25A is degraded in mESCs, but this degradation is not regulated by Chk1 and Chk2 kinases because they are sequestered to the centrosome. Instead, Cdc25A degradation is governed by glycogen synthase kinase-3beta kinase. We hypothesize that Cdc25A degradation does not inhibit Cdk2 activity because a considerable proportion of Cdk2 molecules localize to the cytoplasm and centrosomes in mESCs, where they may be sheltered from regulation by nuclear Cdc25A. Finally, we show that a high Cdk2 activity, which is irresponsive to DNA damage, is the driving force of the rapid escape of mESCs from G1 phase after DNA damage.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
| | | | | | | |
Collapse
|
209
|
Wang ZH, Dong Y, Wang T, Shang MH, Hua WY, Yao QZ. Synthesis and CDK2 kinase inhibitory activity of 7/7′-azaindirubin derivatives. CHINESE CHEM LETT 2010. [DOI: 10.1016/j.cclet.2009.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
210
|
Wang ZH, Wang T, Yao SN, Chen JC, Hua WY, Yao QZ. Synthesis and Biological Evaluation of 7-Azaisoindigo Derivatives. Arch Pharm (Weinheim) 2010; 343:160-6. [DOI: 10.1002/ardp.200900268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
211
|
Babu AP, Chitti S, Rajesh B, Prasanth VV, Kishen RJV, Vali KR. In silico Based Ligand Design and Docking Studies of GSK-3β Inhibitors. CHEM-BIO INFORMATICS JOURNAL 2010. [DOI: 10.1273/cbij.10.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ajay P Babu
- Translational Research Institute of Molecular Sciences (TRIMS)
| | | | - B Rajesh
- Translational Research Institute of Molecular Sciences (TRIMS)
| | | | - Radha JV Kishen
- Translational Research Institute of Molecular Sciences (TRIMS)
| | - Khadar R Vali
- Translational Research Institute of Molecular Sciences (TRIMS)
| |
Collapse
|
212
|
Magiatis P, Polychronopoulos P, Skaltsounis AL, Lozach O, Meijer L, Miller DB, O'Callaghan JP. Indirubins deplete striatal monoamines in the Intact and MPTP-treated mouse brain and block kainate-induced striatal astrogliosis. Neurotoxicol Teratol 2009; 32:212-9. [PMID: 20034560 DOI: 10.1016/j.ntt.2009.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/03/2009] [Accepted: 12/16/2009] [Indexed: 12/28/2022]
Abstract
The indirubins long have been used in Chinese medicine for treatment of myelocytic leukemia. Among the many more recently described biological activities of the indirubins, attention has been directed toward the ability of these compounds to inhibit GSK-3 and CDKs, kinases implicated in neurodegenerative conditions. Little information is available on effects of indirubins on chemically-induced neurodegeneration. Here we examined the influence of three indirubins on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and kainic acid (KA)-induced neurotoxicity in the mouse. The three indirubins examined were 6-bromoindirubin-3'-oxime (6BIO), 5-bromoindirubin-3'-oxime (5BIO) and 5-amino-6-bromoindirubin (5A6BI). The first two derivatives were previously described indirubins with low nanomolar inhibitory activity against GSK-3 and CDKs. The third compound was synthesized by the dimerization of 5-amino-6-bromoisatin with 3-acetoxyindol. The synthesis of the key compound 5-amino-6-bromoisatin was based on the bromination of the ketal of 5-amino-isatin. All indirubins examined decreased various measures associated with dopaminergic neurotransmission in striatum. These effects occurred alone or over and above the decrements seen following administration of the dopaminergic neurotoxicant, MPTP. Striatal serotonin and serotonin turnover were decreased by the indirubins in MPTP-treated mice. None of these striatal effects of the indirubins alone were associated with evidence of astrogliosis, an indicator of underlying neuropathology, nor did they potentiate the astrogliosis accompanying administration of MPTP. In general, the indirubins reduced KA-associated mortality and striatal but not hippocampal astrogliosis due to this toxicant. The data suggest that indirubins affect striatal biogenic amine levels and turnover in intact mice. The data do not indicate a neuroprotective action of indirubins in mice treated with MPTP but that they do suggest that they may be neuroprotective against KA-induced injury of the neostriatum.
Collapse
Affiliation(s)
- Prokopios Magiatis
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
213
|
Zou H, Zhou L, Li Y, Cui Y, Zhong H, Pan Z, Yang Z, Quan J. Benzo[e]isoindole-1,3-diones as Potential Inhibitors of Glycogen Synthase Kinase-3 (GSK-3). Synthesis, Kinase Inhibitory Activity, Zebrafish Phenotype, and Modeling of Binding Mode. J Med Chem 2009; 53:994-1003. [DOI: 10.1021/jm9013373] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haixia Zou
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing, China
| | - Liyan Zhou
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Yuanzhen Li
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Yi Cui
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Hanbing Zhong
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Zhengying Pan
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Zhen Yang
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing, China
| | - Junmin Quan
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
214
|
Kritsanida M, Magiatis P, Skaltsounis AL, Peng Y, Li P, Wennogle LP. Synthesis and antiproliferative activity of 7-azaindirubin-3'-oxime, a 7-aza isostere of the natural indirubin pharmacophore. JOURNAL OF NATURAL PRODUCTS 2009; 72:2199-202. [PMID: 19994845 DOI: 10.1021/np9003905] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The bis-indole alkaloid indirubin and its analogues bear a very interesting natural pharmacophore. They are recognized mainly as kinase inhibitors, but several other activities make them possible candidates for preclinical studies. Based on the previously reported activity of 7-bromoindirubin-3'-oxime and its derivatives, the synthesis of indirubins bearing a heterocyclic nitrogen atom at position 7 was carried out. Herein, we report the first synthesis of 7-azaindirubin-3'-oxime (12) as well as its antiproliferative activity against 57 cancer cell lines and its inhibitory activity against a series of kinases. 7-Azaindirubin (10) and its 3'-oxime derivative (12) showed reduced activity as kinase inhibitors in comparison with other known indirubin derivatives, but antiproliferative activity with a best GI(50) value of 0.77 microM.
