201
|
Hemmer E, Venkatachalam N, Hyodo H, Hattori A, Ebina Y, Kishimoto H, Soga K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. NANOSCALE 2013; 5:11339-61. [PMID: 23938606 DOI: 10.1039/c3nr02286b] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln(3+)), nanoscopic host materials doped with Ln(3+), e.g. Y2O3:Er(3+),Yb(3+), are promising candidates for NIR-NIR bioimaging. Ln(3+)-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er(3+),Yb(3+), have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.
Collapse
Affiliation(s)
- Eva Hemmer
- Tokyo University of Science, Center for Technologies against Cancer (CTC), 2669 Yamazaki, 278-0022 Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
202
|
Qiu P, Zhou N, Chen H, Zhang C, Gao G, Cui D. Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification. NANOSCALE 2013; 5:11512-25. [PMID: 24121736 DOI: 10.1039/c3nr03642a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Owing to their unique photo-physical properties, rare-earth ions-doped upconversion nanoparticles (UCNPs) have attracted extensive attention in recent years. UCNPs have many special merits, such as a long luminescence lifetime, narrow emission band widths, high quantum yields and low toxicity, which allows their potential applications in bio-medical field, biological luminescent labels and drug delivery carriers. Compared with traditional fluorescence labels exited by UV (ultraviolet), such as organic dyes and quantum dots, UCNPs can transfer near-infrared (NIR) light into visible light, which is commonly called upconversion luminescence (UCL). This paper reviews the recent advances of several typical synthesis methods of UCNPs in detail as well as the fabrication and optimization of the particle morphology, and the latest advances of UCNPs for multimode imaging, surface passivation and functionalization are also described.
Collapse
Affiliation(s)
- Peiyu Qiu
- Department of Bio-Nano-Science and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders of Ministry of Education, Bio-X Center, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | | | | | |
Collapse
|
203
|
Zhou N, Qiu P, Wang K, Fu H, Gao G, He R, Cui D. Shape-controllable synthesis of hydrophilic NaLuF4:Yb,Er nanocrystals by a surfactant-assistant two-phase system. NANOSCALE RESEARCH LETTERS 2013; 8:518. [PMID: 24314099 PMCID: PMC4029583 DOI: 10.1186/1556-276x-8-518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 05/02/2023]
Abstract
Water-soluble upconversion nanoparticles (UCNPs) were prepared by a one-pot procedure in a two-phase reacting system. Four kinds of surfactants were tested in the synthesis process as capping agent to tune size and morphology of nanocrystals. Nanoparticles (approximately 70 nm) and rods (400 nm and 2.5 μm) were synthesized, respectively. Then, Fourier transform infrared spectroscopy analysis confirmed the successful linking between UCNP surface and surfactant. Ionic liquids (ILs) and surfactants participated in synthesis process together, competing with each other to cap on UCNPs. ILs still led the competition of capping, while surfactants worked as cooperative assistants to develop functional surface. Further characterizations such as high-resolution transmission electron microscopy and X-ray diffraction indicated the changes in crystallization and phase transformation under the influence of surfactants. In addition, the growth mechanism of nanocrystals and upconversion fluorescence luminance was also investigated in detail. At last, the cytotoxicity of UCNPs was evaluated, which highly suggest that these surface-functionalized UCNPs are promising candidates for biomedical engineering.
Collapse
Affiliation(s)
- Na Zhou
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Peiy Qiu
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Hualin Fu
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Rong He
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People’s Republic of China
| |
Collapse
|
204
|
Phosphate-containing polyethylene glycol polymers prevent lethal sepsis by multidrug-resistant pathogens. Antimicrob Agents Chemother 2013; 58:966-77. [PMID: 24277029 DOI: 10.1128/aac.02183-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance among highly pathogenic strains of bacteria and fungi is a growing concern in the face of the ability to sustain life during critical illness with advancing medical interventions. The longer patients remain critically ill, the more likely they are to become colonized by multidrug-resistant (MDR) pathogens. The human gastrointestinal tract is the primary site of colonization of many MDR pathogens and is a major source of life-threatening infections due to these microorganisms. Eradication measures to sterilize the gut are difficult if not impossible and carry the risk of further antibiotic resistance. Here, we present a strategy to contain rather than eliminate MDR pathogens by using an agent that interferes with the ability of colonizing pathogens to express virulence in response to host-derived and local environmental factors. The antivirulence agent is a phosphorylated triblock high-molecular-weight polymer (here termed Pi-PEG 15-20) that exploits the known properties of phosphate (Pi) and polyethylene glycol 15-20 (PEG 15-20) to suppress microbial virulence and protect the integrity of the intestinal epithelium. The compound is nonmicrobiocidal and appears to be highly effective when tested both in vitro and in vivo. Structure functional analyses suggest that the hydrophobic bis-aromatic moiety at the polymer center is of particular importance to the biological function of Pi-PEG 15-20, beyond its phosphate content. Animal studies demonstrate that Pi-PEG prevents mortality in mice inoculated with multiple highly virulent pathogenic organisms from hospitalized patients in association with preservation of the core microbiome.
Collapse
|
205
|
Chen YY, Ma PA, Yang DM, Wu Y, Dai YL, Li CX, Lin J. Multifunctional core-shell structured nanocarriers for synchronous tumor diagnosis and treatment in vivo. Chem Asian J 2013; 9:506-13. [PMID: 24227257 DOI: 10.1002/asia.201301262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Indexed: 11/09/2022]
Abstract
Multifunctional, mesoporous, silica-coated upconversion luminescent/magnetic NaGdF4:Yb/Er@NaGdF4:Yb@mSiO2-PEG (referred to as UCNPS; PEG=polyethylene glycol) nanocomposites were fabricated through a phase-transfer-assisted surfactant-templating coating process, followed by hydrophilic polymer (PEG) functionalization to improve the stability and biocompatibility. The UCNP core imparts the nanomaterials with luminescence and magnetic properties for simultaneous upconversion optical and magnetic resonance (MR) imaging, whereas the mesoporous shell affords the nanomaterials the ability to load the anticancer drug doxorubicin. Proof-of-principle in vitro and in vivo experiments are presented to demonstrate that the resultant composite nanomaterials can serve as nanotheranostics for synchronous upconversion luminescence/MR dual modal imaging and anticancer drug delivery; this finally realizes the integration of diagnostics and the treatment of cancers.
