201
|
Chen R, Intermaggio NE, Xie J, Rossi-Ashton JA, Gould CA, Martin RT, Alcázar J, MacMillan DWC. Alcohol-alcohol cross-coupling enabled by S H2 radical sorting. Science 2024; 383:1350-1357. [PMID: 38513032 DOI: 10.1126/science.adl5890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Alcohols represent a functional group class with unparalleled abundance and structural diversity. In an era of chemical synthesis that prioritizes reducing time to target and maximizing exploration of chemical space, harnessing these building blocks for carbon-carbon bond-forming reactions is a key goal in organic chemistry. In particular, leveraging a single activation mode to form a new C(sp3)-C(sp3) bond from two alcohol subunits would enable access to an extraordinary level of structural diversity. In this work, we report a nickel radical sorting-mediated cross-alcohol coupling wherein two alcohol fragments are deoxygenated and coupled in one reaction vessel, open to air.
Collapse
Affiliation(s)
- Ruizhe Chen
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | | | - Jiaxin Xie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | | | - Colin A Gould
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Robert T Martin
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| | - Jesús Alcázar
- Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
202
|
Halaczkiewicz M, Maraj A, Kelm H, Manolikakes G. Brønsted Acid-Catalyzed Diastereoselective Synthesis of Spiroisoindolinones from Enamides. Org Lett 2024; 26:2321-2325. [PMID: 38467018 DOI: 10.1021/acs.orglett.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A highly diastereoselective synthesis of spiroisoindolinones from enamides and 3-hydroxy-isoindolinones is reported. The reaction proceeds rapidly in the presence of p-toluenesulfonic acid as a Brønsted acid catalyst and affords a variety of densely substituted spiroisoindolinones with three contiguous stereogenic centers in high yields (≤98%) and diastereoselectivities (up to dr >98:<2:0:0).
Collapse
Affiliation(s)
- Miro Halaczkiewicz
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Arianit Maraj
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Harald Kelm
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. Geb. 54, 67663 Kaiserslautern, Germany
| |
Collapse
|
203
|
Yan P, Stegbauer S, Wu Q, Kolodzeiski E, Stein CJ, Lu P, Bach T. Enantioselective Intramolecular ortho Photocycloaddition Reactions of 2-Acetonaphthones. Angew Chem Int Ed Engl 2024; 63:e202318126. [PMID: 38275271 DOI: 10.1002/anie.202318126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
2-Acetonaphthones, which bear an alkenyl group tethered to its C1 carbon atom via an oxygen atom, were found to undergo an enantioselective intramolecular ortho photocycloaddition reaction. A chiral oxazaborolidine Lewis acid leads to a bathochromic absorption shift of the substrate and enables an efficient enantioface differentiation. Visible light irradiation (λ=450 nm) triggers the reaction which is tolerant of various groups at almost any position except carbon atom C8 (16 examples, 53-99 % yield, 80-97 % ee). Consecutive reactions were explored including a sensitized rearrangement to tetrahydrobiphenylenes, which occurred with full retention of configuration. Evidence was collected that the catalytic photocycloaddition occurs via triplet intermediates, and the binding mode of the acetonaphthone to the chiral Lewis acid was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Peng Yan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Simone Stegbauer
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Qinqin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Elena Kolodzeiski
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Christopher J Stein
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| |
Collapse
|
204
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
205
|
Kehoe RA, Lowry A, Light ME, Jones DJ, Byrne PA, McGlacken GP. Regioselective Partial Hydrogenation and Deuteration of Tetracyclic (Hetero)aromatic Systems Using a Simple Heterogeneous Catalyst. Chemistry 2024; 30:e202400102. [PMID: 38214926 DOI: 10.1002/chem.202400102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/13/2024]
Abstract
The introduction of added '3-dimensionality' through late-stage functionalisation of extended (hetero)aromatic systems is a powerful synthetic approach. The abundance of starting materials and cross-coupling methodologies to access the precursors allows for highly diverse products. Subsequent selective partial reduction can alter the core structure in a manner of interest to medicinal chemists. Herein, we describe the precise, partial reduction of multicyclic heteroaromatic systems using a simple heterogeneous catalyst. The approach can be extended to introduce deuterium (again at late-stage). Excellent yields can be obtained using simple reaction conditions.
Collapse
Affiliation(s)
- Roberta A Kehoe
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
| | - Amy Lowry
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
| | - Mark E Light
- Department of Chemistry, University of, Southampton, SO17 1BJ, United Kingdom
| | - David J Jones
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph-Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Peter A Byrne
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Gerard P McGlacken
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Robert Kane Building, Western Road, Cork
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick, Limerick
| |
Collapse
|
206
|
Le TV, Ramachandru GG, Daugulis O. Trifluoroethylation and Pentafluoropropylation of C(sp 3)-H Bonds. Chemistry 2024; 30:e202303190. [PMID: 38011542 DOI: 10.1002/chem.202303190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Polyfluorinated substituents often enhance effectiveness, improve the stability within metabolic processes, and boost the lipophilicity of biologically active compounds. However, methods for their introduction into aliphatic carbon chains remain very limited. A potentially general route to integrate the fluorinated scaffolds into organic molecules involves insertion of fluorine-containing carbenes into C(sp3)-H bonds. The electron-withdrawing characteristics of perfluoroalkyl groups enhances the reactivity of these carbenes which should enable the functionalization of unactivated C(sp3)-H bonds. Curiously, it appears that use of perfluoroalkyl-containing carbenes in alkane C-H functionalization is exceedingly rare. This concept describes photolysis, enzymatic catalysis, and transition metal catalysis as three primary approaches to C(sp3)-H functionalization by trifluoromethylcarbene and its homologues.
Collapse
Affiliation(s)
- Thanh V Le
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| | - Girish G Ramachandru
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, USA
| |
Collapse
|
207
|
Leblanc J, Boutin M, Vega C, Mathé-Allainmat M, Grosse S, Guillemont J, Lebreton J, Tessier A. A new synthetic route towards multifunctionalized cyclic amidrazones for feeding chemical space. Org Biomol Chem 2024; 22:2404-2408. [PMID: 38411004 DOI: 10.1039/d3ob02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In the context of growing impetus to develop new molecular scaffolds as well as a variety of 3D fragments to escape from flatland, we have reintroduced the accessibility of the underexplored azaheterocyclic amidrazones as promising bioisosteres. Herein, we present an original and versatile approach to synthesize cyclic amidrazones functionalized at different positions of the scaffold in view of diversifying the substitution pattern towards multifunctionalization, extension or fusion of the ring system and 3D-shaping of fragments. This unprecedented synthetic route represents a sweet achievement to cover further lead-like chemical space.
Collapse
Affiliation(s)
- Johann Leblanc
- Nantes Université, CNRS, CEISAM, UMR 6230, 2 rue de la Houssinière, BP 92208, F-44000 Nantes, France.
| | - Margaux Boutin
- Nantes Université, CNRS, CEISAM, UMR 6230, 2 rue de la Houssinière, BP 92208, F-44000 Nantes, France.
| | - Clara Vega
- Nantes Université, CNRS, CEISAM, UMR 6230, 2 rue de la Houssinière, BP 92208, F-44000 Nantes, France.
| | - Monique Mathé-Allainmat
- Nantes Université, CNRS, CEISAM, UMR 6230, 2 rue de la Houssinière, BP 92208, F-44000 Nantes, France.
| | - Sandrine Grosse
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jérôme Guillemont
- NovAliX on-site Janssen-Cilag, Centre de recherche Pharma, Campus de Maigremont BP615, F-27106 Val de Reuil Cedex, France
| | - Jacques Lebreton
- Nantes Université, CNRS, CEISAM, UMR 6230, 2 rue de la Houssinière, BP 92208, F-44000 Nantes, France.
| | - Arnaud Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, 2 rue de la Houssinière, BP 92208, F-44000 Nantes, France.