Collapse
Affiliation(s)
- Marina Kritsanida
- Department of Pharmacognosy and Natural Products Chemistry, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | | | | | | | | | | |
Collapse
|
215
|
Saitoh M, Kunitomo J, Kimura E, Iwashita H, Uno Y, Onishi T, Uchiyama N, Kawamoto T, Tanaka T, Mol CD, Dougan DR, Textor GP, Snell GP, Takizawa M, Itoh F, Kori M. 2-{3-[4-(Alkylsulfinyl)phenyl]-1-benzofuran-5-yl}-5-methyl-1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta with good brain permeability. J Med Chem 2009; 52:6270-86. [PMID: 19775160 DOI: 10.1021/jm900647e] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3beta) inhibition is expected to be a promising therapeutic approach for treating Alzheimer's disease. Previously we reported a series of 1,3,4-oxadiazole derivatives as potent and highly selective GSK-3beta inhibitors, however, the representative compounds 1a,b showed poor pharmacokinetic profiles. Efforts were made to address this issue by reducing molecular weight and lipophilicity, leading to the identification of oxadiazole derivatives containing a sulfinyl group, (S)-9b and (S)-9c. These compounds exhibited not only highly selective and potent inhibitory activity against GSK-3beta but also showed good pharmacokinetic profiles including favorable BBB penetration. In addition, (S)-9b and (S)-9c given orally to mice significantly inhibited cold water stress-induced tau hyperphosphorylation in mouse brain.
Collapse
Affiliation(s)
- Morihisa Saitoh
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., 17-85 Jusohonmachi, 2-Chome, Yodogawa-ku, Osaka 532-8686, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Becker A, Kohfeld S, Lader A, Preu L, Pies T, Wieking K, Ferandin Y, Knockaert M, Meijer L, Kunick C. Development of 5-benzylpaullones and paullone-9-carboxylic acid alkyl esters as selective inhibitors of mitochondrial malate dehydrogenase (mMDH). Eur J Med Chem 2009; 45:335-42. [PMID: 19906467 DOI: 10.1016/j.ejmech.2009.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022]
Abstract
A collection of paullones was tested for inhibitory activity against mitochondrial malate dehydrogenase (mMDH) as a biological target for antiproliferative activity. Based on the results of this screening, 5-benzylpaullones and paullone-9-carboxylic acid alkyl esters were developed as selective mMDH inhibitors. The new derivatives did not show noteworthy antiproliferative activity when tested on a panel of cancer cell lines, suggesting that mMDH inhibition is of minor relevance for the growth inhibition caused by paullones.
Collapse
Affiliation(s)
- Anja Becker
- Technische Universität Braunschweig, Institut für Pharmazeutische Chemie, Beethovenstrasse 55, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Debdab M, Renault S, Lozach O, Meijer L, Paquin L, Carreaux F, Bazureau JP. Synthesis and preliminary biological evaluation of new derivatives of the marine alkaloid leucettamine B as kinase inhibitors. Eur J Med Chem 2009; 45:805-10. [PMID: 19879673 DOI: 10.1016/j.ejmech.2009.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/25/2009] [Accepted: 10/01/2009] [Indexed: 11/28/2022]
Abstract
New derivatives of the marine alkaloid leucettamine B were prepared in five steps with overall yields ranging from 23 to 30%. The key step of our strategy has been the sulfur/nitrogen displacement under solvent-free microwave irradiation of (5Z) 5-benzo[1,3]-dioxo-5-ylmethylene-2-ethylsulfanyl-3,5-dihydroimidazol-4-one 3 with a mono-protected ethylenediamine 2. After deprotection of the N-Boc group, the amino derivative of leucettamine B 5 was subjected to reductive amination in two steps with retention of configuration of the double bond, to lead to eight new analogs of leucettamine B. The effect of these compounds on CK1alpha/beta, CDK5/p25, and GSK-3alpha/beta were investigated.