Collapse
Affiliation(s)
- Yin-Yin Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P.R. China); University of the Chinese Academy of Sciences, Beijing 100049 (P.R. China)
| | | | | | | | | | | | | |
Collapse
|
206
|
Dong L, An D, Gong M, Lu Y, Gao HL, Xu YJ, Yu SH. PEGylated upconverting luminescent hollow nanospheres for drug delivery and in vivo imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3235-3241. [PMID: 23657979 DOI: 10.1002/smll.201300433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/17/2013] [Indexed: 06/02/2023]
Abstract
Upconversion luminescent hollow Y2 O3 :Yb(3+) /Er(3+) nanospheres can be synthesized by an etching-free process, which hold promising potential for applications such as drug delivery, angiography, and high-contrast cellular as well as tissue imaging, with no damage from radiation or toxicity.
Collapse
Affiliation(s)
- Liang Dong
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical, Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | | | | | | | | | | | | |
Collapse
|
207
|
Shen J, Chen G, Ohulchanskyy TY, Kesseli SJ, Buchholz S, Li Z, Prasad PN, Han G. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4 :Yb,Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3213-3217. [PMID: 23696330 DOI: 10.1002/smll.201300234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 06/02/2023]
Abstract
A family of upconverting nanoparticles (UCNPs) with a tunable UV enhancement is developed via a facile approach. The design leads to a maximum 9-fold enhancement in comparison with known optimal β-phase core/shell UCNPs in water. A highly effective and rapid in situ real-time live-cell photoactivation is recorded for the first time with such nanoparticles.
Collapse
Affiliation(s)
- Jie Shen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Feng W, Han C, Li F. Upconversion-nanophosphor-based functional nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5287-5303. [PMID: 23982981 DOI: 10.1002/adma.201301946] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Upconversion nanophosphors have the ability to generate visible or near-infrared (NIR) emissions under continuous-wave NIR excitation. Utilizing this special photoluminescent properties, upconversion nanophosphors can be used as key components in complex nanocomposites for a wide range of applications. This review summarizes the basic concept, fabrication strategy, and typical application of upconversion-nanophosphor-based functional nanocomposites. The motivation to design these structures comes from the potential applications in detection, multi-modality bioimaging, and NIR light-induced therapy, as well as the tuning of the upconversion luminescence emissions. This review will give a brief summary of this rapidly developing field, and provide guidance to design and to fabricate new nanocomposites based on upconversion nanophosphors.
Collapse
Affiliation(s)
- Wei Feng
- Department of Chemistry, State Key Laboratory of Molecular, Engineering of Polymers, Concerted Innovative Center of Chemistry for Energy, Materials, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, PR China
| | | | | |
Collapse
|
209
|
Wang Y, Wang H, Liu D, Song S, Wang X, Zhang H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 2013; 34:7715-24. [DOI: 10.1016/j.biomaterials.2013.06.045] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/23/2013] [Indexed: 12/23/2022]
|
210
|
Liu C, Gao Z, Zeng J, Hou Y, Fang F, Li Y, Qiao R, Shen L, Lei H, Yang W, Gao M. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS NANO 2013; 7:7227-40. [PMID: 23879437 DOI: 10.1021/nn4030898] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Detection of early malignant tumors remains clinically difficult; developing ultrasensitive imaging agents is therefore highly demanded. Owing to the unusual magnetic and optical properties associated with f-electrons, rare-earth elements are very suitable for creating functional materials potentially useful for tumor imaging. Nanometer-sized particles offer such a platform with which versatile unique properties of the rare-earth elements can be integrated. Yet the development of rare-earth nanoparticle-based tumor probes suitable for imaging tiny tumors in vivo remains difficult, which challenges not only the physical properties of the nanoparticles but also the rationality of the probe design. Here we report new approaches for size control synthesis of magnetic/upconversion fluorescent NaGdF4:Yb,Er nanocrystals and their applications for imaging tiny tumors in vivo. By independently varying F(-):Ln(3+) and Na(+):Ln(3+) ratios, the size and shape regulation mechanisms were investigated. By replacing the oleic acid ligand with PEG2000 bearing a maleimide group at one end and two phosphate groups at the other end, PEGylated NaGdF4:Yb,Er nanoparticles with optimized size and upconversion fluorescence were obtained. Accordingly, a dual-modality molecular tumor probe was prepared, as a proof of concept, by covalently attaching antitumor antibody to PEGylated NaGdF4:Yb,Er nanoparticles through a "click" reaction. Systematic investigations on tumor detections, through magnetic resonance imaging and upconversion fluorescence imaging, were carried out to image intraperitoneal tumors and subcutaneous tumors in vivo. Owing to the excellent properties of the molecular probes, tumors smaller than 2 mm was successfully imaged in vivo. In addition, pharmacokinetic studies on differently sized particles were performed to disclose the particle size dependent biodistributions and elimination pathways.
Collapse
Affiliation(s)
- Chunyan Liu
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Voliani V, González-Béjar M, Herranz-Pérez V, Duran-Moreno M, Signore G, Garcia-Verdugo JM, Pérez-Prieto J. Orthogonal functionalisation of upconverting NaYF4 nanocrystals. Chemistry 2013; 19:13538-46. [PMID: 23943097 DOI: 10.1002/chem.201301353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/26/2013] [Indexed: 11/11/2022]
Abstract
A simple and straightforward method for the orthogonal functionalisation of upconverting NaYF4 nanocrystals (UCNCs)-doped withYb(3+) and Er(3+)-based on N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS) selective reactions between two dyes and two different reactive groups present at the periphery of the upconverting nanocrystals is reported. Organic-soluble UCNCs of 10 and 50 nm in size are encapsulated efficiently in a 1:1 mixture of two commercial 3000 Da poly(ethylene glycol) derivatives with two different reactive groups (amino and carboxylic groups). The water-dispersible UCNCs are non-cytotoxic, stable in the physiological environment, and present free amine and carboxylic reactive groups on their periphery, allowing rapid, selective, and modular covalent conjugation to payloads through EDC/NHS reactions. PEG-encapsulated UCNCs with and without covalent conjugation to payloads are characterised in vitro through spectroscopic, dynamic light scattering, and electron microscopy measurements. Living cell analyses coupled with TEM measurements confirm the uptake and low cytotoxicity of the coated UCNCs. They are linked covalently to two different dyes, internalised by living cells, and analysed by confocal microscopy. The related colocalisation measurements prove the reactivity of both amines and carboxylic acids on the periphery of the nanocrystals. This approach demonstrates that it is possible to produce water-dispersible and cyto-compatible dual-functional UCNCs.