| |
Collapse
|
208
|
Voloshkin VA, Villa M, Martynova EA, Beliš M, Van Hecke K, Ceroni P, Nolan SP. Synthesis of cyclobutane-fused chromanones via gold-mediated photocatalysis. Chem Sci 2024; 15:4571-4580. [PMID: 38516071 PMCID: PMC10952090 DOI: 10.1039/d3sc06675d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Energy transfer (EnT) photocatalysis has emerged as a valuable tool for constructing complex organic scaffolds via [2 + 2]-cycloaddition reactions. Herein, we present the use of [Au(SIPr)(Cbz)] as a sensitizer for the [2 + 2]-cycloaddition of coumarins and unactivated alkenes. Widely used in EnT catalysis, iridium and organic sensitizers proved less efficient under the examined catalytic conditions. The developed protocol permits the synthesis of cyclobutane-fused chromanones from readily available starting materials. A wide range of alkenes and substituted coumarins, including naturally occurring compounds, were reacted under mild conditions leading to structurally complex products with good functional group tolerance. Mechanistic studies reveal a previously overlooked reaction pathway for energy transfer catalysis involving coumarins.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marco Villa
- Department of Chemistry "Giacomo Ciamician", Center for Chemical Catalysis-C3, University of Bologna Via Selmi, 2 40126 Bologna Italy
| | - Ekaterina A Martynova
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marek Beliš
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician", Center for Chemical Catalysis-C3, University of Bologna Via Selmi, 2 40126 Bologna Italy
| | - Steven P Nolan
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| |
Collapse
|
209
|
Zou S, Zhao Z, Huang H. Enantioselective Ring-Closing Aminomethylamination of Allylic Aminodienes with Aminals Triggered by C-N Bond Metathesis. Org Lett 2024. [PMID: 38502801 DOI: 10.1021/acs.orglett.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A conceptually novel strategy utilizing a cyclopalladated complex as an electrophile to activate the C-N bond for the C-N bond metathesis between allylamines and aminals is developed, which enables an efficient ring-closing aminomethylamination of allylic aminodienes and aminals. The reaction proceeds under mild reaction conditions and displays a remarkable scope. Utilizing a modified Trost-type diphosphine as the ligand, this method enables the efficient synthesis of 5-10-membered aminoallylated chiral N-heterocycles in good yields with high enantiomeric excess values.
Collapse
Affiliation(s)
- Suchen Zou
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zeyu Zhao
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic of China
| |
Collapse
|
210
|
Pirzada AS, Khan H, Alam W, Darwish HW, Elhenawy AA, Kuznetsov A, Daglia M. Physicochemical properties, pharmacokinetic studies, DFT approach, and antioxidant activity of nitro and chloro indolinone derivatives. Front Chem 2024; 12:1360719. [PMID: 38562526 PMCID: PMC10982469 DOI: 10.3389/fchem.2024.1360719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
The process of developing of new drugs is greatly hampered by their inadequate physicochemical, pharmacokinetic, and intrinsic characteristics. In this regard, the selected chloro indolinone, (Z)-6-chloro-3-(2-chlorobenzylidene)indolin-2-one (C1), and nitro indolinone, (Z)-6-chloro-3-(2-nitrobenzylidene)indolin-2-one (C2), were subjected to SwissADME and density function theory (DFT) analysis. For compounds C1 and C2, the BOILED-Egg pharmacokinetic model predicted intestinal absorption, blood-brain barrier (BBB) penetration, and p-glycoprotein interaction. According to the physicochemical analysis, C1 has exceptional drug-like characteristics suitable for oral absorption. Despite only being substrates for some of the major CYP 450 isoforms, compounds C1 and C2 were anticipated to have strong plasma protein binding and efficient distribution and block these isoforms. The DFT study using the B3LYP/6-311G(d,p) approach with implicit water effects was performed to assess the structural features, electronic properties, and global reactivity parameters (GRP) of C1 and C2. The DFT results provided further support for other studies, implying that C2 is more water-soluble than C1 and that both compounds can form hydrogen bonds and (weak) dispersion interactions with other molecules, such as solvents and biomolecules. Furthermore, the GRP study suggested that C1 should be more stable and less reactive than C2. A concentration-dependent 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was shown by both C1 and C2. In brief, this finding has provided a strong foundation to explore further the therapeutic potential of these molecules against a variety of human disorders.
Collapse
Affiliation(s)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Aleksey Kuznetsov
- Department of Chemistry, Universidad Técnica Federico Santa Maria, Santiago, Chile
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
211
|
Ning Y, Chen H, Ning Y, Zhang J, Bi X. Rhodium-Catalyzed One-Carbon Ring Expansion of Aziridines with Vinyl-N-triftosylhydrazones for the Synthesis of 2-Vinyl Azetidines. Angew Chem Int Ed Engl 2024; 63:e202318072. [PMID: 38282137 DOI: 10.1002/anie.202318072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/25/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Azetidines, being four-membered N-heterocycles, possess significant potential in contemporary medicinal chemistry owing to their favorable pharmacokinetic properties. Regrettably, the incorporation of functionalized azetidines into pharmaceutical lead structures has been impeded by the absence of efficient synthetic methods for their synthesis. In this study, a Rh-catalyzed one-carbon ring expansion of aziridines with vinyl-N-triftosylhydrazones is presented, which facilitates the synthesis of high value-added 2-alkenyl azetidine products. This research represents the first example of ring expansion of aziridines enabled by vinyl carbenes. Additionally, a one-pot two-step protocol, initiated from cinnamaldehyde, was successfully achieved, offering a step-economical and facile approach for the synthesis of these compounds. The pivotal aspect of this successful transformation lies in the in situ formation of an alkenyl aziridinium ylide intermediate. Experimental investigations, coupled with computational studies, suggest that a diradical pathway is involved in the reaction mechanism.
Collapse
Affiliation(s)
- Yongquan Ning
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Yongyue Ning
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Jin Zhang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
212
|
Pattison G. Assessing the rigidity of cubanes and bicyclo(1.1.1)pentanes as benzene bioisosteres. Bioorg Med Chem 2024; 102:117652. [PMID: 38442523 DOI: 10.1016/j.bmc.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Aromatic rings are critical core substructures in the majority of pharmaceutical compounds. There is much recent interest in replacing aromatic structures with saturated bioisosteres of benzene, which are generally fused or bridged ring systems. These bioisosteres often show improved solubility properties compared to benzene, and may also undergo fewer unwanted metabolic processes. One key reason why aromatic rings have proven so successful in drug design is their rigidity. This paper uses molecular dynamics simulations supported by crystallographic data to assess the rigidity of bicyclopentane and cubane ring systems as two of the most common benzene bioisosteres and compares this to benzene. Whilst a benzene ring is shown to be more flexible than these two bioisosteres in terms of its dihedral ring flexibility, substituents around the ring tend to behave in a much more similar way in both benzene and the bioisosteric systems.
Collapse
Affiliation(s)
- Graham Pattison
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, UK LN6 7DL.
| |
Collapse
|
213
|
Bock MJ, Denmark SE. Rapid, Homogenous, B-Alkyl Suzuki-Miyaura Cross-Coupling of Boronic Esters. J Org Chem 2024. [PMID: 38483187 PMCID: PMC11399326 DOI: 10.1021/acs.joc.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A rapid, anhydrous Suzuki-Miyaura cross-coupling of alkylboronic esters with aryl halides is described. Parallel experimentation revealed that the combination of AntPhos, an oxaphosphole ligand, neopentyldiol alkylboronic esters, and potassium trimethylsilanolate (TMSOK) enables successful cross-coupling. In general, reactions proceed in under 1 h with good yields and high linear/branched (l/b) selectivities. Crucially, two literature examples which previously took >20 h to reach completion were accomplished in a fraction of the time with the method described herein. Mechanistic studies revealed that the reaction proceeds through a stereoretentive pathway and identified the boronic ester skeleton as a predominant pathway for deleterious protodehalogenation.
Collapse
Affiliation(s)
- Matthew J Bock
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| | - Scott E Denmark
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
214
|
DeMuynck BM, Zhang L, Ralph EK, Nagib DA. Cyclopropanation of unactivated alkenes with non-stabilized iron carbenes. Chem 2024; 10:1015-1027. [PMID: 39070927 PMCID: PMC11281255 DOI: 10.1016/j.chempr.2024.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cyclopropanes are ubiquitous in medicines, yet robust synthetic access to a wide range of sterically and electronically diverse analogs remains a challenge. To address the synthetic limitations of the most direct strategy, (2+1) cycloaddition, we sought to develop a variant that employs non-stabilized carbenes. We present herein an FeCl2-catalyzed cyclopropanation that uniquely employs aliphatic (enolizable) aldehydes as carbene precursors. A remarkably broad range of alkenes may be coupled with these non-stabilized, alkyl carbenes. This extensive scope enables the synthesis of novel classes of cyclopropanes bearing alkyl, benzyl, allyl, halide, and heteroatom substituents, as well as spirocyclic and fused bicycles. Over 40 examples illustrate the broad generality, efficiency, selectivity, functional group tolerance, and practical utility of this approach. Mechanistic insights, gathered from stereochemical probes and competition experiments, are included to reveal the applicability of this non-stabilized carbene route for novel cyclopropane synthesis.
