201
|
Sissler M, Delorme C, Bond J, Ehrlich SD, Renault P, Francklyn C. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc Natl Acad Sci U S A 1999; 96:8985-90. [PMID: 10430882 PMCID: PMC17719 DOI: 10.1073/pnas.96.16.8985] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to their essential catalytic role in protein biosynthesis, aminoacyl-tRNA synthetases participate in numerous other functions, including regulation of gene expression and amino acid biosynthesis via transamidation pathways. Herein, we describe a class of aminoacyl-tRNA synthetase-like (HisZ) proteins based on the catalytic core of the contemporary class II histidyl-tRNA synthetase whose members lack aminoacylation activity but are instead essential components of the first enzyme in histidine biosynthesis ATP phosphoribosyltransferase (HisG). Prediction of the function of HisZ in Lactococcus lactis was assisted by comparative genomics, a technique that revealed a link between the presence or the absence of HisZ and a systematic variation in the length of the HisG polypeptide. HisZ is required for histidine prototrophy, and three other lines of evidence support the direct involvement of HisZ in the transferase function. (i) Genetic experiments demonstrate that complementation of an in-frame deletion of HisG from Escherichia coli (which does not possess HisZ) requires both HisG and HisZ from L. lactis. (ii) Coelution of HisG and HisZ during affinity chromatography provides evidence of direct physical interaction. (iii) Both HisG and HisZ are required for catalysis of the ATP phosphoribosyltransferase reaction. This observation of a common protein domain linking amino acid biosynthesis and protein synthesis implies an early connection between the biosynthesis of amino acids and proteins.
Collapse
Affiliation(s)
- M Sissler
- Department of Biochemistry, College of Medicine, Given Building, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
202
|
Abstract
Models for replication and transcription often display polymerases that track like locomotives along their DNA templates. However, recent evidence supports an alternative model in which DNA and RNA polymerases are immobilized by attachment to larger structures, where they reel in their templates and extrude newly made nucleic acids. These polymerases do not act independently; they are concentrated in discrete "factories," where they work together on many different templates. Evidence for models involving tracking and immobile polymerases is reviewed.
Collapse
Affiliation(s)
- P R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
203
|
Chai W, Stewart V. NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro. J Mol Biol 1998; 283:339-51. [PMID: 9769209 DOI: 10.1006/jmbi.1998.2105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Klebsiella oxytoca (pneumoniae), enzymes required for nitrate assimilation are encoded by the nasFEDCBA operon. Previous genetic studies led to the conclusion that nitrate and nitrite induction of nasF operon expression is determined by a transcriptional antitermination mechanism. In the presence of nitrate or nitrite, the nasR gene product is hypothesized to inhibit transcription termination at the factor-independent terminator site located in the nasF operon leader region. To test this model in vitro, we first purified NasR as both a maltose binding protein fusion form (MBP-NasR) and a His6-tagged form (His6-NasR). Templates for in vitro transcription contained the nasF operon leader region, with a substitution of the sigma70-dependent tac promoter for the native sigmaN-dependent promoter. We found that in vitro transcription of the leader template terminated at the terminator site, and that MBP-NasR and His6-NasR proteins both caused transcription readthrough of this site in response to nitrate or nitrite. Half-maximal antitermination required nitrate or nitrite at moderate (1 to 10 microM) concentrations, and several other anions tested, including chlorate, were without effect. Previous in vivo analysis of leader deletions identified regions required for both negative regulation (the terminator) and for positive regulation. Results from in vitro transcription of these deletion templates correlated fully with the in vivo analysis. Finally, electrophoresis mobility shift analysis revealed that His6-NasR bound specifically to nasF leader RNA. This binding was independent of nitrate in vitro. These results strongly support the conclusions drawn from previous in vivo analysis, and establish that NasR mediates ligand-responsive transcription antitermination through interaction with nasF leader RNA.
Collapse
Affiliation(s)
- W Chai
- Section of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | | |
Collapse
|
204
|
Francklyn C, Adams J, Augustine J. Catalytic defects in mutants of class II histidyl-tRNA synthetase from Salmonella typhimurium previously linked to decreased control of histidine biosynthesis regulation. J Mol Biol 1998; 280:847-58. [PMID: 9671554 DOI: 10.1006/jmbi.1998.1902] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of histidine biosynthetic genes in enteric bacteria is regulated by an attenuation mechanism in which the level of histidyl-tRNA serves as a key sensor of the intracellular histidine pool. Among the early observations that led to the formation of this model for Salmonella typhimurium were the identification of mutants in the gene (hisS) encoding histidyl-tRNA synthetase. We report here the detailed biochemical characterization of five of these S. typhimurium bradytrophic mutants isolated by selection for resistance to histidine analogs, including identification of the deduced amino acid substitutions and determination of the resulting effects on the kinetics of adenylation and aminoacylation. Using the crystal structure of the closely related Escherichia coli histidyl-tRNA synthetase (HisRS) as a guide, two mutants were mapped to a highly conserved proline residue in motif 2 (P117S, P117Q), and were correlated with a fivefold decrease in the kcat for the pyrophosphate exchange reaction, as well as a tenfold increase in the Km for tRNA in the aminoacylation reaction. Another mutant substitution (A302T) mapped to a residue adjacent to the histidine binding pocket, leading to a tenfold increase in Km for histidine in the pyrophosphate exchange reaction. The remaining two mutants (S167F, N254T) substitute residues in or directly adjacent to the hinge region, which joins the insertion domain between motif 2 and motif 3 to the catalytic core, and cause the Km for tRNA to increase four- to tenfold. The kinetic analysis of these mutants establishes a direct link between critical interactions within the active site of HisRS and regulation of histidine biosynthesis, and provides further evidence for the importance of local conformational changes during the catalytic cycle.
Collapse
Affiliation(s)
- C Francklyn
- Department of Biochemistry, University of Vermont College of Medicine, Health Sciences Complex, Burlington, VT, 05405, USA. franck@emba/uvm.edu
| | | | | |
Collapse
|
205
|
van de Guchte M, Ehrlich DS, Chopin A. tRNATrp as a key element of antitermination in the Lactococcus lactis trp operon. Mol Microbiol 1998; 29:61-74. [PMID: 9701803 DOI: 10.1046/j.1365-2958.1998.00903.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of the trp operon of Lactococcus lactis is regulated in response to tryptophan availability by a mechanism of transcription antitermination. We present evidence in support of a previously described model involving tRNATrp as a key element in the sensing of tryptophan levels and the realization of the regulatory response to tryptophan limitation. In agreement with this model, two sites of presumed direct interaction between the trp leader transcript and tRNATrp are found to be of crucial importance for efficient antitermination. These correspond to the specifier codon, which presumably interacts with the anticodon in the tRNA, and a sequence complementary to, and presumably interacting with, the acceptor stem of the tRNA. Through these interactions, uncharged tRNATrp is believed to stabilize an antiterminator conformation of the trp leader transcript, thus allowing transcription and expression of the structural genes of the operon. For the first time, we present direct evidence that it is the ratio of uncharged to charged tRNA that is important for the regulation of antitermination, rather than the absolute amount of uncharged tRNA. In addition, our results indicate that the codon-anticodon interaction, although contributing largely to the efficiency of the regulatory response, is not strictly indispensable, which suggests the existence of additional interactions between mRNA and tRNA. Finally, we describe a possible additional level of regulation, superimposed and dependent on tRNA-mediated anti-termination control, that is based on the processing of the trp leader transcript. Together with the regulation mechanisms described earlier for the Escherichia coli and Bacillus subtilis trp operons, this constitutes the third different mechanism of transcript elongation control found to be involved in the regulation of an operon of which the structural genes are highly conserved.