Collapse
Affiliation(s)
- Valerio Voliani
- Universidad de Valencia, Instituto de Ciencia Molecular, ICMol, Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain).
| | | | | | | | | | | | | |
Collapse
|
212
|
Hou Z, Li X, Li C, Dai Y, Ma P, Zhang X, Kang X, Cheng Z, Lin J. Electrospun upconversion composite fibers as dual drugs delivery system with individual release properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9473-9482. [PMID: 23855606 DOI: 10.1021/la402080y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Novel multifunctional poly(ε-caprolactone)-gelatin encapsulating upconversion core/shell silica nanoparticles (NPs) composite fibers as dual drugs delivery system (DDDS), with indomethacin (IMC) and doxorubicin (DOX) releasing in individual release properties, have been designed and fabricated via electrospinning process. Uniform and monodisperse upconversion (UC) luminescent NaYF4:Yb(3+), Er(3+) nanocrystals (UCNCs) were encapsulated with mesoporous silica shells, resulting in the formation of core/shell structured NaYF4:Yb(3+), Er(3+)@mSiO2 (UCNCs@mSiO2) NPs, which can be performed as DOX delivery carriers. These UCNCs@mSiO2 NPs loading DOX then were dispersed into the mixture of poly(ε-caprolactone) (PCL) and gelatin-based electrospinning solution containing IMC, followed by the preparation of dual drug-loaded composite fibers (DDDS) via electrospinning method. The drugs release profiles of the DDDS were measured, and the results indicated that the IMC and DOX released from the electrospun composite fibers showed distinct properties. The IMC in the composite fibers presented a fast release manner, while DOX showed a sustained release behavior. Moreover, the UC luminescent intensity ratios of (2)H(11/2)/(4)S(3/2)-(4)I(15/2) to (4)F(9/2)-(4)I(15/2) from Er(3+) vary with the amounts of DOX in the system, and thus drug release can be tracked and monitored by the luminescence resonance energy transfer (LRET) mechanism.
Collapse
Affiliation(s)
- Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Gu Z, Yan L, Tian G, Li S, Chai Z, Zhao Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3758-79. [PMID: 23813588 DOI: 10.1002/adma.201301197] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/03/2013] [Indexed: 05/21/2023]
Abstract
Lanthanide (Ln) doped upconversion nanoparticles (UCNPs) have attracted enormous attention in the recent years due to their unique upconversion luminescent properties that enable the conversion of low-energy photons (near infrared photons) into high-energy photons (visible to ultraviolet photons) via the multiphoton processes. This feature makes them ideal for bioimaging applications with attractive advantages such as no autofluorescence from biotissues and a large penetration depth. In addition, by incorporating advanced features, such as specific targeting, multimodality imaging and therapeutic delivery, the application of UCNPs has been dramatically expanded. In this review, we first summarize the recent developments in the fabrication strategies of UCNPs with the desired size, enhanced and tunable upconversion luminescence, as well as the combined multifunctionality. We then discuss the chemical methods applied for UCNPs surface functionalization to make these UCNPs biocompatible and water-soluble, and further highlight some representative examples of using UCNPs for in vivo bioimaging, NIR-triggered drug/gene delivery applications and photodynamic therapy. In the perspectives, we discuss the need of systematically nanotoxicology data for rational designs of UCNPs materials, their surface chemistry in safer biomedical applications. The UCNPs can actually provide an ideal multifunctionalized platform for solutions to many key issues in the front of medical sciences such as theranostics, individualized therapeutics, multimodality medicine, etc.
Collapse
Affiliation(s)
- Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanosciences and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | | | | | | | | | | |
Collapse
|
214
|
Liu F, He X, Liu L, You H, Zhang H, Wang Z. Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging. Biomaterials 2013; 34:5218-25. [DOI: 10.1016/j.biomaterials.2013.03.058] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/20/2013] [Indexed: 11/25/2022]
|
215
|
Liu Y, Chen M, Cao T, Sun Y, Li C, Liu Q, Yang T, Yao L, Feng W, Li F. A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury. J Am Chem Soc 2013; 135:9869-76. [DOI: 10.1021/ja403798m] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Liu
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Min Chen
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Tianye Cao
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Yun Sun
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Chunyan Li
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Qian Liu
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Tianshe Yang
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Liming Yao
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Wei Feng
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| | - Fuyou Li
- Department
of Chemistry and The State Key Laboratory
of Molecular Engineering of Polymers and Institute of Biomedicine
Science, Fudan University, Shanghai, 200433,
P. R. China
| |
Collapse
|
216
|
Shen J, Zhao L, Han G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv Drug Deliv Rev 2013; 65:744-55. [PMID: 22626980 DOI: 10.1016/j.addr.2012.05.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/11/2022]
Abstract
Lanthanide-doped upconverting luminescent nanoparticles (UCNPs) are promising materials for optical imaging-guided drug delivery and therapy due to their unique optical and chemical properties. UCNPs absorb low energy near-infrared (NIR) light and emit high-energy shorter wavelength photons. Their special features allow them to overcome various problems associated with conventional imaging probes and to provide versatility for creating nanoplatforms with both imaging and therapeutic modalities. Here, we discuss several approaches to fabricate and utilize UCNPs for traceable drug delivery and therapy.
