201
|
Nault JC, Zucman-Rossi J. Genotype-phenotype relationships in hepatocellular carcinoma: p53 inactivation promotes tumors with stem cell features. Gastroenterology 2012; 142:1066-9. [PMID: 22449579 DOI: 10.1053/j.gastro.2012.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
202
|
Pathogenetic and Prognostic Significance of Inactivation of RASSF Proteins in Human Hepatocellular Carcinoma. Mol Biol Int 2012; 2012:849874. [PMID: 22548173 PMCID: PMC3323848 DOI: 10.1155/2012/849874] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/26/2012] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent solid tumors worldwide, with limited treatment options and a dismal prognosis. Thus, there is a strong need to expand the basic and translational research on this deadly disease in order to improve the prognosis of HCC patients. Although the etiologic factors responsible for HCC development have been identified, the molecular pathogenesis of liver cancer remains poorly understood. Recent evidence has shown the frequent downregulation of Ras association domain family (RASSF) proteins both in the early and late stages of hepatocarcinogenesis. Here, we summarize the data available on the pathogenetic role of inactivation of RASSF proteins in liver cancer, the molecular mechanisms responsible for suppression of RASSF proteins in HCC, and the possible clinical implications arising from these discoveries. Altogether, the data indicate that inactivation of the RASSF1A tumor suppressor is ubiquitous in human liver cancer, while downregulation of RASSF2 and RASSF5 proteins is limited to specific HCC subsets. Also, the present findings speak in favour of therapeutic strategies aimed at reexpressing RASSF1A, RASSF2, and RASSF5 genes and/or inactivating the RASSF cellular inhibitors for the treatment of human liver cancer.
Collapse
|
203
|
Yang HY, Liu HL, Tian LT, Song RP, Song X, Yin DL, Liang YJ, Qu LD, Jiang HC, Liu JR, Liu LX. Expression and prognostic value of ING3 in human primary hepatocellular carcinoma. Exp Biol Med (Maywood) 2012; 237:352-361. [PMID: 22550337 DOI: 10.1258/ebm.2011.011346] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor-suppressor ING3 has been shown to be involved in tumor transcriptional regulation, apoptosis and the cell cycle. Some studies have demonstrated that ING3 is dysregulated in several types of cancers. However, the expression and function of ING3 in human hepatocellular carcinoma (HCC) remains unclear. The aim of this study is to investigate ING3 expression in hepatic tumors and its clinical relevance in hepatic cancer. The expression of ING3 protein was examined in 120 dissected HCC tissues and 47 liver tissues adjacent to the tumor by immunohistochemical assays and confirmed by Western blot analysis in 20 paired frozen tumor and non-tumor liver tissues. The relationship between ING3 staining and clinico-pathological characteristics of HCC was further analyzed. The mRNA expression of ING3 in the dissected tissues was also analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and realtime PCR. Both mRNA and protein concentrations of ING3 were found to be downregulated in the majority of HCC tumors in comparison with matched non-tumor hepatic tissues. Analysis of the relationship between ING3 staining and clinico-pathological characteristics of HCC showed that the low expression of ING3 protein is correlated with more aggressive behavior of the tumor. Kaplan-Meier curves demonstrated that patients with a low expression of ING3 have a significantly increased risk of shortened survival time. In addition, multivariate analysis suggested that the level of ING3 expression may be an independent prognostic factor. Our findings indicate that ING3 may be an important marker for human hepatocellular carcinoma progression and prognosis, as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Hai-Yan Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56:908-43. [PMID: 22424438 DOI: 10.1016/j.jhep.2011.12.001] [Citation(s) in RCA: 4506] [Impact Index Per Article: 346.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 12/04/2022]
Affiliation(s)
-
- EASL Office, 7 rue des Battoirs, CH-1205 Geneva, Switzerland.
| | | |
Collapse
|
205
|
Stratton SA, Barton MC. p53-Mediated regulation of hepatic lipid metabolism: forging links between metabolism, atherogenesis, and cancer. J Hepatol 2012; 56:518-9. [PMID: 22051552 DOI: 10.1016/j.jhep.2011.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/22/2011] [Indexed: 12/04/2022]
|
206
|
Lereau M, Gouas D, Villar S, Besaratinia A, Hautefeuille A, Berthillon P, Martel-Planche G, Nogueira da Costa A, Ortiz-Cuaran S, Hantz O, Pfeifer GP, Hainaut P, Chemin I. Interactions between hepatitis B virus and aflatoxin B(1): effects on p53 induction in HepaRG cells. J Gen Virol 2012; 93:640-650. [PMID: 22113009 DOI: 10.1099/vir.0.032482-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Infection by hepatitis B virus (HBV) and dietary exposure to aflatoxin B(1) (AFB(1)) are the main risk factors for the development of chronic liver disease and hepatocellular carcinoma (HCC). How these factors cooperate is still largely unknown. AFB(1) activation leads to DNA adduction and mutagenesis, with a specific mutation at codon 249 in TP53 (p.R249S). So far, only limited studies have addressed the effects of AFB(1) on HBV replication. We have analysed the effects of both risk factors on p53 induction during HBV infection in HepaRG, a cell line with hepatocyte-like morphology that metabolizes AFB(1) and supports HBV infection. Exposure to AFB(1) up to 5 µM induced a downregulation of HBV replication after 48 h, as measured by a decrease in viral antigens in the culture medium (HBsAg, HBeAg and large envelope protein) and in intracellular levels of HBV transcripts, DNA and HBsAg. Conversely, HBV infection did not significantly modify AFB(1)-DNA adduct formation or repair as assessed by immunodot-blot assay, and the induction of p53 in response to AFB(1) was similar in infected and non-infected HepaRG cells. Overall, our results suggest that AFB(1) exposure decreases HBV replication, whereas DNA damage by AFB(1) and subsequent p53 induction is not affected by the presence of the virus. Thus, in HepaRG cell line, AFB(1) and HBV do not cooperate to increase DNA damage by AFB(1). Further studies on the effects of both factors in a context of chronicity are needed to better understand synergistic effects.
Collapse
Affiliation(s)
- Myriam Lereau
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
- INSERM U1052, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France
| | - Doriane Gouas
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Stéphanie Villar
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Ahmad Besaratinia
- Department of Cancer Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Agnès Hautefeuille
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | | | - Ghislaine Martel-Planche
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - André Nogueira da Costa
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Sandra Ortiz-Cuaran
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Olivier Hantz
- INSERM U1052, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France
| | - Gerd P Pfeifer
- Department of Cancer Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010-3000, USA
| | - Pierre Hainaut
- International Center for Research and Training, Hospital AC Camargo, Rua Pirapitinguí 204, São Paulo SP 01508 - 020, Brazil
- International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France
| | - Isabelle Chemin
- INSERM U1052, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France
| |
Collapse
|
207
|
Vijayaraman KP, Veluchamy M, Murugesan P, Shanmugiah KP, Kasi PD. p53 Exon 4 (codon 72) Polymorphism and Exon 7 (codon 249) Mutation in Breast Cancer Patients in Southern Region(Madurai) of Tamil Nadu. Asian Pac J Cancer Prev 2012; 13:511-6. [DOI: 10.7314/apjcp.2012.13.2.511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
208
|
Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012; 2012:623019. [PMID: 22363173 PMCID: PMC3272848 DOI: 10.1155/2012/623019] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/07/2011] [Indexed: 01/07/2023] Open
Abstract
Chronic inflammation induced by biological, chemical, and physical factors has been found to be associated with the increased risk of cancer in various organs. We revealed that infectious agents including liver fluke, Helicobacter pylori, and human papilloma virus and noninfectious agents such as asbestos fiber induced iNOS-dependent formation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) in cancer tissues and precancerous regions. Our results with the colocalization of phosphorylated ATM and γ-H2AX with 8-oxodG and 8-nitroguanine in inflammation-related cancer tissues suggest that DNA base damage leads to double-stranded breaks. It is interesting from the aspect of genetic instability. We also demonstrated IL-6-modulated iNOS expression via STAT3 and EGFR in Epstein-Barr-virus-associated nasopharyngeal carcinoma and found promoter hypermethylation in several tumor suppressor genes. Such epigenetic alteration may occur by controlling the DNA methylation through IL-6-mediated JAK/STAT3 pathways. Collectively, 8-nitroguanine would be a useful biomarker for predicting the risk of inflammation-related cancers.