Collapse
Affiliation(s)
- Mansour Debdab
- Université de Rennes 1, Sciences Chimiques de Rennes, UMR CNRS 6226, Groupe Ingénierie Chimique & Molécules pour le Vivant, Bât 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 RENNES cedex, France
| | | | | | | | | | | | | |
Collapse
|
218
|
Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev 2009; 109:3012-43. [PMID: 19422222 DOI: 10.1021/cr900019j] [Citation(s) in RCA: 910] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gordon M Cragg
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI-Frederick, Fairview Center, Suite 206, P.O. Box B, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
219
|
Wee XK, Yeo WK, Zhang B, Tan VBC, Lim KM, Tay TE, Go ML. Synthesis and evaluation of functionalized isoindigos as antiproliferative agents. Bioorg Med Chem 2009; 17:7562-71. [PMID: 19783149 DOI: 10.1016/j.bmc.2009.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
A series of functionalized isoindigos structurally related to meisoindigo (1-methylisoindigo), a therapeutic agent used for the treatment of a form of leukemia, were synthesized and evaluated for antiproliferative activities on a panel of human cancer cells. Two promising compounds (1-phenpropylisoindigo and 1-(p-methoxy-phenethyl)-isoindigo) that were more potent than meisoindigo and comparable to 6-bromoindirubin-3'-oxime on leukemic K562 and liver HuH7 cells were identified. Structure-activity relationships showed the importance of keeping one of the lactam NH in an unsubstituted state. Substitution of the other lactam NH with aryl or arylalkyl side chains retained or improved activity in most instances. An intact exocyclic double bond was also essential, possibly to maintain planarity and rigidity of the isoindigo scaffold. None of the compounds were found to inhibit CDK2 in an in vitro assay, in spite of reports linking the antiproliferative activities of meisoindigo and other isoindigos to CDK2 inhibition. Hence, these functionalized isoindigos disrupted cell growth and proliferation by other mechanistic pathways that did not involve CDK2 inhibition.
Collapse
Affiliation(s)
- Xi Kai Wee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
220
|
|
221
|
Colletti M, Cicchini C, Conigliaro A, Santangelo L, Alonzi T, Pasquini E, Tripodi M, Amicone L. Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation. Gastroenterology 2009; 137:660-72. [PMID: 19454287 DOI: 10.1053/j.gastro.2009.05.038] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 05/10/2009] [Accepted: 05/11/2009] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS In each hepatocyte, the specific repertoire of gene expression is influenced by its exact location along the portocentrovenular axis of the hepatic lobule and provides a reason for the liver functions compartmentalization defined "metabolic zonation." So far, few molecular players controlling genetic programs of periportal (PP) and perivenular (PV) hepatocytes have been identified; the elucidation of zonation mechanisms remains a challenge for experimental hepatology. Recently, a key role in induction and maintenance of the hepatocyte heterogeneity has been ascribed to Wnt/beta-catenin pathway. We sought to clarify how this wide-ranging stimulus integrates with hepatocyte specificity. METHODS Reverse transcriptase polymerase chain reaction (RT-PCR) allowed the transcriptional profiling of hepatocytes derived from in vitro differentiation of liver stem cells. The GSK3beta inhibitor 6-bromoindirubin-3'-oxime (BIO) was used for beta-catenin stabilization. Co-immunoprecipitations were used to study biochemical protein interactions while ChIP assays allowed the in vivo inspection of PV and PP genes regulatory regions. RESULTS We found that spontaneous differentiation of liver stem cells gives rise to PP hepatocytes that, after Wnt pathway activation, switch into PV hepatocytes. Next, we showed that the Wnt downstream player LEF1 interacts with the liver-enriched transcriptional factor HNF4alpha. Finally, we unveiled that the BIO induced activation of PV genes correlates with LEF1 binding to both its own and HNF4alpha consensus, and the repression of PP genes correlates with HNF4alpha displacement from its own consensus. CONCLUSION Our data show a direct and hitherto unknown convergence of the canonical Wnt signaling on the HNF4alpha-driven transcription providing evidences of a mechanism controlling liver zonated gene expression.
Collapse
Affiliation(s)
- Marta Colletti
- Department of Cellular Biotechnologies and Haematology, Istituto Pasteur-Fondazione Cenci Bolognetti, University Sapienza of Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
222
|
Qiao XC, Zhu SF, Zhou QL. From allylic alcohols to chiral tertiary homoallylic alcohol: palladium-catalyzed asymmetric allylation of isatins. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.04.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
223
|
Kim KH, Gaisina I, Gallier F, Holzle D, Blond SY, Mesecar A, Kozikowski AP. Use of molecular modeling, docking, and 3D-QSAR studies for the determination of the binding mode of benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3beta inhibitors. J Mol Model 2009; 15:1463-79. [PMID: 19440740 DOI: 10.1007/s00894-009-0498-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 04/16/2009] [Indexed: 01/18/2023]
Abstract
Molecular modeling and docking studies along with three-dimensional quantitative structure relationships (3D-QSAR) studies have been used to determine the correct binding mode of glycogen synthase kinase 3beta (GSK-3beta) inhibitors. The approaches of comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) are used for the 3D-QSAR of 51 substituted benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3beta inhibitors. Two binding modes of the inhibitors to the binding site of GSK-3beta are investigated. The binding mode 1 yielded better 3D-QSAR correlations using both CoMFA and CoMSIA methodologies. The three-component CoMFA model from the steric and electrostatic fields for the experimentally determined pIC(50) values has the following statistics: R(2)(cv) = 0.386 nd SE(cv) = 0.854 for the cross-validation, and R(2) = 0.811 and SE = 0.474 for the fitted correlation. F (3,47) = 67.034, and probability of R(2) = 0 (3,47) = 0.000. The binding mode suggested by the results of this study is consistent with the preliminary results of X-ray crystal structures of inhibitor-bound GSK-3beta. The 3D-QSAR models were used for the estimation of the inhibitory potency of two additional compounds.