Collapse
Affiliation(s)
- M van de Guchte
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy-en-Josas, France.
| | | | | |
Collapse
|
206
|
Lin C, Paradkar AS, Vining LC. Regulation of an anthranilate synthase gene in Streptomyces venezuelae by a trp attenuator. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1971-1980. [PMID: 9695930 DOI: 10.1099/00221287-144-7-1971] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nucleotide sequence of a 2-4 kb BamHI-SalI fragment of Streptomyces venezuelae ISP5230 DNA that complements trpE and trpG mutations in Escherichia coli contains two ORFs. The larger of these (ORF2) encodes a 624 amino acid sequence similar to the overall sequence of the two subunits of anthranilate synthase. The two-thirds nearest the amino terminus resembles the aminase subunit; the remaining one-third resembles the glutamine amidotransferase subunit. Upstream of ORF2 is a small ORF encoding 18 amino acids that include three adjacent Trp residues; in addition the ORF contains inverted repeats with sequence and positional similarity to the products of attenuator (trpL) regions that regulate tryptophan biosynthesis in other bacteria. In cultures of a trpC mutant of S. venezuelae, increasing the concentration of exogenous tryptophan decreased the formation of anthranilate synthase; similar evidence of endproduct repression was obtained in a trpCER mutant of E. coli transformed with a vector containing the cloned DNA fragment from S. venezuelae. The anthranilate synthase activity in S. venezuelae cell extracts was inhibited by tryptophan, although only at high concentrations of the amino acid. A two-base deletion introduced into the cloned S. venezuelae DNA fragment prevented complementation of a trpE mutation in E. coli. However, S. venezuelae transformants in which the two-base deletion had been introduced by replacement of homologous chromosomal DNA did not exhibit a Trp- phenotype. The result implies that S. venezuelae has one or more additional genes for anthranilate synthase. In alignments with anthranilate synthase genes from other organisms, ORF2 from S. venezuelae most closely resembled genes for phenazine biosynthesis in Pseudomonas. The results bear on the function of the gene in S. venezuelae.
Collapse
|
207
|
Princiotta MF, Lenz LL, Bevan MJ, Staerz UD. H2-M3 restricted presentation of a Listeria-derived leader peptide. J Exp Med 1998; 187:1711-9. [PMID: 9584149 PMCID: PMC2212287 DOI: 10.1084/jem.187.10.1711] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/1998] [Revised: 03/20/1998] [Indexed: 12/03/2022] Open
Abstract
Protective immunity to infection by many intracellular pathogens requires recognition by cytotoxic T lymphocytes (CTLs) of antigens presented on major histocompatibility complex (MHC) class I molecules. To be presented for recognition by pathogen-specific CTLs, these antigens must gain access to the host cell class I processing pathway. In the case of intracellular bacterial pathogens, the majority of bacterial proteins are retained within the bacterial membrane and therefore remain inaccessible to the host cell for antigen processing. We have isolated a CTL clone from a C57BL/6 mouse infected with the intracellular gram-positive bacterium Listeria monocytogenes (LM) and have identified the source of the antigen. Using a genomic expression library, we determined that the clone recognizes an antigenic N-formyl peptide presented by the nonpolymorphic murine MHC class Ib molecule, H2-M3. Several lengths of this peptide were able to sensitize cells for lysis by this CTL clone. The source of this antigenic peptide is a 23-amino acid polypeptide encoded at the start of a polycistronic region. Analysis of mRNA secondary structure of this region suggests that this polypeptide may be a leader peptide encoded by a transcriptional attenuator.
Collapse
Affiliation(s)
- M F Princiotta
- National Jewish Medical and Research Center, University of Colorado Health Sciences Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
208
|
Greenberg ME, Mathews MB. Effects of heterologous downstream sequences on the activity of the HIV-1 promoter and its response to Tat. Nucleic Acids Res 1997; 25:5017-24. [PMID: 9396810 PMCID: PMC147141 DOI: 10.1093/nar/25.24.5017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In HIV-1 infection, Tat acts at least in part to control transcriptional elongation by overcoming premature transcriptional termination. In some other genes this process is governed by DNA elements called attenuators in concert with cellular transcription factors. To understand the action of Tat more fully and explore its role as an anti-attenuator, we examined the ability of several natural and synthetic attenuation sequences to modulate transcription initiated at the HIV LTR. Fragments containing these signals were inserted downstream of the TAR element in an HIV-CAT chimera and their effects on transcription were assessed both in vitro and in vivo. Runoff transcription assays in HeLa cell extracts demonstrated that the attenuators give rise to premature termination of transcripts initiated from the heterologous HIV-LTR promoter in vitro. When transiently expressed following transfection into Cos cells, however, premature transcript termination at the attenuation site was not observed. Nevertheless, many of the inserted sequences exerted marked effects on CAT gene expression and on transactivation by Tat at both the RNA and protein levels. The nature and magnitude of the effects depended upon the identity of the attenuator and its orientation but only one of 16 sequences tested met the criteria for a Tat-suppressible attenuator in vivo. One other sequence, in contrast, severely reduced Tat-activated transcription without inhibiting basal transcription These results indicate that sequences downstream of the HIV LTR can influence its function as a promoter and its response to Tat transactivation, but lend little support to their role as attenuators in vivo.
Collapse
Affiliation(s)
- M E Greenberg
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
209
|
O'Connor KE, Dobson AD, Hartmans S. Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol 1997; 63:4287-91. [PMID: 9361415 PMCID: PMC168748 DOI: 10.1128/aem.63.11.4287-4291.1997] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transformation of indole to indigo by microorganisms expressing styrene monooxygenase (SMO) has been studied. Styrene and indole are structurally very similar, and thus we looked at a variety of styrene-degrading strains for indole transformation to indigo. Two strains, Pseudomonas putida S12 and CA-3, gave a blue color on solid media when grown in the presence of indole. Indole induces its own transformation on solid media but is a poor inducer in liquid media. Styrene is the best inducer of indole transformation in both strains. Arginine represses styrene consumption and indigo formation rates in P. putida S12 compared to phenylacetic acid-grown cells, while the opposite effect is seen for P. putida CA-3. Characterization of an SMO- and styrene oxide isomerase (SOI)-negative transposon mutant of P. putida CA-3 and an SOI-negative N-methyl-N'-nitro-N-nitrosoguanidine mutant of P. putida S12 reveals the involvement of both SMO and SOI in indole transformation to indigo. Both strains stoichiometrically produce high-purity indigo from indole.
Collapse
Affiliation(s)
- K E O'Connor
- Department of Food Science, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|
210
|
Rajkumari K, Ishihama A, Gowrishankar J. Evidence for transcription attenuation rendering cryptic a sigmaS-dependent promoter of the osmotically regulated proU operon of Salmonella typhimurium. J Bacteriol 1997; 179:7169-73. [PMID: 9371467 PMCID: PMC179661 DOI: 10.1128/jb.179.22.7169-7173.1997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The osmotically regulated proU locus in Escherichia coli has two promoters, P1 and P2, that are recognized, respectively, by the sigmaS- and sigma70-bearing RNA polymerase holoenzymes. However, the equivalent of the P1 promoter does not appear to exist in Salmonella typhimurium. We demonstrate in this study that wild-type S. typhimurium has a cryptic P1 promoter that is recognized by sigmaS RNA polymerase in vitro and that a 22-bp deletion from +63 to +84 (relative to the start site of transcription) confers sigmaS-dependent in vivo expression of a reporter gene fusion to P1. Primer extension analysis of RNA isolated from cells carrying the wild-type and mutant S. typhimurium proU constructs indicated that a primer which hybridizes proximal to +60 is able to detect P1-initiated transcripts from both constructs but a primer which hybridizes distal to +85 is able to do so only from the latter. Our results suggest that the sigmaS-controlled proU P1 promoter in S. typhimurium may be rendered cryptic because of factor-dependent transcription attenuation within a short distance downstream of the promoter start site.
