201
|
Vermot J, Fraser SE, Liebling M. Fast fluorescence microscopy for imaging the dynamics of embryonic development. HFSP JOURNAL 2008; 2:143-55. [PMID: 19404468 DOI: 10.2976/1.2907579] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 03/19/2008] [Indexed: 11/19/2022]
Abstract
Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field.
Collapse
|
202
|
Visnapuu ML, Duzdevich D, Greene EC. The importance of surfaces in single-molecule bioscience. MOLECULAR BIOSYSTEMS 2008; 4:394-403. [PMID: 18414737 PMCID: PMC3033744 DOI: 10.1039/b800444g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The last ten years have witnessed an explosion of new techniques that can be used to probe the dynamic behavior of individual biological molecules, leading to discoveries that would not have been possible with more traditional biochemical methods. A common feature among these single-molecule approaches is the need for the biological molecules to be anchored to a solid support surface. This must be done under conditions that minimize nonspecific adsorption without compromising the biological integrity of the sample. In this review we highlight why surface attachments are a critical aspect of many single-molecule studies and we discuss current methods for anchoring biomolecules. Finally, we provide a detailed description of a new method developed by our laboratory for anchoring and organizing hundreds of individual DNA molecules on a surface, allowing "high-throughput" studies of protein-DNA interactions at the single-molecule level.
Collapse
Affiliation(s)
- Mari-Liis Visnapuu
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Daniel Duzdevich
- Departments of Biological Sciences, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Eric C. Greene
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
203
|
Lam L, Iino R, Tabata KV, Noji H. Highly sensitive restriction enzyme assay and analysis: a review. Anal Bioanal Chem 2008; 391:2423-32. [PMID: 18427787 DOI: 10.1007/s00216-008-2099-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/13/2008] [Accepted: 03/20/2008] [Indexed: 11/27/2022]
Abstract
Biological assays at the single molecule level are crucial to fundamental studies of DNA-protein mechanisms. In order to cater for high throughput applications, one area of immense research potential is single-molecule bioassays where miniaturized devices are developed to perform rapid and effective biological reactions and analyses. With the success of various emerging technologies for engineering miniaturized structures down to the nanoscale level, supported by specialized equipment for detection, many investigations in the field of life science that were once thought impossible can now be actively explored. In this review, the significance of downscaling to the single-molecule level is firstly presented in selected examples, with the focus placed on restriction enzyme assays. To determine the effectiveness of single-molecule restriction enzyme reactions, simple and direct analytical methods based on DNA stretching have often been reliably employed. DNA stretching can be realized based on a number of working principles related to the physical forces exerted on the DNA samples. We then discuss two examples of a nanochannel system and a microchamber system where single-molecule restriction enzyme digestion and DNA stretching have been integrated, which possess prospective capabilities of developing into highly sensitive and high-throughput restriction enzyme assays. Finally, we take a brief look at the general trends in technological development in this field by comparing the advantages and disadvantages of performing assays at bulk, microscale and single-molecule levels.
Collapse
Affiliation(s)
- Liza Lam
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan.
| | | | | | | |
Collapse
|
204
|
Panja D, Barkema GT. Passage times for polymer translocation pulled through a narrow pore. Biophys J 2008; 94:1630-7. [PMID: 17951294 PMCID: PMC2242752 DOI: 10.1529/biophysj.107.116434] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/26/2007] [Indexed: 11/18/2022] Open
Abstract
We study the passage times of a translocating polymer of length N in three dimensions, while it is pulled through a narrow pore with a constant force F applied to one end of the polymer. At small to moderate forces, satisfying the condition FN(nu)/k(B)T less, similar 1, where nu approximately 0.588 is the Flory exponent for the polymer, we find that tau(N), the mean time the polymer takes to leave the pore, scales as N(2+nu) independent of F, in agreement with our earlier result for F = 0. At strong forces, i.e., for, FN(nu)/k(B)T >> 1, the behavior of the passage time crosses over to tau(N) approximately N(2)/F. We show here that these behaviors stem from the polymer dynamics at the immediate vicinity of the pore-in particular, the memory effects in the polymer chain tension imbalance across the pore.
Collapse
Affiliation(s)
- Debabrata Panja
- Institute for Theoretical Physics, Universiteit van Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
205
|
Venkatramani R, Radhakrishnan R. Computational study of the force dependence of phosphoryl transfer during DNA synthesis by a high fidelity polymerase. PHYSICAL REVIEW LETTERS 2008; 100:088102. [PMID: 18352668 PMCID: PMC2276685 DOI: 10.1103/physrevlett.100.088102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Indexed: 05/26/2023]
Abstract
High fidelity polymerases are efficient catalysts of phosphodiester bond formation during DNA replication or repair. We interpret molecular dynamics simulations of a polymerase bound to its substrate DNA and incoming nucleotide using a quasiharmonic model to study the effect of external forces applied to the bound DNA on the kinetics of phosphoryl transfer. The origin of the force dependence is shown to be an intriguing coupling between slow, delocalized polymerase-DNA modes and fast catalytic site motions. Using noncognate DNA substrates we show that the force dependence is context specific.
Collapse
Affiliation(s)
- Ravindra Venkatramani
- Department of Bioengineering and Department of Biochemistry & Biophysics, University of Pennsylvania, 240 Skirkanich, 210 S. 33rd St, Philadelphia, PA 19104
| | - Ravi Radhakrishnan
- Department of Bioengineering and Department of Biochemistry & Biophysics, University of Pennsylvania, 240 Skirkanich, 210 S. 33rd St, Philadelphia, PA 19104
| |
Collapse
|
206
|
Nathan A. T, Samir M. H, Slobodan J, Karin V. L, Patrick M. S, Nicholas E. D, Antoine M. VO. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 2008; 15:170-6. [PMID: 18223657 PMCID: PMC2651573 DOI: 10.1038/nsmb.1381] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/03/2008] [Indexed: 11/09/2022]
Abstract
We present single-molecule studies of the Escherichia coli replication machinery. We visualize individual E. coli DNA polymerase III (Pol III) holoenzymes engaging in primer extension and leading-strand synthesis. When coupled to the replicative helicase DnaB, Pol III mediates leading-strand synthesis with a processivity of 10.5 kilobases (kb), eight-fold higher than that by Pol III alone. Addition of the primase DnaG causes a three-fold reduction in the processivity of leading-strand synthesis, an effect dependent upon the DnaB-DnaG protein-protein interaction rather than primase activity. A single-molecule analysis of the replication kinetics with varying DnaG concentrations indicates that a cooperative binding of two or three DnaG monomers to DnaB halts synthesis. Modulation of DnaB helicase activity through the interaction with DnaG suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during slow primer synthesis on the lagging strand.
Collapse
Affiliation(s)
- Tanner Nathan A.
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| | - Hamdan Samir M.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| | - Jergic Slobodan
- Research School of Chemistry, Australian National University, Canberra ACT, AUS
- School of Chemistry, University of Wollongong, Wollongong NSW, AUS
| | - Loscha Karin V.
- Research School of Chemistry, Australian National University, Canberra ACT, AUS
| | - Schaeffer Patrick M.
- Research School of Chemistry, Australian National University, Canberra ACT, AUS
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville QLD, AUS
| | - Dixon Nicholas E.