Collapse
|
209
|
Wong C, Ng IOL. Genomics of Hepatocellular Carcinoma. PRIMARY LIVER CANCER 2012:45-78. [DOI: 10.1007/978-3-642-28702-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
210
|
Navas MC, Suarez I, Carreño A, Uribe D, Rios WA, Cortes-Mancera F, Martel G, Vieco B, Lozano D, Jimenez C, Gouas D, Osorio G, Hoyos S, Restrepo JC, Correa G, Jaramillo S, Lopez R, Bravo LE, Arbelaez MP, Scoazec JY, Abedi-Ardekani B, Santella RM, Chemin I, Hainaut P. Hepatitis B and Hepatitis C Infection Biomarkers and TP53 Mutations in Hepatocellular Carcinomas from Colombia. HEPATITIS RESEARCH AND TREATMENT 2011; 2011:582945. [PMID: 22114738 PMCID: PMC3207138 DOI: 10.1155/2011/582945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 08/22/2011] [Indexed: 02/07/2023]
Abstract
Hepatocellular Carcinoma (HCC) is a leading cause of cancer-related death worldwide. Globally, the most important HCC risk factors are Hepatitis B Virus (HBV) and/or Hepatitis C Virus (HCV), chronic alcoholism, and dietary exposure to aflatoxins. We have described the epidemiological pattern of 202 HCC samples obtained from Colombian patients. Additionally we investigated HBV/HCV infections and TP53 mutations in 49 of these HCC cases. HBV biomarkers were detected in 58.1% of the cases; HBV genotypes F and D were characterized in three of the samples. The HCV biomarker was detected in 37% of the samples while HBV/HCV coinfection was found in 19.2%. Among TP53 mutations, 10.5% occur at the common aflatoxin mutation hotspot, codon 249. No data regarding chronic alcoholism was available from the cases. In conclusion, in this first study of HCC and biomarkers in a Colombian population, the main HCC risk factor was HBV infection.
Collapse
Affiliation(s)
- Maria-Cristina Navas
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Iris Suarez
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Andrea Carreño
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Diego Uribe
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Wilson Alfredo Rios
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Fabian Cortes-Mancera
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Ghyslaine Martel
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France
| | - Beatriz Vieco
- Departamento de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Diana Lozano
- Departamento de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carlos Jimenez
- Departamento de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Doriane Gouas
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France
| | - German Osorio
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Departamento de Patología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sergio Hoyos
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Hospital Pablo Tobón Uribe, Medellín, Colombia
| | - Juan Carlos Restrepo
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Hospital Pablo Tobón Uribe, Medellín, Colombia
| | - Gonzalo Correa
- Grupo de Gastrohepatologia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Hospital Pablo Tobón Uribe, Medellín, Colombia
| | | | - Rocio Lopez
- Departamento de Patologia, Fundacion Santa Fe de Bogota, Bogotá D.C., Colombia
| | - Luis Eduardo Bravo
- Departamento de Patología, Facultad de Salud, Universidad del Valle, Cali, Colombia
| | - Maria Patricia Arbelaez
- Grupo de Epidemiologia, Facultad Nacional de Salud Publica, Universidad de Antioquia, Medellín, Colombia
| | - Jean-Yves Scoazec
- Service d'Anatomie Pathologique, Hôpital Edouard Herriot, 69437 Lyon, France
| | | | | | | | - Pierre Hainaut
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France
| |
Collapse
|
211
|
Chen GX, Zheng LH, Liu SY, He XH. rAd-p53 enhances the sensitivity of human gastric cancer cells to chemotherapy. World J Gastroenterol 2011; 17:4289-97. [PMID: 22090785 PMCID: PMC3214704 DOI: 10.3748/wjg.v17.i38.4289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate potential antitumor effects of rAd-p53 by determining if it enhanced sensitivity of gastric cancer cells to chemotherapy.
METHODS: Three gastric cancer cell lines with distinct levels of differentiation were treated with various doses of rAd-p53 alone, oxaliplatin (OXA) alone, or a combination of both. Cell growth was assessed with an 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide assay and the expression levels of p53, Bax and Bcl-2 were determined by immunohistochemistry. The presence of apoptosis and the expression of caspase-3 were determined using flow cytometry.
RESULTS: Treatment with rAd-p53 or OXA alone inhibited gastric cancer cell growth in a time- and dose-dependent manner; moreover, significant synergistic effects were observed when these treatments were combined. Immunohistochemical analysis demonstrated that treatment with rAd-p53 alone, OXA alone or combined treatment led to decreased Bcl-2 expression and increased Bax expression in gastric cancer cells. Furthermore, flow cytometry showed that rAd-p53 alone, OXA alone or combination treatment induced apoptosis of gastric cancer cells, which was accompanied by increased expression of caspase-3.
CONCLUSION: rAd-p53 enhances the sensitivity of gastric cancer cells to chemotherapy by promoting apoptosis. Thus, our results suggest that p53 gene therapy combined with chemotherapy represents a novel avenue for gastric cancer treatment.
Collapse
|
212
|
Stone MP, Huang H, Brown KL, Shanmugam G. Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 2011; 8:1571-615. [PMID: 21922653 PMCID: PMC3714022 DOI: 10.1002/cbdv.201100033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The formation of adducts by the reaction of chemicals with DNA is a critical step for the initiation of carcinogenesis. The structural analysis of various DNA adducts reveals that conformational and chemical rearrangements and interconversions are a common theme. Conformational changes are modulated both by the nature of adduct and the base sequences neighboring the lesion sites. Equilibria between conformational states may modulate both DNA repair and error-prone replication past these adducts. Likewise, chemical rearrangements of initially formed DNA adducts are also modulated both by the nature of adducts and the base sequences neighboring the lesion sites. In this review, we focus on DNA damage caused by a number of environmental and endogenous agents, and biological consequences.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
213
|
Okamura Y, Nomoto S, Hayashi M, Hishida M, Nishikawa Y, Yamada S, Fujii T, Sugimoto H, Takeda S, Kodera Y, Nakao A. Identification of the bleomycin hydrolase gene as a methylated tumor suppressor gene in hepatocellular carcinoma using a novel triple-combination array method. Cancer Lett 2011; 312:150-7. [PMID: 21943823 DOI: 10.1016/j.canlet.2011.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/07/2011] [Accepted: 07/26/2011] [Indexed: 11/27/2022]
Abstract
In the present study, we sought to identify novel suppressor genes of hepatocellular carcinoma (HCC) using our newly designed triple-combination array. Using this method, the bleomycin hydrolase gene (BLMH) was detected as a candidate suppressor gene. We found that 28 of 48 (58.3%) tumor tissues showed BLMH promoter hypermethylation, and its expression level was significantly reduced in tumor tissues (P=0.001). The present study suggests that our new method can detect novel genes of interest and that BLMH is a suppressor gene in HCC.