Collapse
Affiliation(s)
- K Rajkumari
- Centre for Cellular & Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|
211
|
Satchidanandam V, Shivashankar Y. Availability of a second upstream AUG can completely overcome inhibition of protein synthesis initiation engendered by mRNA secondary structure encompassing the start codon. Gene X 1997; 196:231-7. [PMID: 9322762 DOI: 10.1016/s0378-1119(97)00232-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secondary structure analysis of the mRNA from a nonproductive construct carrying the nonstructural gene 3 (NS3) of Japanese Encephalitis Virus revealed the presence of a potential 28 nucleotide long stem and loop beginning with the guanine of the initiation codon AUG that had a calculated stabilization energy of -13 kcal/mol (delta Gfzero). Provision of an additional AUG along with three codons upstream resulted in complete relief of inhibition. N-terminal amino acid sequence of the recombinant protein was consistent with initiation of protein synthesis having occurred from the upstream AUG. Similar levels of NS3 specific RNA in E. coli cells carrying the expressing and nonexpressing constructs and restoration of recombinant protein expression following deletion of segments beginning with the stem and loop confirmed the role of this structure in blocking expression at the level of translation initiation. Our approach exploits the ability of a ribosome in motion to open up downstream secondary structural elements of considerable stability and represents a novel and widely applicable strategy to overcome a block in translation initiation caused by mRNA secondary structure around the translation start site.
Collapse
Affiliation(s)
- V Satchidanandam
- Centre for Genetic Engineering, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
212
|
|
213
|
Hernández J, Ontiveros C, Valadez JG, Buckingham RH, Guarneros G. Regulation of protein synthesis by minigene expression. Biochimie 1997; 79:527-31. [PMID: 9451455 DOI: 10.1016/s0300-9084(97)82746-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptidyl-tRNA hydrolase (Pth), an enzyme essential for Escherichia coli viability, scavenges peptidyl-tRNA released during abortive polypeptide chain elongation. Bacterial strains of E coli partially defective in Pth activity are unable to maintain bacteriophage lambda growth. Phage mutations that overcome the bacterial defect have been located to several regions in the lambda genome named bar. Plasmid constructs expressing just the bar region are toxic and cause a general arrest of protein synthesis in Pth-defective cells. Inspection of the nucleotide sequence from two bar regions reveals the short coding sequence AUG AUA Stop, spaced by an AT-rich segment from a Shine Dalgarno-like sequence (S-D). These sequences have been named minigenes. Base changes altering the putative S-D, the two sense codons, or the stop codon have been found to reduce Bar-toxicity. Transcripts containing bar function as mRNA. Upon expression in pth mutants, wild-type (bar+) transcripts are found associated with ribosomes. In addition, bar+ RNA forms ternary complexes with the 30S ribosomal subunit and the initiator tRNA and can be released upon run-off translation in the same way as an authentic mRNA. A cell free system for protein synthesis reproduces the in vivo effects: bar+ expression inhibits protein synthesis, bar+ RNA sequences are associated with ribosomes in the inhibited extracts, addition of purified Pth restores synthesis, and excess of tRNA(Lys), specific for the last sense codon in a mutant toxic minigene, prevents protein synthesis inhibition. Also, bar expression promotes association of methionine with ribosomes possibly in a translation complex. These results are consistent with a model proposing tRNA starvation to explain the behaviour of a pth mutant, thermosensitive for protein synthesis.
Collapse
Affiliation(s)
- J Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City DF, Mexico
| | | | | | | | | |
Collapse
|
214
|
Sidhu H, Ogden SD, Lung HY, Luttge BG, Baetz AL, Peck AB. DNA sequencing and expression of the formyl coenzyme A transferase gene, frc, from Oxalobacter formigenes. J Bacteriol 1997; 179:3378-81. [PMID: 9150242 PMCID: PMC179125 DOI: 10.1128/jb.179.10.3378-3381.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species utilizing an activation-decarboxylation reaction which yields formate and CO2. frc, the gene encoding formyl coenzyme A transferase, an enzyme which transfers a coenzyme A moiety to activate oxalic acid, was cloned from the bacterium Oxalobacter formigenes. DNA sequencing revealed a single open reading frame of 1,284 bp capable of encoding a 428-amino-acid protein. A presumed promoter region and a rho-independent termination sequence suggest that this gene is part of a monocistronic operon. A PCR fragment containing the open reading frame, when overexpressed in Escherichia coli, produced a product exhibiting enzymatic activity similar to the purified native enzyme. With this, the two genes necessary for bacterial catabolism of oxalate, frc and oxc, have now been cloned, sequenced, and expressed.
Collapse
Affiliation(s)
- H Sidhu
- Program in Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Florida College of Medicine, Gainesville 32610, USA
| | | | | | | | | | | |
Collapse
|
215
|
The computer revolution in science: steps towards the realization of computer-supported discovery environments. ARTIF INTELL 1997. [DOI: 10.1016/s0004-3702(97)00011-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
216
|
Fujita S, Koguma T, Ohkawa J, Mori K, Kohda T, Kise H, Nishikawa S, Iwakura M, Taira K. Discrimination of a single base change in a ribozyme using the gene for dihydrofolate reductase as a selective marker in Escherichia coli. Proc Natl Acad Sci U S A 1997; 94:391-6. [PMID: 9012792 PMCID: PMC19521 DOI: 10.1073/pnas.94.2.391] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1995] [Accepted: 11/04/1996] [Indexed: 02/03/2023] Open
Abstract
For use of ribozymes in vivo, it is desirable to select functional ribozymes in the cellular environment (in the presence of inhibitory factors and limited concentrations of mandatory Mg2+ ions, etc.). As a first step toward this goal, we developed a new screening system for detection in vivo of an active ribozyme from pools of active and inactive ribozymes using the gene for dihydrofolate reductase (DHFR) as a selective marker. In our DHFR expression vector, the sequence encoding either the active or the inactive ribozyme was connected to the DHFR gene. The plasmid was designed such that, when the ribozyme was active, the rate of production of DHFR was high enough to endow resistance to trimethoprim (TMP). We demonstrated that the active ribozyme did indeed cleave the primary transcript in vivo, whereas the inactive ribozyme had no cleavage activity. Cells that harbored the active-ribozyme-coding plasmid grew faster in the presence of a fixed concentration of TMP than the corresponding cells that harbored the inactive-ribozyme-coding plasmid. Consequently, when cells were transformed by a mixture that consisted of active- and inactive-ribozyme-coding plasmids at a ratio of 1:1, (i) mainly those cells that harbored active ribozymes survived in the presence of TMP and (ii) both active- and inactive-ribozyme-harboring cells grew at an identical rate in the absence of TMP, a demonstration of a positive selection system in vivo. If the background "noise" can be removed completely in the future, the selection system might usefully complement existing selection systems in vitro.