Collapse
Affiliation(s)
- Jie Shen
- Biochemistry and Molecular Pharmacology Department, University of Massachusetts-Medical School, 364 Plantation Street, LRB 806, Worcester, MA 01605, USA
| | | | | |
Collapse
|
217
|
Paik T, Gordon TR, Prantner AM, Yun H, Murray CB. Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS NANO 2013; 7:2850-9. [PMID: 23432186 DOI: 10.1021/nn4004583] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here, we report the shape-controlled synthesis of tripodal and triangular gadolinium oxide (Gd2O3) nanoplates. In the presence of lithium ions, the shape of the nanocrystals is readily controlled by tailoring reaction parameters such as temperature and time. We observe that the morphology transforms from an initial tripodal shape to a triangular shape with increasing reaction time or elevated temperatures. Highly uniform Gd2O3 nanoplates are self-assembled into nanofibril-like liquid-crystalline superlattices with long-range orientational and positional order. In addition, shape-directed self-assemblies are investigated by tailoring the aspect ratio of the arms of the Gd2O3 nanoplates. Due to a strong paramagnetic response, Gd2O3 nanocrystals are excellent candidates for MRI contrast agents and also can be doped with rare-earth ions to form nanophosphors, pointing to their potential in multimodal imaging. In this work, we investigate the MR relaxometry at high magnetic fields (9.4 and 14.1 T) and the optical properties including near-IR to visible upconversion luminescence and X-ray excited optical luminescence of doped Gd2O3 nanoplates. The complex shape of Gd2O3 nanoplates, coupled with their magnetic properties and their ability to phosphoresce under NIR or X-ray excitation which penetrate deep into tissue, makes these nanoplates a promising platform for multimodal imaging in biomedical applications.
Collapse
Affiliation(s)
- Taejong Paik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
218
|
Recent Advancement in Functional Core-Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/672059] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper covers the core-shell nanomaterials, mainly, polymer-core polymer shell, polymer-core metal shell, and polymer-core nonmetal shells. Herein, various synthesis techniques, properties, and applications of these materials have been discussed. The detailed discussion of the properties with experimental parameters has been carried out. The various characterization techniques for the core-shell nanostructure have also been discussed. Their physical and chemical properties have been addressed. The future aspects of such core-shell nanostructures for biomedical and various other applications have been discussed with a special emphasis on their properties.
Collapse
|
219
|
Su LT, Karuturi SK, Luo J, Liu L, Liu X, Guo J, Sum TC, Deng R, Fan HJ, Liu X, Tok AIY. Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1603-1607. [PMID: 23288630 DOI: 10.1002/adma.201204353] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/08/2012] [Indexed: 06/01/2023]
Abstract
A hetero-nanostructured photoanode with enhanced near-infrared light harvesting is developed for photo-electrochemical cells. By spatially coating upconversion nanoparticles and quantum dot photosensitizers onto TiO2 inverse opal, this architecture allows direct irradiation of upconversion nanoparticles to emit visible light that excites quantum dots for charge separation. Electrons are injected into TiO2 with minimal carrier losses due to continuous electron conducting interface.
Collapse
Affiliation(s)
- Liap Tat Su
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Chen H, Zhen Z, Todd T, Chu PK, Xie J. Nanoparticles for Improving Cancer Diagnosis. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2013; 74:35-69. [PMID: 24068857 PMCID: PMC3779646 DOI: 10.1016/j.mser.2013.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Despite the progress in developing new therapeutic modalities, cancer remains one of the leading diseases causing human mortality. This is mainly attributed to the inability to diagnose tumors in their early stage. By the time the tumor is confirmed, the cancer may have already metastasized, thereby making therapies challenging or even impossible. It is therefore crucial to develop new or to improve existing diagnostic tools to enable diagnosis of cancer in its early or even pre-syndrome stage. The emergence of nanotechnology has provided such a possibility. Unique physical and physiochemical properties allow nanoparticles to be utilized as tags with excellent sensitivity. When coupled with the appropriate targeting molecules, nanoparticle-based probes can interact with a biological system and sense biological changes on the molecular level with unprecedented accuracy. In the past several years, much progress has been made in applying nanotechnology to clinical imaging and diagnostics, and interdisciplinary efforts have made an impact on clinical cancer management. This article aims to review the progress in this exciting area with emphases on the preparation and engineering techniques that have been developed to assemble "smart" nanoprobes.
Collapse
Affiliation(s)
- Hongmin Chen
- Department of Chemistry and Bio-Imaging Research Center, University of Georgia, 1001 Cedar Street, Athens, GA 30602
| | - Zipeng Zhen
- Department of Chemistry and Bio-Imaging Research Center, University of Georgia, 1001 Cedar Street, Athens, GA 30602
| | - Trever Todd
- Department of Chemistry and Bio-Imaging Research Center, University of Georgia, 1001 Cedar Street, Athens, GA 30602
| | - Paul K. Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jin Xie
- Department of Chemistry and Bio-Imaging Research Center, University of Georgia, 1001 Cedar Street, Athens, GA 30602
| |
Collapse
|
221
|
Gorris HH, Wolfbeis OS. Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres. Angew Chem Int Ed Engl 2013; 52:3584-600. [DOI: 10.1002/anie.201208196] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Indexed: 01/06/2023]
|
222
|
Gorris HH, Wolfbeis OS. Photonen aufkonvertierende Nanopartikel zur optischen Codierung und zum Multiplexing von Zellen, Biomolekülen und Mikrosphären. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208196] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
223
|
Liu Y, Tu D, Zhu H, Ma E, Chen X. Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. NANOSCALE 2013; 5:1369-84. [PMID: 23223801 DOI: 10.1039/c2nr33239f] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Trivalent lanthanide (Ln(3+))-doped luminescent inorganic nanoparticles (NPs), characterized by long-lived luminescence, large Stokes and/or anti-Stokes shifts, narrow emission bands and high photochemical stability, are considered to be promising candidates as luminescent bioprobes in biomedicine and biotechnology. In this feature article, we provide a brief overview of the most recent advances in Ln(3+)-doped luminescent inorganic NPs as sensors, which covers from their chemical and physical fundamentals to biodetection, such as controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in vitro biodetection. Finally, some of the most important emerging trends and future efforts toward this active research field are also proposed.