- Research School of Chemistry, Australian National University, Canberra ACT, AUS
- School of Chemistry, University of Wollongong, Wollongong NSW, AUS
| | - van Oijen Antoine M.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA, USA
| |
Collapse
|
207
|
Cockroft SL, Chu J, Amorin M, Ghadiri MR. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc 2008; 130:818-20. [PMID: 18166054 PMCID: PMC2453067 DOI: 10.1021/ja077082c] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to monitor DNA polymerase activity with single-nucleotide resolution has been the cornerstone of a number of advanced single-molecule DNA sequencing concepts. Toward this goal, we report the first observation of the base-by-base DNA polymerase activity with single-base resolution at the single-molecule level. We describe the design and characterization of a supramolecular nanopore device capable of detecting up to nine consecutive DNA polymerase-catalyzed single-nucleotide primer extensions with high sensitivity and spatial resolution (
Collapse
Affiliation(s)
- Scott L Cockroft
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
208
|
Kuznetsov SV, Ren CC, Woodson SA, Ansari A. Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Res 2007; 36:1098-112. [PMID: 18096625 PMCID: PMC2275088 DOI: 10.1093/nar/gkm1083] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hairpin loops are critical to the formation of nucleic acid secondary structure, and to their function. Previous studies revealed a steep dependence of single-stranded DNA (ssDNA) hairpin stability with length of the loop (L) as approximately L(8.5 +/- 0.5), in 100 mM NaCl, which was attributed to intraloop stacking interactions. In this article, the loop-size dependence of RNA hairpin stabilities and their folding/unfolding kinetics were monitored with laser temperature-jump spectroscopy. Our results suggest that similar mechanisms stabilize small ssDNA and RNA loops, and show that salt contributes significantly to the dependence of hairpin stability on loop size. In 2.5 mM MgCl2, the stabilities of both ssDNA and RNA hairpins scale as approximately L(4 +/- 0.5), indicating that the intraloop interactions are weaker in the presence of Mg2+. Interestingly, the folding times for ssDNA hairpins (in 100 mM NaCl) and RNA hairpins (in 2.5 mM MgCl2) are similar despite differences in the salt conditions and the stem sequence, and increase similarly with loop size, approximately L(2.2 +/- 0.5) and approximately L(2.6 +/- 0.5), respectively. These results suggest that hairpins with small loops may be specifically stabilized by interactions of the Na+ ions with the loops. The results also reinforce the idea that folding times are dominated by an entropic search for the correct nucleating conformation.
Collapse
Affiliation(s)
- Serguei V Kuznetsov
- Department of Physics (M/C 273), University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
209
|
Baumann CG, Morris DG, Sreenan JM, Leese HJ. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev 2007; 74:1345-53. [PMID: 17342740 DOI: 10.1002/mrd.20604] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been proposed that the viability of early mammalian embryos is associated with a metabolism that is "quiet" rather than "active" (Leese HJ, 2002:BioEssays 24:845-849). The data on which this hypothesis was based were largely drawn from measurements on the depletion and appearance of amino acids from the culture medium. Data on the de novo synthesis of protein in in vivo- and in vitro-derived bovine embryos, as determined from the flux of radiolabeled methionine, have provided further support of the hypothesis and are interpreted to provide a new set of testable propositions that could illuminate the molecular basis of the quiet metabolism phenotype. The propositions are based on the premise that the extent of DNA damage, and the RNA and protein content of the immature oocyte, are key factors in determining whether the zygote progresses to the blastocyst stage. We propose that stochastic events and environmental stresses determine whether the condition of the genome, transcriptome, and proteome of the zygote will support development. Several molecular components are identified that may determine the viability of a zygote, and we speculate that the cellular response to unfavorable events or excessive DNA damage may be the premature activation of the embryonic genome and of apoptosis.
Collapse
|
210
|
Hugel T, Michaelis J, Hetherington CL, Jardine PJ, Grimes S, Walter JM, Falk W, Anderson DL, Bustamante C. Experimental test of connector rotation during DNA packaging into bacteriophage phi29 capsids. PLoS Biol 2007; 5:e59. [PMID: 17311473 PMCID: PMC1800307 DOI: 10.1371/journal.pbio.0050059] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 12/26/2006] [Indexed: 12/02/2022] Open
Abstract
The bacteriophage ϕ29 generates large forces to compact its double-stranded DNA genome into a protein capsid by means of a portal motor complex. Several mechanical models for the generation of these high forces by the motor complex predict coupling of DNA translocation to rotation of the head-tail connector dodecamer. Putative connector rotation is investigated here by combining the methods of single-molecule force spectroscopy with polarization-sensitive single-molecule fluorescence. In our experiment, we observe motor function in several packaging complexes in parallel using video microscopy of bead position in a magnetic trap. At the same time, we follow the orientation of single fluorophores attached to the portal motor connector. From our data, we can exclude connector rotation with greater than 99% probability and therefore answer a long-standing mechanistic question. The life cycles of many viruses include a self-assembly stage in which a powerful molecular motor packs the DNA genome into the virus's preformed shell (the capsid). Biochemical and biophysical studies have identified essential components of the packaging machinery and measured various characteristics of the packaging process, while crystallography and electron microscopy have provided snapshots of viral structure before and after packaging. In bacteriophage ϕ29 assembly, the DNA passes into the shell through a channel formed by a structure called the connector. Structurally motivated models over the past 30 years have coupled DNA movement to rotation of the connector relative to the capsid. We describe a direct test of the connector rotation hypothesis, combining magnetic single-molecule manipulation techniques and single-molecule fluorescence spectroscopy. In our experiments, we use a single-dye molecule attached specifically to the connector as a reporter for its orientation and simultaneously observe the translocation of a magnetic bead attached to the DNA that is being packaged. From our data, we can exclude connector rotation with greater than 99% probability and therefore answer a long-standing mechanistic question. dsDNA compaction into bacteriophage capsids is observed in packaging complexes. Unlike in previous models, this compaction is found not to be driven by a rotating motor complex.
Collapse
Affiliation(s)
- Thorsten Hugel
- Department of Physics, Technical University, Munich, Germany
- Munich Center for Integrated Protein Science and Center for NanoScience, Munich, Germany
| | - Jens Michaelis
- Munich Center for Integrated Protein Science and Center for NanoScience, Munich, Germany
- Department of Chemistry and Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Craig L Hetherington
- Department of Physics, University of California, Berkeley, California, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jessica M Walter
- Department of Physics, University of California, Berkeley, California, United States of America
| | - Wayne Falk
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dwight L Anderson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carlos Bustamante
- Department of Physics, University of California, Berkeley, California, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
211
|
Hamdan SM, Johnson DE, Tanner NA, Lee JB, Qimron U, Tabor S, van Oijen AM, Richardson CC. Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement. Mol Cell 2007; 27:539-49. [PMID: 17707227 DOI: 10.1016/j.molcel.2007.06.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/11/2007] [Accepted: 06/19/2007] [Indexed: 11/20/2022]
Abstract
A single copy of bacteriophage T7 DNA polymerase and DNA helicase advance the replication fork with a processivity greater than 17,000 nucleotides. Nonetheless, the polymerase transiently dissociates from the DNA without leaving the replisome. Ensemble and single-molecule techniques demonstrate that this dynamic processivity is made possible by two modes of DNA polymerase-helicase interaction. During DNA synthesis the polymerase and the helicase interact at a high-affinity site. In this polymerizing mode, the polymerase dissociates from the DNA approximately every 5000 bases. The polymerase, however, remains bound to the helicase via an electrostatic binding mode that involves the acidic C-terminal tail of the helicase and a basic region in the polymerase to which the processivity factor also binds. The polymerase transfers via the electrostatic interaction around the hexameric helicase in search of the primer-template.