Collapse
Affiliation(s)
- Yukiyasu Okamura
- Department of Surgery II, Graduate School and Medicine, University of Nagoya, Showa-ku, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma. Acta Pharm Sin B 2011. [DOI: 10.1016/j.apsb.2011.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
215
|
Banerjee S, Brown KL, Egli M, Stone MP. Bypass of aflatoxin B1 adducts by the Sulfolobus solfataricus DNA polymerase IV. J Am Chem Soc 2011; 133:12556-68. [PMID: 21790157 PMCID: PMC3154525 DOI: 10.1021/ja2015668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aflatoxin B(1) (AFB(1)) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB(1)-N7-dG). The AFB(1)-N7-dG can rearrange to a formamidopyrimidine (AFB(1)-FAPY) derivative. Both AFB(1)-N7-dG and the β-anomer of the AFB(1)-FAPY adduct yield G→T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB(1)-N7-dG in an error-free manner but conducts error-prone replication past the AFB(1)-FAPY adduct, including misinsertion of dATP, consistent with the G→T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB(1)-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB(1)-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB(1)-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O(2) oxygen of dTTP, and between the template T O(4) oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB(1)-N7-dG maintains the 5'-intercalation of the AFB(1) moiety observed in DNA. The bond between N7-dG and C8 of the AFB(1) moiety remains in plane with the alkylated guanine, creating a 16° inclination of the AFB(1) moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB(1)-FAPY adducted template:primer also maintains 5'-intercalation of the AFB(1) moiety. The β-deoxyribose anomer is observed. Rotation about the FAPY C5-N(5) bond orients the bond between N(5) and C8 of the AFB(1) moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves stacking of the AFB(1) moiety above the 5'-face of the FAPY base, as compared to the AFB(1)-N7-dG adduct. Ternary structures with AFB(1)-β-FAPY adducted template:primers show correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB(1)-β-FAPY:dC pair. For dATP, the oxygen atom of the FAPY formamide group participates in a water-mediated hydrogen bond with Arg332. The insertion of dTTP yields a structure similar to that observed for the AFB(1)-N7-dG adduct. The differential accommodation of these AFB(1) adducts within the active site may, in part, modulate lesion bypass.
Collapse
Affiliation(s)
- Surajit Banerjee
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | | | | | |
Collapse
|
216
|
Abbas HK, Weaver MA, Horn BW, Carbone I, Monacell JT, Shier WT. Selection ofAspergillus flavusisolates for biological control of aflatoxins in corn. TOXIN REV 2011. [DOI: 10.3109/15569543.2011.591539] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
217
|
Ananthakrishnan A, Gogineni V, Saeian K. Epidemiology of primary and secondary liver cancers. Semin Intervent Radiol 2011; 23:47-63. [PMID: 21326720 DOI: 10.1055/s-2006-939841] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary liver cancer is the sixth most common cancer worldwide with a wide geographic distribution. The incidence of primary liver cancer is increasing and there is still a higher prevalence in developing countries. Early recognition remains an obstacle and lack of it results in poor outcomes for hepatocellular carcinoma (HCC), the most prevalent primary liver cancer, and cholangiocarcinoma. The most common risk factors associated with HCC are hepatitis B and chronic hepatitis C infections, alcohol use, smoking, and aflatoxin exposure. Emerging risk factors such as obesity might play an important role in the future because of the increasing prevalence of this condition.
Collapse
Affiliation(s)
- Ashwin Ananthakrishnan
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | |
Collapse
|
218
|
Vivekanandan P, Torbenson M, Ramakrishna B. Hepatitis B virus-associated hepatocellular carcinoma from India: role of viral genotype and mutations in CTNNB1 (beta-catenin) and TP53 genes. J Gastrointest Cancer 2011; 42:20-5. [PMID: 20963515 DOI: 10.1007/s12029-010-9222-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Chronic hepatitis B virus (HBV) infection is the major risk factor for hepatocellular carcinoma (HCC) in India. Studies from other countries have linked HBV genotype C to a higher risk for HCC. This study was carried out to determine the association between genotype and HCC and also the frequency of mutations in CTNNB1 (beta-catenin) and TP53 genes in HBV-related HCC. METHODS Formalin-fixed paraffin-embedded (FFPE) tissues from 20 (15 autopsy, five resected specimens) cases of HBV-associated HCC were examined. Viral genotype was determined by sequencing portions of the HBV S gene using four overlapping PCR amplicons. Exon 3 of CTNNB1 and exon 7 of TP53 were sequenced. RESULTS HBV genotyping was possible in 14 of 20 cases; genotype D was most common (n = 11) followed by C (n = 2) and A (n = 1). CTNNB1 mutations were noted in two of 15 amplifiable cases while two of 10 specimens showed TP53 mutations. CONCLUSIONS HBV genotype can be ascertained from FFPE sections by sequencing multiple overlapping fragments to avoid the limitation of fragmented DNA. Genotype D was the common genotype in HBV-associated HCC. The very low frequency of TP53 mutation suggests low levels of aflatoxin B₁ exposure. The beta-catenin pathway appears not to be significantly involved in HBV-related HCC in India. However, further larger studies are required to confirm these findings.
Collapse
Affiliation(s)
- Perumal Vivekanandan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
219
|
Lu JW, Hsia Y, Tu HC, Hsiao YC, Yang WY, Wang HD, Yuh CH. Liver development and cancer formation in zebrafish. ACTA ACUST UNITED AC 2011; 93:157-72. [DOI: 10.1002/bdrc.20205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
220
|
Moriya M, Slade N, Brdar B, Medverec Z, Tomic K, Jelaković B, Wu L, Truong S, Fernandes A, Grollman AP. TP53 Mutational signature for aristolochic acid: an environmental carcinogen. Int J Cancer 2011; 129:1532-6. [PMID: 21413016 DOI: 10.1002/ijc.26077] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/22/2011] [Indexed: 01/09/2023]
Abstract
This study was designed to establish the TP53 mutational spectrum of aristolochic acid (AA), examined in the context of endemic (Balkan) nephropathy, an environmental disease associated with transitional cell (urothelial) carcinomas of the upper urinary tract (UUC). Tumor tissue was obtained from residents of regions in Bosnia, Croatia and Serbia where endemic nephropathy has been prevalent for over 50 years. Fifty-nine TP53 mutations were detected in 42 of the 97 tumors analyzed. Mutational spectra were dominated by A:T to T:A transversions with the mutated adenines located almost exclusively on the nontranscribed strand. This marked strand bias is attributed to selective processing of aristolactam-dA adducts by transcription-coupled nucleotide excision repair. Hotspots for A:T to T:A mutations include codons 131 and 179 and the 5'-AG acceptor splice site of intron 6. The unique TP53 mutational signature for AA identified in this study can be used to explore the hypothesis that botanical products containing this human carcinogen and nephrotoxin are responsible, in part, for the high prevalence of UUC and chronic renal disease in countries where Aristolochia herbal remedies traditionally have been used for medicinal purposes.
Collapse
Affiliation(s)
- Masaaki Moriya
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Wogan GN, Kensler TW, Groopman JD. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 29:249-57. [PMID: 21623489 PMCID: PMC4659374 DOI: 10.1080/19440049.2011.563370] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aflatoxins were discovered in toxic peanut meal causing "turkey X" disease, which killed large numbers of turkey poults, ducklings and chicks in the UK in the early 1960s. Extracts of toxic feed induced the symptoms in experimental animals, and purified metabolites with properties identical to aflatoxins B(1) and G(1) (AFB(1) and AFG(1)) were isolated from Aspergillus flavus cultures. Structure elucidation of aflatoxin B(1) was accomplished and confirmed by total synthesis in 1963. AFB(1) is a potent liver carcinogen in rodents, non-human primates, fish and birds, operating through a genotoxic mechanism involving metabolic activation to an epoxide, formation of DNA adducts and, in humans, modification of the p53 gene. Aflatoxins are unique among environmental carcinogens, in that elucidation of their mechanisms of action combined with molecular epidemiology provides a foundation for quantitative risk assessment; extensive evidence confirms that contamination of the food supply by AFB(1) puts an exposed population at increased risk of developing hepatocellular carcinoma (HCC). Molecular biomarkers to quantify aflatoxin exposure in individuals were essential to link aflatoxin exposure with liver cancer risk. Biomarkers were validated in populations with high HCC incidence in China and The Gambia, West Africa; urinary AFB(1)-N (7)-Guanine excretion was linearly related to aflatoxin intake, and levels of aflatoxin-serum albumin adducts also reflected aflatoxin intake. Two major cohort studies employing aflatoxin biomarkers identified their causative role in HCC etiology. Results of a study in Shanghai men strongly support a causal relationship between HCC risk and the presence of biomarkers for aflatoxin and HBV infection, and also show that the two risk factors act synergistically. Subsequent cohort studies in Taiwan confirm these results. IARC classified aflatoxin as a Group 1 human carcinogen in 1993, based on sufficient evidence in humans and experimental animals indicating the carcinogenicity of naturally occurring mixtures of aflatoxins, aflatoxin B(1), G(1) and M(1). Aflatoxin biomarkers have also been used to show that primary prevention to reduce aflatoxin exposure can be achieved by low-technology approaches at the subsistence farm level in sub-Saharan Africa. Also, in residents of Qidong, China, oral dosing with chlorophyllin, a chlorophyll derivative, prior to each meal led to significant reduction in aflatoxin-DNA biomarker excretion, supporting the feasibility of preventive measures to reduce HCC risk in populations experiencing unavoidable aflatoxin exposure. The systematic, comprehensive approach used to create the total aflatoxin database justifies optimism for potential success of preventive interventions to ameliorate cancer risk attributable to aflatoxin exposure. This strategy could serve as a template for the development, validation and application of molecular and biochemical markers for other carcinogens and cancers as well as other chronic diseases resulting from environmental exposures.