Collapse
Affiliation(s)
- Yongsheng Liu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | | | | | | | | |
Collapse
|
224
|
Wang H, Wang L. One-Pot Syntheses and Cell Imaging Applications of Poly(amino acid) Coated LaVO4:Eu3+ Luminescent Nanocrystals. Inorg Chem 2013; 52:2439-45. [DOI: 10.1021/ic302297u] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Huanjie Wang
- State Key Laboratory of Chemical Resource Engineering, School
of Science, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, School
of Science, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
225
|
Zhao J, Lu Z, Yin Y, McRae C, Piper JA, Dawes JM, Jin D, Goldys EM. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size. NANOSCALE 2013; 5:944-52. [PMID: 23223581 DOI: 10.1039/c2nr32482b] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite recent achievements to reduce surface quenching in NaYF(4):Yb,Er nanocrystals, a complete understanding of how the nanocrystal size affects the brightness of upconversion luminescence is still incomplete. Here we investigated upconversion luminescence of Yb,Er-doped nanocrystals in a broad range of sizes from 6 nm to 45 nm (cubic or hexagonal phases), displaying an increasing red-to-green luminescence intensity ratio and reduced luminescence lifetimes with decreasing size. By analyzing the upconversion process with a set of rate equations, we found that their asymptotic analytic solutions explain lower decay rates of red compared to green upconversion luminescence. Furthermore, we quantified the effect of the surface on luminescence lifetime in a model where nanocrystal emitters are divided between the near-surface and inside regions of each nanocrystal. We clarify the influence of the four nonradiative recombination mechanisms (intrinsic phonon modes, vibration energy of surface ligands, solvent-mediated quenching, and surface defects) on the decay rates for different-size nanocrystals, and find that the defect density dominates decay rates for small (below 15 nm) nanocrystals. Our results indicate that a defect-reduction strategy is a key step in producing small upconversion nanocrystals with increased brightness for a variety of bioimaging and biosensing applications.
Collapse
Affiliation(s)
- Jiangbo Zhao
- MQ BioFocus Research Centre, Faculty of Science, Macquarie University, NSW 2109, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Liu F, Zhao Q, You H, Wang Z. Synthesis of stable carboxy-terminated NaYF4: Yb3+, Er3+@SiO2 nanoparticles with ultrathin shell for biolabeling applications. NANOSCALE 2013; 5:1047-1053. [PMID: 23254181 DOI: 10.1039/c2nr33046f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here, a two-step method has been developed for synthesizing carboxy-terminated NaYF(4): Yb(3+), Er(3+)@SiO(2) core@shell nanoparticles (UCNP@SiO(2)) with ultrathin shell (1.5 nm). First, the NaYF(4): Yb(3+), Er(3+) upconverting nanoparticles (UCNPs) were prepared using solvothermal technology; then, silica shells (SiO(2)) were deposited on the nanocrystals to form core-shell structures by the hydrolysis of tetraethylorthosilicate (TEOS). The ultrathin SiO(2) shell was obtained by increasing surfactant amount and decreasing TEOS amount in the reaction mixture. Carboxyethylsilanetriol (CTES) was used to generate the carboxy group on the particle surface. The carboxy-terminated UCNP@SiO(2) are ideally suited for biolabeling and bioimaging applications because the as-prepared nanoparticles have extreme colloidal and optical stabilities, and the carboxy groups on the particle surface easily react with amino residues of biomolecules. As an example, we reported on the interactions of Ricinus Communis Agglutinin (RCA 120) conjugated UCNP@SiO(2) with HeLa cells. The excellent performance of the RCA 120 conjugated UCNP@SiO(2) in cellular fluorescence imaging was demonstrated.
Collapse
Affiliation(s)
- Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | | | | | | |
Collapse
|
227
|
Yang D, Dai Y, Ma P, Kang X, Cheng Z, Li C, Lin J. One-Step Synthesis of Small-Sized and Water-Soluble NaREF4Upconversion Nanoparticles for In Vitro Cell Imaging and Drug Delivery. Chemistry 2013; 19:2685-94. [DOI: 10.1002/chem.201203634] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Indexed: 11/12/2022]
|
228
|
Cheng L, Wang C, Liu Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. NANOSCALE 2013; 5:23-37. [PMID: 23135546 DOI: 10.1039/c2nr32311g] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Upconversion nanoparticles (UCNPs), particularly lanthanide-doped nanocrystals, which emit high energy photons under excitation by the near-infrared (NIR) light, have found potential applications in many different fields, including biomedicine. Compared with traditional down-conversion fluorescence imaging, the NIR light excited upconversion luminescence (UCL) imaging relying on UCNPs exhibits improved tissue penetration depth, higher photochemical stability, and is free of auto-fluorescence background, which promises biomedical imaging with high sensitivity. On the other hand, the unique upconversion process of UCNPs may be utilized to activate photosensitive therapeutic agents for applications in cancer treatment. Moreover, the integration of UCNPs with other functional nanostructures could result in the obtained nanocomposites having highly enriched functionalities, useful in imaging-guided cancer therapies. This review article will focus on the biomedical imaging and cancer therapy applications of UCNPs and their nanocomposites, and discuss recent advances and future prospects in this emerging field.
Collapse
Affiliation(s)
- Liang Cheng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | | | | |
Collapse
|
229
|
Gautam A, van Veggel FCJM. Synthesis of nanoparticles, their biocompatibility, and toxicity behavior for biomedical applications. J Mater Chem B 2013; 1:5186-5200. [DOI: 10.1039/c3tb20738b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
230
|
Liu Y, Tu D, Zhu H, Chen X. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 2013; 42:6924-58. [DOI: 10.1039/c3cs60060b] [Citation(s) in RCA: 697] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
231
|
Li C, Hou Z, Dai Y, Yang D, Cheng Z, Ma P, Lin J. A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4:Yb3+, Er3+@mSiO2nanocomposite spheres for anti-cancer drug delivery and cell imaging. Biomater Sci 2013; 1:213-223. [DOI: 10.1039/c2bm00087c] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
232
|
An BL, Ma LH, Fang JH, Wang YQ, Xu JQ. Multi-photon upconversion luminescence from a CaxYF3+2x host by doping with Yb3+/Er3+ or Yb3+/Tm3+. RSC Adv 2013. [DOI: 10.1039/c3ra43702g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
233
|
Zhang L, Lu Z, Bai Y, Wang T, Wang Z, Chen J, Ding Y, Yang F, Xiao Z, Ju S, Zhu J, He N. PEGylated denatured bovine serum albumin modified water-soluble inorganic nanocrystals as multifunctional drug delivery platforms. J Mater Chem B 2013; 1:1289-1295. [DOI: 10.1039/c2tb00380e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
234
|
Wang S, Feng J, Song S, Zhang H. Rare earth fluorides upconversion nanophosphors: from synthesis to applications in bioimaging. CrystEngComm 2013. [DOI: 10.1039/c3ce40679b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
235
|
Huang X, Han S, Huang W, Liu X. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 2013; 42:173-201. [PMID: 23072924 DOI: 10.1039/c2cs35288e] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaoyong Huang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | | | | | | |
Collapse
|
236
|
Esipova TV, Ye X, Collins JE, Sakadžić S, Mandeville ET, Murray CB, Vinogradov SA. Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc Natl Acad Sci U S A 2012; 109:20826-31. [PMID: 23213211 PMCID: PMC3529031 DOI: 10.1073/pnas.1213291110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report a group of optical imaging probes, comprising upconverting lanthanide nanoparticles (UCNPs) and polyanionic dendrimers. Dendrimers with rigid cores and multiple carboxylate groups at the periphery are able to tightly bind to surfaces of UCNPs pretreated with NOBF(4), yielding stable, water-soluble, biocompatible nanomaterials. Unlike conventional linear polymers, dendrimers adhere to UCNPs by donating only a fraction of their peripheral groups to the UCNP-surface interactions. The remaining termini make up an interface between the nanoparticle and the aqueous phase, enhancing solubility and offering multiple possibilities for subsequent modification. Using optical probes as dendrimer cores makes it possible to couple the UCNPs signal to analyte-sensitive detection via UCNP-to-chromophore excitation energy transfer (EET). As an example, we demonstrate that UCNPs modified with porphyrin-dendrimers can operate as upconverting ratiometric pH nanosensors. Dendritic UCNPs possess excellent photostability, solubility, and biocompatibility, which make them directly suitable for in vivo imaging. Polyglutamic dendritic UCNPs injected in the blood of a mouse allowed mapping of the cortical vasculature down to 400 μm under the tissue surface, thus demonstrating feasibility of in vivo high-resolution two-photon microscopy with continuous wave (CW) excitation sources. Dendrimerization as a method of solubilization of UCNPs opens up numerous possibilities for use of these unique agents in biological imaging and sensing.