Collapse
Affiliation(s)
- Bethany M. DeMuynck
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Lumin Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Emma K. Ralph
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
215
|
Montejo-López W, Sampieri-Cabrera R, Nicolás-Vázquez MI, Aceves-Hernández JM, Razo-Hernández RS. Analysing the effect caused by increasing the molecular volume in M1-AChR receptor agonists and antagonists: a structural and computational study. RSC Adv 2024; 14:8615-8640. [PMID: 38495977 PMCID: PMC10938299 DOI: 10.1039/d3ra07380g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
M1 muscarinic acetylcholine receptor (M1-AChR), a member of the G protein-coupled receptors (GPCR) family, plays a crucial role in learning and memory, making it an important drug target for Alzheimer's disease (AD) and schizophrenia. M1-AChR activation and deactivation have shown modifying effects in AD and PD preclinical models, respectively. However, understanding the pharmacology associated with M1-AChR activation or deactivation is complex, because of the low selectivity among muscarinic subtypes, hampering their therapeutic applications. In this regard, we constructed two quantitative structure-activity relationship (QSAR) models, one for M1-AChR agonists (total and partial), and the other for the antagonists. The binding mode of 59 structurally different compounds, including agonists and antagonists with experimental binding affinity values (pKi), were analyzed employing computational molecular docking over different structures of M1-AChR. Furthermore, we considered the interaction energy (Einter), the number of rotatable bonds (NRB), and lipophilicity (ilogP) for the construction of the QSAR model for agonists (R2 = 89.64, QLMO2 = 78, and Qext2 = 79.1). For the QSAR model of antagonists (R2 = 88.44, QLMO2 = 82, and Qext2 = 78.1) we considered the Einter, the fraction of sp3 carbons fCsp3, and lipophilicity (MlogP). Our results suggest that the ligand volume is a determinant to establish its biological activity (agonist or antagonist), causing changes in binding energy, and determining the affinity for M1-AChR.
Collapse
Affiliation(s)
- Wilber Montejo-López
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México Avenida 1o de Mayo s/n, Colonia Santa María las Torres Cuautitlán Izcalli Estado de Mexico 54740 Mexico
| | - Raúl Sampieri-Cabrera
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Centro de Ciencias de Complejidad, Universidad Nacional Autónoma de México Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México Avenida 1o de Mayo s/n, Colonia Santa María las Torres Cuautitlán Izcalli Estado de Mexico 54740 Mexico
| | - Juan Manuel Aceves-Hernández
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Cuautitlán Izcalli Estado de Mexico 54714 Mexico
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos Av. Universidad 1001 Cuernavaca 62209 Mexico
| |
Collapse
|
216
|
Kepdieu Tchebou RV, Farooq U, Teponno RB, Wani TA, Tapondjou LA, Rasool A, Sarwar R, Khushal A, Bukhari SM, Zargar S, Xu HG, Khan S. Exploring Cassia mimosoïdes as a promising natural source of steroids with potent anti-cancer, urease inhibition, and antimicrobial properties. RSC Adv 2024; 14:9159-9168. [PMID: 38500625 PMCID: PMC10945739 DOI: 10.1039/d3ra08913d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The genus Cassia is a rich source of physiologically active secondary metabolites, including a novel compound named 21-methylene-24-ethylidene lophenol, alongside 15 known compounds. These compounds were characterized using different spectroscopic techniques. They exhibited promising antimicrobial activity, particularly against bacteria causing gastrointestinal infections. Compound 1 showed strong anti-bacterial activity against H. pylori and S. aur with MIC values of 0.28 and 0.12 μg mL-1 respectively. The study investigated their impact on H. pylori, a contributor to ulcer development, by inhibiting the urease enzyme. Inhibiting urease can reduce H. pylori's pathogenic potential, evident from the fact that the compounds evaluated toward urease enzyme showed higher inhibitory activity (1.024 ± 0.43 6.678±0.11 μM) compared to standard thiourea (IC50 = 18.61 ± 0.11 μM). Molecular docking studies confirmed their inhibitory action, with compound 7 notably outperforming thiourea in inhibiting urease (-6.95 kcal mol-1vs. -3.13 kcal mol-1). Additionally, these compounds showed positive effects on liver functioning, which H. pylori can impair. Compound 9 shows the best response against human HepG2 liver cancer cell lines i.e., % viability is 14.47% ± 0.69 and IC50 is 7.8 μM ± 0.21. These compounds hold potential as lead compounds for addressing gastrointestinal and liver disorders caused by H. pylori.
Collapse
Affiliation(s)
- Robert Viani Kepdieu Tchebou
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang Box 67 Dschang Cameroon
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Rémy Bertrand Teponno
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang Box 67 Dschang Cameroon
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University POBox 2457 Riyadh 11451 Saudi Arabia
| | - Léon Azefack Tapondjou
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang Box 67 Dschang Cameroon
| | - Azhar Rasool
- Department of Zoology, GC University Faisalabad Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| | - Aneela Khushal
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| | - Syed Majid Bukhari
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| | - Seema Zargar
- Department of Biochemistry College of Science, King Saud University PO Box 22452 Riyadh 11451 Saudi Arabia
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Sara Khan
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| |
Collapse
|
217
|
Babcock DJ, Wolfram AJ, Barney JL, Servagno SM, Sharma A, Nacsa ED. A free-radical design featuring an intramolecular migration for a synthetically versatile alkyl-(hetero)arylation of simple olefins. Chem Sci 2024; 15:4031-4040. [PMID: 38487219 PMCID: PMC10935719 DOI: 10.1039/d3sc06476j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
A free-radical approach has enabled the development of a synthetically versatile alkyl-(hetero)arylation of olefins. Alkyl and (hetero)aryl groups were added concurrently to a full suite of mono- to tetrasubstituted simple alkenes (i.e., without requiring directing or electronically activating groups) for the first time. Key advances also included the introduction of synthetically diversifiable alkyl groups featuring different degrees of substitution, good diastereocontrol in both cyclic and acyclic settings, the addition of biologically valuable heteroarenes featuring Lewis basic nitrogen atoms as well as simple benzenes, and the generation of either tertiary or quaternary benzylic centers. The synthetic potential of this transformation was demonstrated by leveraging it as the key step in a concise synthesis of oliceridine, a new painkiller that received FDA approval in 2020.
Collapse
Affiliation(s)
- Dylan J Babcock
- The Pennsylvania State University, Department of Chemistry University Park PA 16802 USA
| | - Andrew J Wolfram
- The Pennsylvania State University, Department of Chemistry University Park PA 16802 USA
| | - Jaxon L Barney
- The Pennsylvania State University, Department of Chemistry University Park PA 16802 USA
| | - Santino M Servagno
- The Pennsylvania State University, Department of Chemistry University Park PA 16802 USA
| | - Ayush Sharma
- The Pennsylvania State University, Department of Chemistry University Park PA 16802 USA
| | - Eric D Nacsa
- The Pennsylvania State University, Department of Chemistry University Park PA 16802 USA
| |
Collapse
|
218
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
219
|
Kuralt V, Frlan R. Navigating the Chemical Space of ENR Inhibitors: A Comprehensive Analysis. Antibiotics (Basel) 2024; 13:252. [PMID: 38534687 DOI: 10.3390/antibiotics13030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial resistance is a global health threat that requires innovative strategies against drug-resistant bacteria. Our study focuses on enoyl-acyl carrier protein reductases (ENRs), in particular FabI, FabK, FabV, and InhA, as potential antimicrobial agents. Despite their promising potential, the lack of clinical approvals for inhibitors such as triclosan and isoniazid underscores the challenges in achieving preclinical success. In our study, we curated and analyzed a dataset of 1412 small molecules recognized as ENR inhibitors, investigating different structural variants. Using advanced cheminformatic tools, we mapped the physicochemical landscape and identified specific structural features as key determinants of bioactivity. Furthermore, we investigated whether the compounds conform to Lipinski rules, PAINS, and Brenk filters, which are crucial for the advancement of compounds in development pipelines. Furthermore, we investigated structural diversity using four different representations: Chemotype diversity, molecular similarity, t-SNE visualization, molecular complexity, and cluster analysis. By using advanced bioinformatics tools such as matched molecular pairs (MMP) analysis, machine learning, and SHAP analysis, we were able to improve our understanding of the activity cliques and the precise effects of the functional groups. In summary, this chemoinformatic investigation has unraveled the FAB inhibitors and provided insights into rational antimicrobial design, seamlessly integrating computation into the discovery of new antimicrobial agents.
