201
|
|
202
|
|
203
|
Wang C, Li S, Li C, Feng Y, Peng X, Gong Y. Molecular cloning, expression profile, polymorphism and the genetic effects of the dopamine D1 receptor gene on duck reproductive traits. Mol Biol Rep 2012; 39:9239-46. [PMID: 22740132 DOI: 10.1007/s11033-012-1797-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/09/2012] [Indexed: 11/25/2022]
Abstract
The dopamine D1 receptor (DRD1), a member of the dopamine receptor (DR) gene family, participates in the regulation of reproductive behaviors in birds. In this study, a 1,390 bp fragment covering the complete coding region (CDS) of duck DRD1 gene was obtained. The cDNA (GenBank: JQ346726) contains a 1,353 bp CDS and a 37 bp 3'- UTR including a TGA termination codon (nucleotides 1,354-1,356 bp). The duck DRD1 shares about 76-96 % nucleic acid identity and 82-98 % amino acid identity with their counterparts in other species. A phylogenetic tree based on amino acid sequences displays that duck DRD1 protein is closely related with those of chicken and zebra finch. The quantitative real-time PCR analysis indicates that the DRD1 mRNA is widely expressed in all examined tissues. Five single nucleotide polymorphisms (SNPs) (c.189A > T, c.507C > T, c.681C > T, c.765A > T, c.1044A > G) in the CDS of duck DRD1 gene were indentified, c.681C > T and c.765A > T were genotyped and analyzed in a two generations duck population by using of PCR-RFLP. Association analysis demonstrated that the c.681C > T genotypes were significantly associated with body weight at sexual maturity (when laying their first egg) (P < 0.01), egg production within 360 days (P < 0.05) and 420 days (P < 0.01); the c.765A > T genotypes were significantly associated with egg shape index and egg shell strength (P < 0.05). Those results suggest that the DRD1 gene may be a potential genetic marker to improve some reproductive traits in ducks.
Collapse
Affiliation(s)
- Cui Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
204
|
Johnson M, Antonio T, Reith MEA, Dutta AK. Structure-activity relationship study of N⁶-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N⁶-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine analogues: development of highly selective D3 dopamine receptor agonists along with a highly potent D2/D3 agonist and their pharmacological characterization. J Med Chem 2012; 55:5826-40. [PMID: 22642365 DOI: 10.1021/jm300268s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In our effort to develop multifunctional drugs against Parkinson's disease, a structure-activity-relationship study was carried out based on our hybrid molecular template targeting D2/D3 receptors. Competitive binding with [(3)H]spiroperidol was used to evaluate affinity (K(i)) of test compounds. Functional activity of selected compounds in stimulating [(35)S]GTPγS binding was assessed in CHO cells expressing either human D2 or D3 receptors. Our results demonstrated development of highly selective compounds for D3 receptor (for (-)-40K(i), D3 = 1.84 nM, D2/D3 = 583.2; for (-)-45K(i), D3 = 1.09 nM, D2/D3 = 827.5). Functional data identified (-)-40 (EC(50), D2 = 114 nM, D3 = 0.26 nM, D2/D3 = 438) as one of the highest D3 selective agonists known to date. In addition, high affinity, nonselective D3 agonist (-)-19 (EC(50), D2 = 2.96 nM and D3 = 1.26 nM) was also developed. Lead compounds with antioxidant activity were evaluated using an in vivo PD animal model.
Collapse
Affiliation(s)
- Mark Johnson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | | | | | | |
Collapse
|
205
|
Kravitz AV, Kreitzer AC. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda) 2012; 27:167-77. [PMID: 22689792 PMCID: PMC3880226 DOI: 10.1152/physiol.00004.2012] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Direct and indirect pathway striatal neurons are known to exert opposing control over motor output. In this review, we discuss a hypothetical extension of this framework, in which direct pathway striatal neurons also mediate reinforcement and reward, and indirect pathway neurons mediate punishment and aversion.
Collapse
Affiliation(s)
- Alexxai V. Kravitz
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California
| | - Anatol C. Kreitzer
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California
- Departments of Physiology and Neurology, University of California, San Francisco, California
| |
Collapse
|
206
|
Dell'anno MT, Pallottino S, Fisone G. mGlu5R promotes glutamate AMPA receptor phosphorylation via activation of PKA/DARPP-32 signaling in striatopallidal medium spiny neurons. Neuropharmacology 2012; 66:179-86. [PMID: 22507666 DOI: 10.1016/j.neuropharm.2012.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/23/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Group I metabotropic glutamate receptors (mGluRs), which comprise mGlu1Rs and mGlu5Rs, are enriched in striatal medium spiny neurons (MSNs), where they modulate glutamatergic transmission. Here, we have examined the effect of group I mGluRs on the regulation of the state of phosphorylation of the GluA1 subunit of the AMPA glutamate receptor. We found that incubation of mouse striatal slices with the group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) promotes GluA1 phosphorylation at the cAMP-dependent protein kinase (PKA) site, Ser845. This effect is prevented by 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), a selective mGlu5R antagonist. The increase in GluA1 phosphorylation produced by DHPG is also prevented by blockade of adenosine A2A receptors (A2ARs), which are known to promote cAMP signaling specifically in striatopallidal MSNs, as well as by enzymatic degradation of endogenous adenosine, achieved with adenosine deaminase. The ability of DHPG to increase PKA-dependent phosphorylation of GluA1 depends on concomitant activation of the dopamine- and cAMP-regulated phosphoprotein of 32kDa (DARPP-32). Thus, inactivation of the PKA phosphorylation site of DARPP-32 abolishes the effect of DHPG. Moreover, cell-specific knock out of DARPP-32 in striatopallidal, but not in striatonigral, MSNs prevents the increase in Ser845 phosphorylation induced by DHPG. These results indicate that activation of mGlu5Rs promotes PKA/DARPP-32-dependent phosphorylation of downstream target proteins in striatopallidal MSNs and that this effect is exerted via potentiation of tonic A2AR transmission. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Maria Teresa Dell'anno
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
207
|
Fedotova J. Effects of stimulation and blockade of d(2) receptor on depression-like behavior in ovariectomized female rats. ISRN PHARMACOLOGY 2012; 2012:305645. [PMID: 22530139 PMCID: PMC3317004 DOI: 10.5402/2012/305645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/21/2011] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to explore the hedonic effects of D2 receptor agonist, quinpirole and D2 receptor antagonist, and sulpiride alone or in combination with a low dose of 17β-E2-estradiol (17β-E2) in the adult ovariectomized female rats (OVX). OVX rats of Wistar strain were used in all experiments. Two weeks after surgery rats were chronically treated with vehicle, a low dose of 17β-E2 (5.0 μg/rat), quinpirole (0.1 mg/kg), sulpiride (10.0 mg/kg), quinpirole plus 17β-E2, or sulpiride plus 17β-E2 for 14 days before the forced swimming test. We found that sulpiride significantly decreased immobility time in the OVX females. A combination of sulpiride with a low dose of 17β-E2 induced more profound decrease of immobility time in the OVX rats compared to the rats treated with sulpiride alone. On the contrary, quinpirole failed to modify depression-like behavior in the OVX rats. In addition, quinpirole significantly blocked the antidepressant-like effect of 17β-E2 in OVX rats. Thus, the D2 receptor antagonist sulpiride alone or in combination with a low dose of 17β-E2 exerted antidepressant-like effect in OVX female rats, while the D2 receptor agonist quinpirole produced depressant-like profile on OVX rats.