Collapse
Affiliation(s)
- Ki Hwan Kim
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
224
|
Xingi E, Smirlis D, Myrianthopoulos V, Magiatis P, Grant KM, Meijer L, Mikros E, Skaltsounis AL, Soteriadou K. 6-Br-5methylindirubin-3'oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: exploitation of GSK-3 for treating leishmaniasis. Int J Parasitol 2009; 39:1289-303. [PMID: 19445946 DOI: 10.1016/j.ijpara.2009.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/31/2009] [Accepted: 04/03/2009] [Indexed: 01/17/2023]
Abstract
Indirubins known to target mammalian cyclin-dependent kinases (CDKs) and glycogen synthase kinase (GSK-3) were tested for their antileishmanial activity. 6-Br-indirubin-3'-oxime (6-BIO), 6-Br-indirubin-3'acetoxime and 6-Br-5methylindirubin-3'oxime (5-Me-6-BIO) were the most potent inhibitors of Leishmania donovani promastigote and amastigote growth (half maximal inhibitory concentration (IC(50)) values < or =1.2 microM). Since the 6-Br substitution on the indirubin backbone greatly enhances the selectivity for mammalian GSK-3 over CDKs, we identified the leishmanial GSK-3 homologues, a short (LdGSK-3s) and a long one, focusing on LdGSK-3s which is closer to human GSK-3beta, for further studies. Kinase assays showed that 5-Me-6-BIO inhibited LdGSK-3s more potently than CRK3 (the CDK1 homologue in Leishmania), whilst 6-BIO was more selective for CRK3. Promastigotes treated with 5-Me-6-BIO accumulated in the S and G2/M cell-cycle phases and underwent apoptosis-like death. Interestingly, these phenotypes were completely reversed in parasites over-expressing LdGSK-3s. This finding strongly supports that LdGSK-3s is: (i) the intracellular target of 5-Me-6-BIO, and (ii) involved in cell-cycle control and in pathways leading to apoptosis-like death. 6-BIO treatment induced a G2/M arrest, consistent with inhibition of CRK3 and apoptosis-like death. These effects were partially reversed in parasites over-expressing LdGSK-3s suggesting that in vivo 6-BIO may also target LdGSK-3s. Molecular docking of 5-Me-6-BIO in CRK3 and 6-BIO in human GSK-3beta and LdGSK-3s active sites predict the existence of functional/structural differences that are sufficient to explain the observed difference in their affinity. In conclusion, LdGSK-3s is validated as a potential drug target in Leishmania and could be exploited for the development of selective indirubin-based leishmanicidals.
Collapse
Affiliation(s)
- Evangelia Xingi
- Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Kortenoeven MLA, Li Y, Shaw S, Gaeggeler HP, Rossier BC, Wetzels JFM, Deen PMT. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 2009; 76:44-53. [PMID: 19367330 DOI: 10.1038/ki.2009.91] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lithium therapy frequently induces nephrogenic diabetes insipidus; amiloride appears to prevent its occurrence in some clinical cases. Amiloride blocks the epithelial sodium channel (ENaC) located in the apical membrane of principal cells; hence one possibility is that ENaC is the main entry site for lithium and the beneficial effect of amiloride may be through inhibiting lithium entry. Using a mouse collecting duct cell line, we found that vasopressin caused an increase in Aquaporin 2 (AQP2) expression which was reduced by clinically relevant lithium concentrations similar to what is seen with in vivo models of this disease. Further amiloride or benzamil administration prevented this lithium-induced downregulation of AQP2. Amiloride reduced transcellular lithium transport, intracellular lithium concentration, and lithium-induced inactivation of glycogen synthase kinase 3beta. Treatment of rats with lithium downregulated AQP2 expression, reduced the principal-to-intercalated cell ratio, and caused polyuria, while simultaneous administration of amiloride attenuated all these changes. These results show that ENaC is the major entry site for lithium in principal cells both in vitro and in vivo. Blocking lithium entry with amiloride attenuates lithium-induced diabetes insipidus, thus providing a rationale for its use in treating this disorder.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
226
|
Saitoh M, Kunitomo J, Kimura E, Hayase Y, Kobayashi H, Uchiyama N, Kawamoto T, Tanaka T, Mol CD, Dougan DR, Textor GS, Snell GP, Itoh F. Design, synthesis and structure–activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β. Bioorg Med Chem 2009; 17:2017-29. [DOI: 10.1016/j.bmc.2009.01.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/30/2022]
|
227
|
Xiang J, Yang H, Che C, Zou H, Yang H, Wei Y, Quan J, Zhang H, Yang Z, Lin S. Identifying tumor cell growth inhibitors by combinatorial chemistry and zebrafish assays. PLoS One 2009; 4:e4361. [PMID: 19194508 PMCID: PMC2633036 DOI: 10.1371/journal.pone.0004361] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 10/29/2008] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Jing Xiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing, China
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Hongbo Yang
- Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Ministry of Education, Beijing, China
| | - Chao Che