Collapse
Affiliation(s)
- Vid Kuralt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Rok Frlan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
220
|
Yan Q, Zhuang Z, Fan R, Wang J, Yao T, Tan J. Access to N-Aryl (Iso)quinolones via Aryne-Induced Three-Component Coupling Reaction. Org Lett 2024; 26:1840-1844. [PMID: 38412291 DOI: 10.1021/acs.orglett.3c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
N-Aryl (iso)quinolones are of increasing interest in material and medicinal chemistry, although general routes for their provision remain underexplored, especially when compared with its N-alkyl counterparts. Herein, we report a modular and transition-metal-free, aryne-induced three-component coupling protocol that allows the facile synthesis of structurally diverse N-aryl (iso)quinolones from readily accessible halo-(iso)quinolines in the presence of water. Preliminary results highlight the applicability of our method through scale-up synthesis, downstream derivatization, and flexible synthesis involving other types of aryne precursors.
Collapse
Affiliation(s)
- Qiang Yan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhe Zhuang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Rong Fan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Jingwen Wang
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| | - Tuanli Yao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiajing Tan
- College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China
| |
Collapse
|
221
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
222
|
Gesmundo NJ, Rago AJ, Young JM, Keess S, Wang Y. At the Speed of Light: The Systematic Implementation of Photoredox Cross-Coupling Reactions for Medicinal Chemistry Research. J Org Chem 2024. [PMID: 38442262 DOI: 10.1021/acs.joc.3c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The adoption of new and emerging techniques in organic synthesis is essential to promote innovation in drug discovery. In this Perspective, we detail the strategy we used for the systematic deployment of photoredox-mediated, metal-catalyzed cross-coupling reactions in AbbVie's medicinal chemistry organization, focusing on topics such as assessment, evaluation, implementation, and accessibility. The comprehensive evaluation of photoredox reaction setups and published methods will be discussed, along with internal efforts to build expertise and photoredox high-throughput experimentation capabilities. We also highlight AbbVie's academic-industry collaborations in this field that have been leveraged to develop new synthetic strategies, along with discussing the internal adoption of photoredox cross-coupling reactions. The work described herein has culminated in robust photocatalysis and cross-coupling capabilities which are viewed as key platforms for medicinal chemistry research at AbbVie.
Collapse
Affiliation(s)
- Nathan J Gesmundo
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alexander J Rago
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jonathon M Young
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Sebastian Keess
- Global Medicinal Chemistry, Small Molecule Therapeutics & Platform Technologies, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Ying Wang
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
223
|
Abe M, Coleman JS, Presley CC, Schley ND, Lindsley CW. Rapid sp 3-Enriched Scaffold Generation via a Selective Aziridine Amide Ring-Opening Reaction. J Org Chem 2024; 89:3500-3508. [PMID: 38340064 PMCID: PMC10913065 DOI: 10.1021/acs.joc.3c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Sp3-enriched small molecules play a critical role in developing drug candidates. While designing analogues with greater sp3 character, a methodology utilizing a less explored cyclic-aziridine amide ring-opening reaction to generate sp3-enriched scaffolds has been developed and reported. This methodology enables rapid access to substructures with higher fsp3 values, attracting greater attention within the past few decades. The reaction exhibits a wide reaction scope, featuring a highly sterically hindered phenolic ether, thiophenolic ethers, protected aniline formations, and aliphatic/heteroaromatic ring-containing aziridine amides as substrates. Additionally, this reaction provides access to congested tertiary ether formations through regioselective transformation, applicable to an extensive range of drug discovery targets, construction of complex small molecules, and natural product syntheses. The scaffolds developed show improved physicochemical properties.
Collapse
Affiliation(s)
- Masahito Abe
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Jeremy S. Coleman
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Christopher C. Presley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Nathan D. Schley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
224
|
Ren H, Li T, Xing J, Li Z, Zhang Y, Yu X, Zheng J. Ti-Catalyzed Formal [2π + 2σ] Cycloadditions of Bicyclo[1.1.0]butanes with 2-Azadienes to Access Aminobicyclo[2.1.1]hexanes. Org Lett 2024; 26:1745-1750. [PMID: 38377354 DOI: 10.1021/acs.orglett.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Saturated bicyclic amines are increasingly targeted to the pharmaceutical industry as sp3-rich bioisosteres of anilines. Numerous strategies have been established for the preparation of bridgehead aminobicyclics. However, methods to assemble the bridge-amino hydrocarbon skeleton, which serves as a meta-substituted arene bioisostere, are limited. Herein, a general approach to access 2-aminobicyclo[2.1.1]hexanes (aminoBCHs) by titanium-catalyzed formal [2π + 2σ] cycloaddition of bicyclo[1.1.0]butanes and 2-azadienes was developed. Simple derivatization of aminoBCHs leads to various medicinally and agrochemically important analogues.
Collapse
Affiliation(s)
- Haosong Ren
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tianxiang Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinping Xing
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenyue Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanxia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xinhong Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
225
|
Wang Z, Zhang H, Gao Z, Sang Z, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Structure-based design and optimization lead to the identification of novel dihydrothiopyrano[3,2- d]pyrimidine derivatives as potent HIV-1 inhibitors against drug-resistant variants. Acta Pharm Sin B 2024; 14:1257-1282. [PMID: 38486991 PMCID: PMC10935503 DOI: 10.1016/j.apsb.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
With our continuous endeavors in seeking potent anti-HIV-1 agents, we reported here the discovery, biological characterization, and druggability evaluation of a class of nonnucleoside reverse transcriptase inhibitors. To fully explore the chemical space of the NNRTI-binding pocket, novel series of dihydrothiopyrano [3,2-d]pyrimidines were developed by employing the structure-based design strategy. Most of the derivatives were endowed with prominent antiviral activities against HIV-1 wild-type and resistant strains at nanomolar levels. Among them, compound 23h featuring the aminopiperidine moiety was identified as the most potent inhibitor, with EC50 values ranging from 3.43 to 21.4 nmol/L. Especially, for the challenging double-mutants F227L + V106A and K103N + Y181C, 23h exhibited 2.3- to 14.5-fold more potent activity than the first-line drugs efavirenz and etravirine. Besides, the resistance profiles of 23h achieved remarkable improvement compared to efavirenz and etravirine. The binding target of 23h was further confirmed to be HIV-1 reverse transcriptase. Molecular modeling studies were also performed to elucidate the biological evaluation results and give guidance for the optimization campaign. Furthermore, no apparent inhibition of the major CYP450 enzymes and hERG channel was observed for 23h. Most importantly, 23h was characterized by good pharmacokinetic properties and excellent safety in vivo. Collectively, 23h holds great promise as a potential candidate for its effective antiviral efficacy and favorable drug-like profiles.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zihao Sang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan 250012, China
| |
Collapse
|
226
|
van Vlijmen H, Pannifer AD, Cochrane P, Basting D, Li VM, Engkvist O, Ortholand JY, Wagener M, Duffy J, Finsinger D, Davis J, van Helden SP, de Vlieger JSB. The European Lead Factory: Results from a decade of collaborative, public-private, drug discovery programs. Drug Discov Today 2024; 29:103886. [PMID: 38244673 DOI: 10.1016/j.drudis.2024.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
The European Lead Factory (ELF) is a consortium of universities and small and medium-sized enterprises (SMEs) dedicated to drug discovery, and the pharmaceutical industry. This unprecedented consortium provides high-throughput screening, triage, and hit validation, including to non-consortium members. The ELF library was created through a novel compound-sharing model between nine pharmaceutical companies and expanded through library synthesis by chemistry-specialized SMEs. The library has been screened against ∼270 different targets and 15 phenotypic assays, and hits have been developed to form the basis of patents and spin-off companies. Here, we review the outcome of screening campaigns of the ELF, including the performance and physicochemical properties of the library, identification of possible frequent hitter compounds, and the effectiveness of the compound-sharing model.