Collapse
Affiliation(s)
- Julia Fedotova
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology of the Russian Academy of Science, 6 Emb. Makarova, 199034 St. Petersburg, Russia
| |
Collapse
|
208
|
Baladi MG, Daws LC, France CP. You are what you eat: influence of type and amount of food consumed on central dopamine systems and the behavioral effects of direct- and indirect-acting dopamine receptor agonists. Neuropharmacology 2012; 63:76-86. [PMID: 22710441 DOI: 10.1016/j.neuropharm.2012.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/21/2011] [Accepted: 02/07/2012] [Indexed: 12/27/2022]
Abstract
The important role of dopamine (DA) in mediating feeding behavior and the positive reinforcing effects of some drugs is well recognized. Less widely studied is how feeding conditions might impact the sensitivity of drugs acting on DA systems. Food restriction, for example, has often been the focus of aging and longevity studies; however, other studies have demonstrated that mild food restriction markedly increases sensitivity to direct- and indirect-acting DA receptor agonists. Moreover, it is becoming clear that not only the amount of food, but the type of food, is an important factor in modifying the effects of drugs. Given the increased consumption of high fat and sugary foods, studies are exploring how consumption of highly palatable food impacts DA neurochemistry and the effects of drugs acting on these systems. For example, eating high fat chow increases sensitivity to some behavioral effects of direct- as well as indirect-acting DA receptor agonists. A compelling mechanistic possibility is that central DA pathways that mediate the effects of some drugs are regulated by one or more of the endocrine hormones (e.g. insulin) that undergo marked changes during food restriction or after consuming high fat or sugary foods. Although traditionally recognized as an important signaling molecule in regulating energy homeostasis, insulin can also regulate DA neurochemistry. Because direct- and indirect-acting DA receptor drugs are used therapeutically and some are abused, a better understanding of how food intake impacts response to these drugs would likely facilitate improved treatment of clinical disorders and provide information that would be relevant to the causes of vulnerability to abuse drugs. This article is part of a Special Issue entitled 'Central Control of Food Intake'.
Collapse
Affiliation(s)
- Michelle G Baladi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | |
Collapse
|
209
|
Abstract
Dopamine receptors are widely distributed within the central nervous system with its highest expression in the striatum. Two different families of dopamine receptors have been identified. The D₁ family comprises D₁ and D5 receptors, whereas D₂, D₃, and D₄ receptors form the D₂ family. These 2 families mediate different behavior patterns that are linked to activation of specific transduction pathways. The functional relevance of dopamine receptors derives from the reduced dopamine content found in the striatum of Parkinson disease (PD) patients and the ability of dopamine and dopamine receptors to reverse the motor deficits exhibited by PD patients. During the last 2 decades dopamine receptor agonists have been used either in de novo PD patients to prevent the appearance of dyskinesias or in PD patients with motor fluctuations to reduce the number of daily "off" hours. It seems that all dopamine receptors agonists produce similar motor responses and adverse effects, but data comparing their effectiveness in the treatment of PD are not available. In this article we summarize the main characteristics of dopamine receptors, their structure, their signaling pathways, and the responses mediated by their independent activation. Here is also described the therapeutic value of the different dopamine receptor agonists in the treatment of PD.
Collapse
|
210
|
Vauquelin G, Bostoen S, Vanderheyden P, Seeman P. Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:337-72. [PMID: 22331262 DOI: 10.1007/s00210-012-0734-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
Drug-receptor interactions are traditionally quantified in terms of affinity and efficacy, but there is increasing awareness that the drug-on-receptor residence time also affects clinical performance. While most interest has hitherto been focused on slow-dissociating drugs, D(2) dopamine receptor antagonists show less extrapyramidal side effects but still have excellent antipsychotic activity when they dissociate swiftly. Fast dissociation of clozapine, the prototype of the "atypical antipsychotics", has been evidenced by distinct radioligand binding approaches both on cell membranes and intact cells. The surmountable nature of clozapine in functional assays with fast-emerging responses like calcium transients is confirmatory. Potential advantages and pitfalls of the hitherto used techniques are discussed, and recommendations are given to obtain more precise dissociation rates for such drugs. Surmountable antagonism is necessary to allow sufficient D(2) receptor stimulation by endogenous dopamine in the striatum. Simulations are presented to find out whether this can be achieved during sub-second bursts in dopamine concentration or rather during much slower, activity-related increases thereof. While the antagonist's dissociation rate is important to distinguish between both mechanisms, this becomes much less so when contemplating time intervals between successive drug intakes, i.e., when pharmacokinetic considerations prevail. Attention is also drawn to the divergent residence times of hydrophobic antagonists like haloperidol when comparing radioligand binding data on cell membranes with those on intact cells and clinical data.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | | | | | | |
Collapse
|
211
|
Suppression of electrical synapses between retinal amacrine cells of goldfish by intracellular cyclic-AMP. Brain Res 2012; 1449:1-14. [PMID: 22425185 DOI: 10.1016/j.brainres.2012.01.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/17/2012] [Accepted: 01/22/2012] [Indexed: 11/23/2022]
Abstract
Retinal amacrine cells of the same class in cyprinid fish are homotypically connected by gap junctions. The permeability of their gap junctions examined by the diffusion of Neurobiotin into neighboring amacrine cells under application of dopamine or cyclic nucleotides to elucidate whether electrical synapses between the cells are regulated by internal messengers. Neurobiotin injected intracellularly into amacrine cells in isolated retinas of goldfish, and passage currents through the electrical synapses investigated by dual whole-patch clamp recordings under similar application of their ligands. Control conditions led us to observe large passage currents between connected cells and adequate transjunctional conductance between the cells (2.02±0.82nS). Experimental results show that high level of intracellular cyclic AMP within examined cells block transfer of Neurobiotin and suppress electrical synapses between the neighboring cells. Transjunctional conductance between examined cells reduced to 0.23nS. However, dopamine, 8-bromo-cyclic AMP or high elevation of intracellular cyclic GMP leaves gap junction channels of the cells permeable to Neurobiotin as in the control level. Under application of dopamine (1.25±0.06nS), 8-bromo-cyclic AMP (1.79±0.51nS) or intracellular cyclic GMP (0.98±0.23nS), the transjunctional conductance also remains as in the control level. These results demonstrate that channel opening of gap junctions between cyprinid retinal amacrine cells is regulated by high level of intracellular cyclic AMP.