Collapse
Affiliation(s)
- Gerald N Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
222
|
Abstract
The global risk of hepatocellular carcinoma (HCC) has been largely driven by hepatitis B virus (HBV) infection for the past century, along with hepatitis C virus (HCV), aflatoxin, excessive alcohol consumption, and obesity/diabetes. The dominant effect of HBV on global HCC risk should decline as the population vaccinated against HBV grows older. Infection with HCV is also expected to decline. Projections of HCV-related HCC rates remaining high for another 30 years may be overly pessimistic. Alcohol may be less of a factor in HCC in coming years. However, obesity and diabetes may become even more important risk factors for HCC.
Collapse
Affiliation(s)
- Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, EPS-5020, 6120 Executive Boulevard, Rockville, MD 20852-7234, USA.
| | | |
Collapse
|
223
|
Gursoy-Yuzugullu O, Yuzugullu H, Yilmaz M, Ozturk M. Aflatoxin genotoxicity is associated with a defective DNA damage response bypassing p53 activation. Liver Int 2011; 31:561-71. [PMID: 21382167 DOI: 10.1111/j.1478-3231.2011.02474.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths. Aflatoxins, which may play a causative role in 5-28% of HCCs worldwide, are activated in liver cells and induce principally G→T mutations, including the TP53 codon 249(G→T) hotspot mutation. The DNA damage checkpoint response acts as an antitumour mechanism against genotoxic agents, but its role in aflatoxin-induced DNA damage is unknown. AIM We studied the DNA damage checkpoint response of human cells to aflatoxin B1 (AFB1). METHODS AND RESULTS The treatment of HepG2 hepatoma cells with mutation-inducing doses (3-5 μmol/l) of AFB1 induced DNA adducts, 8-hydroxyguanine lesions and DNA strand breaks that lasted several days. Persistent phospho-H2AX and 53BP1 foci were also detected, but cell growth was not affected. AFB1-exposed HepG2 cells formed phospho-H2AX and 53BP1 foci, but failed to phosphorylate both Chk1 and Chk2. Huh7 hepatoma and HCT116 colorectal cancer cell lines also exhibited a similarly incomplete checkpoint response. p53 phosphorylation also failed, and AFB1-exposed cells did not show p53-dependent G1 arrest or a sustained G2/M arrest. These observations contrasted sharply with the fully functional DNA damage response of cells to Adriamycin. Cotreatment of cells with AFB1 did not inhibit p53 and p21(Cip1) accumulation induced by Adriamycin. Thus, the deficient checkpoint response to AFB1 was not due to an inhibitory effect, but could be explained by an inefficient activation. CONCLUSION Genotoxic doses of AFB1 induce an incomplete and inefficient checkpoint response in human cells. This defective response may contribute to the mutagenic and carcinogenic potencies of aflatoxins.
Collapse
Affiliation(s)
- Ozge Gursoy-Yuzugullu
- Centre de Recherche INSERM, Institut Albert Bonniot, Université Joseph Fourier U823, Grenoble, France
| | | | | | | |
Collapse
|
224
|
Woo HG, Wang XW, Budhu A, Kim YH, Kwon SM, Tang ZY, Sun Z, Harris CC, Thorgeirsson SS. Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology 2011; 140:1063-70. [PMID: 21094160 PMCID: PMC3057345 DOI: 10.1053/j.gastro.2010.11.034] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 10/01/2010] [Accepted: 11/10/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Mutations in TP53, a tumor suppressor gene, are associated with prognosis of many cancers. However, the prognostic values of TP53 mutation sites are not known for patients with hepatocellular carcinoma (HCC) because of heterogeneity in their geographic and etiologic backgrounds. METHODS TP53 mutations were investigated in a total of 409 HCC patients, including Chinese (n = 336) and white (n = 73) patients, using the direct sequencing method. RESULTS A total of 125 TP53 mutations were found in Chinese patients with HCC (37.2%). HCC patients with TP53 mutations had a shorter overall survival time compared with patients with wild-type TP53 (hazard ratio [HR], 1.86; 95% confidence interval [CI]: 1.37-2.52; P < .001). The hot spot mutations R249S and V157F were significantly associated with worse prognosis in univariate (HR, 2.11; 95% CI: 1.51-2.94; P < .001) and multivariate analyses (HR, 1.79; 95% CI: 1.29-2.51; P < .001). Gene expression analysis revealed the existence of stem cell-like traits in tumors with TP53 mutations. These findings were validated in breast and lung tumor samples with TP53 mutations. CONCLUSIONS TP53 mutations, particularly the hot spot mutations R249S and V157F, are associated with poor prognosis for patients with HCC. The acquisition of stem cell-like gene expression traits might contribute to the aggressive behavior of tumors with TP53 mutation.
Collapse
Affiliation(s)
- Hyun Goo Woo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Abbas H, Zablotowicz R, Horn B, Phillips N, Johnson B, Jin X, Abel C. Comparison of major biocontrol strains of non-aflatoxigenicAspergillus flavusfor the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:198-208. [DOI: 10.1080/19440049.2010.544680] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
226
|
Nejak-Bowen KN, Monga SPS. Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol 2011; 21:44-58. [PMID: 21182948 PMCID: PMC3050081 DOI: 10.1016/j.semcancer.2010.12.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/09/2010] [Accepted: 12/14/2010] [Indexed: 12/19/2022]
Abstract
Among the adult organs, liver is unique for its ability to regenerate. A concerted signaling cascade enables optimum initiation of the regeneration process following insults brought about by surgery or a toxicant. Additionally, there exists a cellular redundancy, whereby a transiently amplifying progenitor population appears and expands to ensure regeneration, when differentiated cells of the liver are unable to proliferate in both experimental and clinical scenarios. One such pathway of relevance in these phenomena is Wnt/β-catenin signaling, which is activated relatively early during regeneration mostly through post-translational modifications. Once activated, β-catenin signaling drives the expression of target genes that are critical for cell cycle progression and contribute to initiation of the regeneration process. The role and regulation of Wnt/β-catenin signaling is now documented in rats, mice, zebrafish and patients. More recently, a regenerative advantage of the livers in β-catenin overexpressing mice was reported, as was also the case after exogenous Wnt-1 delivery to the liver paving the way for assessing means to stimulate the pathway for therapeutics in liver failure. β-Catenin is also pertinent in hepatic oval cell activation and differentiation. However, aberrant activation of the Wnt/β-catenin signaling is reported in a significant subset of hepatocellular cancers (HCC). While many mechanisms of such activation have been reported, the most functional means of aberrant and sustained activation is through mutations in the β-catenin gene or in AXIN1/2, which encodes for a scaffolding protein critical for β-catenin degradation. Intriguingly, in experimental models hepatic overexpression of normal or mutant β-catenin is insufficient for tumorigenesis. In fact β-catenin loss promoted chemical carcinogenesis in the liver due to alternate mechanisms. Since most HCC occur in the backdrop of chronic hepatic injury, where hepatic regeneration is necessary for maintenance of liver function, but at the same time serves as the basis of dysplastic changes, this Promethean attribute exhibits a Jekyll and Hyde behavior that makes distinguishing good regeneration from bad regeneration essential for targeting selective molecular pathways as personalized medicine becomes a norm in clinical practice. Could β-catenin signaling be one such pathway that may be redundant in regeneration and indispensible in HCC in a subset of cases?