Collapse
Affiliation(s)
- Samir M Hamdan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Model for RuvAB-mediated branch migration of Holliday junctions. J Theor Biol 2007; 249:566-73. [PMID: 17919660 DOI: 10.1016/j.jtbi.2007.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/21/2022]
Abstract
During RuvAB-mediated Holliday-junction migration two opposite arms of double-stranded DNA (dsDNA) are driven to translocate unidirectional by two respective ring-like hexameric RuvB proteins. However, how the RuvB protein, powered by ATP hydrolysis, drives unidirectional translocation of dsDNA is not clear. Here a model is presented for this mechanochemical-coupling mechanism. In the model, the unidirectional translocation is resulted from both the ATP hydrolysis-induced rotation (power stroke) of the RuvB subunits and the passage of the strong DNA binding from the previous to next RuvB subunits during the sequential ATPase activities around the ring. Using the model, the relationship between the power-stroke size, the step size of DNA translocation and the ratio of the rotational rate of DNA over that of RuvB relative to RuvA is predicted.
Collapse
|
213
|
Seol Y, Li J, Nelson PC, Perkins TT, Betterton MD. Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm. Biophys J 2007; 93:4360-73. [PMID: 17766363 PMCID: PMC2098713 DOI: 10.1529/biophysj.107.112995] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The wormlike chain (WLC) model currently provides the best description of double-stranded DNA elasticity for micron-sized molecules. This theory requires two intrinsic material parameters-the contour length L and the persistence length p. We measured and then analyzed the elasticity of double-stranded DNA as a function of L (632 nm-7.03 microm) using the classic solution to the WLC model. When the elasticity data were analyzed using this solution, the resulting fitted value for the persistence length p(wlc) depended on L; even for moderately long DNA molecules (L = 1300 nm), this apparent persistence length was 10% smaller than its limiting value for long DNA. Because p is a material parameter, and cannot depend on length, we sought a new solution to the WLC model, which we call the "finite wormlike chain (FWLC)," to account for effects not considered in the classic solution. Specifically we accounted for the finite chain length, the chain-end boundary conditions, and the bead rotational fluctuations inherent in optical trapping assays where beads are used to apply the force. After incorporating these corrections, we used our FWLC solution to generate force-extension curves, and then fit those curves with the classic WLC solution, as done in the standard experimental analysis. These results qualitatively reproduced the apparent dependence of p(wlc) on L seen in experimental data when analyzed with the classic WLC solution. Directly fitting experimental data to the FWLC solution reduces the apparent dependence of p(fwlc) on L by a factor of 3. Thus, the FWLC solution provides a significantly improved theoretical framework in which to analyze single-molecule experiments over a broad range of experimentally accessible DNA lengths, including both short (a few hundred nanometers in contour length) and very long (microns in contour length) molecules.
Collapse
Affiliation(s)
- Yeonee Seol
- JILA, National Institute of Standards and Technology and University of Colorado, USA
| | | | | | | | | |
Collapse
|
214
|
Roos WH, Ivanovska IL, Evilevitch A, Wuite GJL. Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 2007; 64:1484-97. [PMID: 17440680 PMCID: PMC2771126 DOI: 10.1007/s00018-007-6451-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main functions of viral capsids are to protect, transport and deliver their genome. The mechanical properties of capsids are supposed to be adapted to these tasks. Bacteriophage capsids also need to withstand the high pressures the DNA is exerting onto it as a result of the DNA packaging and its consequent confinement within the capsid. It is proposed that this pressure helps driving the genome into the host, but other mechanisms also seem to play an important role in ejection. DNA packaging and ejection strategies are obviously dependent on the mechanical properties of the capsid. This review focuses on the mechanical properties of viral capsids in general and the elucidation of the biophysical aspects of genome packaging mechanisms and genome delivery processes of double-stranded DNA bacteriophages in particular.
Collapse
Affiliation(s)
- W. H. Roos
- Fysica van complexe systemen, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - I. L. Ivanovska
- Fysica van complexe systemen, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - A. Evilevitch
- Department of Biochemistry, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - G. J. L. Wuite
- Fysica van complexe systemen, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
215
|
Ke C, Humeniuk M, S-Gracz H, Marszalek PE. Direct measurements of base stacking interactions in DNA by single-molecule atomic-force spectroscopy. PHYSICAL REVIEW LETTERS 2007; 99:018302. [PMID: 17678193 DOI: 10.1103/physrevlett.99.018302] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Indexed: 05/16/2023]
Abstract
We investigate the elasticity of two types of single-stranded synthetic DNA homopolydeoxynucletides, poly(dA) and poly(dT), by AFM-based single-molecule force spectroscopy. We find that poly(dT) exhibits the expected entropic elasticity behavior, while poly(dA) unexpectedly displays two overstretching transitions in the force-extension relationship. We suggest that these transitions, which occur at approximately 23 pN and approximately 113 pN, directly capture, for the first time, the mechanical signature of base-stacking interactions among adenines in DNA, in the absence of base pairing.
Collapse
Affiliation(s)
- Changhong Ke
- Department of Mechanical Engineering and Materials Science, Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina, USA
| | | | | | | |
Collapse
|
216
|
Hin-mediated DNA knotting and recombining promote replicon dysfunction and mutation. BMC Mol Biol 2007; 8:44. [PMID: 17531098 PMCID: PMC1904230 DOI: 10.1186/1471-2199-8-44] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 05/25/2007] [Indexed: 01/11/2023] Open
Abstract
Background The genetic code imposes a dilemma for cells. The DNA must be long enough to encode for the complexity of an organism, yet thin and flexible enough to fit within the cell. The combination of these properties greatly favors DNA collisions, which can knot and drive recombination of the DNA. Despite the well-accepted propensity of cellular DNA to collide and react with itself, it has not been established what the physiological consequences are. Results Here we analyze the effects of recombined and knotted plasmids in E. coli using the Hin site-specific recombination system. We show that Hin-mediated DNA knotting and recombination (i) promote replicon loss by blocking DNA replication; (ii) block gene transcription; and (iii) cause genetic rearrangements at a rate three to four orders of magnitude higher than the rate for an unknotted, unrecombined plasmid. Conclusion These results show that DNA reactivity leading to recombined and knotted DNA is potentially toxic and may help drive genetic evolution.