Collapse
|
212
|
A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1)-like dopamine receptors. PLoS Negl Trop Dis 2012; 6:e1478. [PMID: 22292096 PMCID: PMC3265452 DOI: 10.1371/journal.pntd.0001478] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/29/2011] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides. METHODOLOGY/PRINCIPAL FINDINGS We describe a "genome-to-lead" approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR) mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2) from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D(1)-like (Gα(s)-coupled) receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC(50): AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM). Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC(50) = 5.8±1.5 nM) and norepinephrine (EC(50) = 760±180 nM), while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as "hits," and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D(1) dopamine receptor (hD(1)) revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2-selective compounds. In subsequent Ae. aegypti larval bioassays, significant mortality was observed for amitriptyline (93%) and doxepin (72%), confirming these chemistries as "leads" for insecticide discovery. CONCLUSIONS/SIGNIFICANCE This research provides a "proof-of-concept" for a novel approach toward insecticide discovery, in which genome sequence data are utilized for functional characterization and chemical compound screening of GPCRs. We provide a pipeline useful for future prioritization, pharmacological characterization, and expanded chemical screening of additional GPCRs in disease-vector arthropods. The differential molecular and pharmacological properties of the mosquito dopamine receptors highlight the potential for the identification of target-specific chemistries for vector-borne disease management, and we report the first study to identify dopamine receptor antagonists with in vivo toxicity toward mosquitoes.
Collapse
|
213
|
QSAR study and synthesis of new phenyltropanes as ligands of the dopamine transporter (DAT). Bioorg Med Chem 2012; 20:1388-95. [PMID: 22300887 DOI: 10.1016/j.bmc.2012.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
The dopamine transporter (DAT) plays a pivotal role in the regulation of dopamine neurotransmission, and is involved in a number of physiological functions and brain disorders. Furthermore the DAT analysis by molecular imaging techniques is a useful tool for the diagnosis and follow up treatment of diseases involving the DAT. In order to predict the affinity of new derivatives for the DAT, different QSAR molecular modeling models based on cocaine were compared. We have evaluated in these models tropane derivatives synthesized with original synthons which coupled properties of both fluorine and iodine atoms. One compound showed a high in vitro affinity and selectivity for the DAT (K(i)=0.87±0.04 nM). This compound should be radiolabeled with radioiodine for further investigations by SPECT.
Collapse
|
214
|
Dias FRC, de Matos LW, Sampaio MDFDS, Carey RJ, Carrera MP. Opposite effects of low versus high dose haloperidol treatments on spontaneous and apomorphine induced motor behavior: evidence that at a very low dose haloperidol acts as an indirect dopamine agonist. Behav Brain Res 2012; 229:153-9. [PMID: 22244923 DOI: 10.1016/j.bbr.2011.12.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 12/28/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
Abstract
Anti-psychotic drugs are antagonists at the dopamine D2 receptors and repeated administration can lead to the development of dopamine receptor supersensitivity. In two experiments, separate groups of rats were administered 10 daily low or high doses of the typical anti-psychotic drug haloperidol (0.03 or 1.0 mg/kg). The high dose decreased locomotion whereas, the low dose increased locomotion. After 5 days of withdrawal, all groups received 2.0 mg/kg apomorphine on 5 successive days. The apomorphine treatments given to the vehicle group generated a progressive locomotion sensitization effect and this effect was potentiated by pre-exposure to 0.03 mg/kg haloperidol. Initially, the prior high dose of haloperidol exaggerated the apomorphine locomotor stimulant effect but with repeated apomorphine treatments desensitization developed. Following a 5-day withdrawal period an apomorphine challenge test was conducted and apomorphine sensitization was absent in the haloperidol high dose pre-exposure group but potentiated in the low dose pre-exposure group. In the second replication experiment a conditioning test instead of a sensitization challenge test was conducted 5 days after completion of the 5-day apomorphine treatment protocol. The repeated apomorphine treatments induced conditioned hyper- locomotion and this conditioned effect was prevented by the prior high dose haloperidol pre-exposure but enhanced by the prior low dose haloperidol pre-exposure. Two new key findings are (a) that a low dose haloperidol regimen can function as a dopamine agonist and these effects persist after withdrawal and (b) that repeated apomorphine treatments can desensitize D2 receptors previously sensitized by a high dose haloperidol treatment regimen.
Collapse
Affiliation(s)
- Flávia Regina Cruz Dias
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | | | | | | | | |
Collapse
|
215
|
Beaulieu JM. A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 2012; 37:7-16. [PMID: 21711983 PMCID: PMC3244494 DOI: 10.1503/jpn.110011] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mental illnesses, such as bipolar disorder, attention-deficit/hyperactivity disorder, depression and schizophrenia are a major public health concern worldwide. Several pharmacologic agents acting on monoamine neurotransmission are used for the management of these disorders. However, there is still little understanding of the ultimate molecular mechanisms responsible for the therapeutic effects of these drugs or their relations with disease etiology. Here I provide an overview of recent advances on the involvement of the signalling molecules Akt and glycogen synthase kinase-3 (GSK3) in the regulation of behaviour by the monoamine neurotransmitters dopamine (DA) and serotonin (5-HT). I examine the possible participation of these signalling molecules to the effects of antidepressants, lithium and antipsychotics, as well as their possible contribution to mental disorders. Regulation of Akt and GSK3 may constitute an important signalling hub in the subcellular integration of 5-HT and DA neurotransmission. It may also provide a link between the action of these neurotransmitters and gene products, like disrupted in schizophrenia 1 (DISC1) and neuregulin (NRG), that are associated with increased risk for mental disorders. However, changes in Akt and GSK3 signalling are not restricted to a single disorder, and their contribution to specific behavioural symptoms or therapeutic effects may be modulated by broader changes in biologic contexts or signalling landscapes. Understanding these interactions may provide a better understanding of mental illnesses, leading to better efficacy of new therapeutic approaches.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Centre de Recherche Université Laval Robert-Giffard (CRULRG), Québec, Canada.
| |
Collapse
|
216
|
Abstract
In the early 1970s, receptors for neurotransmitters acting via second messengers had not been identified biochemically nor were there definitive links to such messengers. The discovery by John W. Kebabian and Paul Greengard of a dopamine-sensitive adenyl cyclase, accordingly, was a giant step forward. The investigators first characterized the enzyme in sympathetic ganglia wherein dopamine-producing cells link pre- and post-synaptic neurons. Then, in the corpus striatum, the brain area enriched in dopamine, they delineated the enzyme\x{2019}s properties and showed that it was inhibited by antipsychotic drugs, leading to a large body of research on dopamine as a mediator of antipsychotic drug action and putative roles for this transmitter in the pathophysiology of schizophrenia.