Collapse
Affiliation(s)
- S Fujita
- National Institute of Bioscience and Human Technology, Ministry of International Trade and Industry, Tsukuba Science City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
The multiplication of bacteria in the largely undefined and changing environment of host tissues is an essential feature of any infection. Bacterial behaviour is determined both by genetic structures and also by the environment. Little is known about the effect that host factors may have on invading bacteria nor about the way in which alterations in bacterial properties aid proliferationin vivo. Recently our understanding of one feature of this environm ent and of the way in which pathogenic bacteria adapt to it has increased considerably. We now know that the amount of iron that might be readily available to bacteria in body fluids is extremely small. This iron-restricted environment induces phenotypic changes both in the metabolism and in the composition of the outer membrane of bacteria growingin vivo. These and other host-induced changes are now providing a fresh insight into the capability of bacteria to multiplyin vivoduring infection.
Collapse
|
218
|
Ishida Y, Kamiya T, Itoh H, Kimura Y, Izumori K. Cloning and characterization of the d-tagatose 3-epimerase gene from Pseudomonas cichorii ST-24. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)81132-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
219
|
Abstract
Bacterial polysaccharides are usually associated with the outer surface of the bacterium. They can form an amorphous layer of extracellular polysaccharide (EPS) surrounding the cell that may be further organized into a distinct structure termed a capsule. Additional polysaccharide molecules such as lipopolysaccharide (LPS) or lipooligosaccharide (LOS) may also decorate the cell surface. Polysaccharide capsules may mediate a number of biological processes, including invasive infections of human beings. Discussed here are the genetics and biochemistry of selected bacterial capsular polysaccharides and the basis of capsule diversity but not the genetics and biochemistry of LPS biosynthesis (for reviews see 100, 140).
Collapse
Affiliation(s)
- I S Roberts
- School of Biological Siences, University of Manchester, United Kingdom
| |
Collapse
|
220
|
Krohn M, Wagner R. Transcriptional pausing of RNA polymerase in the presence of guanosine tetraphosphate depends on the promoter and gene sequence. J Biol Chem 1996; 271:23884-94. [PMID: 8798619 DOI: 10.1074/jbc.271.39.23884] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have studied the response of the effector molecule guanosine 3',5'-bisdiphosphate (ppGpp) on RNA polymerase pausing during in vitro transcription elongation. Pausing was followed during single round extension of stalled ternary complexes excluding possible ppGpp effects on initiation. The ppGpp dependences of early pausing sites within different transcription systems controlled by promoters with known response to enhanced ppGpp levels in vivo were quantitatively characterized. Transcription of stable RNAs and mRNA genes were analyzed. In addition, the in vitro pausing behavior of two promoter variants directing the same sequence but differing in their in vivo ppGpp sensitivity were compared. In the presence of ppGpp we noted a slight general enhancement of specific pauses in all transcription systems. However, genes known to be under stringent or growth rate control in vivo revealed a notably stronger pausing enhancement. The sites of pausing are not changed by the presence of ppGpp but appear to be sequence-specific. The effect of ppGpp on the extent of pausing depends on the particular promoter and closely adjacent sequences that the RNA polymerase has passed during initiation. Pausing enhancement requires the presence of ppGpp during elongation but not during initiation. The results underline the importance of pausing for transcription regulation and offer a plausible explanation for inhibition of stable RNA expression under conditions of elevated concentrations of ppGpp.
Collapse
Affiliation(s)
- M Krohn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
221
|
Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 1996; 60:44-69. [PMID: 8852895 PMCID: PMC239417 DOI: 10.1128/mr.60.1.44-69.1996] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
222
|
Das A, Pal M, Mena JG, Whalen W, Wolska K, Crossley R, Rees W, von Hippel PH, Costantino N, Court D, Mazzulla M, Altieri AS, Byrd RA, Chattopadhyay S, DeVito J, Ghosh B. Components of multiprotein-RNA complex that controls transcription elongation in Escherichia coli phage lambda. Methods Enzymol 1996; 274:374-402. [PMID: 8902820 DOI: 10.1016/s0076-6879(96)74032-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
MESH Headings
- Adenosine Triphosphate/metabolism
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Chromatography, Affinity/methods
- Chromatography, Ion Exchange/methods
- DNA-Directed RNA Polymerases/metabolism
- Electrophoresis, Polyacrylamide Gel/methods
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Indicators and Reagents
- Kinetics
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleocapsid/isolation & purification
- Nucleocapsid/metabolism
- Operon
- Peptide Elongation Factors/isolation & purification
- Peptide Elongation Factors/metabolism
- Phosphorus Radioisotopes
- Promoter Regions, Genetic
- RNA, Viral/analysis
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- Radioisotope Dilution Technique
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Terminator Regions, Genetic
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors
Collapse
Affiliation(s)
- A Das
- Department of Microbiology, University of Connecticut School of Medicine, Farmington 06030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Izawa N, Hayashi K. Cloning and nucleotide sequencing of the aminopeptidase gene from Aeromonas caviae T-64. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0922-338x(97)81249-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
224
|
Das A, Barik S, Ghosh B, Whalen W. Immunoprinting: a technique used to study dynamic protein-nucleic acid interactions within transcription elongation complex. Methods Enzymol 1996; 274:363-74. [PMID: 8902819 DOI: 10.1016/s0076-6879(96)74031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Das
- Department of Microbiology, University of Connecticut School of Medicine, Farmington 06030, USA
| | | | | | | |
Collapse
|
225
|
Perrin DM, Mazumder A, Sigman DS. Oxidative chemical nucleases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:123-51. [PMID: 8821260 DOI: 10.1016/s0079-6603(08)60966-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D M Perrin
- Department of Biological Chemistry, University of California, Los Angeles 90024, USA
| | | | | |
Collapse
|
226
|
Affiliation(s)
- D Herschlag
- Department of Biochemistry, Stanford University, California 94305-5307, USA
| |
Collapse
|
227
|
Zupancic TJ, Kittle JD, Baker BD, Miller CJ, Palmer DT, Asai Y, Inui M, Vertès A, Kobayashi M, Kurusu Y. Isolation of promoters from Brevibacterium flavum strain MJ233C and comparison of their gene expression levels in B. flavum and Escherichia coli. FEMS Microbiol Lett 1995; 131:121-6. [PMID: 7557319 DOI: 10.1111/j.1574-6968.1995.tb07765.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A promoter probe shuttle vector suitable for the isolation of promoter elements from coryneform bacteria was constructed. This vector carried the neomycin phosphotransferase (NPTII) gene from transposon Tn5 as a reporter gene, and was capable of replication in both Escherichia coli and Brevibacterium flavum. The vector was used in the construction of a B. flavum library of 899 independently isolated promoter clones. Promoters with a wide range of activities in B. flavum, including some very strong promoter elements, were isolated. Comparative analysis suggests that significant differences between B. flavum and E. coli may exist in the determinants of promoter strength.