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Haixia Zou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing, China
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Junmin Quan
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Hui Zhang
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
- Nevada Cancer Institute, Las Vegas, Nevada, United States of America
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing, China
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Shuo Lin
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
- Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Ministry of Education, Beijing, China
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
228
|
Rochais C, Duc NV, Lescot E, Sopkova-de Oliveira Santos J, Bureau R, Meijer L, Dallemagne P, Rault S. Synthesis of new dipyrrolo- and furopyrrolopyrazinones related to tripentones and their biological evaluation as potential kinases (CDKs1–5, GSK-3) inhibitors. Eur J Med Chem 2009; 44:708-16. [DOI: 10.1016/j.ejmech.2008.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/30/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
|
229
|
Zhang ZG, Liu Y, Guengerich FP, Matse JH, Chen J, Wu ZL. Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries. J Biotechnol 2009; 139:12-8. [PMID: 18984015 PMCID: PMC4755720 DOI: 10.1016/j.jbiotec.2008.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (P450) 2A6 is able to catalyze indole hydroxylation to form the blue dye indigo. The wild-type P450 2A6 enzyme was randomly mutated throughout the whole open reading frame and screened using 4-chloroindole hydroxylation, a substituted indole selected from 30 indole compounds for enhanced color development. Mutants with up to 5-fold increases of catalytic efficiency (k(cat)/K(m)) and 2-fold increases in k(cat) were selected after two rounds of screening. Important residues located both in (e.g., Thr305) and outside the active site (e.g., Ser224) were identified. The study utilized a better substrate for "indigo assay" to obtain new information on the structure-functional relationship of P450 2A6 that was not revealed by previous mutagenesis studies with this enzyme.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Yan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Johannes H. Matse
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Jun Chen
- Institute of Burns, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Zhong-Liu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
230
|
Hashimoto YK, Satoh T, Okamoto M, Takemori H. Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Biochem 2008; 104:1724-39. [PMID: 18348280 DOI: 10.1002/jcb.21737] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autophosphorylation is an important mechanism by which protein kinases regulate their own biological activities. Salt inducible kinase 1 (SIK1) is a regulator in the feedback cascades of cAMP-mediated gene expression, while its kinase domain also features autophosphorylation activity. We provide evidence that Ser186 in the activation loop is the site of autophosphorylation and essential for the kinase activity. Ser186 is located at the +4 position of the critical Thr residue Thr182, which is phosphorylated by upstream kinases such as LKB1. The relationship between phosphorylation at Ser186 and at Thr182 in COS-7 cells indicates that the former is a prerequisite for the latter. Glycogen synthase kinase-3beta (GSK-3beta) phosphorylates Ser/Thr residues located at the fourth position ahead of the pre-phosphorylated Ser/Thr residues, and inhibitors of GSK-3beta reduce the phosphorylation at Thr182. The results of an in vitro reconstitution assay also indicate that GSK-3beta could be the SIK1 kinase. However, overexpression and knockdown of GSK-3beta in LKB1-defective HeLa cells suggests that GSK-3beta alone may not be able to phosphorylate or activate SIK1, indicating that LKB1 may play a crucial role by phosphorylating SIK1 at Thr182, possibly as an initiator of the autophosphorylation cascade, and GSK-3beta may phosphorylate SIK1 at Thr182 by recognizing the priming-autophosphorylation at Ser186 in cultured cells. This may also be the case for the other isoform SIK2, but not for SIK3.
Collapse
Affiliation(s)
- Yoshiko Katoh Hashimoto
- Laboratory of Cell Signaling and Metabolism, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | | | | | | |
Collapse
|
231
|
Rochais C, Lescot E, Lisowski V, Lepailleur A, Santos JSDO, Bureau R, Dallemagne P, Meijer L, Rault S. Synthesis and Biological Evaluation of Thienopyrrolizines, a New Family of CDK/GSK-3 Inhibitors. J Enzyme Inhib Med Chem 2008; 19:585-93. [PMID: 15662962 DOI: 10.1080/14756360400004565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Fifteen new thieno[2,3-b ]- and thieno[3,4-b]pyrrolizines were synthesized and tested against two protein kinases, CDK1/cyclin B and GSK-3. Among these compounds, 3-(3-hydroxy-4-methoxyphenyl)-8H-thieno[2,3-b]pyrrolizin-8-one 4g was identified as a moderate inhibitor of these kinases. Its molecular modeling study brought to the fore the pivotal role of the 2-methoxyphenol grouping and the interest in replacing it by bioisosteric moieties in future pharmacomodulations.