Collapse
|
217
|
Beaulieu JM, Del'guidice T, Sotnikova TD, Lemasson M, Gainetdinov RR. Beyond cAMP: The Regulation of Akt and GSK3 by Dopamine Receptors. Front Mol Neurosci 2011; 4:38. [PMID: 22065948 PMCID: PMC3206544 DOI: 10.3389/fnmol.2011.00038] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/13/2011] [Indexed: 01/11/2023] Open
Abstract
Brain dopamine receptors have been preferred targets for numerous pharmacological compounds developed for the treatment of various neuropsychiatric disorders. Recent discovery that D2 dopamine receptors, in addition to cAMP pathways, can engage also in Akt/GSK3 signaling cascade provided a new framework to understand intracellular signaling mechanisms involved in dopamine-related behaviors and pathologies. Here we review a recent progress in understanding the role of Akt, GSK3, and related signaling molecules in dopamine receptor signaling and functions. Particularly, we focus on the molecular mechanisms involved, interacting partners, role of these signaling events in the action of antipsychotics, psychostimulants, and antidepressants as well as involvement in pathophysiology of schizophrenia, bipolar disorder, and Parkinson’s disease. Further understanding of the role of Akt/GSK3 signaling in dopamine receptor functions could provide novel targets for pharmacological interventions in dopamine-related disorders.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Université Laval-CRULRG Québec, QC, Canada
| | | | | | | | | |
Collapse
|
218
|
Del'guidice T, Lemasson M, Beaulieu JM. Role of Beta-arrestin 2 downstream of dopamine receptors in the Basal Ganglia. Front Neuroanat 2011; 5:58. [PMID: 21922001 PMCID: PMC3167352 DOI: 10.3389/fnana.2011.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/17/2011] [Indexed: 12/26/2022] Open
Abstract
Multifunctional scaffolding protein beta-arrestins (βArr) and the G protein-receptor kinases are involved in the desensitization of several G protein-coupled receptors (GPCR). However, arrestins can also contribute to GPCR signaling independently from G proteins. In this review, we focus on the role of βArr in the regulation of dopamine receptor functions in the striatum. First, we present in vivo evidence supporting a role for these proteins in the regulation of dopamine receptor desensitization. Second, we provide an overview of the roles of βArr2 in the regulation of extracellular-signal-regulated kinases/MAP kinases and Akt/GSK3 signaling pathways downstream of the D1 and D2 dopamine receptors. Thereafter, we examine the possible involvement of βArr-mediated signaling in the action of dopaminergic drugs used for the treatment of mental disorders. Finally, we focus on different potential cellular proteins regulated by βArr-mediated signaling which could contribute to the regulation of behavioral responses to dopamine. Overall, the identification of a cell signaling function for βArr downstream of dopamine receptors underscores the intricate complexity of the intertwined mechanisms regulating and mediating cell signaling in the basal ganglia. Understanding these mechanisms may lead to a better comprehension of the several roles played by these structures in the regulation of mood and to the development of new psychoactive drugs having better therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas Del'guidice
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de Recherche Université Laval Robert-Giffard Québec, QC, Canada
| | | | | |
Collapse
|
219
|
Dopamine D5 receptors are localized at asymmetric synapses in the rat hippocampus. Neuroscience 2011; 192:164-71. [DOI: 10.1016/j.neuroscience.2011.06.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/27/2011] [Accepted: 06/18/2011] [Indexed: 01/22/2023]
|
220
|
Pappas SS, Kennedy T, Goudreau JL, Lookingland KJ. Opioid-mediated regulation of A11 diencephalospinal dopamine neurons: pharmacological evidence of activation by morphine. Neuropharmacology 2011; 61:614-21. [PMID: 21605572 PMCID: PMC3130120 DOI: 10.1016/j.neuropharm.2011.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 11/17/2022]
Abstract
Dopamine (DA) neurons of the A11 diencephalospinal system represent the sole source of DA innervation to the spinal cord in mice, serving neuromodulatory roles in the processing of nociceptive input and movement. These neurons originate in the dorso-caudal diencephalon and project axons unilaterally throughout the rostrocaudal extent of the spinal cord, terminating predominantly in the dorsal horn. The density of A11 DA axon terminals in the lumbar region is greater in males compared to females, while in both sexes the activity of neurons terminating in the thoracic spinal cord is greater than those terminating in the lumbar region. The present study was designed to test the hypothesis that A11 DA neurons are activated by opioids. To test this hypothesis, male and female mice were systemically treated with agonists or antagonists acting at the μ-opioid receptor, and spinal cord concentrations of DA and its metabolite DOPAC were determined in the thoracic and lumbar spinal cord using high performance liquid chromatography coupled with electrochemical detection. Systemic administration of the μ-opioid agonist morphine led to a dose- and time-dependent increase in spinal cord DOPAC/DA ratio (an estimate of DA neuronal activity) in both male and female mice, with greater changes occurring in the lumbar segment. Blockade of opioid receptors with the opioid antagonist naloxone reversed the stimulatory effects of morphine on A11 DA neurons in both male and female mice, but had little to no effect on the activity of these neurons when administered alone. Present findings are consistent with the conclusion that spinal cord-projecting axon terminals of A11 DA neurons are activated by opioids in both male and female mice, most likely through a dis-inhibitory mechanism.
Collapse
Affiliation(s)
- Samuel S. Pappas
- Michigan State University, Department of Physiology, East Lansing, MI 48824
| | - Tom Kennedy
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI 48824
| | - John L. Goudreau
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI 48824
- Michigan State University, Department of Neurology and Ophthalmology, East Lansing, MI 48824
| | - Keith J. Lookingland
- Michigan State University, Department of Physiology, East Lansing, MI 48824
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, MI 48824
| |
Collapse
|
221
|
Monteiro TC, Batuca JR, Obeso A, González C, Monteiro EC. Carotid body function in aged rats: responses to hypoxia, ischemia, dopamine, and adenosine. AGE (DORDRECHT, NETHERLANDS) 2011; 33:337-350. [PMID: 20922488 PMCID: PMC3168591 DOI: 10.1007/s11357-010-9187-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 09/14/2010] [Indexed: 05/29/2023]
Abstract
The carotid body (CB) is the main arterial chemoreceptor with a low threshold to hypoxia. CB activity is augmented by A(2)-adenosine receptors stimulation and attenuated by D(2)-dopamine receptors. The effect of aging on ventilatory responses mediated by the CB to hypoxia, ischemia, and to adenosine and dopamine administration is almost unknown. This study aims to investigate the ventilatory response to ischemia and to adenosine, dopamine, and their antagonists in old rats, as well as the effect of hypoxia on adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in the aged CB. In vivo experiments were performed on young and aged rats anesthetized with pentobarbitone and breathing spontaneously. CB ischemia was induced by bilateral common carotid occlusions. cAMP content was measured in CB incubated with different oxygen concentrations. Hyperoxia caused a decrease in cAMP in the CB at all ages, but no differences were found between normoxia and hypoxia or between young and old animals. The endogenous dopaminergic inhibitory tonus is slightly reduced. However, both the ventilation decrease caused by exogenous dopamine and the increase mediated by A(2A)-adenosine receptors are not impaired in aged animals. The bradycardia induced by adenosine is attenuated in old rats. The CB's peripheral control of ventilation is preserved during aging. Concerns have also arisen regarding the clinical usage of adenosine to revert supraventricular tachycardia and the use of dopamine in critical care situations involving elderly people.