Collapse
Affiliation(s)
| | | | | | - Sava Sakadžić
- Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, and
| | - Emiri T. Mandeville
- Neuroprotection Research Laboratory and Departments of Radiology and Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129
| | | | | |
Collapse
|
237
|
Liebherr RB, Soukka T, Wolfbeis OS, Gorris HH. Maleimide activation of photon upconverting nanoparticles for bioconjugation. NANOTECHNOLOGY 2012; 23:485103. [PMID: 23128671 DOI: 10.1088/0957-4484/23/48/485103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Photon upconverting nanoparticles (UCNPs) have become an important new class of optical labels. Their unique property of emitting visible light after photo-excitation with near-infrared radiation enables biological imaging without background interference or cell damage. Biological applications require UCNPs that are dispersible in water and allow the attachment of biomolecules. Oleic acid-coated UCNPs obtained by solvothermal synthesis were functionalized with both hydrophilic PEG and thiol-reactive maleimides, either by ligand exchange or by silanization. Three different types of maleimide-functionalized UCNPs were prepared and characterized by transmission electron microscopy, dynamic light scattering and Raman spectroscopy. Ligand exchange of oleic acid by maleimide-PEG-COOH yielded UCNPs that did not aggregate, were colloidally stable and reacted readily with proteins. Such luminescent labels are required for background-free imaging and many other bioanalytical applications.
Collapse
Affiliation(s)
- Raphaela B Liebherr
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | | | | | | |
Collapse
|
238
|
Gai YL, Xiong KC, Chen L, Bu Y, Li XJ, Jiang FL, Hong MC. Visible and NIR Photoluminescence Properties of a Series of Novel Lanthanide–Organic Coordination Polymers Based on Hydroxyquinoline–Carboxylate Ligands. Inorg Chem 2012. [PMID: 23205639 DOI: 10.1021/ic301261g] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan-Li Gai
- State Key Laboratory
of Structure Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049,
China
| | - Ke-Cai Xiong
- State Key Laboratory
of Structure Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049,
China
| | - Lian Chen
- State Key Laboratory
of Structure Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yang Bu
- State Key Laboratory
of Structure Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049,
China
| | - Xing-Jun Li
- State Key Laboratory
of Structure Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049,
China
| | - Fei-Long Jiang
- State Key Laboratory
of Structure Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Mao-Chun Hong
- State Key Laboratory
of Structure Chemistry, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
239
|
Chen Z, Liu Z, Liu Y, Zheng K, Qin W. Controllable synthesis, upconversion luminescence, and paramagnetic properties of NaGdF4:Yb3+,Er3+ microrods. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2012.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
240
|
Yang Y, Sun Y, Cao T, Peng J, Liu Y, Wu Y, Feng W, Zhang Y, Li F. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 2012; 34:774-83. [PMID: 23117216 DOI: 10.1016/j.biomaterials.2012.10.022] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/07/2012] [Indexed: 12/30/2022]
Abstract
Upconversion luminescence (UCL) properties and radioactivity have been integrated into NaLuF(4):(153)Sm,Yb,Tm nanoparticles by a facile one-step hydrothermal method, making these nanoparticles potential candidates for UCL and single-photon emission computed tomography (SPECT) dual-modal bioimaging in vivo. The introduction of small amount of radioactive (153)Sm(3+) can hardly vary the upconversion luminescence properties of the nanoparticles. The as-designed nanoparticles showed very low cytotoxicity, no obvious tissue damage in 7 days, and excellent in vitro and in vivo performances in dual-modal bioimaging. By means of a combination of UCL and SPECT imaging in vivo, the distribution of the nanoparticles in living animals has been studied, and the results indicated that these particles were mainly accumulated in the liver and spleen. Therefore, the concept of (153)Sm(3+)/Yb(3+)/Tm(3+) co-doped NaLuF(4) nanoparticles for UCL and SPECT dual-modality imaging in vivo of whole-body animals may serve as a platform for next-generation probes for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation. It also introduces an easy methodology to quantify in vivo biodistribution of nanomaterials which still needs further understanding as a community.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry & Institute of Biomedical Science, Fudan University, 220 Handan Road, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Naccache R, Rodríguez EM, Bogdan N, Sanz-Rodríguez F, de la Cruz MDCI, de la Fuente ÁJ, Vetrone F, Jaque D, Solé JG, Capobianco JA. High resolution fluorescence imaging of cancers using lanthanide ion-doped upconverting nanocrystals. Cancers (Basel) 2012; 4:1067-105. [PMID: 24213500 PMCID: PMC3712733 DOI: 10.3390/cancers4041067] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/20/2012] [Accepted: 10/15/2012] [Indexed: 12/17/2022] Open
Abstract
During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role which is being played by a relatively new class of nanoparticles, based on lanthanide ion doped nanocrystals, to target and image cancer cells using upconversion fluorescence microscopy. These nanoparticles are insulating nanocrystals that are usually doped with small percentages of two different rare earth (lanthanide) ions: The excited donor ions (usually Yb3+ ion) that absorb the NIR excitation and the acceptor ions (usually Er3+, Ho3+ or Tm3+), that are responsible for the emitted visible (or also near infrared) radiation. The higher conversion efficiency of these nanoparticles in respect to those based on QDs and GNRs, as well as the almost independent excitation/emission properties from the particle size, make them particularly promising for fluorescence imaging. The different approaches of these novel nanoparticles devoted to "in vitro" and "in vivo" cancer imaging, selective targeting and treatment are examined in this review.