Collapse
|
227
|
Ankala A, Bolla BK, Shivaji R, Williams WP, Wilkinson JR. Comparative analysis of the performance of Aspergillus flavus on resistant and susceptible maize genotypes during infection. FUNGAL ECOL 2011. [DOI: 10.1016/j.funeco.2010.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
228
|
Liu SP, Li YS, Lee CM, Yen CH, Liao YJ, Huang SF, Chien CH, Chen YMA. Higher susceptibility to aflatoxin B(1)-related hepatocellular carcinoma in glycine N-methyltransferase knockout mice. Int J Cancer 2011; 128:511-23. [PMID: 20473876 DOI: 10.1002/ijc.25386] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In both humans and rodents, males are known to be more susceptible than females to hepatocarcinogenesis. We have previously reported that glycine N-methyltransferase (GNMT) interacts with aflatoxin B(1) (AFB(1)) and reduces both AFB(1)-DNA adduct formation and hepatocellular carcinoma (HCC) in mice. We also reported that 50% of the males and 100% of the females in a small group of Gnmt null (Gnmt-/-) mice developed HCC, with first dysplastic hepatocellular nodules detected at mean ages of 17 and 16.5 months, respectively. In our study, we tested our hypothesis that male and female Gnmt-/- mice are susceptible to AFB(1) carcinogenesis, and that the absence of Gnmt expression may accelerate AFB(1)-induced liver tumorigenesis. We inoculated Gnmt-/- and wild-type mice intraperitoneally with AFB(1) at 7 days and 9 weeks of age and periodically examined them using ultrasound. Dysplastic hepatocellular nodules were detected in six of eight males and five of five females at 12.7 and 12 months of ages, respectively. Dysplastic hepatocellular nodules from 5/8 (62.5%) male and 4/5 (80%) female Gnmt-/- mice were diagnosed as having HCC, ∼6 months earlier than AFB(1)-treated wild-type mice. Results from microarray and real-time PCR analyses indicate that five detoxification pathway-related genes were downregulated in AFB(1)-treated Gnmt-/- mice: Cyp1a2, Cyp3a44, Cyp2d22, Gsta4 and Abca8a. In summary, we observed overall higher susceptibility to AFB(1)-related HCC in Gnmt-/- mice, further evidence that GNMT overexpression is an important contributing factor to liver cancer resistance.
Collapse
Affiliation(s)
- Shih-Ping Liu
- AIDS Prevention and Research Center, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. J Gastroenterol Hepatol 2011; 26 Suppl 1:144-52. [PMID: 21199526 DOI: 10.1111/j.1440-1746.2010.06546.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently available evidence supports a role for the hepatitis B virus (HBV) x gene and protein in the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). HBx gene is often included, and remains functionally active, in the HBV DNA that is frequently integrated into cellular DNA during hepatocellular carcinogenesis. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumour suppressor gene and other tumour suppressor genes and senescence-related factors. However, the molecular mechanisms responsible for HBx protein-induced HCC remain uncertain. Only some of the more fully documented or more recently recognised mechanisms are reviewed. During recent years evidence has accumulated that HBx protein modulates transcription of methyl transferases, causing regional hypermethylation of DNA that results in silencing of tumour suppressor genes, or global hypomethylation that results in chromosomal instability, thereby playing a role in hepatocarcinogenesis. HBx protein has both anti-apoptotic and pro-apoptotic actions, apparently contradictory effects that have yet to be explained. Particularly important among the anti-apoptotic properties is inhibition of p53. Recent experimental observations suggest that HBx protein may increase the expression of TERT and telomerase activity, prolonging the life-span of hepatocytes and contributing to malignant transformation. The protein also interferes with nucleotide excision repair through both p53-dependent and p53- independent mechanisms. Carboxy-terminal truncated HBx protein loses its inhibitory effects on cell proliferation and pro-apoptotic properties, and it may enhance the protein's ability to transform oncogenes. Dysregulation of IGF-II enhances proliferation and anti-apoptotic effects of oncogenes, resulting in uncontrolled cell growth.
Collapse
Affiliation(s)
- Michael C Kew
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, South Africa.
| |
Collapse
|
230
|
Fasullo M, Chen Y, Bortcosh W, Sun M, Egner PA. Aflatoxin B(1)-Associated DNA Adducts Stall S Phase and Stimulate Rad51 foci in Saccharomyces cerevisiae. J Nucleic Acids 2010; 2010:456487. [PMID: 21151658 PMCID: PMC2997344 DOI: 10.4061/2010/456487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 09/09/2010] [Indexed: 12/12/2022] Open
Abstract
AFB1 is a potent recombinagen in budding yeast. AFB1 exposure induces RAD51 expression and triggers Rad53 activation in yeast cells that express human CYP1A2. It was unknown, however, when and if Rad51 foci appear. Herein, we show that Rad53 activation correlates with cell-cycle delay in yeast and the subsequent formation of Rad51 foci. In contrast to cells exposed to X-rays, in which Rad51 foci appear exclusively in G2 cells, Rad51 foci in AFB1-exposed cells can appear as soon as cells enter S phase. Although rad51 and rad4 mutants are mildly sensitive to AFB1, chronic exposure of the NER deficient rad4 cells to AFB1 leads to increased lag times, while rad4 rad51 double mutants exhibit synergistic sensitivity and do not grow when exposed to 50 μM AFB1. We suggest RAD51 functions to facilitate DNA replication after replication fork stalling or collapse in AFB1-exposed cells.
Collapse
Affiliation(s)
- Michael Fasullo
- Ordway Research Institute, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12209, USA
| | | | | | | | | |
Collapse
|
231
|
Aung KL, Board RE, Ellison G, Donald E, Ward T, Clack G, Ranson M, Hughes A, Newman W, Dive C. Current status and future potential of somatic mutation testing from circulating free DNA in patients with solid tumours. THE HUGO JOURNAL 2010; 4:11-21. [PMID: 22132062 PMCID: PMC3051045 DOI: 10.1007/s11568-011-9149-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/22/2010] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
Genetic alterations can determine the natural history of cancer and its treatment response. With further advances in DNA sequencing technology, multiple novel genetic alterations will be discovered which could be exploited as prognostic, predictive and pharmacodynamic biomarkers in the development and use of cancer therapeutics. As such, the importance in clinical practice of efficient and robust somatic mutation testing in solid tumours cannot be overemphasized in the current era of personalized medicine. However, significant challenges remain regarding the testing of genetic biomarkers in clinical practice. Reliance on archived formalin fixed, paraffin embedded tumour, obtained from diagnostic biopsies, for testing somatic genetic alterations could restrict the scientific community in asking relevant questions about a patient's cancer biology. Problems inherent with using formalin fixed, archival tissue are well recognized and difficult to resolve. It could be argued that to achieve rapid and efficient incorporation of genetic biomarkers into clinical practice, somatic mutation testing in cancer patients should be simpler, less invasive using a readily available clinical sample, whilst maintaining robustness and reproducibility. In this regard, use of circulating free DNA (cfDNA) from plasma or serum as an alternative and/or additional source of DNA to test cancer specific genetic alterations is an attractive proposition. In light of encouraging results from recent studies, this mini review will discuss the current role and future potential of somatic mutation testing from circulating or cell free DNA derived from the blood of patients with solid tumours.