Collapse
Affiliation(s)
- Teresa Castro Monteiro
- Department of Pharmacology, CEDOC/Chronic Diseases Unit, Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
222
|
Walaas SI, Hemmings HC, Greengard P, Nairn AC. Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat 2011; 5:50. [PMID: 21904525 PMCID: PMC3162284 DOI: 10.3389/fnana.2011.00050] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 07/23/2011] [Indexed: 11/17/2022] Open
Abstract
Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington’s disease, and Parkinson’s disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly dopamine and adenosine 3′:5′-monophosphate-regulated phosphoprotein of 32 kDa (DARPP-32), regulator of calmodulin signaling (RCS), and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B, and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.
Collapse
Affiliation(s)
- Sven Ivar Walaas
- Department of Biochemistry, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | | | | |
Collapse
|
223
|
Hervé D. Identification of a specific assembly of the g protein golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum. Front Neuroanat 2011; 5:48. [PMID: 21886607 PMCID: PMC3155884 DOI: 10.3389/fnana.2011.00048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022] Open
Abstract
In the principal neurons of striatum (medium spiny neurons, MSNs), cAMP pathway is primarily activated through the stimulation of dopamine D1 and adenosine A2A receptors, these receptors being mainly expressed in striatonigral and striatopallidal MSNs, respectively. Since cAMP signaling pathway could be altered in various physiological and pathological circumstances, including drug addiction and Parkinson’s disease, it is of crucial importance to identify the molecular components involved in the activation of this pathway. In MSNs, cAMP pathway activation is not dependent on the classical Gs GTP-binding protein but requires a specific G protein subunit heterotrimer containing Gαolf/β2/γ7 in particular association with adenylyl cyclase type 5. This assembly forms an authentic functional signaling unit since loss of one of its members leads to defects of cAMP pathway activation in response to D1 or A2A receptor stimulation, inducing dramatic impairments of behavioral responses dependent on these receptors. Interestingly, D1 receptor (D1R)-dependent cAMP signaling is modulated by the neuronal levels of Gαolf, indicating that Gαolf represents the rate-limiting step in this signaling cascade and could constitute a critical element for regulation of D1R responses. In both Parkinsonian patients and several animal models of Parkinson’s disease, the lesion of dopamine neurons produces a prolonged elevation of Gαolf levels. This observation gives an explanation for the cAMP pathway hypersensitivity to D1R stimulation, occurring despite an unaltered D1R density. In conclusion, alterations in the highly specialized assembly of Gαolf/β2/γ7 subunits can happen in pathological conditions, such as Parkinson’s disease, and it could have important functional consequences in relation to changes in D1R signaling in the striatum.
Collapse
|
224
|
Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons. Front Neuroanat 2011; 5:43. [PMID: 21811441 PMCID: PMC3140648 DOI: 10.3389/fnana.2011.00043] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/07/2011] [Indexed: 01/11/2023] Open
Abstract
In the striatum, dopamine D(1) receptors are preferentially expressed in striatonigral neurons, and increase the neuronal excitability, leading to the increase in GABAergic inhibitory output to substantia nigra pars reticulata. Such roles of D(1) receptors are important for the control of motor functions. In addition, the roles of D(1) receptors are implicated in reward, cognition, and drug addiction. Therefore, elucidation of mechanisms for the regulation of dopamine D(1) receptor signaling is required to identify therapeutic targets for Parkinson's disease and drug addiction. D(1) receptors are coupled to G(s/olf)/adenylyl cyclase/PKA signaling, leading to the phosphorylation of PKA substrates including DARPP-32. Phosphorylated form of DARPP-32 at Thr34 has been shown to inhibit protein phosphatase-1, and thereby controls the phosphorylation states and activity of many downstream physiological effectors. Roles of DARPP-32 and its phosphorylation at Thr34 and other sites in D(1) receptor signaling are extensively studied. In addition, functional roles of the non-canonical D(1) receptor signaling cascades that coupled to G(q)/phospholipase C or Src family kinase become evident. We have recently shown that phosphodiesterases (PDEs), especially PDE10A, play a pivotal role in regulating the tone of D(1) receptor signaling relatively to that of D(2) receptor signaling. We review the current understanding of molecular mechanisms for the modulation of D(1) receptor signaling in the striatum.
Collapse
Affiliation(s)
- Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine Kurume, Fukuoka, Japan
| | | | | |
Collapse
|
225
|
Bonito-Oliva A, Feyder M, Fisone G. Deciphering the Actions of Antiparkinsonian and Antipsychotic Drugs on cAMP/DARPP-32 Signaling. Front Neuroanat 2011; 5:38. [PMID: 21808606 PMCID: PMC3136733 DOI: 10.3389/fnana.2011.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
The basal ganglia are affected by several neuropsychiatric and neurodegenerative diseases, many of which are treated with drugs acting on the dopamine system. For instance, the loss of dopaminergic input to the striatum, which is the main pathological feature of Parkinson’s disease, is counteracted by administering the dopamine precursor, L-DOPA. Furthermore, psychotic disorders, including schizophrenia, are treated with drugs that act as antagonists at the D2-type of dopamine receptor (D2R). The use of L-DOPA and typical antipsychotic drugs, such as haloperidol, is limited by the emergence of motor side-effects, particularly after prolonged use. Striatal medium spiny neurons (MSNs) represent an ideal tool to investigate the molecular changes implicated in these conditions. MSNs receive a large glutamatergic innervation from cortex, thalamus, and limbic structures, and are controlled by dopaminergic projections originating in the midbrain. There are two large populations of striatal MSNs, which differ based on their connectivity to the output nuclei of the basal ganglia and on their ability to express dopamine D1 receptors (D1Rs) or D2Rs. Administration of L-DOPA promotes cAMP signaling and activates the dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) in the D1R-expressing MSNs, which form the striatonigral, or direct pathway. Conversely, haloperidol activates the cAMP/DARPP-32 cascade in D2R-expressing MSNs, which form the striatopallidal, or indirect pathway. This review describes the effects produced on downstream effector proteins by stimulation of cAMP/DARPP-32 signaling in these two groups of MSNs. Particular emphasis is given to the regulation of the GluR1 subunit of the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate glutamate receptor, the extracellular signal-regulated protein kinases 1 and 2, focusing on functional role and potential pathological relevance.
Collapse
|
226
|
Wirth M, Sauer WHB. Bioactive Molecules: Perfectly Shaped for Their Target? Mol Inform 2011; 30:677-88. [PMID: 27467260 DOI: 10.1002/minf.201100034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/11/2011] [Indexed: 12/18/2022]
Abstract
In this study, we examined target subsets extracted from the MDL Drug Data Report (MDDR)1 to identify specific molecular shape profiles that are representative for compounds active on those targets. Normalized Principal Moments of Inertia Ratios (NPRs)2 have been used to describe molecular shape of small molecules in a finite triangular descriptor space. The clustering behavior of the MDDR target subsets in a cell-based triangular system shows a significant difference compared to randomly sampled datasets and proves the capability of the NPR descriptor to provide information. For some of the target subsets, certain parts of the descriptor space are unlikely to be occupied by bioactive compounds. All analyzed datasets show a generally biased distribution of molecular shapes: the majority of their compounds exhibit a rod-like character. The influence of the employed 3D conformer generators on this distribution has been assessed as well as the capability of multiple conformations of compounds to increase the shape space covered.