Collapse
|
217
|
Lee G, Rabbi M, Clark RL, Marszalek PE. Nanomechanical fingerprints of UV damage to DNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2007; 3:809-13. [PMID: 17393552 DOI: 10.1002/smll.200600592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Affiliation(s)
- Gwangrog Lee
- Center for Biologically Inspired Materials and Material Systems and Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
218
|
Ishii Y, Yanagida T. How single molecule detection measures the dynamic actions of life. HFSP JOURNAL 2007. [PMID: 19404457 DOI: 10.2976/1.2723643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biomolecules dynamically work in cells in which a variety of molecules assemble and interact in unique manner. The molecular mechanisms underlying several biological processes have been elucidated from the results obtained from the descriptions of cell function, from the snapshots of the structures of biomolecules involved in these processes, and from the biochemical properties of these reactions in vitro. Recently developed single molecule measurements have revealed the dynamic properties of the biomolecules that have been hidden in the data that have been averaged over large numbers of molecules in both ensemble measurement and in cells. Single molecule imaging and manipulation of single molecules have allowed the visualization of the dynamic operations of molecular motors, enzymatic reactions, structural dynamics of biomolecules, and cell signaling processes. The results have shown that the single molecule techniques are powerful tools to monitor the dynamic actions of biomolecules and their assemblies. This approach has been applied to a variety of fields within the life sciences. As new information emerges about the dynamic actions of biomolecules using methods of single molecule detection new views on how biological processes work will be revealed.
Collapse
|
219
|
Ishii Y, Yanagida T. How single molecule detection measures the dynamic actions of life. HFSP JOURNAL 2007; 1:15-29. [PMID: 19404457 DOI: 10.2976/1.2723643/10.2976/1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Indexed: 12/31/2022]
Abstract
Biomolecules dynamically work in cells in which a variety of molecules assemble and interact in unique manner. The molecular mechanisms underlying several biological processes have been elucidated from the results obtained from the descriptions of cell function, from the snapshots of the structures of biomolecules involved in these processes, and from the biochemical properties of these reactions in vitro. Recently developed single molecule measurements have revealed the dynamic properties of the biomolecules that have been hidden in the data that have been averaged over large numbers of molecules in both ensemble measurement and in cells. Single molecule imaging and manipulation of single molecules have allowed the visualization of the dynamic operations of molecular motors, enzymatic reactions, structural dynamics of biomolecules, and cell signaling processes. The results have shown that the single molecule techniques are powerful tools to monitor the dynamic actions of biomolecules and their assemblies. This approach has been applied to a variety of fields within the life sciences. As new information emerges about the dynamic actions of biomolecules using methods of single molecule detection new views on how biological processes work will be revealed.
Collapse
|
220
|
Kim J, Dukkipati V, Pang SW, Larson RG. Stretching and immobilization of DNA for studies of protein–DNA interactions at the single-molecule level. NANOSCALE RESEARCH LETTERS 2007; 2. [PMCID: PMC3246225 DOI: 10.1007/s11671-007-9057-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Single-molecule studies of the interactions of DNA and proteins are important in a variety of biological or biotechnology processes ranging from the protein’s search for its DNA target site, DNA replication, transcription, or repair, and genome sequencing. A critical requirement for single-molecule studies is the stretching and immobilization of otherwise randomly coiled DNA molecules. Several methods for doing so have been developed over the last two decades, including the use of forces derived from light, magnetic and electric fields, and hydrodynamic flow. Here we review the immobilization and stretching mechanisms for several of these techniques along with examples of single-molecule DNA–protein interaction assays that can be performed with each of them.
Collapse
Affiliation(s)
- JiHoon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
| | - VenkatRam Dukkipati
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Stella W Pang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Ronald G Larson
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, MI, USA
| |
Collapse
|
221
|
Kim S, Blainey PC, Schroeder CM, Xie XS. Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA. Nat Methods 2007; 4:397-9. [PMID: 17435763 DOI: 10.1038/nmeth1037] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/06/2007] [Indexed: 11/09/2022]
Abstract
We report a single-molecule assay for nucleic-acid enzymes on flow-stretched DNA templates. To facilitate the detection of slow or intermittent enzymatic activities, we developed the assay with 15-nm spatial resolution at a frame rate of 1 Hz and approximately 10 nm mechanical stability over the timescale of hours. With multiplexed data collection, we applied the assay to phi29 DNA polymerase, HIV-1 reverse transcriptase, lambda exonuclease and Escherichia coli RNA polymerase.
Collapse
Affiliation(s)
- Sangjin Kim
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
222
|
van Oijen AM. Honey, I shrunk the DNA: DNA length as a probe for nucleic-acid enzyme activity. Biopolymers 2007; 85:144-53. [PMID: 17083118 DOI: 10.1002/bip.20624] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The replication, recombination, and repair of DNA are processes essential for the maintenance of genomic information and require the activity of numerous enzymes that catalyze the polymerization or digestion of DNA. This review will discuss how differences in elastic properties between single- and double-stranded DNA can be used as a probe to study the dynamics of these enzymes at the single-molecule level.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
223
|
Johnson DE, Takahashi M, Hamdan SM, Lee SJ, Richardson CC. Exchange of DNA polymerases at the replication fork of bacteriophage T7. Proc Natl Acad Sci U S A 2007; 104:5312-7. [PMID: 17369350 PMCID: PMC1838503 DOI: 10.1073/pnas.0701062104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T7 gene 5 DNA polymerase (gp5) and its processivity factor, Escherichia coli thioredoxin, together with the T7 gene 4 DNA helicase, catalyze strand displacement synthesis on duplex DNA processively (>17,000 nucleotides per binding event). The processive DNA synthesis is resistant to the addition of a DNA trap. However, when the polymerase-thioredoxin complex actively synthesizing DNA is challenged with excess DNA polymerase-thioredoxin exchange occurs readily. The exchange can be monitored by the use of a genetically altered T7 DNA polymerase (gp5-Y526F) in which tyrosine-526 is replaced with phenylalanine. DNA synthesis catalyzed by gp5-Y526F is resistant to inhibition by chain-terminating dideoxynucleotides because gp5-Y526F is deficient in the incorporation of these analogs relative to the wild-type enzyme. The exchange also occurs during coordinated DNA synthesis in which leading- and lagging-strand synthesis occur at the same rate. On ssDNA templates with the T7 DNA polymerase alone, such exchange is not evident, suggesting that free polymerase is first recruited to the replisome by means of T7 gene 4 helicase. The ability to exchange DNA polymerases within the replisome without affecting processivity provides advantages for fidelity as well as the cycling of the polymerase from a completed Okazaki fragment to a new primer on the lagging strand.
Collapse
Affiliation(s)
- Donald E. Johnson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Masateru Takahashi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Samir M. Hamdan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Seung-Joo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Charles C. Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
224
|
Hormeño S, Arias-Gonzalez JR. Exploring mechanochemical processes in the cell with optical tweezers. Biol Cell 2007; 98:679-95. [PMID: 17105446 DOI: 10.1042/bc20060036] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Force and torque, stress and strain or work are examples of mechanical and elastic actions which are intimately linked to chemical reactions in the cell. Optical tweezers are a light-based method which allows the real-time manipulation of single molecules and cells to measure their interactions. We describe the technique, briefly reviewing the operating principles and the potential capabilities to the study of biological processes. Additional emphasis is given to the importance of fluctuations in biology and how single-molecule techniques allow access to them. We illustrate the applications by addressing experimental configurations and recent progresses in molecular and cell biology.