Collapse
Affiliation(s)
- K. L. Aung
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
| | - R. E. Board
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
- School of Cancer and Enabling Sciences, Manchester Cancer Research Centre (MCRC), University of Manchester, Manchester, UK
| | - G. Ellison
- AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - E. Donald
- AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - T. Ward
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
| | - G. Clack
- AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - M. Ranson
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
- School of Cancer and Enabling Sciences, Manchester Cancer Research Centre (MCRC), University of Manchester, Manchester, UK
| | - A. Hughes
- AstraZeneca Pharmaceuticals, Alderley Park, Cheshire, UK
| | - W. Newman
- Genetic Medicine, St. Mary’s Hospital, School of Biomedicine, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, UK
| | - C. Dive
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX UK
- School of Cancer and Enabling Sciences, Manchester Cancer Research Centre (MCRC), University of Manchester, Manchester, UK
| |
Collapse
|
232
|
Abstract
BACKGROUND The hepatocellular carcinoma is one of the most common malignant tumors and carries a poor survival rate. The management of patients at risk for developing HCC remains intricate. METHODS A literature search identified potential markers for hepatocellular carcinoma. These markers were analysed and justification was provided for these factors' inclusion to (or exclusion from) the markers of hepatocellular carcinoma (HCC). A search of the literature was made using cancer literature and the PubMed database for the following keywords: "markers and HCC," "Lens culinaris agglutinin reactive AFP (AFP-L3) and HCC," "Des-γ-carboxy prothrombin (DCP) and HCC," "Glypican-3 and HCC," "Chromogranin A and HCC," "Transforming growth factor β1(TGF) and HCC," "α-l-fucosidase (AFU) and HCC," "Golgi protein-73 (GP73) and HCC," "Hepatocyte growth factor (HGF) and HCC," "Nervous growth factor (NGF) and HCC." CONCLUSIONS Despite the large number of studies devoted to the immunohistochemistry of HCC, at the present time, the absolute positive and negative markers for HCC are still lacking, and even those characterized by very high sensitivity and specificity do not have an universal diagnostic usefulness. Given the poor response to current therapies, a better understanding of the molecular pathways active in this disease could potentially provide new targets for therapy. However, AFP shows a low sensitivity, therefore other biomarkers have been developed to make an early diagnosis and improve patients' prognosis.
Collapse
|
233
|
Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2:a001008. [PMID: 20182602 DOI: 10.1101/cshperspect.a001008] [Citation(s) in RCA: 1461] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatic mutations in the TP53 gene are one of the most frequent alterations in human cancers, and germline mutations are the underlying cause of Li-Fraumeni syndrome, which predisposes to a wide spectrum of early-onset cancers. Most mutations are single-base substitutions distributed throughout the coding sequence. Their diverse types and positions may inform on the nature of mutagenic mechanisms involved in cancer etiology. TP53 mutations are also potential prognostic and predictive markers, as well as targets for pharmacological intervention. All mutations found in human cancers are compiled in the IARC TP53 Database (http://www-p53.iarc.fr/). A human TP53 knockin mouse model (Hupki mouse) provides an experimental model to study mutagenesis in the context of a human TP53 sequence. Here, we summarize current knowledge on TP53 gene variations observed in human cancers and populations, and current clinical applications derived from this knowledge.
Collapse
Affiliation(s)
- Magali Olivier
- Group of Molecular Carcinogenesis, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France
| | | | | |
Collapse
|
234
|
Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010; 2:a001016. [PMID: 20300207 DOI: 10.1101/cshperspect.a001016] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The initial observation that p53 accumulation might serve as a surrogate biomarker for TP53 mutation has been the cornerstone for vast translational efforts aimed at validating its clinical use for the diagnosis, prognosis, and treatment of cancer. Early on, it was realized that accurate evaluation of p53 status and function could not be achieved through protein-expression analysis only. As our understanding of the p53 pathway has evolved and more sophisticated methods for assessment of p53 functional integrity have become available, the clinical and molecular epidemiological implications of p53 abnormalities in cancers are being revealed. They include diagnostic testing for germline p53 mutations, and the assessment of selected p53 mutations as biomarkers of carcinogen exposure and cancer risk and prognosis. Here, we describe the strengths and limitations of the most frequently used techniques for determination of p53 status in tumors, as well as the most remarkable latest findings relating to its clinical and epidemiological value.
Collapse
Affiliation(s)
- Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
235
|
|
236
|
Ozdemir FT, Tiftikci A, Sancak S, Eren F, Tahan V, Akın H, Gündüz F, Kedrah AE, Ustündağ Y, Avşar E, Tözün N, Ozdoğan O. The prevalence of the mutation in codon 249 of the P53 gene in patients with hepatocellular carcinoma (HCC) in Turkey. J Gastrointest Cancer 2010; 41:185-189. [PMID: 20306157 DOI: 10.1007/s12029-010-9140-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most common cancers in the worldwide. Aflotoxins, products of Aspergillus Flavus found in the high humidity environments induce HCC in humans by causing mutations in oncogenes such as codon 249 mutation of p53 in hepatocytes. In turkey, aflatoxins are found to be increased in some foods in certain areas, such as Istanbul which have high humidity. In present study we aimed to look for the prevalence of codon 249 mutation of p53 in patients with HCC, cirrhosis and chronic hepatitis B (CHB). METHODS DNA was extracted from plasma and mutation was detected by PCR-RFLP method. RESULTS the codon 249 mutation of p53 is found one out of 50 HCC (2%) patients. In conclusion, although codon 249 mutation of p53 gene has been found very rare but it exists showing the effect of aflatoxins in HCC patients in Turkey.
Collapse
|
237
|
Okamura Y, Nomoto S, Kanda M, Hayashi M, Nishikawa Y, Fujii T, Sugimoto H, Takeda S, Nakao A. Reduced expression of reelin (RELN) gene is associated with high recurrence rate of hepatocellular carcinoma. Ann Surg Oncol 2010; 18:572-9. [PMID: 20734148 DOI: 10.1245/s10434-010-1273-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the world's top five causes of cancer-related deaths. Current treatments available ameliorate HCC; however, current therapy fails to completely treat and prevent HCC, as shown by its high recurrence rate. Recently developed genome-wide gene-expression profile analyses can now robustly detect many candidate genes that are modified by HCC. Here we attempt to identify novel genes displaying altered gene expression profiles when comparing healthy tissue with HCC by means of a double-combination array previously developed. METHODS Double-combination array analysis of gene expression profiles and single nucleotide polymorphism arrays were performed on each HCC tissue sample. Subsequently, samples from 48 HCC patients were subjected to quantitative real-time reverse transcription polymerase chain reaction and methylation-specific polymerase chain reaction. RESULTS The reelin (RELN) gene was detected as a pertinent tumor suppressor gene by means of this method. Of the 48 clinical samples obtained, 34 (79.2%) displayed reduced RELN expression in tumor tissue, and the expression level of tumor tissues clearly reduced compared with that of corresponding normal tissues (P = 0.002). Eighteen (37.5%) of 48 tumor tissues were found to be hypermethylated on the RELN gene promoter. Moreover, analysis of clinical data revealed an inverse correlation between RELN expression and HCC recurrence. CONCLUSIONS The present study indicates that our in-house double-combination array is an effective and convenient technique in detecting novel genes with altered expression in disease. We suggest RELN is a key regulatory gene associated with the recurrence of HCC.