Collapse
Affiliation(s)
- Matthias Wirth
- Merck Serono S.A. 9, Chemin des Mines, 1202 Genève, Switzerland, Merck Serono is a division of Merck KGaA, Darmstad, Germany phone: +41 (0)22 414 9454.
| | - Wolfgang H B Sauer
- Merck Serono S.A. 9, Chemin des Mines, 1202 Genève, Switzerland, Merck Serono is a division of Merck KGaA, Darmstad, Germany phone: +41 (0)22 414 9454
| |
Collapse
|
227
|
Matamales M, Girault JA. Signaling from the cytoplasm to the nucleus in striatal medium-sized spiny neurons. Front Neuroanat 2011; 5:37. [PMID: 21779236 PMCID: PMC3133824 DOI: 10.3389/fnana.2011.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/13/2011] [Indexed: 12/13/2022] Open
Abstract
Striatal medium-sized spiny neurons (MSNs) receive massive glutamate inputs from the cerebral cortex and thalamus and are a major target of dopamine projections. Interaction between glutamate and dopamine signaling is crucial for the control of movement and reward-driven learning, and its alterations are implicated in several neuropsychiatric disorders including Parkinson's disease and drug addiction. Long-lasting forms of synaptic plasticity are thought to depend on transcription of gene products that alter the structure and/or function of neurons. Although multiple signal transduction pathways regulate transcription, little is known about signal transmission between the cytoplasm and the nucleus of striatal neurons and its regulation. Here we review the current knowledge of the signaling cascades that target the nucleus of MSNs, most of which are activated by cAMP and/or Ca(2+). We outline the mechanisms by which signals originating at the plasma membrane and amplified in the cytoplasm are relayed to the nucleus, through the regulation of several protein kinases and phosphatases and transport through the nuclear pore. We also summarize the identified mechanisms of transcription regulation and chromatin remodeling in MSNs that appear to be important for behavioral adaptations, and discuss their relationships with epigenetic regulation.
Collapse
Affiliation(s)
- Miriam Matamales
- UMR-S 839, InsermParis, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| | - Jean-Antoine Girault
- UMR-S 839, InsermParis, France
- Université Pierre et Marie CurieParis, France
- Institut du Fer à MoulinParis, France
| |
Collapse
|
228
|
Mabrouk OS, Li Q, Song P, Kennedy RT. Microdialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movement. J Neurochem 2011; 118:24-33. [PMID: 21534957 PMCID: PMC3112281 DOI: 10.1111/j.1471-4159.2011.07293.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pallidal dopamine, GABA and the endogenous opioid peptides enkephalins have independently been shown to be important controllers of sensorimotor processes. Using in vivo microdialysis coupled to liquid chromatography-mass spectrometry and a behavioral assay, we explored the interaction between these three neurotransmitters in the rat globus pallidus. Amphetamine (3 mg/kg i.p.) evoked an increase in dopamine, GABA and methionine/leucine enkephalin. Local perfusion of the dopamine D(1) receptor antagonist SCH 23390 (100 μM) fully prevented amphetamine stimulated enkephalin and GABA release in the globus pallidus and greatly suppressed hyperlocomotion. In contrast, the dopamine D(2) receptor antagonist raclopride (100 μM) had only minimal effects suggesting a greater role for pallidal D(1) over D(2) receptors in the regulation of movement. Under basal conditions, opioid receptor blockade by naloxone perfusion (10 μM) in the globus pallidus stimulated GABA and inhibited dopamine release. Amphetamine-stimulated dopamine release and locomotor activation were attenuated by naloxone perfusion with no effect on GABA. These findings demonstrate a functional relationship between pallidal dopamine, GABA and enkephalin systems in the control of locomotor behavior under basal and stimulated conditions. Moreover, these findings demonstrate the usefulness of liquid chromatography-mass spectrometry as an analytical tool when coupled to in vivo microdialysis.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
229
|
Seeman P. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neurosci Ther 2011; 17:118-32. [PMID: 20560996 DOI: 10.1111/j.1755-5949.2010.00162.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The dopamine D2 receptor is the common target for antipsychotics, and the antipsychotic clinical doses correlate with their affinities for this receptor. Antipsychotics quickly enter the brain to occupy 60-80% of brain D2 receptors in patients (the agonist aripiprazole occupies up to 90%), with most clinical improvement occurring within a few days. The D2 receptor can exist in a state of high-affinity (D2(High) ) or in a state of low-affinity for dopamine (D2Low). AIM The present aim is to review why individuals with schizophrenia are generally supersensitive to dopamine-like drugs such as amphetamine or methyphenidate, and whether the D2(High) state is a common basis for dopamine supersensitivity in the animal models of schizophrenia. RESULTS All animal models of schizophrenia reveal elevations in D2(High) receptors. These models include brain lesions, sensitization by drugs (amphetamine, phencyclidine, cocaine, corticosterone), birth injury, social isolation, and gene deletions in pathways for NMDA, dopamine, GABA, acetylcholine, and norepinephrine. CONCLUSIONS These multiple abnormal pathways converge to a final common pathway of dopamine supersensitivity and elevated D2(High) receptors, presumably responsible for psychotic symptoms. Although antipsychotics alleviate psychosis and reverse the elevation of D2(High) receptors, long-term antipsychotics can further enhance dopamine supersensitivity in patients. Therefore, switching from a traditional antipsychotic to an agonist antipsychotic (aripiprazole) can result in psychotic signs and symptoms. Clozapine and quetiapine do not elicit parkinsonism or tardive dyskinesia because they are released from D2 within 12 to 24 h. Traditional antipsychotics remain attached to D2 receptors for days, preventing relapse, but allowing accumulation that can lead to tardive dyskinesia. Future goals include imaging D2(High) receptors and desensitizing them in early-stage psychosis.
Collapse
Affiliation(s)
- Philip Seeman
- Departments of Pharmacology and Psychiatry, University of Toronto, 260 Heath Street West, Suite 605, Toronto, Ontario, Canada M5P 3L6.
| |
Collapse
|
230
|
Min C, Cho DI, Kwon KJ, Kim KS, Shin CY, Kim KM. Novel regulatory mechanism of canonical Wnt signaling by dopamine D2 receptor through direct interaction with beta-catenin. Mol Pharmacol 2011; 80:68-78. [PMID: 21493728 DOI: 10.1124/mol.111.071340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Classical G protein-coupled receptors (GPCRs) and canonical Wnt pathways were believed to use distinct signaling pathways. However, recent studies have shown that these two pathways interact each other by sharing several intermediate signaling components. Recent in vivo studies showed that antipsychotic drugs, which block dopamine D2-like receptors, increase the cellular levels of downstream signaling components of canonical Wnt pathways, such as dishevelled (Dvl), glycogen synthase kinase 3β (GSK3β), and β-catenin. These results suggest that some functional interactions might exist between Wnt pathway and D2-like receptors. In this study, we show that among five different dopamine receptor subtypes, D(2) receptor (D(2)R) selectively inhibited the Wnt signaling, which was measured by lymphoid enhancing factor-1 (LEF-1)-dependent transcriptional activities. D(2)R-mediated inhibition of Wnt signaling was agonist- and G protein-independent and did not require receptor phosphorylation or endocytosis. D(2)R inhibited the LEF-1-dependent transcriptional activities, and this inhibitory activity was not affected by the inhibition of GSK-3β, suggesting that D(2)R inhibited the Wnt signaling by acting on the downstream of GSK3β. D(2)R directly interacted with β-catenin through the second and third loops, leading to a reduction of β-catenin distribution in the nucleus, resulting in an inhibition of LEF-1-dependent transcription. This is a novel mechanism for the regulation of canonical Wnt signaling by GPCRs, in which receptor proteins recruit β-catenin from cytosol to the plasma membrane, resulting in the decrement of the β-catenin/LEF-1-dependent transcription in the nucleus.