Collapse
Affiliation(s)
- T J Zupancic
- Battelle Memorial Institute, Columbus, OH 43201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Gagnon G, Vadeboncoeur C, Gauthier L, Frenette M. Regulation of ptsH and ptsI gene expression in Streptococcus salivarius ATCC 25975. Mol Microbiol 1995; 16:1111-21. [PMID: 8577247 DOI: 10.1111/j.1365-2958.1995.tb02336.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transcriptional regulation of the Streptococcus salivarius ptsH and ptsI genes coding for the general energy-coupling proteins HPr and enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system were investigated. These genes form an operon with the gene order ptsH-ptsI. Three distinct mRNA species were detected: a 0.5 kb transcript specific for ptsH, and two long transcripts (2.2 and 2.4 kb) covering the whole pts operon. Transcription of all these mRNAs initiated at the same nucleotide located 9 bp downstream from a promoter located immediately upstream from the ptsH gene. The presence of a high-energy stem-loop structure (T0) located at the beginning of ptsI was responsible for the premature transcription termination generating the 0.5 kb ptsH-specific transcript. The long transcripts ended in the poly(U) region of two rho-independent-like terminators (T1 and T2) at the 3' end of ptsI. Studies with a 2-deoxyglucose-resistant spontaneous mutant of S. salivarius (L26) that produces an HPr-EI fusion protein suggest that the regulation of HPr and EI expression involves transcriptional as well as translational mechanisms.
Collapse
Affiliation(s)
- G Gagnon
- Département de Biochimie (Sciences), Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
229
|
Antson AA, Otridge J, Brzozowski AM, Dodson EJ, Dodson GG, Wilson KS, Smith TM, Yang M, Kurecki T, Gollnick P. The structure of trp RNA-binding attenuation protein. Nature 1995; 374:693-700. [PMID: 7715723 DOI: 10.1038/374693a0] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The crystal structure of the trp RNA-binding attenuation protein of Bacclius subtilis solved at 1.8 A resolution reveals a novel structural arrangement in which the eleven subunits are stabilized through eleven intersubunit beta-sheets to form a beta-wheel with a large central hole. The nature of the binding of L-tryptophan in clefts between adjacent beta-sheets in the beta-wheel suggests that this binding induces conformational changes in the flexible residues 25-33 and 49-52. It is argued that upon binding, the messenger RNA target forms a matching circle in which eleven U/GAG repeats are bound to the surface of the protein ondecamer modified by the binding of L-tryptophan.
Collapse
Affiliation(s)
- A A Antson
- Department of Chemistry, University of York, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Segal G, Ron EZ. The groESL operon of Agrobacterium tumefaciens: evidence for heat shock-dependent mRNA cleavage. J Bacteriol 1995; 177:750-7. [PMID: 7530710 PMCID: PMC176653 DOI: 10.1128/jb.177.3.750-757.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The heat shock response of the groESL operon of Agrobacterium tumefaciens was studied at the RNA level. The operon was found to be activated under heat shock conditions and transcribed as a polycistronic mRNA that contains the groES and groEL genes. After activation, the polycistronic mRNA appeared to be cleaved between the groES and groEL genes and formed two monocistronic mRNAs. The groES cleavage product appeared to be unstable and subjected to degradation, while the groEL cleavage product appeared to be stable and became the major mRNA representing the groESL operon after long periods of growth at a high temperature. The polycistronic mRNA containing the groES and groEL genes was the major mRNA representing the groESL operon at a low temperature, and it reappeared when the cells were returned to the lower growth temperature after heat shock induction. These findings indicate that the cleavage event is part of the heat shock regulation of the groESL operon in A. tumefaciens.
Collapse
Affiliation(s)
- G Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | |
Collapse
|
231
|
Brighty DW, Rosenberg M. A cis-acting repressive sequence that overlaps the Rev-responsive element of human immunodeficiency virus type 1 regulates nuclear retention of env mRNAs independently of known splice signals. Proc Natl Acad Sci U S A 1994; 91:8314-8. [PMID: 8078879 PMCID: PMC44596 DOI: 10.1073/pnas.91.18.8314] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Rev protein of human immunodeficiency virus type 1 (HIV-1) binds to an RNA structure, the Rev-responsive element (RRE), to enhance expression of the viral structural genes by relieving the nuclear sequestration of incompletely spliced viral transcripts. It has been suggested that nuclear retention of these mRNAs, in mammalian cells, is due to the activity of either cis-acting repressive sequence elements or to inefficient splicing signals. Expression of the HIV-1 envelope gene in transfected Drosophila cells is also dependent upon Rev coexpression and, hence, the mechanism of nuclear retention and Rev regulation are highly conserved. Here we use the Drosophila system to identify a major cis-acting repressive sequence element that overlaps the RRE and is responsible for the nuclear entrapment and Rev-dependent expression of HIV-1 env mRNAs. Moreover, the splice signals spanning env are not required for nuclear retention or Rev-dependent trans-activation of env mRNAs. We suggest that the RRE and its associated RNA structure are necessary for both the repressive and known trans-activation effects of Rev regulation.
Collapse
Affiliation(s)
- D W Brighty
- Department of Gene Expression Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406-0939
| | | |
Collapse
|
232
|
Micevych PE, Abelson L, Fok H, Ulibarri C, Priest CA. Gonadal steroid control of preprocholecystokinin mRNA expression in the limbic-hypothalamic circuit: comparison of adult with neonatal steroid treatments. J Neurosci Res 1994; 38:386-98. [PMID: 7932871 DOI: 10.1002/jnr.490380404] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neuropeptide cholecystokinin (CCK) is involved in the regulation of female, but not male, reproductive behavior. In both sexes, estrogen regulates the expression of CCK in adulthood within the bed nucleus of the stria terminalis and medial amygdaloid nucleus. These areas are parts of an interconnected limbic system-hypothalamic circuit, the development of which is influenced by estrogen during the early postnatal period. This is the same period during which central nervous system (CNS) expression of CCK is dramatically increased, suggesting that the male and female patterns of CCK expression may be the result of early postnatal exposure to estrogen. In the present experiment, the expression of preprocholecystokinin (pCCK) mRNA was determined by in situ hybridization with an isotopically labeled pCCK complementary RNA and emulsion autoradiography in animals whose neonatal and adult gonadal steroid levels had been manipulated. The number of pCCK-expressing cells in animals that were gonadectomized as adults was determined by neonatal estrogen, but stimulation with steroids in adulthood induced a similar number of pCCK-expressing cells in both sexes in the medial amygdala and bed nucleus of the stria terminalis. Neonatal treatment of females with estrogen or testosterone, followed by ovariectomy in adulthood, eliminated the sex difference in pCCK mRNA expression. Males treated neonatally with the aromatase inhibitor androstenedione (to block metabolism of testosterone to estrogen) and orchidectomized in adulthood had a level of pCCK mRNA expression that was similar to that of ovariectomized females. These data suggest that, during neonatal development, estrogen determines the constitutive expression of pCCK mRNA in the medial amygdala and bed nucleus of the stria terminalis, resulting in higher levels of pCCK mRNA expression in males than in females. However, exogenous gonadal steroids induce the same levels of pCCK mRNA expression in adult females, indicating that the levels of gonadal steroids and the patterns of their secretion are the predominant influences on the sexually dimorphic adult levels of pCCK mRNA expression.
Collapse
Affiliation(s)
- P E Micevych
- Department of Anatomy and Cell Biology, UCLA School of Medicine
| | | | | | | | | |
Collapse
|
233
|
Abstract
As part of an effort to determine the mechanisms employed by Caulobacter crescentus to regulate gene expression, the ilvBN genes encoding the two subunits of an acetohydroxy acid synthase (AHAS) have been characterized. Analysis of the DNA sequences indicated that the C. crescentus AHAS was highly homologous to AHAS isozymes from other organisms. S1 nuclease and primer extension studies demonstrated that transcription initiation occurred 172 bp upstream of the AHAS coding region. The region between the AHAS coding region and the transcription initiation site was shown to have the properties of a transcription attenuator. Deletion analysis of the region containing the stem-loop structure of the proposed attenuator resulted in the derepression of ilvBN expression. Thus, it appears that C. crescentus uses attenuation to regulate the expression of the ilvBN operon.