Collapse
Affiliation(s)
- Silvia Hormeño
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
225
|
Liu Y, Jun Y, Steinberg V. Longest Relaxation Times of Double-Stranded and Single-Stranded DNA. Macromolecules 2007. [DOI: 10.1021/ma062715d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yonggang Liu
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yonggun Jun
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Victor Steinberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
226
|
Baldazzi V, Bradde S, Cocco S, Marinari E, Monasson R. Inferring DNA sequences from mechanical unzipping data: the large-bandwidth case. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:011904. [PMID: 17358181 DOI: 10.1103/physreve.75.011904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/21/2006] [Indexed: 05/14/2023]
Abstract
The complementary strands of DNA molecules can be separated when stretched apart by a force; the unzipping signal is correlated to the base content of the sequence but is affected by thermal and instrumental noise. We consider here the ideal case where opening events are known to a very good time resolution (very large bandwidth), and study how the sequence can be reconstructed from the unzipping data. Our approach relies on the use of statistical Bayesian inference and of Viterbi decoding algorithm. Performances are studied numerically on Monte Carlo generated data, and analytically. We show how multiple unzippings of the same molecule may be exploited to improve the quality of the prediction, and calculate analytically the number of required unzippings as a function of the bandwidth, the sequence content, and the elasticity parameters of the unzipped strands.
Collapse
Affiliation(s)
- V Baldazzi
- Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
| | | | | | | | | |
Collapse
|
227
|
Greenleaf WJ, Woodside MT, Block SM. High-resolution, single-molecule measurements of biomolecular motion. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2007; 36:171-90. [PMID: 17328679 PMCID: PMC1945240 DOI: 10.1146/annurev.biophys.36.101106.101451] [Citation(s) in RCA: 330] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many biologically important macromolecules undergo motions that are essential to their function. Biophysical techniques can now resolve the motions of single molecules down to the nanometer scale or even below, providing new insights into the mechanisms that drive molecular movements. This review outlines the principal approaches that have been used for high-resolution measurements of single-molecule motion, including centroid tracking, fluorescence resonance energy transfer, magnetic tweezers, atomic force microscopy, and optical traps. For each technique, the principles of operation are outlined, the capabilities and typical applications are examined, and various practical issues for implementation are considered. Extensions to these methods are also discussed, with an eye toward future application to outstanding biological problems.
Collapse
Affiliation(s)
- William J. Greenleaf
- Department of Applied Physics, Stanford University, Stanford, California 94305–5030
| | - Michael T. Woodside
- National Institute for Nanotechnology, National Research Council of Canada, Edmonton AB, T6G 2V4, Canada
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Steven M. Block
- Department of Applied Physics, Stanford University, Stanford, California 94305–5030
- Department of Biological Sciences, Stanford University, Stanford, California 94305–5030;
| |
Collapse
|
228
|
Radhakrishnan R, Arora K, Wang Y, Beard WA, Wilson SH, Schlick T. Regulation of DNA repair fidelity by molecular checkpoints: "gates" in DNA polymerase beta's substrate selection. Biochemistry 2006; 45:15142-56. [PMID: 17176036 PMCID: PMC1945116 DOI: 10.1021/bi061353z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With an increasing number of structural, kinetic, and modeling studies of diverse DNA polymerases in various contexts, a complex dynamical view of how atomic motions might define molecular "gates" or checkpoints that contribute to polymerase specificity and efficiency is emerging. Such atomic-level information can offer insights into rate-limiting conformational and chemical steps to help piece together mechanistic views of polymerases in action. With recent advances, modeling and dynamics simulations, subject to the well-appreciated limitations, can access transition states and transient intermediates along a reaction pathway, both conformational and chemical, and such information can help bridge the gap between experimentally determined equilibrium structures and mechanistic enzymology data. Focusing on DNA polymerase beta (pol beta), we present an emerging view of the geometric, energetic, and dynamic selection criteria governing insertion rate and fidelity mechanisms of DNA polymerases, as gleaned from various computational studies and based on the large body of existing kinetic and structural data. The landscape of nucleotide insertion for pol beta includes conformational changes, prechemistry, and chemistry "avenues", each with a unique deterministic or stochastic pathway that includes checkpoints for selective control of nucleotide insertion efficiency. For both correct and incorrect incoming nucleotides, pol beta's conformational rearrangements before chemistry include a cascade of slow and subtle side chain rearrangements, followed by active site adjustments to overcome higher chemical barriers, which include critical ion-polymerase geometries; this latter notion of a prechemistry avenue fits well with recent structural and NMR data. The chemical step involves an associative mechanism with several possibilities for the initial proton transfer and for the interaction among the active site residues and bridging water molecules. The conformational and chemical events and associated barriers define checkpoints that control enzymatic efficiency and fidelity. Understanding the nature of such active site rearrangements can facilitate interpretation of existing data and stimulate new experiments that aim to probe enzyme features that contribute to fidelity discrimination across various polymerases via such geometric, dynamic, and energetic selection criteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Tamar Schlick
- * To whom correspondence should be addressed. Telephone: (212) 998-3116. Fax: (212) 995-4152. E-mail:
| |
Collapse
|
229
|
van Oijen AM. Single-molecule studies of complex systems: the replisome. MOLECULAR BIOSYSTEMS 2006; 3:117-25. [PMID: 17245491 DOI: 10.1039/b612545j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A complete, system-level understanding of biological processes requires comprehensive information on the kinetics and thermodynamics of the underlying biochemical reactions. A wide variety of structural, biochemical, and molecular biological techniques have led to a quantitative understanding of the molecular properties and mechanisms essential to the processes of life. Yet, the ensemble averaging inherent to these techniques limits us in understanding the dynamic behavior of the molecular participants. Recent advances in imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and record "molecular movies" that provide insight into their dynamics and reaction mechanisms. An important future goal is extending the applicability of single-molecule techniques to the study of larger, more complex multi-protein systems. In this review, the DNA replication machinery will be used as an example to illustrate recent progress in the development of various single-molecule techniques and its contribution to our understanding of the orchestration of multiple enzymatic processes in large biomolecular systems.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Harvard Medical School, Dept. of Biological Chemistry and Molecular Pharmacology, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
230
|
Xie P. Model for forward polymerization and switching transition between polymerase and exonuclease sites by DNA polymerase molecular motors. Arch Biochem Biophys 2006; 457:73-84. [PMID: 17055996 DOI: 10.1016/j.abb.2006.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 09/20/2006] [Accepted: 09/20/2006] [Indexed: 11/15/2022]
Abstract
Based on the available crystal structure a model is presented for the polymerization activity and switching transition between polymerase and exonuclease sites of a DNA polymerase molecular motor. Using the model, the fast polymerization rate for correctly base-paired DNA and much reduced polymerization rate after an incorporation of a mismatched base can be well explained. The dependences of the polymerization rate and exonuclease rate on mechanical tension acting on the DNA template are studied. The switching rates between the two sites are analyzed. All the results show good quantitative agreement with the available experimental results.
Collapse
Affiliation(s)
- Ping Xie
- Department of Physics, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou, Zhejiang, China.
| |
Collapse
|
231
|
Mameren JV, Modesti M, Kanaar R, Wyman C, Wuite GJL, Peterman EJG. Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers. Biophys J 2006; 91:L78-80. [PMID: 16920830 PMCID: PMC1578474 DOI: 10.1529/biophysj.106.089466] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleoprotein filament formation by recombinases is central to homologous recombination. To follow this process, we used fluorescent human Rad51 recombinase to visualize the interactions with double-stranded DNA (dsDNA). Fluorescence imaging revealed that Rad51 filament formation on dsDNA initiates from multiple nucleation points, resulting in Rad51-dsDNA nucleoprotein filaments interspersed with regions of bare DNA. The elastic properties of such heterogeneously coated DNA molecules were assessed by combining force-extension measurements using optical traps with fluorescence microscopy. This combination of single-molecule techniques allows discrimination of segments within an individual DNA molecule and determination of their elastic properties. The nonfluorescent zones of DNA-Rad51 constructs showed the well-known (over)stretching behavior of bare DNA. In contrast, the fluorescent, Rad51-coated zones did not overstretch and Rad51 remained stably bound in a structure that was approximately 50% longer than bare DNA. These results illustrate the power of adding sensitive fluorescence imaging to optical tweezers instrumentation.