Collapse
Affiliation(s)
- Chengchun Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
231
|
Dopamine receptors and Parkinson's disease. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2011; 2011:403039. [PMID: 25954517 PMCID: PMC4411877 DOI: 10.1155/2011/403039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/04/2011] [Accepted: 04/12/2011] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is a progressive extrapyramidal motor
disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic) neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa) significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS). In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.
Collapse
|
232
|
Fedotova J, Ordyan N. Involvement of D1receptors in depression-like behavior of ovariectomized rats. ACTA ACUST UNITED AC 2011; 98:165-76. [DOI: 10.1556/aphysiol.98.2011.2.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
233
|
|
234
|
|
235
|
|
236
|
|
237
|
Eshkol-Wachman movement notation and the evolution of locomotor patterns in vertebrates. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00068606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
238
|
A mobility gradient in the organization of vertebrate movement: The perception of movement through symbolic language. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00068539] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractOrdinary language can prevent us from seeing the organization of whole-animal movement. This may be why the search for behavioral homologies has not been as fruitful as the founders of ethology had hoped. The Eshkol-Wachman (EW) movement notational system can reveal shared movement patterns that are undetectable in the kinds of informal verbal descriptions of the same behaviors that are in current use. Rules of organization that are common to locomotor development, agonistic and exploratory behavior, scent marking, play, and dopaminergic drug-induced stereotypies in a variety of vertebrates suggest that behavior progresses along a “mobility gradient” from immobility to increasing complexity and unpredictability. A progression in the opposite direction, with decreasing spatial complexity and increased stereotypy, occurs under the influence of the nonselective dopaminergic drugs apomorphine and amphetamine and partly also the selective dopamine agonist quinpirole. The behaviors associated with the mobility gradient appear to be mediated by a family of basal ganglia-thalamocortical circuits and their descending output stations. Because the small number of rules underlying the mobility gradient account for a large variety of behaviors, they may be related to the specific functional demands on these neurological systems. The EW system and the mobility gradient model should prove useful to ethologists and neurobiologists.
Collapse
|
239
|
|
240
|
|
241
|
|
242
|
|
243
|
Bonner LA, Laban U, Chemel BR, Juncosa JI, Lill MA, Watts VJ, Nichols DE. Mapping the catechol binding site in dopamine D₁ receptors: synthesis and evaluation of two parallel series of bicyclic dopamine analogues. ChemMedChem 2011; 6:1024-40. [PMID: 21538900 DOI: 10.1002/cmdc.201100010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/19/2011] [Indexed: 11/08/2022]
Abstract
A novel class of isochroman dopamine analogues, originally reported by Abbott Laboratories, have >100-fold selectivity for D₁-like over D₂-like receptors. We synthesized a parallel series of chroman compounds and showed that repositioning the oxygen atom in the heterocyclic ring decreases potency and confers D₂-like receptor selectivity to these compounds. In silico modeling supports the hypothesis that the altered pharmacology for the chroman series is due to potential intramolecular hydrogen bonding between the oxygen in the chroman ring and the meta-hydroxy group of the catechol moiety. This interaction realigns the catechol hydroxy groups and disrupts key interactions between these ligands and critical serine residues in TM5 of the D₁-like receptors. This hypothesis was tested by the synthesis and pharmacological evaluation of a parallel series of carbocyclic compounds. Our results suggest that if the potential for intramolecular hydrogen bonding is removed, D₁-like receptor potency and selectivity are restored.
Collapse
Affiliation(s)
- Lisa A Bonner
- Department of Chemistry, Saint Anselm College, Manchester, NH 03102, USA
| | | | | | | | | | | | | |
Collapse
|
244
|
Yue JL, Goshima Y, Nakamura S, Misu Y. L-Dopa-like Regulatory Actions of l-threo-3,4-Dihydroxyphenylserine on the Release of Endogenous Noradrenaline Via Presynaptic Receptors in Rat Hypothalamic Slices. J Pharm Pharmacol 2011; 44:990-5. [PMID: 1361565 DOI: 10.1111/j.2042-7158.1992.tb07080.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Effects of l-threo-3,4-dihydroxyphenylserine (l-threo-DOPS) on the spontaneous release and the stimulus(2 Hz)-evoked release of endogenous noradrenaline were studied in rat hypothalamic slices with functioning l-aromatic amino acid decarboxylase (AADC) and with AADC inhibition. In non-inhibited slices, spontaneous release was not modified by l-threo-DOPS at 1 Pm-100Nm, tended to increase at 1–10 μm and increased at 100 μm. Noradrenaline tissue content slightly increased at 100 μm. Stimulated release was concentration-dependently facilitated at 1–1000 Pm and tended to decrease gradually from a maximum at 10 Nm-10 μm. Under AADC inhibition, spontaneous release concentration-dependently increased at 10–100 μm by 60% of the increase seen in slices without AADC inhibition. Increase in noradrenaline tissue content was abolished. l-threo-DOPS produced a triphasic pattern on stimulated release; concentration-dependent facilitation at 1–1000 Pm similar to that seen in slices with functional AADC, no facilitation at 10–1000 Nm, and a concentration-dependent increment at 10–100 μm. The facilitation at 1 Nm was stereoselective and was antagonized by (–)-propranolol 10 Nm, and no facilitation at 100 Nm was restored to the maximum by yohimbine 10 Nm, DG-5128 10 Nm or S-sulpiride 1 Nm. Furthermore, l-threo-DOPS (1–1000 Pm)-induced facilitation was competitively antagonized by l-dopa methyl ester, a competitive antagonist for l-dopa, with a pA2 value of 13·6, whereas it was noncompetitively antagonized by (–)-propranolol.