Collapse
Affiliation(s)
- Christophe Rochais
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Université de Caen Basse Normandie, 14032 Caen cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Vougogiannopoulou K, Ferandin Y, Bettayeb K, Myrianthopoulos V, Lozach O, Fan Y, Johnson CH, Magiatis P, Skaltsounis AL, Mikros E, Meijer L. Soluble 3',6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase -3 alter circadian period. J Med Chem 2008; 51:6421-31. [PMID: 18816110 DOI: 10.1021/jm800648y] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycogen synthase kinase -3 (GSK-3) is a key enzyme involved in numerous physiological events and in major diseases, such as Alzheimer's disease, diabetes, and cardiac hypertrophy. Indirubins are bis-indoles that can be generated from various natural sources or chemically synthesized. While rather potent and selective as GSK-3 inhibitors, most indirubins exhibit low water solubility. To address the issue of solubility, we have designed novel analogues of 6-bromo-indirubin-3'-oxime with increased hydrophilicity based on the GSK-3/indirubins cocrystal structures. The new derivatives with an extended amino side chain attached at position 3' showed potent GSK-3 inhibitory activity, enhanced selectivity, and dramatically increased water solubility. Furthermore, some of them displayed little or no cytotoxicity. The new indirubins inhibit GSK-3 in a cellular reporter model. They alter the circadian period measured in rhythmically expressing cell cultures, suggesting that they might constitute tools to investigate circadian rhythm regulation.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
BACKGROUND We previously reported that prostatic stem/progenitor cells are concentrated in the proximal region of prostatic ducts and express stem cell antigen 1 (Sca-1). As Wnt signaling is important for the maintenance of stem cells, we determined whether Sca-1 expressing cells also express Axin2, as Axin2 expression is highly suggestive of active Wnt signaling. METHODS Axin2 promoter reporter mice were used for whole mount and fluorescence activated cell sorting (FACS) analysis to determine its expression in the prostate. Axin2 expressing cells were also examined for the co-expression of Sca-1. We also used a chemical activator of Wnt signaling, BIO, to determine the effects of Wnt signaling on the growth of primary prostate cells in vitro. RESULTS We show that Axin2 expression is present in all lobes and is regulated by androgens with the highest Axin2 expression in the lateral and dorsal prostate. Furthermore, a fraction of Axin2 expressing cells co-express Sca-1, suggesting that some progenitor cells have active Wnt signaling. Lastly, we demonstrate that activation of the Wnt pathway may result in increased growth, consistent with a role for Wnt signaling in maintenance and/or expansion of the progenitor cell population. CONCLUSION Axin2 expressing cells that co-express Sca-1 are present in all prostate lobes suggesting that progenitor cells reside within the Wnt active population. An understanding of the basic biology of signaling pathways mediating growth in the prostate may lead to rational therapies to treat benign prostatic hyperplasia and prostate cancer.
Collapse
Affiliation(s)
- Christopher S. Ontiveros
- Departmentof Cell Biology, NewYork University School of Medicine, NewYork, NewYork
- Correspondence to: Christopher S. Ontiveros, New York University School of Medicine, Department of Cell Biology MSB634, 550 First Ave, New York, NY 10016.
| | - Sarah N. Salm
- Departmentof Cell Biology, NewYork University School of Medicine, NewYork, NewYork
- Departmentof Science, Borough of Manhattan Community College/City University of NewYork, NewYork
| | - E. Lynette Wilson
- Departmentof Cell Biology, NewYork University School of Medicine, NewYork, NewYork
- Departmentof Urology, NewYork University School of Medicine, NewYork, NewYork
- Kaplan Cancer Center, NewYork University School of Medicine, NewYork, NewYork
- Division of Immunology, University of Cape Town, Cape Town, South Africa
- Correspondence to: Christopher S. Ontiveros, New York University School of Medicine, Department of Cell Biology MSB634, 550 First Ave, New York, NY 10016.
| |
Collapse
|
234
|
Design, synthesis and preliminary biological evaluation of acridine compounds as potential agents for a combined targeted chemo-radionuclide therapy approach to melanoma. Bioorg Med Chem 2008; 16:7671-90. [DOI: 10.1016/j.bmc.2008.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/29/2008] [Accepted: 07/04/2008] [Indexed: 11/21/2022]
|
235
|
Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy. Antimicrob Agents Chemother 2008; 52:3710-7. [PMID: 18644955 DOI: 10.1128/aac.00364-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Development of a safe, effective, and inexpensive therapy for African trypanosomiasis is an urgent priority. In this study, we evaluated the validity of Trypanosoma brucei glycogen synthase kinase 3 (GSK-3) as a potential drug target. Interference with the RNA of either of two GSK-3 homologues in bloodstream-form T. brucei parasites led to growth arrest and altered parasite morphology, demonstrating their requirement for cell survival. Since the growth arrest after RNA interference appeared to be more profound for T. brucei GSK-3 "short" (Tb10.161.3140) than for T. brucei GSK-3 "long" (Tb927.7.2420), we focused on T. brucei GSK-3 short for further studies. T. brucei GSK-3 short with an N-terminal maltose-binding protein fusion was cloned, expressed, and purified in a functional form. The potency of a GSK-3-focused inhibitor library against the recombinant enzyme of T. brucei GSK-3 short, as well as bloodstream-form parasites, was evaluated with the aim of determining if compounds that inhibit enzyme activity could also block the parasites' growth and proliferation. Among the compounds active against the cell, there was an excellent correlation between activity inhibiting the T. brucei GSK-3 short enzyme and the inhibition of T. brucei growth. Thus, there is reasonable genetic and chemical validation of GSK-3 short as a drug target for T. brucei. Finally, selective inhibition may be required for therapy targeting the GSK-3 enzyme, and a molecular model of the T. brucei GSK-3 short enzyme suggests that compounds that selectively inhibit T. brucei GSK-3 short over the human GSK-3 enzymes can be found.