Collapse
|
232
|
Ritort F. Single-molecule experiments in biological physics: methods and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:R531-R583. [PMID: 21690856 DOI: 10.1088/0953-8984/18/32/r01] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.
Collapse
Affiliation(s)
- F Ritort
- Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
233
|
Cozzarelli NR, Cost GJ, Nöllmann M, Viard T, Stray JE. Giant proteins that move DNA: bullies of the genomic playground. Nat Rev Mol Cell Biol 2006; 7:580-8. [PMID: 16936698 DOI: 10.1038/nrm1982] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As genetic material DNA is wonderful, but as a macromolecule it is unruly, voluminous and fragile. Without the action of DNA replicases, topoisomerases, helicases, translocases and recombinases, the genome would collapse into a topologically entangled random coil that would be useless to the cell. We discuss the organization, movement and energetics of these proteins that are crucial to the preservation of a molecule that has such beautiful biological but challenging physical properties.
Collapse
Affiliation(s)
- Nicholas R Cozzarelli
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA
| | | | | | | | | |
Collapse
|
234
|
Dissanayake ID, Dimitrakopoulos P. Stress, birefringence, and conformational relaxation of an initially straight stiff bead-rod polymer. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:021918. [PMID: 17025483 DOI: 10.1103/physreve.74.021918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 05/12/2006] [Indexed: 05/12/2023]
Abstract
The stress and optical relaxation of an initially straight stiff polymer chain are studied through Brownian dynamics simulations (based on a semiflexible bead-rod model) covering a broad range of time scales and polymer lengths. The strong stress component sigma11 (where "1" is the direction of the original alignment) is shown to be associated with the chain's longitudinal relaxation while the weak stress component sigma22 = sigma33 is shown to depend on the chain's transverse relaxation. The two independent stress components follow a different relaxation; this anisotropy is shown to result from the participation of the different relaxation modes in the transverse direction. The chain's optical relaxation is shown to be affected by the longitudinal dynamics only. The early relaxation of the strong stress component sigma11 and that of the chain's optical properties constitute a universal behavior--i.e., valid for any stiffness of the bead-rod chain, since at the early times the bending forces do not affect the longitudinal dynamics. Based on the knowledge of the physical mechanism and the chain's conformational behavior, we predict and explain the polymer stress and optical relaxation. A nonlinear stress-optic law (valid for any time and chain stiffness) is derived based on the identified relation of the chain configuration with the optical properties and the polymer stress. A coarse-grain model describing extended semiflexible bead road chains is also derived.
Collapse
Affiliation(s)
- I D Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
235
|
Abstract
The kinetics and mechanisms of transcription are now being investigated by a repertoire of single-molecule techniques, including optical and magnetic tweezers, high-sensitivity fluorescence techniques, and atomic force microscopy. Single-molecule techniques complement traditional biochemical and crystallographic approaches, are capable of detecting the motions and dynamics of individual RNAP molecules and transcription complexes in real time, and make it possible to directly measure RNAP binding to and unwinding of template DNA, as well as RNAP translocation along the DNA during transcript synthesis.
Collapse
Affiliation(s)
- Lu Bai
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
236
|
Abstract
The evolution of RNA sequence needs to satisfy three requirements: folding, structure, and function. Studies on folding during transcription are related directly to folding in the cell. Understanding RNA folding during transcription requires the elucidation of structure formation and structural changes of the RNA, and the consideration of intrinsic properties of the RNA polymerase and other proteins that interact with the RNA. This review summarizes the research progress in this area and outlines the enormous challenges facing this field. Significant advancement requires the development of new experimental methods and theoretical considerations in all aspects of transcription and RNA folding.
Collapse
Affiliation(s)
- Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
237
|
Vanzi F, Broggio C, Sacconi L, Pavone FS. Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion. Nucleic Acids Res 2006; 34:3409-20. [PMID: 16835309 PMCID: PMC1524907 DOI: 10.1093/nar/gkl393] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The tethered particle motion (TPM) allows the direct detection of activity of a variety of biomolecules at the single molecule level. First pioneered for RNA polymerase, it has recently been applied also to other enzymes. In this work we employ TPM for a systematic investigation of the kinetics of DNA looping by wild-type Lac repressor (wt-LacI) and by hinge mutants Q60G and Q60 + 1. We implement a novel method for TPM data analysis to reliably measure the kinetics of loop formation and disruption and to quantify the effects of the protein hinge flexibility and of DNA loop strain on such kinetics. We demonstrate that the flexibility of the protein hinge has a profound effect on the lifetime of the looped state. Our measurements also show that the DNA bending energy plays a minor role on loop disruption kinetics, while a strong effect is seen on the kinetics of loop formation. These observations substantiate the growing number of theoretical studies aimed at characterizing the effects of DNA flexibility, tension and torsion on the kinetics of protein binding and dissociation, strengthening the idea that these mechanical factors in vivo may play an important role in the modulation of gene expression regulation.
Collapse
Affiliation(s)
- Francesco Vanzi
- LENS-European Laboratory for Nonlinear Spectroscopy, University of Florence, Italy.
| | | | | | | |
Collapse
|
238
|
Woodside MT, Behnke-Parks WM, Larizadeh K, Travers K, Herschlag D, Block SM. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc Natl Acad Sci U S A 2006; 103:6190-5. [PMID: 16606839 PMCID: PMC1458853 DOI: 10.1073/pnas.0511048103] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid hairpins provide a powerful model system for probing the formation of secondary structure. We report a systematic study of the kinetics and thermodynamics of the folding transition for individual DNA hairpins of varying stem length, loop length, and stem GC content. Folding was induced mechanically in a high-resolution optical trap using a unique force clamp arrangement with fast response times. We measured 20 different hairpin sequences with quasi-random stem sequences that were 6-30 bp long, polythymidine loops that were 3-30 nt long, and stem GC content that ranged from 0% to 100%. For all hairpins studied, folding and unfolding were characterized by a single transition. From the force dependence of these rates, we determined the position and height of the energy barrier, finding that the transition state for duplex formation involves the formation of 1-2 bp next to the loop. By measuring unfolding energies spanning one order of magnitude, transition rates covering six orders of magnitude, and hairpin opening distances with subnanometer precision, our results define the essential features of the energy landscape for folding. We find quantitative agreement over the entire range of measurements with a hybrid landscape model that combines thermodynamic nearest-neighbor free energies and nanomechanical DNA stretching energies.