Collapse
Affiliation(s)
- J C Tarleton
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | |
Collapse
|
234
|
Abstract
DNA-binding proteins can be converted into site-specific nucleases by linking them to the chemical nuclease 1,10-phenanthroline-copper. This can be readily accomplished by converting a minor groove-proximal amino acid to a cysteine residue using site-directed mutagenesis and then chemically modifying the sulphydryl group with 5-iodoacetamido-1,10-phenanthroline-copper. These chimeric scission reagents can be used as rare cutters to analyse chromosomal DNA, to test predictions based on high-resolution nuclear magnetic resonance and X-ray crystal structures, and to locate binding sites of proteins within genomes.
Collapse
Affiliation(s)
- C Q Pan
- Molecular Biology Institute, UCLA 90024-1570
| | | | | |
Collapse
|
235
|
Lung HY, Baetz AL, Peck AB. Molecular cloning, DNA sequence, and gene expression of the oxalyl-coenzyme A decarboxylase gene, oxc, from the bacterium Oxalobacter formigenes. J Bacteriol 1994; 176:2468-72. [PMID: 8157618 PMCID: PMC205376 DOI: 10.1128/jb.176.8.2468-2472.1994] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oxalic acid, a highly toxic by-product of metabolism, is catabolized by a limited number of bacterial species by an activation-decarboxylation reaction which yields formate and CO2. oxc, the gene encoding the oxalic acid-degrading enzyme oxalyl-coenzyme A decarboxylase, was cloned from the bacterium Oxalobacter formigenes. The DNA sequence revealed a single open reading frame of 1,704 bp capable of encoding a 568-amino-acid protein with a molecular weight of 60,691. The identification of a presumed promoter region and a rho-independent termination sequence indicates that this gene is not part of a polycistronic operon. A PCR fragment encoding the open reading frame, when overexpressed in Escherichia coli, produced a product which cross-reacted antigenically with native enzyme on Western blots (immunoblots), appeared to form homodimers spontaneously, and exhibited enzymatic activity similar to that of the purified native enzyme.
Collapse
Affiliation(s)
- H Y Lung
- Department of Pathology, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
236
|
Zha J, Zhao Z, Howe MM. Identification and characterization of the terminators of the lys and P transcripts of bacteriophage Mu. J Bacteriol 1994; 176:1111-20. [PMID: 8106322 PMCID: PMC205163 DOI: 10.1128/jb.176.4.1111-1120.1994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcription during the lytic cycle of phage Mu occurs in three phases: early, middle, and late. Late transcription requires the Mu C protein and initiates at four promoters: Plys, PI, PP, and Pmom. Northern blot analysis of total RNA isolated 30 min after heat induction of Mu cts lysogens demonstrated that the full-length lys and P transcripts were approximately 7.6 and 6.3 kb long, respectively. The 3' ends of the lys and P transcripts were further localized by S1 nuclease mapping to intergenic regions between G and I and between U and U' in both the G(+) and G(-) orientations of the invertible G segment, respectively. As expected, when DNA fragments containing these termination regions were cloned into plasmids between Pgal and the galK gene, they showed efficient termination activity, even in a Rho-deficient background. Deletion analysis indicated that efficient termination required the presence of potential RNA stem-loop structures immediately preceding the RNA 3' ends. For the P transcript from phage with the G(-) orientation, full termination activity required both the region containing the stem-loop structure and upstream sequences. Taken together, these results suggest that the transcription termination sites of the lys and P transcripts are Rho-independent terminators.
Collapse
Affiliation(s)
- J Zha
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|
237
|
Lalonde G, O'Hanley PD, Stocker BA, Denich KT. Characterization of a 3-dehydroquinase gene from Actinobacillus pleuropneumoniae with homology to the eukaryotic genes qa-2 and QUTE. Mol Microbiol 1994; 11:273-80. [PMID: 8170389 DOI: 10.1111/j.1365-2958.1994.tb00307.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A gene was cloned from Actinobacillus pleuropneumoniae strain 4074 by complementation of an aroD strain of Escherichia coli. The E. coli gene aroD codes for a 3-dehydroquinase enzyme of type I, active in the aromatic biosynthesis pathway. The A. pleuropneumoniae gene, termed aroQ, displays no base or amino acid sequence homology to aroD of E. coli. It is instead homologous to the QUTE and qa-2 genes, respectively of Aspergillus nidulans and Neurospora crassa. These genes code for 3-dehydroquinase enzymes of type II, involved in the catabolism of quinic acid. The 1.8 kb fragment, which includes aroQ, carries four overlapping or adjacent open reading frames: a dapD gene; aroQ; one without homology to sequences in GenBank; and one with homology to the C-terminal 40% of chIN of E. coli.
Collapse
Affiliation(s)
- G Lalonde
- Department of Microbiology and Immunology, Stanford University School of Medicine, California 94305-5402
| | | | | | | |
Collapse
|
238
|
Ramesh V. NMR evidence for the RNA stem-loop structure involved in the transcription attenuation of E. coli trp operon. Nucleic Acids Res 1993; 21:5485-8. [PMID: 7505428 PMCID: PMC310590 DOI: 10.1093/nar/21.23.5485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
High field 1H-NMR studies of a synthetic 21-mer RNA fragment, corresponding to residues +114 to +134 within the trp leader mRNA transcript, have been carried out. Seven well resolved imino proton resonances corresponding to six C-G and one A-U hydrogen bonded base pairs, together with their characteristic NOE patterns can be identified in the NMR spectrum. This experimental result provides direct evidence for the postulated stem-loop secondary structure, 3:4, which has been reported to act as a transcription termination signal for RNA polymerase.
Collapse
Affiliation(s)
- V Ramesh
- Department of Biochemistry, University of Leicester, UK
| |
Collapse
|
239
|
Sloan SB, Weisberg RA. Use of a gene encoding a suppressor tRNA as a reporter of transcription: analyzing the action of the Nun protein of bacteriophage HK022. Proc Natl Acad Sci U S A 1993; 90:9842-6. [PMID: 8234323 PMCID: PMC47668 DOI: 10.1073/pnas.90.21.9842] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Nun protein of phage HK022 blocks the expression of genes that lie downstream of the nut sites of phage lambda. Nun is believed to act by promoting premature termination of transcription at or near these sites. To test this hypothesis and to facilitate mapping the sites of termination, we inserted a gene encoding a suppressor tRNA immediately downstream of the lambda nutL site and determined the effect of Nun on tRNA level. We found that Nun severely reduced the accumulation of mature, biologically active tRNA and promoted the accumulation of short, promoter-proximal transcripts whose 3' ends were dispersed over a 100-nucleotide region downstream of nutL. These results are consistent with the hypothesis that Nun terminates transcription within the region immediately downstream of nutL and are inconsistent with the hypothesis that the only action of Nun is to prevent translation of genes located downstream of the nut site. The stability, small size, and easily assayable biological function of suppressor tRNA recommend it as a reporter of transcription in other systems.