Collapse
Affiliation(s)
| | | | | | | | - Volkhart M Li
- Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Ola Engkvist
- AstraZeneca Discovery Sciences, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | | | | | - James Duffy
- Medicines for Malaria Venture, ICC 20, Rte de Pré-Bois, 1215 Geneva, Switzerland
| | - Dirk Finsinger
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jeremy Davis
- UCB Biopharma UK, 216 Bath Road, Slough, SL1 3WE, UK
| | | | | |
Collapse
|
227
|
Tan TD, Serviano JMI, Luo X, Qian PC, Holland PL, Zhang X, Koh MJ. Congested C(sp3)-rich architectures enabled by iron-catalysed conjunctive alkylation. Nat Catal 2024; 7:321-329. [PMID: 38855712 PMCID: PMC11155680 DOI: 10.1038/s41929-024-01113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/22/2024] [Indexed: 06/11/2024]
Abstract
Catalytic cross-coupling by transition metals has revolutionized the formation of C-C bonds in organic synthesis. However, the challenge of forming multiple alkyl-alkyl bonds in crowded environments remains largely unresolved. Here, we report the regioselective functionalization of olefins with sp3-hybridized organohalides and organozinc reagents using a simple (terpyridine)iron catalyst. Aliphatic groups of various sizes are successfully installed on either olefinic carbon, furnishing a diverse array of products with congested cores featuring C- or heteroatom-substituted stereocenters. The method enables access to valuable but synthetically challenging C(sp3)-rich molecules, including alicyclic compounds bearing multiple contiguous stereocenters through annulation cascades. Mechanistic and theoretical studies suggest a stepwise iron-mediated radical carbometallation pathway followed by outer-sphere C-C bond formation, which potentially opens the door to a broader scope of transformations and new chemical space.
Collapse
Affiliation(s)
- Tong-De Tan
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Juan M I Serviano
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- These authors jointly supervised this work
| | - Xinglong Zhang
- Institute of High-Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Republic of Singapore, 138632
- These authors jointly supervised this work
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Republic of Singapore, 117544
- These authors jointly supervised this work
| |
Collapse
|
228
|
Ren Y, Mo L, Wang Y, Yu L, Yin M, Xiong Z, Teng F, He Y. Modular Synthesis of 1,2-Benzothiazines and 1,2-Benzothiazine 1-Imines via Palladium-Catalyzed C-H/C-C Activation Reactions. J Org Chem 2024; 89:3345-3358. [PMID: 38372225 DOI: 10.1021/acs.joc.3c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In this study, a modular approach toward cyclic sulfoximines and sulfondiimines via palladium-catalyzed intramolecular C-H/C-C activation reactions was reported. Various 1,2-benzothiazines including bicyclic, tricyclic, highly fused ones, ones of the seven-membered ring, along with 1,2-benzothiazine 1-imines were accessed in good yields. KIE experiment demonstrated that the C-H bond cleavage at the position ortho to the sulfoximine group is not the rate-determining step in the coupling reaction.
Collapse
Affiliation(s)
- Yifan Ren
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Lisha Mo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Yali Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Limin Yu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Minhai Yin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Fan Teng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, P. R. China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
229
|
Sang Z, Zhang T, Wang Z, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Design and synthesis of Fsp 3-enriched spirocyclic-substituted diarylpyrimidine derivatives as novel HIV-1 NNRTIs. Chem Biol Drug Des 2024; 103:e14510. [PMID: 38519265 DOI: 10.1111/cbdd.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
In this study, a novel series of diarylpyrimidine derivatives with Fsp3-enriched spirocycles were designed and synthesized to further explore the chemical space of the hydrophobic channel of the NNRTI-binding pocket. The biological evaluation results showed that most of the compounds displayed effective inhibitory potency against the HIV-1 wild-type strain, with EC50 values ranging from micromolar to submicromolar levels. Among them, TT6 turned out to be the most effective inhibitor with an EC50 value of 0.17 μM, demonstrating up to 47 times more active than that of reference drug 3TC (EC50 = 8.01 μM). More encouragingly, TT6 was found to potently inhibit the HIV-1 mutant strain K103N with an EC50 value of 0.69 μM, being about 6-fold more potent than 3TC (EC50 = 3.68 μM) and NVP (EC50 = 4.62 μM). Furthermore, TT6 exhibited the most potent inhibitory activity toward HIV-1 reverse transcriptase with an IC50 value of 0.33 μM. Additionally, molecular simulation studies were conducted to investigate the binding modes between TT6 and NNRTI-binding pocket, which may provide valuable clues for the follow-up structural optimizations.
Collapse
Affiliation(s)
- Zihao Sang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
230
|
Barnes L, Birkinshaw TN, Senior AJ, Brügge OS, Lewis W, Argent SP, Moody CJ, Nortcliffe A. Iodoetherification as a strategy towards sp 3-rich scaffolds for drug discovery. Bioorg Med Chem 2024; 101:117636. [PMID: 38354458 DOI: 10.1016/j.bmc.2024.117636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Functionalised tetrahydropyran and spirooxepane scaffolds were prepared utilising an iodoetherification strategy and elaborated to demonstrate their potential use in library synthesis. The iodoetherification products could be readily transformed to the corresponding azides that could be further functionalised via copper-catalysed azide-alkyne cycloaddition or reduction to the amine. The lead-likeness and three-dimensionality of the scaffolds were examined and compared to commercial libraries.
Collapse
Affiliation(s)
- Lydia Barnes
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Timothy N Birkinshaw
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Aaron J Senior
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Oscar Siles Brügge
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - William Lewis
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Christopher J Moody
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Andrew Nortcliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
231
|
Carson MC, Liu CR, Kozlowski MC. Synthesis of Phenol-Pyridinium Salts Enabled by Tandem Electron Donor-Acceptor Complexation and Iridium Photocatalysis. J Org Chem 2024; 89:3419-3429. [PMID: 38365194 PMCID: PMC11197922 DOI: 10.1021/acs.joc.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Herein, we describe a dual photocatalytic system to synthesize phenol-pyridinium salts using visible light. Utilizing both electron donor-acceptor (EDA) complex and iridium(III) photocatalytic cycles, the C-N cross-coupling of unprotected phenols and pyridines proceeds in the presence of oxygen to furnish pyridinium salts. Photocatalytic generation of phenoxyl radical cations also enabled a nucleophilic aromatic substitution (SNAr) of a fluorophenol with an electron-poor pyridine. Spectroscopic experiments were conducted to probe the mechanism and reaction selectivity. The unique reactivity of these phenol-pyridinium salts were displayed in several derivatization reactions, providing rapid access to a diverse chemical space.
Collapse
Affiliation(s)
- Matthew C. Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cindy R. Liu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
232
|
Krivovicheva V, Lyutin I, Kantin G, Dar'in D. Access to Spiro Bis-β-lactams via a Metal-Free Microwave-Assisted Wolff Rearrangement/Staudinger [2+2] Cycloaddition Cascade Involving 3-Diazotetramic Acids and Imines. J Org Chem 2024; 89:3585-3589. [PMID: 38363730 DOI: 10.1021/acs.joc.3c02494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Herein, we report the study of the thermally promoted reaction of 3-diazotetramic acids with imines as a rapid route to a novel spiro heterocyclic scaffold, spiro bis-β-lactams (2,6-diazaspiro[3.3]heptane-1,5-diones). The transformation proceeds via metal-free microwave-assisted Wolff rearrangement of the diazo reagent followed by Staudinger [2+2] cycloaddition of the heterocyclic ketenes with Shiff bases. This methodology enables the preparation of diastereomerically pure spiro bis-β-lactams in high yields and provides an avenue for exploring new versions of the privileged β-lactam core for drug design.
Collapse
Affiliation(s)
| | - Ivan Lyutin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
- Saint Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg 191036, Russian Federation
| |
Collapse
|
233
|
Ence CC, Uddin T, Borrel J, Mittal P, Xie H, Zoller J, Sharma A, Comer E, Schreiber SL, Melillo B, Sibley LD, Chatterjee AK. Bicyclic pyrrolidine inhibitors of Toxoplasma gondii phenylalanine t-RNA synthetase with antiparasitic potency in vitro and brain exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582607. [PMID: 38464220 PMCID: PMC10925249 DOI: 10.1101/2024.02.28.582607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Previous studies have shown that bicyclic azetidines are potent and selective inhibitors of apicomplexan phenylalanine tRNA synthetase (PheRS), leading to parasite growth inhibition in vitro and in vivo, including in models of Toxoplasma infection. Despite these useful properties, additional optimization is required for the development of efficacious treatments of toxoplasmosis from this inhibitor series, in particular to achieve sufficient exposure in the brain. Here, we describe a series of PheRS inhibitors built on a new bicyclic pyrrolidine core scaffold designed to retain the exit-vector geometry of the isomeric bicyclic azetidine core scaffold while offering avenues to sample diverse chemical space. Relative to the parent series, bicyclic pyrrolidines retain reasonable potency and target selectivity for parasite PheRS vs. host. Further structure-activity relationship studies revealed that the introduction of aliphatic groups improved potency, ADME and PK properties, including brain exposure. The identification of this new scaffold provides potential opportunities to extend the analog series to further improve selectivity and potency and ultimately deliver a novel, efficacious treatment of toxoplasmosis.