Collapse
|
236
|
Lee MJ, Kim MY, Mo JS, Ann EJ, Seo MS, Hong JA, Kim YC, Park HS. Indirubin-3′-monoxime, a derivative of a Chinese anti-leukemia medicine, inhibits Notch1 signaling. Cancer Lett 2008; 265:215-25. [DOI: 10.1016/j.canlet.2008.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 02/06/2008] [Accepted: 02/06/2008] [Indexed: 01/09/2023]
|
237
|
Libnow S, Methling K, Hein M, Michalik D, Harms M, Wende K, Flemming A, Köckerling M, Reinke H, Bednarski PJ, Lalk M, Langer P. Synthesis of indirubin-N′-glycosides and their anti-proliferative activity against human cancer cell lines. Bioorg Med Chem 2008; 16:5570-83. [DOI: 10.1016/j.bmc.2008.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/27/2008] [Accepted: 04/01/2008] [Indexed: 12/22/2022]
|
238
|
Stukenbrock H, Mussmann R, Geese M, Ferandin Y, Lozach O, Lemcke T, Kegel S, Lomow A, Burk U, Dohrmann C, Meijer L, Austen M, Kunick C. 9-cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic beta cell protection and replication. J Med Chem 2008; 51:2196-207. [PMID: 18345612 DOI: 10.1021/jm701582f] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, the serine/threonine kinase glycogen synthase kinase-3 (GSK-3) emerged as a regulator of pancreatic beta cell growth and survival. On the basis of the previous observation that GSK-3 inhibitors like 1-azakenpaullone promote beta cell protection and replication, paullone derivatives were synthesized including 1-aza-, 2-aza-, and 12-oxapaullone scaffolds. In enzymatic assays distinct 1-azapaullones were found to exhibit selective GSK-3 inhibitory activity. Within the series of 1-azapaullones, three derivatives stimulated INS-1E beta cell replication and protected INS-1E cells against glucolipotoxicity induced cell death. Cazpaullone (9-cyano-1-azapaullone), the most active compound in the protection assays, also stimulated the replication of primary beta cells in isolated rat islets. Furthermore, cazpaullone showed a pronounced transient stimulation of the mRNA expression of the beta cell transcription factor Pax4, an important regulator of beta cell development and growth. These features distinguish cazpaullone as a unique starting point for the development of beta cell regenerative agents which might be useful in the treatment of diabetes.
Collapse
Affiliation(s)
- Hendrik Stukenbrock
- Institut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstrasse 55, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Olivier D, Poincelot MA, Douillard S, Lefevre C, Moureau J, Ferandin Y, Bettayeb K, Xiao Z, Magiatis P, Skaltsounis L, Meijer L, Patrice T. Photoreactivity of indirubin derivatives. Photochem Photobiol Sci 2008; 7:328-36. [DOI: 10.1039/b711261k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
240
|
Potterat O, Hamburger M. Drug discovery and development with plant-derived compounds. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 65:45, 47-118. [PMID: 18084913 DOI: 10.1007/978-3-7643-8117-2_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview is given on current efforts in drug development based on plant-derived natural products. Emphasis is on projects which have advanced to clinical development. Therapeutic areas covered include cancer, viral infections including HIV, malaria, inflammatory diseases, nociception and vaccine adjuvants, metabolic disorders, and neurodegenerative diseases. Aspects which are specific to plant-based drug discovery and development are also addressed, such as supply issues in the commercial development, and the Convention on Biological Diversity.
Collapse
Affiliation(s)
- Olivier Potterat
- University of Basel, Institute of Pharmaceutical Biology, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | |
Collapse
|
241
|
Abstract
Drug discovery to lessen the burden of chronic renal failure and end-stage renal disease remains a principle goal of translational research in nephrology. In this review, we provide an overview of the current development of small molecule cyclin-dependent kinase (CDK)/glycogen synthase kinase-3 (GSK-3) inhibitors as therapeutic agents for parenchymal renal diseases. The emergence of this drug family has resulted from the recognition that CDKs and GSK-3s play critical roles in the progression and regression of many kidney diseases. CDK/GSK-3 inhibitors suppress pathogenic proliferation, apoptosis, and inflammation, and promote regeneration of injured tissue. Preclinical efficacy has now been demonstrated in mesangial proliferative glomerulonephritis, crescentic glomerulonephritis, collapsing glomerulopathy, proliferative lupus nephritis, polycystic kidney diseases, diabetic nephropathy, and several forms of acute kidney injury. Novel biomarkers of therapy are aiding the process of drug development. This review will highlight these advancements in renal therapeutics.
Collapse
|
242
|
Lamb DC, Waterman MR, Kelly SL, Guengerich FP. Cytochromes P450 and drug discovery. Curr Opin Biotechnol 2007; 18:504-12. [PMID: 18006294 DOI: 10.1016/j.copbio.2007.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 09/27/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
Abstract
Cytochromes P450 (CYP) are a superfamily of haem-containing proteins distributed widely throughout nature. Historically, they have a central role in drug metabolism and following the advent of genomics they have been shown to have key roles in the biosynthesis of natural products which are used as medicines. Herein, we provide an overview of CYP systems with particular emphasis on their role as drug targets, their involvement in drug biosynthesis and potential strategies for developing new derivatives of drugs based on CYP engineering. The applied importance of CYPs for medicinal and biotechnological applications will also be discussed.