Collapse
MESH Headings
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Coliphages/genetics
- Coliphages/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Suppressor
- Genes, Viral
- Genotype
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids
- RNA, Transfer, Gly/biosynthesis
- RNA, Transfer, Gly/genetics
- Restriction Mapping
- Suppression, Genetic
- Transcription Factors/metabolism
- Transcription, Genetic
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- S B Sloan
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
240
|
A small segment of the MAT alpha 1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol Cell Biol 1993. [PMID: 8355674 DOI: 10.1128/mcb.13.9.5141] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differences in decay rates of eukaryotic transcripts can be determined by discrete sequence elements within mRNAs. Through the analysis of chimeric transcripts and internal deletions, we have identified a 65-nucleotide segment of the MAT alpha 1 mRNA coding region, termed the MAT alpha 1 instability element, that is sufficient to confer instability to a stable PGK1 reporter transcript and that accelerates turnover of the unstable MAT alpha 1 mRNA. This 65-nucleotide element is composed of two parts, one located within the 5' 33 nucleotides and the second located in the 3' 32 nucleotides. The first part, which can be functionally replaced by sequences containing rare codons, is unable to promote rapid decay by itself but can enhance the action of the 3' 32 nucleotides (positions 234 to 266 in the MAT alpha 1 mRNA) in accelerating turnover. A second portion of the MAT alpha 1 mRNA (nucleotides 265 to 290) is also sufficient to destabilize the PGK1 reporter transcript when positioned 3' of rare codons, suggesting that the 3' half of the MAT alpha 1 instability element is functionally reiterated within the MAT alpha 1 mRNA. The observation that rare codons are part of the 65-nucleotide MAT alpha 1 instability element suggests possible mechanisms through which translation and mRNA decay may be linked.
Collapse
|
241
|
Caponigro G, Muhlrad D, Parker R. A small segment of the MAT alpha 1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol Cell Biol 1993; 13:5141-8. [PMID: 8355674 PMCID: PMC360202 DOI: 10.1128/mcb.13.9.5141-5148.1993] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Differences in decay rates of eukaryotic transcripts can be determined by discrete sequence elements within mRNAs. Through the analysis of chimeric transcripts and internal deletions, we have identified a 65-nucleotide segment of the MAT alpha 1 mRNA coding region, termed the MAT alpha 1 instability element, that is sufficient to confer instability to a stable PGK1 reporter transcript and that accelerates turnover of the unstable MAT alpha 1 mRNA. This 65-nucleotide element is composed of two parts, one located within the 5' 33 nucleotides and the second located in the 3' 32 nucleotides. The first part, which can be functionally replaced by sequences containing rare codons, is unable to promote rapid decay by itself but can enhance the action of the 3' 32 nucleotides (positions 234 to 266 in the MAT alpha 1 mRNA) in accelerating turnover. A second portion of the MAT alpha 1 mRNA (nucleotides 265 to 290) is also sufficient to destabilize the PGK1 reporter transcript when positioned 3' of rare codons, suggesting that the 3' half of the MAT alpha 1 instability element is functionally reiterated within the MAT alpha 1 mRNA. The observation that rare codons are part of the 65-nucleotide MAT alpha 1 instability element suggests possible mechanisms through which translation and mRNA decay may be linked.
Collapse
Affiliation(s)
- G Caponigro
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
242
|
Chopin A. Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rev 1993; 12:21-37. [PMID: 8398216 DOI: 10.1111/j.1574-6976.1993.tb00011.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The recent description of large clusters of biosynthetic genes in the chromosome of Lactococcus lactis and, to a lesser extent, of Lactobacillus, has brought some information on gene organization and control of gene expression in these organisms. The genes involved in a given amino acid biosynthetic pathway are clustered at a single chromosomal location and form an operon. Additional genes which are not required for the biosynthesis are present within some operons. Genetic signals are, in general, similar to those found in other prokaryotes. Several systems controlling gene expression have been identified and transcription attenuation seems frequent. Among the attenuation mechanisms identified, one resembles that controlling amino acid biosynthesis in many bacteria by ribosome stalling at codons corresponding to limiting amino acid. The others are different and might be related to a new class of attenuation mechanism. Preliminary evidence for a new type of regulatory mechanism, involving a metabolic shunt, is also reviewed.
Collapse
Affiliation(s)
- A Chopin
- Laboratoire de Génétique Microbienne, INRA, Jouy-en-Josas, France
| |
Collapse
|
243
|
Abstract
Nuclear pre-mRNAs must be precisely processed to give rise to mature cytoplasmic mRNAs. This maturation process, known as splicing, involves excision of intron sequences and ligation of the exon sequences. One of the major problems in understanding this process is how splice sites, the sequences which form the boundaries between introns and exons, can be accurately selected. A number of studies have defined conserved sequences within introns which were later shown to interact with small nuclear ribonucleoproteins (snRNPs). However, due to the simplicity of these conserved sequences it has become clear that other elements must be involved and a number of studies have indicated the importance of secondary structures within pre-mRNAs. Using various examples, we shall show that such structures can help to specify splice sites by modifying physical distances within introns or by being involved in the definition of exons and lastly, that they can be part of the regulation of alternative splicing.
Collapse
Affiliation(s)
- L Balvay
- Department of Molecular Biology, Pasteur Institute, Paris, France
| | | | | |
Collapse
|
244
|
Heery DM, Dunican LK. Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence. Appl Environ Microbiol 1993; 59:791-9. [PMID: 7683184 PMCID: PMC202191 DOI: 10.1128/aem.59.3.791-799.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Corynebacterium glutamicum ATCC 21850 produces up to 5 g of extracellular L-tryptophan per liter in broth culture and displays resistance to several synthetic analogs of aromatic amino acids. Here we report the cloning of the tryptophan biosynthesis (trp) gene cluster of this strain on a 14.5-kb BamHI fragment. Subcloning and complementation of Escherichia coli trp auxotrophs revealed that as in Brevibacterium lactofermentum, the C. glutamicum trp genes are clustered in an operon in the order trpE, trpD, trpC, trpB, trpA. The cloned fragment also confers increased resistance to the analogs 5-methyltryptophan and 6-fluorotryptophan on E. coli. The sequence of the ATCC 21850 trpE gene revealed no significant changes when compared to the trpE sequence of a wild-type strain reported previously. However, analysis of the promoter-regulatory region revealed a nonsense (TGG-to-TGA) mutation in the third of three tandem Trp codons present within a trp leader gene. Polymerase chain reaction amplification and sequencing of the corresponding region confirmed the absence of this mutation in the wild-type strain. RNA secondary-structure predictions and sequence similarities to the E. coli trp attenuator suggest that this mutation results in a constitutive antitermination response.
Collapse
Affiliation(s)
- D M Heery
- Department of Microbiology, University College, Galway, Ireland
| | | |
Collapse
|
245
|
Das A. How the phage lambda N gene product suppresses transcription termination: communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. J Bacteriol 1992; 174:6711-6. [PMID: 1400223 PMCID: PMC207346 DOI: 10.1128/jb.174.21.6711-6716.1992] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- A Das
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030
| |
Collapse
|
246
|
Abstract
Antisense RNA was first an in vitro curiosity that was found to shut off protein synthesis in cell-free extracts. It was later shown to function in prokaryotic cells as a natural modulator of the synthesis of some proteins. Artificial antisense constructs can inhibit protein synthesis in prokaryotic and eukaryotic cells. To inhibit synthesis of proteins effectively, high ratios of antisense to sense RNAs are required. Thus, the challenge is to develop strategies to locate suitable targets and provide for amplification of the antisense RNA. This report provides a summary of our original work on antisense RNA.