Collapse
Affiliation(s)
- Michael T Woodside
- National Institute for Nanotechnology, National Research Council of Canada, Edmonton, AB, Canada T6G 2V4.
| | | | | | | | | | | |
Collapse
|
239
|
Vermeulen KC, Wuite GJL, Stienen GJM, Schmidt CF. Optical trap stiffness in the presence and absence of spherical aberrations. APPLIED OPTICS 2006; 45:1812-9. [PMID: 16572698 DOI: 10.1364/ao.45.001812] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Optical traps are commonly constructed with high-numerical-aperture objectives. Oil-immersion objectives suffer from spherical aberrations when used for imaging in aqueous solutions. The effect of spherical aberrations on trapping strength has been modeled by approximation, and only a few experimental results are available in the case of micrometer-sized particles. We present an experimental study of the dependence of lateral and axial optical-trap stiffness on focusing depth for polystyrene and silica beads of 2 microm diameter by using oil- and water-immersion objectives. We demonstrate a strong depth dependence of trap stiffness with the oil-immersion objective, whereas no depth dependence was observed with the water-immersion objective.
Collapse
Affiliation(s)
- Karen C Vermeulen
- Department of Physics and Astronomy, and Laser Centre, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
240
|
Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM. DNA primase acts as a molecular brake in DNA replication. Nature 2006; 439:621-4. [PMID: 16452983 DOI: 10.1038/nature04317] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 10/13/2005] [Indexed: 11/09/2022]
Abstract
A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.
Collapse
Affiliation(s)
- Jong-Bong Lee
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, 250 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
241
|
Fuller DN, Gemmen GJ, Rickgauer JP, Dupont A, Millin R, Recouvreux P, Smith DE. A general method for manipulating DNA sequences from any organism with optical tweezers. Nucleic Acids Res 2006; 34:e15. [PMID: 16452295 PMCID: PMC1360288 DOI: 10.1093/nar/gnj016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Revised: 11/19/2005] [Accepted: 01/11/2006] [Indexed: 02/05/2023] Open
Abstract
Mechanical manipulation of single DNA molecules can provide novel information about DNA properties and protein-DNA interactions. Here we describe and characterize a useful method for manipulating desired DNA sequences from any organism with optical tweezers. Molecules are produced from either genomic or cloned DNA by PCR using labeled primers and are tethered between two optically trapped microspheres. We demonstrate that human, insect, plant, bacterial and viral sequences ranging from approximately 10 to 40 kilobasepairs can be manipulated. Force-extension measurements show that these constructs exhibit uniform elastic properties in accord with the expected contour lengths for the targeted sequences. Detailed protocols for preparing and manipulating these molecules are presented, and tethering efficiency is characterized as a function of DNA concentration, ionic strength and pH. Attachment strength is characterized by measuring the unbinding time as a function of applied force. An alternative stronger attachment method using an amino-carboxyl linkage, which allows for reliable DNA overstretching, is also described.
Collapse
Affiliation(s)
- Derek N. Fuller
- Department of Physics, University of CaliforniaSan Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379, USA
| | - Gregory J. Gemmen
- Department of Physics, University of CaliforniaSan Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379, USA
| | - John Peter Rickgauer
- Department of Physics, University of CaliforniaSan Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379, USA
| | - Aurelie Dupont
- Department of Physics, University of CaliforniaSan Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379, USA
| | - Rachel Millin
- Department of Physics, University of CaliforniaSan Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379, USA
| | - Pierre Recouvreux
- Department of Physics, University of CaliforniaSan Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379, USA
| | - Douglas E. Smith
- Department of Physics, University of CaliforniaSan Diego, 9500 Gilman Drive, La Jolla, CA 92093-0379, USA
| |
Collapse
|
242
|
Greenleaf WJ, Woodside MT, Abbondanzieri EA, Block SM. Passive all-optical force clamp for high-resolution laser trapping. PHYSICAL REVIEW LETTERS 2005; 95:208102. [PMID: 16384102 PMCID: PMC1357091 DOI: 10.1103/physrevlett.95.208102] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Indexed: 05/05/2023]
Abstract
Optical traps are useful for studying the effects of forces on single molecules. Feedback-based force clamps are often used to maintain a constant load, but the response time of the feedback limits bandwidth and can introduce instability. We developed a novel force clamp that operates without feedback, taking advantage of the anharmonic region of the trapping potential where the differential stiffness vanishes. We demonstrate the utility of such a force clamp by measuring the unfolding of DNA hairpins and the effect of trap stiffness on opening distance and transition rates.
Collapse
Affiliation(s)
- William J Greenleaf
- Department of Applied Physics, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
243
|
Deufel C, Wang MD. Detection of forces and displacements along the axial direction in an optical trap. Biophys J 2005; 90:657-67. [PMID: 16258039 PMCID: PMC1367070 DOI: 10.1529/biophysj.105.065458] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present measurements of the forces on, and displacements of, an optically trapped bead along the propagation direction of the trapping laser beam (the axial direction). In a typical experimental configuration, the bead is trapped in an aqueous solution using an oil-immersion, high-numerical-aperture objective. This refractive index mismatch complicates axial calibrations due to both a shift of the trap center along the axial direction and spherical aberrations. In this work, a known DNA template was unzipped along the axial direction and its characteristic unzipping force-extension data were used to determine 1), the location of the trap center along the axial direction; 2), the axial displacement of the bead from the trap center; and 3), the axial force exerted on the bead. These axial calibrations were obtained for trap center locations up to approximately 4 microm into the aqueous solution and with axial bead displacements up to approximately 600 nm from the trap center. In particular, the axial trap stiffness decreased substantially when the trap was located further into the aqueous solution. This approach, together with conventional lateral calibrations, results in a more versatile optical trapping instrument that is accurately calibrated in all three dimensions.
Collapse
Affiliation(s)
- Christopher Deufel
- Cornell University, Department of Physics, Laboratory of Atomic and Solid State Physics, Ithaca, New York 14853, USA
| | | |
Collapse
|
244
|
Gemmen GJ, Sim R, Haushalter KA, Ke PC, Kadonaga JT, Smith DE. Forced Unraveling of Nucleosomes Assembled on Heterogeneous DNA Using Core Histones, NAP-1, and ACF. J Mol Biol 2005; 351:89-99. [PMID: 16002089 DOI: 10.1016/j.jmb.2005.05.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/23/2005] [Accepted: 05/26/2005] [Indexed: 11/24/2022]
Abstract
Periodic arrays of nucleosomes were assembled on heterogeneous DNA using core histones, the histone chaperone NAP-1, and ATP-dependent chromatin assembly and remodeling factor (ACF). The mechanical properties of these complexes were interrogated by stretching them with optical tweezers. Abrupt events releasing approximately 55-95 base-pairs of DNA, attributable to the non-equilibrium unraveling of individual nucleosomes, were frequently observed. This finding is comparable with a previous observation of 72-80 bp unraveling events for nucleosomes assembled by salt dialysis on a repeating sea urchin 5 S RNA positioning element, but the unraveling force varied over a wider range ( approximately 5-65 pN, with the majority of events at lower force). Because ACF assembles nucleosomes uniformly on heterogeneous DNA sequences, as in native chromatin, we attribute this variation to a dependence of the unraveling force on the DNA sequence within individual nucleosomes. The mean force increased from 24 pN to 31 pN as NaCl was decreased from 100 mM to 5 mM. Spontaneous DNA re-wrapping events were occasionally observed in real time during force relaxation. The observed wide variations in the dynamic force needed to unravel individual nucleosomes and the occurrences of sudden DNA re-wrapping events may have an important regulatory influence on DNA-directed nuclear processes, such as the binding of transcription factors and the movement of polymerase complexes on chromatin.