Collapse
Affiliation(s)
- J L Yue
- Department of Pharmacology, Yokohama City University School of Medicine, Japan
| | | | | | | |
Collapse
|
245
|
Blaylock BL, Gould RW, Banala A, Grundt P, Luedtke RR, Newman AH, Nader MA. Influence of cocaine history on the behavioral effects of Dopamine D(3) receptor-selective compounds in monkeys. Neuropsychopharmacology 2011; 36:1104-13. [PMID: 21289600 PMCID: PMC3070922 DOI: 10.1038/npp.2010.248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 12/11/2022]
Abstract
Although dopamine D(3) receptors have been associated with cocaine abuse, little is known about the consequences of chronic cocaine on functional activity of D(3) receptor-preferring compounds. This study examined the behavioral effects of D(3) receptor-selective 4-phenylpiperazines with differing in vitro functional profiles in adult male rhesus monkeys with a history of cocaine self-administration and controls. In vitro assays found that PG 619 (N-(3-hydroxy-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide HCl) was a potent D(3) antagonist in the mitogenesis assay, but a fully efficacious agonist in the adenylyl cyclase assay, NGB 2904 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide HCl) was a selective D(3) antagonist, whereas CJB 090 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridin-2-yl)benzamide HCl) exhibited a partial agonist profile in both in vitro assays. In behavioral studies, the D(3) preferential agonist quinpirole (0.03-1.0 mg/kg, i.v.) dose-dependently elicited yawns in both groups of monkeys. PG 619 and CJB 090 elicited yawns only in monkeys with an extensive history of cocaine, whereas NGB 2904 did not elicit yawns, but did antagonize quinpirole and PG 619-elicited yawning in cocaine-history monkeys. In another experiment, doses of PG 619 that elicited yawns did not alter response rates in monkeys self-administering cocaine (0.03-0.3 mg/kg per injection). Following saline extinction, cocaine (0.1 mg/kg) and quinpirole (0.1 mg/kg), but not PG 619 (0.1 mg/kg), reinstated cocaine-seeking behavior. When given before a cocaine prime, PG 619 decreased cocaine-elicited reinstatement. These findings suggest that (1) an incongruence between in vitro and in vivo assays, and (2) a history of cocaine self-administration can affect in vivo efficacy of D(3) receptor-preferring compounds PG 619 and CJB 090, which appear to be dependent on the behavioral assay.
Collapse
Affiliation(s)
- B L Blaylock
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - R W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - A Banala
- Medicinal Chemistry Section, National Institutes on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - P Grundt
- Medicinal Chemistry Section, National Institutes on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - R R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - A H Newman
- Medicinal Chemistry Section, National Institutes on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - M A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
246
|
The Discovery of Novel Selective D1 Dopaminergic Agonists: A-68930, A-77636, A-86929, and ABT-413. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2011; 2011:424535. [PMID: 25954518 PMCID: PMC4412209 DOI: 10.1155/2011/424535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/17/2011] [Indexed: 01/14/2023]
Abstract
The novel selective D1 dopaminergic full agonists A-68930, A-77636 were discovered by the synthesis of molecules to probe the bioactive conformation of the partial agonist SKF-38393, by the use of this information to add D1 affinity and selectivity to a screening hit, and by traditional medicinal chemistry exploration of structure-activity relationships. The subsequent design of A-86929 and ABT-413 capitalized on these results, recently disclosed agonists, and traditional medicinal chemistry.
Collapse
|
247
|
Marazziti D, Di Pietro C, Mandillo S, Golini E, Matteoni R, Tocchini‐Valentini GP. Absence of the GPR37/PAEL receptor impairs striatal Akt and ERK2 phosphorylation, ΔFosB expression, and conditioned place preference to amphetamine and cocaine. FASEB J 2011; 25:2071-81. [DOI: 10.1096/fj.10-175737] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniela Marazziti
- Istituto di Biologia Cellulare‐Consiglio Nazionale delle RicercheCampus A. Buzzati‐TraversoMonterotondo ScaloRomeItaly
| | - Chiara Di Pietro
- Istituto di Biologia Cellulare‐Consiglio Nazionale delle RicercheCampus A. Buzzati‐TraversoMonterotondo ScaloRomeItaly
| | - Silvia Mandillo
- Istituto di Biologia Cellulare‐Consiglio Nazionale delle RicercheCampus A. Buzzati‐TraversoMonterotondo ScaloRomeItaly
| | - Elisabetta Golini
- Istituto di Biologia Cellulare‐Consiglio Nazionale delle RicercheCampus A. Buzzati‐TraversoMonterotondo ScaloRomeItaly
| | - Rafaele Matteoni
- Istituto di Biologia Cellulare‐Consiglio Nazionale delle RicercheCampus A. Buzzati‐TraversoMonterotondo ScaloRomeItaly
| | - Glauco P. Tocchini‐Valentini
- Istituto di Biologia Cellulare‐Consiglio Nazionale delle RicercheCampus A. Buzzati‐TraversoMonterotondo ScaloRomeItaly
| |
Collapse
|
248
|
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63:182-217. [PMID: 21303898 DOI: 10.1124/pr.110.002642] [Citation(s) in RCA: 1895] [Impact Index Per Article: 135.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as β-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval–Centre de Recherche de l'Université Laval Robert-Giffard, Québec-City, Québec, Canada
| | | |
Collapse
|
249
|
Dobi A, Seabold GK, Christensen CH, Bock R, Alvarez VA. Cocaine-induced plasticity in the nucleus accumbens is cell specific and develops without prolonged withdrawal. J Neurosci 2011; 31:1895-904. [PMID: 21289199 PMCID: PMC3040105 DOI: 10.1523/jneurosci.5375-10.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/10/2010] [Accepted: 11/29/2010] [Indexed: 01/17/2023] Open
Abstract
Cocaine induces plasticity at glutamatergic synapses in the nucleus accumbens (NAc). Withdrawal was suggested to play an important role in the development of this plasticity by studies showing that some changes only appear several weeks after the final cocaine exposure. In this study, the requirement for prolonged withdrawal was evaluated by comparing the changes in glutamatergic transmission induced by two different noncontingent cocaine treatments: a short treatment followed by prolonged withdrawal, and a longer treatment without prolonged withdrawal. Recordings were performed from mouse medium spiny neurons (MSNs) in the NAc at the same time after the first cocaine injection under both treatments. A similar increase in the frequency of glutamate-mediated miniature EPSCs was observed in D(1)-expressing MSNs after both cocaine treatments, demonstrating that prolonged withdrawal was not required. Furthermore, larger AMPA receptor-to-NMDA receptor ratios, higher spine density, and enlarged spine heads were observed in the absence of withdrawal after a long cocaine treatment. These synaptic adaptations expressed in D(1)-containing MSNs of the NAc core were not further enhanced by protracted withdrawal. In conclusion, a few repeated cocaine injections are enough to trigger adaptations at glutamatergic synapses in D(1)-expressing MSNs, which, although they take time to develop, do not require prolonged cocaine withdrawal.
Collapse
Affiliation(s)
- Alice Dobi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Gail K. Seabold
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Christine H. Christensen
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Roland Bock
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Veronica A. Alvarez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
250
|
Pellón R, Ruíz A, Moreno M, Claro F, Ambrosio E, Flores P. Individual differences in schedule-induced polydipsia: Neuroanatomical dopamine divergences. Behav Brain Res 2011; 217:195-201. [DOI: 10.1016/j.bbr.2010.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
|