Collapse
Affiliation(s)
| | - Taher Uddin
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Julien Borrel
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Payal Mittal
- Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
- ICMR-NIMR, Sector-8, Dwarka, New Delhi-110077, India, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Han Xie
- Calibr at Scripps Research, La Jolla, CA 92037, USA
| | - Jochen Zoller
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Amit Sharma
- Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Eamon Comer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruno Melillo
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | |
Collapse
|
234
|
Mao E, Prieto Kullmer CN, Sakai HA, MacMillan DWC. Direct Bioisostere Replacement Enabled by Metallaphotoredox Deoxydifluoromethylation. J Am Chem Soc 2024; 146:5067-5073. [PMID: 38365186 PMCID: PMC11474587 DOI: 10.1021/jacs.3c14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The replacement of a functional group with its corresponding bioisostere is a widely employed tactic during drug discovery campaigns that allows medicinal chemists to improve the ADME properties of candidates while maintaining potency. However, the incorporation of bioisosteres typically requires lengthy de novo resynthesis of potential candidates, which represents a bottleneck in their broader evaluation. An alternative would be to directly convert a functional group into its corresponding bioisostere at a late stage. Herein, we report the realization of this approach through the conversion of aliphatic alcohols into the corresponding difluoromethylated analogues via the merger of benzoxazolium-mediated deoxygenation and copper-mediated C(sp3)-CF2H bond formation. The utility of this method is showcased in a variety of complex alcohols and drug compounds.
Collapse
Affiliation(s)
- Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | | | - Holt A. Sakai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
235
|
Kim SF, Schwarz H, Jurczyk J, Nebgen BR, Hendricks H, Park H, Radosevich A, Zuerch MW, Harper K, Lux MC, Yeung CS, Sarpong R. Mechanistic Investigation, Wavelength-Dependent Reactivity, and Expanded Reactivity of N-Aryl Azacycle Photomediated Ring Contractions. J Am Chem Soc 2024; 146:5580-5596. [PMID: 38347659 DOI: 10.1021/jacs.3c13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Under mild blue-light irradiation, α-acylated saturated heterocycles undergo a photomediated one-atom ring contraction that extrudes a heteroatom from the cyclic core. However, for nitrogenous heterocycles, this powerful skeletal edit has been limited to substrates bearing electron-withdrawing substituents on nitrogen. Moreover, the mechanism and wavelength-dependent efficiency of this transformation have remained unclear. In this work, we increased the electron richness of nitrogen in saturated azacycles to improve light absorption and strengthen critical intramolecular hydrogen bonding while enabling the direct installation of the photoreactive handle. As a result, a broadly expanded substrate scope, including underexplored electron-rich substrates and previously unsuccessful heterocycles, has now been achieved. The significantly improved yields and diastereoselectivities have facilitated reaction rate, kinetic isotope effect (KIE), and quenching studies, in addition to the determination of quantum yields. Guided by these studies, we propose a revised ET/PT mechanism for the ring contraction, which is additionally corroborated by computational characterization of the lowest-energy excited states of α-acylated substrates through time-dependent DFT. The efficiency of the ring contraction at wavelengths longer than those strongly absorbed by the substrates was investigated through wavelength-dependent rate measurements, which revealed a red shift of the photochemical action plot relative to substrate absorbance. The elucidated mechanistic and photophysical details effectively rationalize empirical observations, including additive effects, that were previously poorly understood. Our findings not only demonstrate enhanced synthetic utility of the photomediated ring contraction and shed light on mechanistic details but may also offer valuable guidance for understanding wavelength-dependent reactivity for related photochemical systems.
Collapse
Affiliation(s)
- Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Henrik Schwarz
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Bailey R Nebgen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, California 94720, United States
| | - Hailey Hendricks
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Hojoon Park
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Andrew Radosevich
- Small Molecule Therapeutics & Platform Technologies, Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Michael W Zuerch
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, California 94720, United States
| | - Kaid Harper
- Process Chemistry, Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Michaelyn C Lux
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
236
|
Prysiazhniuk K, Datsenko OP, Polishchuk O, Shulha S, Shablykin O, Nikandrova Y, Horbatok K, Bodenchuk I, Borysko P, Shepilov D, Pishel I, Kubyshkin V, Mykhailiuk PK. Spiro[3.3]heptane as a Saturated Benzene Bioisostere. Angew Chem Int Ed Engl 2024; 63:e202316557. [PMID: 38251921 DOI: 10.1002/anie.202316557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The spiro[3.3]heptane core, with the non-coplanar exit vectors, was shown to be a saturated benzene bioisostere. This scaffold was incorporated into the anticancer drug sonidegib (instead of the meta-benzene), the anticancer drug vorinostat (instead of the phenyl ring), and the anesthetic drug benzocaine (instead of the para-benzene). The patent-free saturated analogs obtained showed a high potency in the corresponding biological assays.
Collapse
Affiliation(s)
| | | | | | | | - Oleh Shablykin
- Enamine Ltd., Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | | | | | | | - Petro Borysko
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Iryna Pishel
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | | |
Collapse
|
237
|
Anderson JM, Poole DL, Cook GC, Murphy JA, Measom ND. Organometallic Bridge Diversification of Bicyclo[1.1.1]pentanes. Chemistry 2024; 30:e202304070. [PMID: 38117748 DOI: 10.1002/chem.202304070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Bicyclo[1.1.1]pentane (BCP) derivatives have attracted significant recent interest in drug discovery as alkyne, tert-butyl and arene bioisosteres, where their incorporation is frequently associated with increased compound solubility and metabolic stability. While strategies for functionalisation of the bridgehead (1,3) positions are extensively developed, platforms allowing divergent substitution at the bridge (2,4,5) positions remain limited. Recent reports have introduced 1-electron strategies for arylation and incorporation of a small range of other substituents, but are limited in terms of scope, yields or practical complexity. Herein, we show the synthesis of diverse 1,2,3-trifunctionalised BCPs through lithium-halogen exchange of a readily accessible BCP bromide. When coupled with medicinally relevant product derivatisations, our developed 2-electron "late stage" approach provides rapid and straightforward access to unprecedented BCP structural diversity (>20 hitherto-unknown motifs reported). Additionally, we describe a method for the synthesis of enantioenriched "chiral-at-BCP" bicyclo[1.1.1]pentanes through a novel stereoselective bridgehead desymmetrisation.
Collapse
Affiliation(s)
- Joseph M Anderson
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Darren L Poole
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - Gemma C Cook
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Nicholas D Measom
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| |
Collapse
|
238
|
Wang C, Liu X, Wang Q, Fang WH, Chen X. Unveiling Mechanistic Insights and Photocatalytic Advancements in Intramolecular Photo-(3 + 2)-Cycloaddition: A Comparative Assessment of Two Paradigmatic Single-Electron-Transfer Models. JACS AU 2024; 4:419-431. [PMID: 38425917 PMCID: PMC10900211 DOI: 10.1021/jacsau.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 03/02/2024]
Abstract
The synthesis of 1-aminonorbornane (1-aminoNB), a potential aniline bioisostere, through photochemistry or photoredox catalysis signifies a remarkable breakthrough with implications in organic chemistry, pharmaceutical chemistry, and sustainable chemistry. However, an understanding of the underlying mechanisms involved in these reactions remains limited and ambiguous. Herein, we employ high-precision CASPT2//CASSCF calculations to elucidate the intricate mechanisms regulating the intramolecular photo-(3 + 2)-cycloaddition reactions for the synthesis of 1-aminoNB in the presence or absence of the Ir-complex-based photocatalyst. Our investigations delve into radical cascades, stereoselectivity, particularly single-electron-transfer (SET) events, etc. Furthermore, we innovatively introduce and compare two SET models integrating Marcus electron-transfer theory and transition-state theory. These models combined with kinetic data contribute to recognizing the critical control factors in diverse photocatalysis, thereby guiding the design and manipulation of photoredox catalysis as well as the improvement and modification of photocatalysts.