Collapse
Affiliation(s)
- Rafik Naccache
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Emma Martín Rodríguez
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Nicoleta Bogdan
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| | - Francisco Sanz-Rodríguez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail: (F.S.-R.); (A.J.F.)
| | | | - Ángeles Juarranz de la Fuente
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail: (F.S.-R.); (A.J.F.)
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique-Énergie, Matériaux et Télécommunications, Université du Québec, Varennes J3X 1S2, Canada; E-Mail:
| | - Daniel Jaque
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail:
| | - José García Solé
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid 28049, Spain; E-Mail:
| | - John A. Capobianco
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Canada; E-Mails: (R.N.); (E.M.R.); (N.B.)
| |
Collapse
|
242
|
|
243
|
Li C, Liu J, Alonso S, Li F, Zhang Y. Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions. NANOSCALE 2012; 4:6065-71. [PMID: 22930418 DOI: 10.1039/c2nr31570j] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Detection of Cu(2+) ions and study of their subcellular distribution in physiological processes are of considerable significance because of their potential environmental and biological applications. Some fluorescence based sensors have been developed for selective detection of Cu(2+) ions, based on organic fluorescent probes that specifically bind to Cu(2+) ions. However, these sensors are not suitable for detection in biological samples due to the short penetration depth of UV/visible light used to excite the fluorescent probes. The use of near-infrared (NIR) light can afford penetration depths of an order of magnitude greater than that of visible light, however, a material that can convert NIR light to visible light is required. A facile method has been developed for in-depth detection of Cu(2+) ions based on fluorescence upconversion. A mesoporous silica shell is coated on upconversion nanoparticles (UCNPs) and a Cu(2+) ion sensitive fluorescent probe, rhodamine B hydrazide, is incorporated into the mesoporous silica. Upon excitation by a NIR light, the UCNPs emit visible light to excite the Cu(2+)-sensitive fluorescent probe. Because of the unique optical properties of UCNPs and their ability to convert NIR light to visible light, this is a feasible method for sensitive and in-depth detection of Cu(2+) ions in a complex biological or environmental sample due to the low autofluorescence and the high penetration depth of NIR light.
Collapse
Affiliation(s)
- Chunxia Li
- Department of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 117574
| | | | | | | | | |
Collapse
|
244
|
Cao P, Tong L, Hou Y, Zhao G, Guerin G, Winnik MA, Nitz M. Improving lanthanide nanocrystal colloidal stability in competitive aqueous buffer solutions using multivalent PEG-phosphonate ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12861-70. [PMID: 22906305 DOI: 10.1021/la302690h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The range of properties available in the lanthanide series has inspired research into the use of lanthanide nanoparticles for numerous applications. We aim to use NaLnF(4) nanoparticles for isotopic tags in mass cytometry. This application requires nanoparticles of narrow size distribution, diameters preferably less than 15 nm, and robust surface chemistry to avoid nonspecific interactions and to facilitate bioconjugation. Nanoparticles (NaHoF(4), NaEuF(4), NaGdF(4), and NaTbF(4)) were synthesized with diameters from 9 to 11 nm with oleic acid surface stabilization. The surface ligands were replaced by a series of mono-, di-, and tetraphosphonate PEG ligands, whose synthesis is reported here. The colloidal stability of the resulting particles was monitored over a range of pH values and in phosphate containing solutions. All of the PEG-phosphonate ligands were found to produce non-aggregated colloidally stable suspensions of the nanoparticles in water as judged by DLS and TEM measurements. However, in more aggressive solutions, at high pH and in phosphate buffers, the mono- and diphosphonate PEG ligands did not stabilize the particles and aggregation as well as flocculation was observed. However, the tetraphosphonate ligand was able to stabilize the particles at high pH and in phosphate buffers for extended periods of time.
Collapse
Affiliation(s)
- Pengpeng Cao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6
| | | | | | | | | | | | | |
Collapse
|
245
|
Liu Y, Zhou S, Tu D, Chen Z, Huang M, Zhu H, Ma E, Chen X. Amine-functionalized lanthanide-doped zirconia nanoparticles: optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. J Am Chem Soc 2012; 134:15083-90. [PMID: 22913455 DOI: 10.1021/ja306066a] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ultrasmall inorganic oxide nanoparticles doped with trivalent lanthanide ions (Ln(3+)), a new and huge family of luminescent bioprobes, remain nearly untouched. Currently it is a challenge to synthesize biocompatible ultrasmall oxide bioprobes. Herein, we report a new inorganic oxide bioprobe based on sub-5 nm amine-functionalized tetragonal ZrO(2)-Ln(3+) nanoparticles synthesized via a facile solvothermal method and ligand exchange. By utilizing the long-lived luminescence of Ln(3+), we demonstrate its application as a sensitive time-resolved fluorescence resonance energy transfer (FRET) bioprobe to detect avidin with a record-low detection limit of 3.0 nM. The oxide nanoparticles also exhibit specific recognition of cancer cells overexpressed with urokinase plasminogen activator receptor (uPAR, an important marker of tumor biology and metastasis) and thus may have great potentials in targeted bioimaging.