Collapse
Affiliation(s)
- David C Lamb
- Institute of Life Science, Swansea Medical School, Grove Building, Swansea University, Swansea SA2 8PP, UK.
| | | | | | | |
Collapse
|
243
|
Diversity of the intracellular mechanisms underlying the anti-tumor properties of indirubins. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
244
|
Yoshikawa N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M. CORDYCEPIN AND CORDYCEPS SINENSIS REDUCE THE GROWTH OF HUMAN PROMYELOCYTIC LEUKAEMIA CELLS THROUGH THE Wnt SIGNALLING PATHWAY. Clin Exp Pharmacol Physiol 2007. [DOI: 10.1111/j.1440-1681.2007.04781.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
245
|
Che C, Xiang J, Wang GX, Fathi R, Quan JM, Yang Z. One-pot synthesis of quinoline-based tetracycles by a tandem three-component reaction. ACTA ACUST UNITED AC 2007; 9:982-9. [PMID: 17705443 DOI: 10.1021/cc070058a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A practical one-pot synthetic strategy for the efficient synthesis of a range of structurally interesting and bioactive quinoline-based tetracycles has been developed. A key step in the synthesis is a tandem three-component reaction of heteroaromatic amine, methyl 2-formylbenzoate and (t)butyl isonitrile, followed by TFA-mediated lactamization via intramolecular aminolysis of an adjacent ester. Results related to a kinase-panel screening for several selected compounds are also discussed in this article.
Collapse
Affiliation(s)
- Chao Che
- Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Beijing, 100871
| | | | | | | | | | | |
Collapse
|
246
|
Zhong W, Liu H, Kaller MR, Henley C, Magal E, Nguyen T, Osslund TD, Powers D, Rzasa RM, Wang HL, Wang W, Xiong X, Zhang J, Norman MH. Design and synthesis of quinolin-2(1H)-one derivatives as potent CDK5 inhibitors. Bioorg Med Chem Lett 2007; 17:5384-9. [PMID: 17709247 DOI: 10.1016/j.bmcl.2007.07.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 11/25/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine protein kinase and its deregulation is implicated in a number of neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Using active site homology modeling between CDK5 and CDK2, we explored several different chemical series of potent CDK5 inhibitors. In this report, we describe the design, synthesis, and CDK5 inhibitory activities of quinolin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Wenge Zhong
- Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 2007; 6:464-79. [PMID: 17541419 DOI: 10.1038/nrd2111] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aggregation of hyperphosphorylated tau is one of the characteristic neuropathological lesions of Alzheimer's disease and other neurodegenerative disorders. Pharmacological modulation of tau hyperphosphorylation might represent a valid and feasible therapeutic strategy for such disorders. Here, we consider recent evidence supporting the validity of the three most relevant kinases affecting tau hyperphosphorylation - GSK3beta, CDK5 and ERK2 - as drug targets and describe progress in the design of inhibitors for these kinases.
Collapse
Affiliation(s)
- Michael P Mazanetz
- Centre for Biomolecular Sciences and School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | |
Collapse
|
248
|
Myrianthopoulos V, Magiatis P, Ferandin Y, Skaltsounis AL, Meijer L, Mikros E. An Integrated Computational Approach to the Phenomenon of Potent and Selective Inhibition of Aurora Kinases B and C by a Series of 7-Substituted Indirubins. J Med Chem 2007; 50:4027-37. [PMID: 17665890 DOI: 10.1021/jm070077z] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A variation of the bromine substitution from 6- to 7-position converts the glycogen synthase kinase-3alpha/beta-(GSK-3-alpha/beta) selective inhibitor 6-bromoindirubin-3'-oxime (6BIO) to a potent inhibitor of Aurora B and C kinases. The novel indirubin analogue 7-bromoindirubin-3'-oxime (7BIO) demonstrated unexpected selectivity against these two kinases since the homologous kinase Aurora A was poorly inhibited. A hypothesis regarding the 7BIO selectivity profile was stated and validated by docking, molecular dynamics, and free energy perturbation calculations. The residue (Thr217AurA, Glu161AurB, Glu127AurC) located in the active site was identified as a major contributor to the enhanced affinity of 7BIO for Aurora B and C versus Aurora A. Furthermore, the docking events of 7BIO and several of its analogues were approached by quantitative models based on semiempirical scoring functions. In the course of model construction and optimization, a number of important factors influencing the quality of each model like the application of force constraints or the sampling method were determined. Among these factors, the presence and treatment of structurally important water molecules had a pronounced impact on the quality of each model. The final model was validated by use of free energy perturbation calculations.
Collapse
|
249
|
Rzasa RM, Kaller MR, Liu G, Magal E, Nguyen TT, Osslund TD, Powers D, Santora VJ, Viswanadhan VN, Wang HL, Xiong X, Zhong W, Norman MH. Structure-activity relationships of 3,4-dihydro-1H-quinazolin-2-one derivatives as potential CDK5 inhibitors. Bioorg Med Chem 2007; 15:6574-95. [PMID: 17697781 DOI: 10.1016/j.bmc.2007.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/30/2007] [Accepted: 07/09/2007] [Indexed: 11/17/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase that plays a critical role in the early development of the nervous system. Deregulation of CDK5 is believed to contribute to the abnormal phosphorylation of various cellular substrates associated with neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Acyclic urea 3 was identified as a potent CDK5 inhibitor and co-crystallographic data of urea 3/CDK2 enzyme were used to design a novel series of 3,4-dihydroquinazolin-2(1H)-ones as CDK5 inhibitors. In this investigation we present our synthetic studies toward this series of compounds and discuss their biological relevance as CDK5 inhibitors.
Collapse
Affiliation(s)
- Robert M Rzasa
- Department of Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Liu L, Zhang LN, Jiang FC. Construction of the Pharmacophore Model of Glycogen Synthase Kinase-3 Inhibitors. CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|