Collapse
Affiliation(s)
- Chu Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Xiao Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Qian Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| |
Collapse
|
239
|
Semeno VV, Vasylchenko VO, Fesun IM, Ruzhylo LY, Kipriianov MO, Melnykov KP, Skreminskyi A, Iminov R, Mykhailiuk P, Vashchenko BV, Grygorenko OO. Bicyclo[m.n.k]alkane Building Blocks as Promising Benzene and Cycloalkane Isosteres: Multigram Synthesis, Physicochemical and Structural Characterization. Chemistry 2024; 30:e202303859. [PMID: 38149408 DOI: 10.1002/chem.202303859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
Electrophilic double bond functionalization - intramolecular enolate alkylation sequence was used to obtain a series of bridged and fused bicyclo[m.n.k]alkane derivatives (i. e., bicyclo[4.1.1]octanes, bicyclo[2.2.1]heptanes, bicyclo[3.2.1]octanes, bicyclo[3.1.0]hexanes, and bicyclo[4.2.0]heptanes). The scope and limitations of the method were established, and applicability to the multigram synthesis of target bicyclic compounds was illustrated. Using the developed protocols, over 50 mono- and bifunctional building blocks relevant to medicinal chemistry were prepared. The synthesized compounds are promising isosteres of benzene and cycloalkane rings, which is confirmed by their physicochemical and structural characterization (pKa , LogP, and exit vector parameters (EVP)). "Rules of thumb" for the upcoming isosteric replacement studies were proposed.
Collapse
Affiliation(s)
- Volodymyr V Semeno
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | | | - Ihor M Fesun
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
| | - Liudmyla Yu Ruzhylo
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave. 37, Kyїv, 03056, Ukraine
| | - Mykhailo O Kipriianov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave. 37, Kyїv, 03056, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | | | - Rustam Iminov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
| | | | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
240
|
Mondal PP, Nair AV, Sasidaran M, Chungath AA, Suman SP, Kuniyil R, Sahoo B. Regioselective 1,2-Alkylboration of Benzylidenecyclopropanes: Access to Csp 3-Enriched Cyclopropyl Boronic Esters. Org Lett 2024; 26:1458-1462. [PMID: 38345317 DOI: 10.1021/acs.orglett.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We describe a novel, regioselective alkylboration of versatile (hetero)benzylidenecyclopropanes with β-H-containing alkyl iodides and bis(pinacolato)diboron enabled by copper catalysis. This three-component method allows for consecutive B-Csp3 and Csp3-Csp3 bond formation to access Csp3-enriched diverse tertiary cyclopropyl boronic esters with broad functionality tolerance, and the so-formed C-B bond is amenable to further structural diversification. Radical clock experiment, Hammett analysis, and DFT calculation suggest a mechanism of polar, rather than radical manifold, and SN2-type C-C bond formation was found to be the rate-limiting step instead of migratory alkene insertion.
Collapse
Affiliation(s)
- Pinku Prasad Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Anagha Veluthanath Nair
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Megha Sasidaran
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, 678623 Kerala, India
| | - Alvin Antony Chungath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Satya Prakash Suman
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, 678623 Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, 695551 Kerala, India
| |
Collapse
|
241
|
Cui Y, Lanne A, Peng X, Browne E, Bhatt A, Coltman NJ, Craven P, Cox LR, Cundy NJ, Dale K, Feula A, Frampton J, Fung M, Morton M, Goff A, Salih M, Lang X, Li X, Moon C, Pascoe J, Portman V, Press C, Schulz-Utermoehl T, Lee S, Tortorella MD, Tu Z, Underwood ZE, Wang C, Yoshizawa A, Zhang T, Waddell SJ, Bacon J, Alderwick L, Fossey JS, Neagoie C. Azetidines Kill Multidrug-Resistant Mycobacterium tuberculosis without Detectable Resistance by Blocking Mycolate Assembly. J Med Chem 2024; 67:2529-2548. [PMID: 38331432 PMCID: PMC10895678 DOI: 10.1021/acs.jmedchem.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Tuberculosis (TB) is the leading cause of global morbidity and mortality resulting from infectious disease, with over 10.6 million new cases and 1.4 million deaths in 2021. This global emergency is exacerbated by the emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB; therefore, new drugs and new drug targets are urgently required. From a whole cell phenotypic screen, a series of azetidines derivatives termed BGAz, which elicit potent bactericidal activity with MIC99 values <10 μM against drug-sensitive Mycobacterium tuberculosis and MDR-TB, were identified. These compounds demonstrate no detectable drug resistance. The mode of action and target deconvolution studies suggest that these compounds inhibit mycobacterial growth by interfering with cell envelope biogenesis, specifically late-stage mycolic acid biosynthesis. Transcriptomic analysis demonstrates that the BGAz compounds tested display a mode of action distinct from the existing mycobacterial cell wall inhibitors. In addition, the compounds tested exhibit toxicological and PK/PD profiles that pave the way for their development as antitubercular chemotherapies.
Collapse
Affiliation(s)
- Yixin Cui
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Alice Lanne
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Xudan Peng
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Edward Browne
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Apoorva Bhatt
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Nicholas J. Coltman
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Philip Craven
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Liam R. Cox
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Nicholas J. Cundy
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Katie Dale
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Antonio Feula
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Jon Frampton
- College of
Medical and Dental Sciences, University
of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Martin Fung
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Michael Morton
- ApconiX
Ltd, BIOHUB at Alderly Park, Nether Alderly, Cheshire SK10 4TG, U.K.
| | - Aaron Goff
- Department
of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PX, U.K.
| | - Mariwan Salih
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Xingfen Lang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Xingjian Li
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Chris Moon
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Jordan Pascoe
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Vanessa Portman
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Cara Press
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| | - Timothy Schulz-Utermoehl
- Sygnature
Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham NG1 1GR, U.K.
| | - Suki Lee
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Micky D. Tortorella
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
| | - Zhengchao Tu
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Zoe E. Underwood
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Changwei Wang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Akina Yoshizawa
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Tianyu Zhang
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Simon J. Waddell
- Department
of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PX, U.K.
| | - Joanna Bacon
- TB
Research Group, National Infection Service, Public Health England (UKHSA), Manor Farm Road, Porton, Salisbury SP4 0JG, U.K.
| | - Luke Alderwick
- Institute
of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
- Discovery
Sciences, Charles River Laboratories, Chesterford Research Park, Saffron Walden CB10 1XL, U.K.
| | - John S. Fossey
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, U.K.
| | - Cleopatra Neagoie
- State
Key Laboratory of Respiratory Disease, China-New Zealand Joint Laboratory
on Biomedicine and Health, Guangzhou Institutes of Biomedicine and
Health, Chinese Academy of Science, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
- Centre
for Regenerative Medicine and Health, Hong Kong Institute of Science
& Innovation, Chinese Academy of Sciences, 15 Science Park West Avenue NT, Hong Kong SAR
- Visiting
Scientist, School of Chemistry, University
of Birmingham, Edgbaston, Birmingham, West
Midlands B15 2TT, U.K.
| |
Collapse
|
242
|
Liashuk OS, Ryzhov IA, Hryshchuk OV, Volovenko YM, Grygorenko OO. [3+2] Cycloaddition of Alkynyl Boronates and in situ Generated Azomethine Ylide. Chemistry 2024; 30:e202303504. [PMID: 38059680 DOI: 10.1002/chem.202303504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Scalable [3+2] cycloaddition of alkynyl boronates and in situ generated unstabilized azomethine ylide is reported for the first time. The selective formation of either 1 : 1 or 1 : 2 cycloaddition products was achieved by carefully optimizing the reaction conditions, mainly by controlling the reactant stoichiometry, catalyst loading, and internal temperature. The developed protocol tolerated many valuable functional groups, including TMS, protected alcohol (as ether or THP derivatives), or aldehyde (as acetal). Further common C-C and C-heteroatom bond-forming reactions, as well as scaled-up procedures demonstrate the utility of the prepared compounds as building blocks for organic synthesis and drug discovery.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Ihor A Ryzhov
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr V Hryshchuk
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Yulian M Volovenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
243
|
Bonciolini S, Pulcinella A, Leone M, Schiroli D, Ruiz AL, Sorato A, Dubois MAJ, Gopalakrishnan R, Masson G, Della Ca' N, Protti S, Fagnoni M, Zysman-Colman E, Johansson M, Noël T. Metal-free photocatalytic cross-electrophile coupling enables C1 homologation and alkylation of carboxylic acids with aldehydes. Nat Commun 2024; 15:1509. [PMID: 38374079 PMCID: PMC10876646 DOI: 10.1038/s41467-024-45804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
In contemporary drug discovery, enhancing the sp3-hybridized character of molecular structures is paramount, necessitating innovative synthetic methods. Herein, we introduce a deoxygenative cross-electrophile coupling technique that pairs easily accessible carboxylic acid-derived redox-active esters with aldehyde sulfonyl hydrazones, employing Eosin Y as an organophotocatalyst under visible light irradiation. This approach serves as a versatile, metal-free C(sp3)-C(sp3) cross-coupling platform. We demonstrate its synthetic value as a safer, broadly applicable C1 homologation of carboxylic acids, offering an alternative to the traditional Arndt-Eistert reaction. Additionally, our method provides direct access to cyclic and acyclic β-arylethylamines using diverse aldehyde-derived sulfonyl hydrazones. Notably, the methodology proves to be compatible with the late-stage functionalization of peptides on solid-phase, streamlining the modification of intricate peptides without the need for exhaustive de-novo synthesis.