Collapse
Affiliation(s)
- S Pestka
- Department of Molecular Genetics and Microbiology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635
| |
Collapse
|
247
|
Su YA, He P, Clewell DB. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob Agents Chemother 1992; 36:769-78. [PMID: 1323953 PMCID: PMC189400 DOI: 10.1128/aac.36.4.769] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The nucleotide sequence of the tetracycline resistance determinant tet(M), located on conjugative transposon Tn916 of Enterococcus faecalis, was determined and found to encode a 72,486-dalton protein exhibiting a high degree of homology with other tet(M) determinants. A short open reading frame corresponding to a 28-amino-acid peptide and containing a number of inverted repeat sequences was noted immediately upstream of tet(M), suggesting that regulation might occur by a mechanism involving transcriptional attenuation. Transcription analyses found this to indeed be the case, showing that the expression of tet(M) resulted from an extension of a small transcript representing the upstream leader region into the resistance determinant. Exposure of cells to tetracycline resulted in a significant increase in the amount of tet(M) transcription; this increase could be explained on the basis of increased transcriptional read-through from the upstream transcript. A model suggesting how transcriptional attenuation might operate in this system is presented.
Collapse
Affiliation(s)
- Y A Su
- Department of Biologic Science, School of Dentistry, University of Michigan, Ann Arbor 48109
| | | | | |
Collapse
|
248
|
Barany F, Slatko B, Danzitz M, Cowburn D, Schildkraut I, Wilson GG. The corrected nucleotide sequences of the TaqI restriction and modification enzymes reveal a thirteen-codon overlap. Gene 1992; 112:91-5. [PMID: 1551602 DOI: 10.1016/0378-1119(92)90307-b] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequence of the genes encoding methyltransferase TaqI (M.TaqI) and restriction endonuclease TaqI (R.TaqI) with the recognition sequence, TCGA, were analyzed in clones isolated from independent libraries. The genes, originally reported as 363 and 236 codons long [Slatko et al., Nucleic Acids Res. 15 (1987) 9781-9796] were redetermined as 421 and 263 codons long, respectively. The C terminus of the taqIM gene overlaps the N terminus of the taqIR gene by 13 codons, as observed with the isoschizomeric TthHB8I restriction-modification system [Barany et al., Gene 112 (1992) 13-20]. Removal of the overlapping codons did not interfere with in vivo M.TaqI activity. We postulate the overlap plays a role in regulating taqIR expression.
Collapse
Affiliation(s)
- F Barany
- Department of Microbiology, Hearst Microbiology Research Center, Cornell University Medical College, New York, NY 10021
| | | | | | | | | | | |
Collapse
|
249
|
Chow CS, Behlen LS, Uhlenbeck OC, Barton JK. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3+, a new reagent for RNA structure-function mapping. Biochemistry 1992; 31:972-82. [PMID: 1734973 DOI: 10.1021/bi00119a005] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With photoactivation Rh(phen)2phi3+ promotes strand cleavage at sites of tertiary interaction in tRNA. The rhodium complex, which binds double-helical DNA by intercalation in the major groove, yields no cleavage in double-helical regions of the RNA or in unstructured single-stranded regions. Instead, Rh(phen)2phi3+ appears to target regions which are structured so that the major groove is open and accessible for stacking with the complex, as occurs where bases are triply bonded. So as to examine the specificity of this novel reagent and to evaluate its use in probing structural changes in RNAs, cleavage studies have been conducted on two structurally characterized tRNAs, tRNA(Phe) and tRNA(Asp) from yeast, the unmodified yeast tRNA(Phe) transcript, and a chemically modified tRNA(Phe), as well as on a series of tRNA(Phe) mutants. On tRNA(Phe) strong cleavage is observed at residues G22, G45, U47, psi 55, and U59; weaker cleavage is observed at A44, m7G46, and C48. On tRNA(Asp) cleavage is found at residues A21 through G26, psi 32, and U48, with minor cleavage apparent at A44, G45, A46, psi 55, U59, and U60. There is a striking similarity in cleavage observed on these tRNAs, and the sites of cleavage mark regions of tertiary folding. Cleavage on the unmodified tRNA(Phe) transcript resembles closely that found on native yeast tRNA(Phe), but additional sites, primarily in the anticodon loop and stem, are evident. The results indicate that globally the structures containing or lacking the modified bases appear to be the same; the differences in cleavage observed may reflect a loosening or alteration in the structure due to the absence of the modified bases. Cleavage results on mutants of tRNA(Phe) illustrate Rh(phen)2phi3+ as a sensitive probe in characterizing tRNA tertiary structure. Results are consistent with other assays for structural or functional changes. Uniquely, Rh(phen)2phi3+ appears to target directly sites of tertiary interaction. Cleavage results on mutants which involve base changes within the triply bounded region of the molecule indicate that it is the structure of the triply bonded array rather than the individual nucleotides which are being targeted. Chemical modification to promote selective depurination of the third base (m7G46) involved in the triple in the folded, native tRNA leads to the reduction of cleavage by the metal complex; this result shows directly the importance of the stacked triple base structure for recognition by the metal complex.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
MESH Headings
- 2,2'-Dipyridyl/analogs & derivatives
- 2,2'-Dipyridyl/pharmacology
- Guanine/analogs & derivatives
- Guanine/chemistry
- Hydrolysis
- Magnesium Chloride/pharmacology
- Mutation
- Nucleic Acid Conformation/drug effects
- Organometallic Compounds/pharmacology
- RNA, Fungal/chemistry
- RNA, Fungal/drug effects
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/drug effects
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/drug effects
- RNA, Transfer, Phe/genetics
- Rhodium/pharmacology
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Sodium Chloride/pharmacology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- C S Chow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|
250
|
Rancourt DE, Davies PL, Walker VK. Differential translatability of antifreeze protein mRNAs in a transgenic host. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1129:188-94. [PMID: 1730058 DOI: 10.1016/0167-4781(92)90486-j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of fusion gene constructs containing Drosophila regulatory sequences and the structural portions of fish antifreeze protein genes have been examined by transfer into Drosophila melanogaster using P elements. A fusion gene, containing the enhancer, promoter, and cap site of the yolk polypeptide 1 gene, joined in the 5'-untranslated region to the structural portion of the winter flounder type I antifreeze gene, was transcribed in mature female transformants to give an mRNA of the predicted size, but no antifreeze protein was detected by Western blotting. When the same antifreeze protein gene was fused to a Drosophila hsp 70 gene regulatory region and placed downstream of the yolk polypeptide gene enhancer, appropriate expression of mRNA was directed by both gene regulatory elements. However, a translation product from this mRNA was only observed under heat shock conditions and was present at low levels. It is suggested that type I antifreeze mRNA, with its high content of alanine codons and their grouping into clusters of up to seven in a row, is poorly translated when in competition with other host mRNAs. In agreement with this hypothesis, a fusion gene construct between the yolk protein gene regulatory region and two type III antifreeze protein genes produced sub-mmolar concentrations of antifreeze protein in mature females from each of several transgenic lines analysed. The type III antifreeze protein does not have an imbalanced amino acid composition or sequence irregularities, and may be an appropriate choice for conferring freeze protection to frost-susceptible hosts by gene transfer.
Collapse
Affiliation(s)
- D E Rancourt
- Department of Biochemistry, Queen's University Kingston, Ontario, Canada
| | | | | |
Collapse
|