Collapse
Affiliation(s)
- Yongsheng Liu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Wang ZL, Hao J, Chan HLW, Wong WT, Wong KL. A strategy for simultaneously realizing the cubic-to-hexagonal phase transition and controlling the small size of NaYF4:Yb3+,Er3+ nanocrystals for in vitro cell imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1863-1868. [PMID: 22467196 DOI: 10.1002/smll.201102703] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/06/2012] [Indexed: 05/31/2023]
Abstract
Hexagonal-phase NaYF(4):Yb(3+),Er(3+) up-conversion nanocrystals (UCNCs) are synthesized by a combination of refluxing and hydrothermal treatment. This strategy leads to only a slight increase in particle size, from 4.5 to ca. 10 nm, during the cubic-to-hexagonal phase transition. The hexagonal UCNCs can be internalized by HeLa cells and exhibit visible emission in the cells under near-infrared excitation.
Collapse
Affiliation(s)
- Zhen-Ling Wang
- Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | | | | | | | | |
Collapse
|
247
|
Yang D, Li G, Kang X, Cheng Z, Ma P, Peng C, Lian H, Li C, Lin J. Room temperature synthesis of hydrophilic Ln(3+)-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: energy transfer, size-dependent and color-tunable luminescence properties. NANOSCALE 2012; 4:3450-9. [PMID: 22539001 DOI: 10.1039/c2nr30338h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this paper, we demonstrate a simple, template-free, reproducible and one-step synthesis of hydrophilic KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) nanoparticles (NPs) via a solution-based route at room temperature. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and cathodoluminescence (CL) spectra are used to characterize the samples. The results indicate that the use of water-diethyleneglycol (DEG) solvent mixture as the reaction medium not only allows facile particle size control but also endows the as-prepared samples with good water-solubility. In particular, the mean size of NPs is monotonously reduced with the increase of DEG content, from 215 to 40 nm. The luminescence intensity and absolute quantum yields for KGdF(4): Ce(3+), Tb(3+) NPs increase remarkably with particle sizes ranging from 40 to 215 nm. Additionally, we systematically investigate the magnetic and luminescence properties of KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) NPs. They display paramagnetic and superparamagnetic properties with mass magnetic susceptibility values of 1.03 × 10(-4) emu g(-1)·Oe and 3.09 × 10(-3) emu g(-1)·Oe at 300 K and 2 K, respectively, and multicolor emissions due to the energy transfer (ET) process Ce(3+)→ Gd(3+)→ (Gd(3+))(n)→ Ln(3+), in which Gd(3+) ions play an intermediate role in this process. Representatively, it is shown that the energy transfer from Ce(3+) to Tb(3+) occurs mainly via the dipole-quadrupole interaction by comparison of the theoretical calculation and experimental results. This kind of magnetic/luminescent dual-function materials may have promising applications in multiple biolabels and MR imaging.
Collapse
Affiliation(s)
- Dongmei Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13002, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Lin M, Zhao Y, Wang S, Liu M, Duan Z, Chen Y, Li F, Xu F, Lu T. Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications. Biotechnol Adv 2012; 30:1551-61. [PMID: 22561011 DOI: 10.1016/j.biotechadv.2012.04.009] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/06/2012] [Accepted: 04/21/2012] [Indexed: 12/12/2022]
Abstract
Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) with appropriate surface modification can be used for a wide range of biomedical applications such as bio-detection, cancer therapy, bio-labeling, fluorescence imaging, magnetic resonance imaging and drug delivery. The upconversion phenomenon exhibited by Ln-doped UCNPs renders them tremendous advantages in biological applications over other types of fluorescent materials (e.g., organic dyes, fluorescent proteins, gold nanoparticles, quantum dots, and luminescent transition metal complexes) for: (i) enhanced tissue penetration depths achieved by near-infrared (NIR) excitation; (ii) improved stability against photobleaching, photoblinking and photochemical degradation; (iii) non-photodamaging to DNA/RNA due to lower excitation light energy; (iv) lower cytotoxicity; and (v) higher detection sensitivity. Ln-doped UCNPs are therefore attracting increasing attentions in recent years. In this review, we present recent advances in the synthesis of Ln-doped UCNPs and their surface modification, as well as their emerging applications in biomedicine. The future prospects of Ln-doped UCNPs for biomedical applications are also discussed.
Collapse
Affiliation(s)
- Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Biomedical Engineering and Biomechanics Center, Department of Chemistry, Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Probst J, Dembski S, Milde M, Rupp S. Luminescent nanoparticles and their use for in vitro and in vivo diagnostics. Expert Rev Mol Diagn 2012; 12:49-64. [PMID: 22133119 DOI: 10.1586/erm.11.86] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fluorescence spectroscopy has been shown to be a useful tool for a broad variety of biological and medical applications. Many of the analytical methods, as used for tumor marker and gene mutation detection, recognition of pathogens or monitoring of cell-related processes, are based on the labeling of the investigating object with luminescent nanoparticles. Owing to their size, which is comparable to that of biomolecules, and to their extraordinary optical properties, luminescent nanoparticles could well improve the sensitivity and flexibility of current detection techniques. This article provides a general overview of the synthesis, properties and application of luminescent semiconductor, metal and inorganic nanoparticles for in vitro and in vivo diagnostics, also reflecting the aspect of biocompatibility.
Collapse
Affiliation(s)
- Jörn Probst
- Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany.
| | | | | | | |
Collapse
|
250
|
Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 2012; 33:4618-27. [PMID: 22444645 DOI: 10.1016/j.biomaterials.2012.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/03/2012] [Indexed: 12/25/2022]
Abstract
Core-shell Fe(3)O(4)@NaLuF(4):Yb,Er/Tm nanostructure (MUCNP) with multifunctional properties has been developed using a step-wise synthetic method. The successful fabrication of MUCNP has been confirmed by transmission electron microscopy, powder X-ray diffraction, energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy. The MUCNP exhibits superparamagnetic property with saturation magnetization of 15 emu g(-1), and T(2)-enhanced magnetic resonance (MR) effect with an r(2) value of 21.63 s(-1) mM(-1) at 0.5 T, resulting from the Fe(3)O(4) cores. Moreover, the NaLuF(4)-based MUCNP provides excellent X-ray attenuation and upconversion luminescence (UCL) emission under excitation at 980 nm. In vivo MR, computed tomography (CT) and UCL images of tumor-bearing mice show that the MUCNP can be successfully used in multimodal imaging. In vitro tests reveal that the MUCNP is non-cytotoxic. These results suggest that the developed MUCNP could be served as an MR, CT and UCL probe for tri-modality imaging.
Collapse
|