Collapse
Affiliation(s)
- Gregory J Gemmen
- Physics Department, University of California, San Diego, 9500 Gilman, La Jolla, CA 92093-0379, USA
| | | | | | | | | | | |
Collapse
|
245
|
Shroff H, Reinhard BM, Siu M, Agarwal H, Spakowitz A, Liphardt J. Biocompatible force sensor with optical readout and dimensions of 6 nm3. NANO LETTERS 2005; 5:1509-14. [PMID: 16178266 DOI: 10.1021/nl050875h] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have developed a nanoscopic force sensor with optical readout. The sensor consists of a single-stranded DNA oligomer flanked by two dyes. The DNA acts as a nonlinear spring: when the spring is stretched, the distance between the two dyes increases, resulting in reduced Förster resonance energy transfer. The sensor was calibrated between 0 and 20 pN using a combined magnetic tweezers/single-molecule fluorescence microscope. We show that it is possible to tune the sensor's force response by varying the interdye spacing and that the FRET efficiency of the sensors decreases with increasing force. We demonstrate the usefulness of these sensors by using them to measure the forces internal to a single polymer molecule, a small DNA loop. Partial conversion of the single-stranded DNA loop to a double-stranded form results in the accumulation of strain: a force of approximately 6 pN was measured in the loop upon hybridization. The sensors should allow measurement of forces internal to various materials, including programmable DNA self-assemblies, polymer meshes, and DNA-based machines.
Collapse
Affiliation(s)
- Hari Shroff
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
246
|
Ansari A, Kuznetsov SV. Is Hairpin Formation in Single-Stranded Polynucleotide Diffusion-Controlled? J Phys Chem B 2005; 109:12982-9. [PMID: 16852611 DOI: 10.1021/jp044838a] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intriguing puzzle in biopolymer science is the observation that single-stranded DNA and RNA oligomers form hairpin structures on time scales of tens of microseconds, considerably slower than the estimated time for loop formation for a semiflexible polymer of similar length. To address the origin of the slow kinetics and to determine whether hairpin dynamics are diffusion-controlled, the effect of solvent viscosity (eta) on hairpin kinetics was investigated using laser temperature-jump techniques. The viscosity was varied by addition of glycerol, which significantly destabilizes hairpins. A previous study on the viscosity dependence of hairpin dynamics, in which all the changes in the measured rates were attributed to a change in solvent viscosity, reported an apparent scaling of relaxation times (tau(r)) on eta as tau(r) approximately eta(0.8). In this study, we demonstrate that if the effect of viscosity on the measured rates is not deconvoluted from the inevitable effect of change in stability, then separation of tau(r) into opening (tau(o)) and closing (tau(c)) times yields erroneous behavior, with different values (and opposite signs) of the apparent scaling exponents, tau(o) approximately eta(-0.4) and tau(c) approximately eta(1.5). Under isostability conditions, obtained by varying the temperature to compensate for the destabilizing effect of glycerol, both tau(o) and tau(c) scale as approximately eta(1.1+/-0.1). Thus, hairpin dynamics are strongly coupled to solvent viscosity, indicating that diffusion of the polynucleotide chain through the solvent is involved in the rate-determining step.
Collapse
Affiliation(s)
- Anjum Ansari
- Department of Physics and Department of Bioengineering, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, USA.
| | | |
Collapse
|
247
|
Zhou XF, Sun JL, An HJ, Guo YC, Fang HP, Su C, Xiao XD, Huang WH, Li MQ, Shen WQ, Hu J. Radial compression elasticity of single DNA molecules studied by vibrating scanning polarization force microscopy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:062901. [PMID: 16089796 DOI: 10.1103/physreve.71.062901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 01/12/2005] [Indexed: 05/03/2023]
Abstract
The radial compression properties of single DNA molecules have been studied using vibrating scanning polarization force microscopy. By imaging DNA molecules at different vibration amplitude set-point values, we obtain the correlations between radially applied force and DNA compression, from which the radial compressive elasticity can be deduced. The estimated elastic modulus is approximately 20-70 MPa under small external forces (<0.4 nN) and increases to approximately 100-200 MPa for large loads.
Collapse
Affiliation(s)
- Xing-Fei Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Mao H, Arias-Gonzalez JR, Smith SB, Tinoco I, Bustamante C. Temperature control methods in a laser tweezers system. Biophys J 2005; 89:1308-16. [PMID: 15923237 PMCID: PMC1366615 DOI: 10.1529/biophysj.104.054536] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two methods of temperature control of a dual-beam optical-tweezers system are compared. In the first method, we used a 975 nm infrared laser to raise the temperature 5.6 degrees C/100 mW in a nonheating (830 nm) optical trap. The temperature increment logarithmically decreases toward the periphery of the heating beam, causing a fluid convection of 8 mum/s inside a 180 microm thick microchamber. In the second method, heating or cooling fluid was pumped through copper jackets that were placed on the water immersion objectives on both sides of the microchamber to control its temperature from 4.5 degrees C to 68 degrees C. The temperature controlled by the second method was both stable and homogeneous, inducing little fluid convection that would disturb single-molecule applications. An analysis of the power spectrum of the thermal force on a trapped bead showed no detectable vibration due to the liquid circulation. In both methods, force was measured directly by sensors of the momentum flux of light, independent of environmental disturbances including refractive index changes that vary with temperature. The utility of the second method was demonstrated in single-molecule experiments by measuring the mechanical stretch of a 41 kbp lambda double-stranded DNA at temperatures ranging from 8.4 degrees C to 45.6 degrees C.
Collapse
Affiliation(s)
- Hanbin Mao
- Lawrence Berkeley National Laboratory, California 94720, USA
| | | | | | | | | |
Collapse
|
249
|
van den Broek B, Noom MC, Wuite GJL. DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway. Nucleic Acids Res 2005; 33:2676-84. [PMID: 15886396 PMCID: PMC1092278 DOI: 10.1093/nar/gki565] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type II restriction endonucleases protect bacteria against phage infections by cleaving recognition sites on foreign double-stranded DNA (dsDNA) with extraordinary specificity. This capability arises primarily from large conformational changes in enzyme and/or DNA upon target sequence recognition. In order to elucidate the connection between the mechanics and the chemistry of DNA recognition and cleavage, we used a single-molecule approach to measure rate changes in the reaction pathway of EcoRV and BamHI as a function of DNA tension. We show that the induced-fit rate of EcoRV is strongly reduced by such tension. In contrast, BamHI is found to be insensitive, providing evidence that both substrate binding and hydrolysis are not influenced by this force. Based on these results, we propose a mechanochemical model of induced-fit reactions on DNA, allowing determination of induced-fit rates and DNA bend angles. Finally, for both enzymes a strongly decreased association rate is obtained on stretched DNA, presumably due to the absence of intradomain dissociation/re-association between non-specific sites (jumping). The obtained results should apply to many other DNA-associated proteins.
Collapse
Affiliation(s)
| | | | - Gijs J. L. Wuite
- To whom correspondence should be addressed. Tel: +31205987987; Fax: +31205987991;
| |
Collapse
|
250
|
Kneller JM, Elvingson C, Arteca GA. Shape transitions induced by mechanical external stretching of grafted self-attractive wormlike chains. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.03.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|