Collapse
Affiliation(s)
- Yukiyasu Okamura
- Department of Surgery II, Graduate School and Medicine, University of Nagoya, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Hiraku Y, Kawanishi S, Ichinose T, Murata M. The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. Ann N Y Acad Sci 2010; 1203:15-22. [DOI: 10.1111/j.1749-6632.2010.05602.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
239
|
Jiang W, Wang XW, Unger T, Forgues M, Kim JW, Hussain SP, Bowman E, Spillare EA, Lipsky MM, Meck JM, Cavalli LR, Haddad BR, Harris CC. Cooperation of tumor-derived HBx mutants and p53-249(ser) mutant in regulating cell proliferation, anchorage-independent growth and aneuploidy in a telomerase-immortalized normal human hepatocyte-derived cell line. Int J Cancer 2010; 127:1011-20. [PMID: 20017137 DOI: 10.1002/ijc.25118] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer, and hepatitis B virus (HBV) is a major etiological agent. Convincing epidemiological and experimental evidence also links HCC to aflatoxin, a naturally occurring mycotoxin that produces a signature p53-249(ser) mutation. Recently, we have reported that tumor-derived HBx variants encoded by HBV exhibited attenuated transactivation and proapoptotic functions but retained their ability to block p53-mediated apoptosis. These results indicate that mutations in HBx may contribute to the development of HCC. In this study, we determined whether tumor-derived HBx mutants along, or in cooperation with p53-249(ser), could alter cell proliferation and chromosome stability of normal human hepatocytes. To test this hypothesis, we established a telomerase immortalized normal human hepatocycte line HHT4 that exhibited a near diploid karyotype and expressed many hepatocyte-specific genes. We found that overexpression one of the tumor-derived HBx mutants, CT, significantly increased colony forming efficiency (CFE) while its corresponding wild-type allele CNT significantly decreased CFE in HHT4 cells. p53-249(ser) rescued CNT-mediated inhibition of colony formation. Although HHT4 cells lacked an anchorage independent growth capability as they did not form any colonies in soft agar, the CT-expressing HHT4 cells could form colonies, which could be significantly enhanced by p53-249(ser). Induction of aneuploidy could be observed in HHT4 cells expressing CT, but additionally recurring chromosome abnormalities could only be detected in cells coexpressing CT and p53-249(ser). Our results are consistent with the hypothesis that certain mutations in HBx and p53 at codon 249 may cooperate in contributing to liver carcinogenesis.
Collapse
Affiliation(s)
- Weidong Jiang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and represents an international public health concern as one of the most deadly cancers worldwide. The main etiology of HCC is chronic infection with hepatitis B and hepatitis C viruses. However, there are other important factors that contribute to the international burden of HCC. Among these are obesity, diabetes, non-alcoholic steatohepatitis and dietary exposures. Emerging evidence suggests that the etiology of many cases of HCC is in fact multifactorial, encompassing infectious etiologies, comorbid conditions and environmental exposures. Clarification of relevant non-viral causes of HCC will aid in preventative efforts to curb the rising incidence of this disease.
Collapse
|
241
|
Gouas DA, Shi H, Hautefeuille AH, Ortiz-Cuaran SL, Legros PC, Szymanska KJ, Galy O, Egevad LA, Abedi-Ardekani B, Wiman KG, Hantz O, Caron de Fromentel C, Chemin IA, Hainaut PL. Effects of the TP53 p.R249S mutant on proliferation and clonogenic properties in human hepatocellular carcinoma cell lines: interaction with hepatitis B virus X protein. Carcinogenesis 2010; 31:1475-1482. [PMID: 20538734 DOI: 10.1093/carcin/bgq118] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aflatoxin B(1) (AFB(1)) is a risk factor for hepatocellular carcinoma (HCC) in many low-resource countries. Although its metabolites bind at several positions in TP53, a mutation at codon 249 (AGG to AGT, arginine to serine, p.R249S) accounts for 90% of TP53 mutations in AFB(1)-related HCC. This specificity suggests that p.R249S confers a selective advantage during hepatocarcinogenesis. Using HCC cell lines, we show that p.R249S has lost the capacity to bind to p53 response elements and to transactivate p53 target genes. In p53-null Hep3B cells, stable transfection of p.R249S or of another mutant, p.R248Q, did not induce significant changes in cell proliferation and survival after cytotoxic stress. In contrast, in a cell line that constitutively expresses both p.R249S and the hepatitis B virus antigen HBx (PLC/PRF/5), silencing of either p.R249S or HBx by RNA interference slowed down proliferation, with no additive effects when both factors were silenced. Furthermore, the two proteins appear to form a complex. In human HCC samples, mutation at codon 249 did not correlate with p.R249S protein accumulation or HBx truncation status. We suggest that p.R249S may contribute to hepatocarcinogenesis through interaction with HBx, conferring a subtle growth advantage at early steps of the transformation process, but that this interaction is not required for progression to advanced HCC.
Collapse
Affiliation(s)
- Doriane A Gouas
- International Agency for Research on Cancer, Molecular Carcinogenesis Group, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Hur W, Rhim H, Jung CK, Kim JD, Bae SH, Jang JW, Yang JM, Oh ST, Kim DG, Wang HJ, Lee SB, Yoon SK. SOX4 overexpression regulates the p53-mediated apoptosis in hepatocellular carcinoma: clinical implication and functional analysis in vitro. Carcinogenesis 2010; 31:1298-1307. [PMID: 20400479 DOI: 10.1093/carcin/bgq072] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS The underlying molecular mechanisms of hepatocellular carcinoma (HCC) remain poorly understood due to its complex development process. The human T cell-specific transcription factor sex-determining region Y-related high-mobility group (HMG) box 4 (SOX4) has been linked to development and tumorigenesis. In this study, we characterized the roles of SOX4 in regulation of the p53 transcription activity and evaluated the expression patterns and prognostic value of the transcription factor SOX4 in HCC. METHODS The expression levels of human SOX4 were examined in HCC samples obtained from 58 patients having curative partial hepatectomy. The interaction and effects of SOX4 on the p53 pathway were assessed in HCC cell lines. Luciferase reporter assay to examine p53-mediated transcription of target genes was performed. The association of SOX4 expression level with tumor recurrence and overall survival was evaluated. RESULTS We showed that the HMG box domain of SOX4 interacted with p53, resulting in the inhibition of p53-mediated transcription by the Bax promoter. More importantly, SOX4 overexpression led to a significant repression of p53-induced Bax expression and subsequent repression of p53-mediated apoptosis induced by gamma-irradiation. In clinicopathological analysis, nuclear overexpression of SOX4 was observed in 37 out of 58 (63.8%) HCC samples, and this correlated with diminished risk of recurrence (P = 0.014) and improved overall survival time (P = 0.045) in HCC patients. CONCLUSION These results suggest that SOX4 contributes to hepatocarcinogenesis by inhibiting p53-mediated apoptosis and that its overexpression might be a useful prognostic marker for survival after surgical resection.
Collapse
Affiliation(s)
- Wonhee Hur
- Department of Internal Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Abstract
Hepatocellular carcinoma (HCC) is the most frequent tumour derived from the malignant transformation of hepatocytes. It is well established that cancer is a disease of the genome and, as in other types of solid tumours, a large number of genetic and epigenetic alterations are accumulated during the hepatocarcinogenesis process. Recent developments using comprehensive genomic tools have enabled the identification of the molecular diversity in human HCC. Consequently, several molecular classifications have been described using different approaches and important progress has been made particularly with the transcriptomic, genetic, chromosomal, miRNA and methylation profiling. On the whole, all these molecular classifications are related and one of the major determinants of the identified subgroups of tumours are gene mutations found in oncogenes and tumour suppressors. However, the full understanding of the HCC molecular classification requires additional comprehensive studies using both genomic and pathway analyses. Finally, a refinement of the molecular classification of HCC, taking into account the geographical and genetic diversity of the patients, will be essential for an efficient design of the forthcoming personalized clinical treatments.