Collapse
Affiliation(s)
- Stefano Bonciolini
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Antonio Pulcinella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Matteo Leone
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, Cedex, France
| | - Debora Schiroli
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Adrián Luguera Ruiz
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Andrea Sorato
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands
| | - Maryne A J Dubois
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ranganath Gopalakrishnan
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, Cedex, France
| | - Nicola Della Ca'
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, Purdie Building, North Haugh University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Magnus Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098, XH Amsterdam, The Netherlands.
| |
Collapse
|
244
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
245
|
Weatherford-Pratt JT, Bloch JM, Smith JA, Ericson MN, Siela DJ, Ortiz MR, Shingler MH, Fong S, Laredo JA, Patel IU, McGraw M, Dickie DA, Harman WD. Tungsten-anisole complex provides 3,6-substituted cyclohexenes for highly diversified chemical libraries. SCIENCE ADVANCES 2024; 10:eadl0885. [PMID: 38363845 PMCID: PMC10871534 DOI: 10.1126/sciadv.adl0885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
Medicinal chemists use vast combinatorial molecular libraries to develop leads for new pharmaceuticals. The syntheses of these compounds typically rely on coupling molecular fragments through atoms with planar (sp2) geometry. These so-called flat molecules often lack the protein binding site specificity needed to be an effective drug. Here, we demonstrate a coupling strategy in which a cyclohexene is used as a linker to connect two diverse molecular fragments while forming two new tetrahedral (sp3) stereocenters. These connections are made with the aid of a tungsten complex that activates anisole toward an unusual double protonation, followed by sequential nucleophilic additions. As a result, either cis- or trans-disubstituted cyclohexenes can be prepared with a range of chemical diversity unparalleled by other dearomatization methods.
Collapse
Affiliation(s)
| | - Jeremy M. Bloch
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Jacob A. Smith
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Megan N. Ericson
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Daniel J. Siela
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Mason R. Ortiz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Mary H. Shingler
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Sarah Fong
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Jonathan A. Laredo
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Ishaan U. Patel
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | - Matt McGraw
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904 USA
| | | | | |
Collapse
|
246
|
Malkova K, Tatarinov I, Kantin G, Dar'in D. Utilizing Allenic Acids and Heterocyclic Diazo Compounds in the Synthesis of Polysubstituted Spirocyclic Butenolides and β-Methylidene 2-Furanones. J Org Chem 2024; 89:2782-2786. [PMID: 38299342 DOI: 10.1021/acs.joc.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Herein, we report a novel approach for the assembly of spirocyclic Δα,β-butenolides and β-methylidene 2-furanones via Rh(II)-catalyzed O-H insertion of heterocyclic diazo compounds into allenic acids followed by base-promoted cyclization. Utilizing various diazo heterocycles, including α-diazo homophthalimides, 3-diazo tetramic acids, and diazo oxindoles, diverse spirocyclic scaffolds were produced. The research revealed that the allenic acid substitution pattern is decisive for the product type, enabling extraordinary target compound switching between two types of spirocyclic 2-furanones with exo- and endocyclic C═C bonds.
Collapse
Affiliation(s)
- Ksenia Malkova
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Ilya Tatarinov
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Grigory Kantin
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
- Saint Petersburg Research Institute of Phthisiopulmonology, Saint Petersburg 191036, Russian Federation
| |
Collapse
|
247
|
Huang J, Zhou TP, Sun N, Yu H, Yu X, Liao RZ, Yao W, Dai Z, Wu G, Zhong F. Accessing ladder-shape azetidine-fused indoline pentacycles through intermolecular regiodivergent aza-Paternò-Büchi reactions. Nat Commun 2024; 15:1431. [PMID: 38365864 PMCID: PMC10873392 DOI: 10.1038/s41467-024-45687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Small molecules with conformationally rigid, three-dimensional geometry are highly desirable in drug development, toward which a direct, simple-to-complexity synthetic logic is still of considerable challenges. Here, we report intermolecular aza-[2 + 2] photocycloaddition (the aza-Paternò-Büchi reaction) of indole that facilely assembles planar building blocks into ladder-shape azetidine-fused indoline pentacycles with contiguous quaternary carbons, divergent head-to-head/head-to-tail regioselectivity, and absolute exo stereoselectivity. These products exhibit marked three-dimensionality, many of which possess 3D score values distributed in the highest 0.5% region with reference to structures from DrugBank database. Mechanistic studies elucidated the origin of the observed regio- and stereoselectivities, which arise from distortion-controlled C-N coupling scenarios. This study expands the synthetic repertoire of energy transfer catalysis for accessing structurally intriguing architectures with high molecular complexity and underexplored topological chemical space.
Collapse
Affiliation(s)
- Jianjian Huang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Ningning Sun
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huaibin Yu
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Xixiang Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhifeng Dai
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
248
|
Morozova A, Chan SC, Bayle S, Sun L, Grassie D, Iermolaieva A, Kalaga MN, Frydman S, Sansil S, Schönbrunn E, Duckett D, Monastyrskyi A. Development of potent and selective ULK1/2 inhibitors based on 7-azaindole scaffold with favorable in vivo properties. Eur J Med Chem 2024; 266:116101. [PMID: 38232465 DOI: 10.1016/j.ejmech.2023.116101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
The UNC-51-like kinase-1 (ULK1) is one of the central upstream regulators of the autophagy pathway, represents a key target for the development of molecular probes to abrogate autophagy and explore potential therapeutic avenues. Here we report the discovery, structure-activity and structure-property relationships of selective, potent, and cell-active ULK1/2 inhibitors based on a 7-azaindole scaffold. Using structure-based drug design, we have developed a series of analogs with excellent binding affinity and biochemical activity against ULK1/2 (IC50 < 25 nM). The validation of cellular target engagement for these compounds was achieved through the employment of the ULK1 NanoBRET intracellular kinase assay. Notably, we have successfully solved the crystal structure of the lead compound, MR-2088, bound to the active site of ULK1. Moreover, the combination treatment of MR-2088 with known KRAS→RAF→MEK→ERK pathway inhibitors, such as trametinib, showed promising synergistic effect in vitro using H2030 (KRASG12C) cell lines. Lastly, our findings underscore MR-2088's potential to inhibit starvation/stimuli-induced autophagic flux, coupled with its suitability for in vivo studies based on its pharmacokinetic properties.
Collapse
Affiliation(s)
- Alisa Morozova
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Sean Chin Chan
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Simon Bayle
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Luxin Sun
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Dylan Grassie
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Anna Iermolaieva
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Mahalakshmi N Kalaga
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Sylvia Frydman
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Samer Sansil
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Ernst Schönbrunn
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Derek Duckett
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States
| | - Andrii Monastyrskyi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Dr, Tampa, FL, United States.
| |
Collapse
|
249
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
250
|
Lin LQH, Rentería-Gómez Á, Martin RT, Zhang YQ, Ong KZW, Parris AB, Gutierrez O, Koh MJ. Selective 1,2-Hydroarylation(Alkenylation) of gem-Difluoroalkenes to Access (-CF 2 H) Motifs. Angew Chem Int Ed Engl 2024; 63:e202317935. [PMID: 38117662 PMCID: PMC11076007 DOI: 10.1002/anie.202317935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
An emerging class of C-C coupling transformations that furnish drug-like building blocks involves catalytic hydrocarbonation of alkenes. However, despite notable advances in the field, hydrocarbon addition to gem-difluoroalkenes without additional electronic activation remains largely unsuccessful. This owes partly to poor reactivity and the propensity of difluoroalkenes to undergo defluorinative side reactions. Here, we report a nickel catalytic system that promotes efficient 1,2-selective hydroarylation and hydroalkenylation, suppressing defluorination and providing straightforward access to a diverse assortment of prized organofluorides bearing difluoromethyl-substituted carbon centers. In contrast to radical-based pathways and reactions triggered by hydrometallation via a nickel-hydride complex, our experimental and computational studies support a mechanism in which a catalytically active nickel-bromide species promotes selective carbonickelation with difluoroalkenes followed by alkoxide exchange and hydride transfer, effectively overcoming the difluoroalkene's intrinsic electronic bias.
Collapse
Affiliation(s)
- Leroy Qi Hao Lin
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | | | - Robert T Martin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Ying-Qi Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Kelvin Zhi Wei Ong
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Adam B Parris
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|