Collapse
Affiliation(s)
- Jessica Zucman-Rossi
- Inserm, U674, Génomique fonctionnelle des tumeurs solides, F-75010 Paris, France.
| |
Collapse
|
244
|
Jeannot E, Mellottee L, Bioulac-Sage P, Balabaud C, Scoazec JY, Tran Van Nhieu J, Bacq Y, Michalak S, Buob D, Groupe d'étude Génétique des Tumeurs Hépatiques (INSERM Network), Laurent-Puig P, Rusyn I, Zucman-Rossi J. Spectrum of HNF1A somatic mutations in hepatocellular adenoma differs from that in patients with MODY3 and suggests genotoxic damage. Diabetes 2010; 59:1836-44. [PMID: 20393147 PMCID: PMC2889786 DOI: 10.2337/db09-1819] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Maturity onset diabetes of the young type 3 (MODY3) is a consequence of heterozygous germline mutation in HNF1A. A subtype of hepatocellular adenoma (HCA) is also caused by biallelic somatic HNF1A mutations (H-HCA), and rare HCA may be related to MODY3. To better understand a relationship between the development of MODY3 and HCA, we compared both germline and somatic spectra of HNF1A mutations. RESEARCH DESIGN AND METHODS We compared 151 somatic HNF1A mutations in HCA with 364 germline mutations described in MODY3. We searched for genotoxic and oxidative stress features in HCA and surrounding liver tissue. RESULTS A spectrum of HNF1A somatic mutations significantly differed from the germline changes in MODY3. In HCA, we identified a specific hot spot at codon 206, nonsense and frameshift mutations mainly in the NH(2)-terminal part, and almost all amino acid substitutions were restricted to the POU-H domain. The high frequency of G-to-T tranversions, predominantly found on the nontranscribed DNA strand, suggested a genotoxic mechanism. However, no features of oxidative stress were observed in the nontumor liver tissue. Finally, in a few MODY3 patients with HNF1A germline mutation leading to amino acid substitutions outside the POU-H domain, we identified a different subtype of HCA either with a gp130 and/or CTNNB1 activating mutation. CONCLUSIONS Germline HNF1A mutations could be associated with different molecular subtypes of HCA. H-HCA showed mutations profoundly inactivating hepatocyte nuclear factor-1alpha function; they are associated with a genotoxic signature suggesting a specific toxicant exposure that could be associated with genetic predisposition.
Collapse
Affiliation(s)
- Emmanuelle Jeannot
- Institut National de la Santé et de la Recherche Médicale, U674, Génomique Fonctionnelle des Tumeurs Solides; Université Paris Descartes, Paris, France
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lucille Mellottee
- Institut National de la Santé et de la Recherche Médicale, U674, Génomique Fonctionnelle des Tumeurs Solides; Université Paris Descartes, Paris, France
| | - Paulette Bioulac-Sage
- Institut National de la Santé et de la Recherche Médicale, U889, Université Bordeaux 2, IFR66, Centre Hospitalier Universitaire Bordeaux, Hôpital Pellegrin, Bordeaux, France
| | - Charles Balabaud
- Institut National de la Santé et de la Recherche Médicale, U889, Université Bordeaux 2, IFR66, Centre Hospitalier Universitaire Bordeaux, Hôpital Pellegrin, Bordeaux, France
| | | | - Jeanne Tran Van Nhieu
- Assistance Publique-Hôpitaux de Paris, Pathology Department, Hôpital Henri Mondor, Créteil, France
| | - Yannick Bacq
- Hôpital Trousseau, Centre Hospitalier Régional et Universitaire de Tours, Tours, France
| | - Sophie Michalak
- Centre Hospitalier Universitaire, Pathology Department, Angers, France
| | - David Buob
- Pôle Pathologie, Centre de Biologie Pathologie, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | | | - Pierre Laurent-Puig
- Institut National de la Santé et de la Recherche Médicale, U775; Université Paris Descartes, Paris, France
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale, U674, Génomique Fonctionnelle des Tumeurs Solides; Université Paris Descartes, Paris, France
- Corresponding author: Jessica Zucman-Rossi,
| |
Collapse
|
245
|
Rudin CM, Avila-Tang E, Harris CC, Herman JG, Hirsch FR, Pao W, Schwartz AG, Vahakangas KH, Samet JM. Lung cancer in never smokers: molecular profiles and therapeutic implications. Clin Cancer Res 2010; 15:5646-61. [PMID: 19755392 DOI: 10.1158/1078-0432.ccr-09-0377] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The majority of lung cancers are caused by long term exposure to the several classes of carcinogens present in tobacco smoke. Although a significant fraction of lung cancers in never smokers may also be attributable to tobacco, many such cancers arise in the absence of detectable tobacco exposure, and may follow a very different cellular and molecular pathway of malignant transformation. Recent studies summarized here suggest that lung cancers arising in never smokers have a distinct natural history, profile of oncogenic mutations, and response to targeted therapy. The majority of molecular analyses of lung cancer have focused on genetic profiling of pathways responsible for metabolism of primary tobacco carcinogens. Limited research has been conducted evaluating familial aggregation and genetic linkage of lung cancer, particularly among never smokers in whom such associations might be expected to be strongest. Data emerging over the past several years show that lung cancers in never smokers are much more likely to carry activating mutations of the epidermal growth factor receptor (EGFR), a key oncogenic factor and direct therapeutic target of several newer anticancer drugs. EGFR mutant lung cancers may represent a distinct class of lung cancers, enriched in the never-smoking population, and less clearly linked to direct tobacco carcinogenesis. These insights followed initial testing and demonstration of efficacy of EGFR-targeted drugs. Focused analysis of molecular carcinogenesis in lung cancers in never smokers is needed, and may provide additional biologic insight with therapeutic implications for lung cancers in both ever smokers and never smokers.
Collapse
Affiliation(s)
- Charles M Rudin
- Johns Hopkins University School of Medicine, David H. Koch Cancer Research Building, Room 544, 1550 Orleans Street, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
The "two-faced" effects of reactive oxygen species and the lipid peroxidation product 4-hydroxynonenal in the hallmarks of cancer. Cancers (Basel) 2010; 2:338-63. [PMID: 24281073 PMCID: PMC3835081 DOI: 10.3390/cancers2020338] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/18/2010] [Accepted: 03/25/2010] [Indexed: 11/24/2022] Open
Abstract
Reacytive Oxygen Species (ROS) have long been considered to be involved in the initiation, progression and metastasis of cancer. However, accumulating evidence points to the benefical role of ROS. Moreover, ROS production, leading to apoptosis, is the mechanism by which many chemotherapeutic agents can act. Beside direct actions, ROS elicit lipid peroxidation, leading to the production of 4-hydroxynoneal (HNE). Interestingly, HNE also seems to have a dual behaviour with respect to cancer. In this review we present recent literature data which outline the "two-faced" character of oxidative stress and lipid peroxidation in carcinogenesis and in the hallmarks of cancer.
Collapse
|
247
|
Zhang YJ. Interactions of chemical carcinogens and genetic variation in hepatocellular carcinoma. World J Hepatol 2010; 2:94-102. [PMID: 21160980 PMCID: PMC2999273 DOI: 10.4254/wjh.v2.i3.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/16/2010] [Accepted: 01/23/2010] [Indexed: 02/06/2023] Open
Abstract
In the etiology of hepatocellular carcinoma (HCC), in addition to hepatitis B virus and hepatitis C virus infections, chemical carcinogens also play important roles. For example, aflatoxin B(1) (AFB(1)) epoxide reacts with guanine in DNA and can lead to genetic changes. In HCC, the tumor suppressor gene p53 codon 249 mutation is associated with AFB(1) exposure and mutations in the K-ras oncogene are related to vinyl chloride exposure. Numerous genetic alterations accumulate during the process of hepatocarcinogenesis. Chemical carcinogen DNA-adduct formation is the basis for these genetic changes and also a molecular marker which reflects exposure level and biological effects. Metabolism of chemical carcinogens, including their activation and detoxification, also plays a key role in chemical hepatocarcinogenesis. Cytochrome p450 enzymes, N-acetyltransferases and glutathione S-transferases are involved in activating and detoxifying chemical carcinogens. These enzymes are polymorphic and genetic variation influences biological response to chemical carcinogens. This genetic variation has been postulated to influence the variability in risk for HCC observed both within and across populations. Ongoing studies seek to fully understand the mechanisms by which genetic variation in response to chemical carcinogens impacts on HCC risk.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Yu-Jing Zhang, Department of Environmental Health Sciences, Mailman School of Public Health and Cancer Center of Columbia University, New York, NY 10032, United States
| |
Collapse
|
248
|
Faro A, Boj SF, Clevers H. Fishing for intestinal cancer models: unraveling gastrointestinal homeostasis and tumorigenesis in zebrafish. Zebrafish 2010; 6:361-76. [PMID: 19929219 DOI: 10.1089/zeb.2009.0617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish has proven to be a highly versatile model for comprehensive studies of gene function in development. Given that the molecular pathways involved in epithelial carcinogenesis appear to be conserved across vertebrates, zebrafish is now considered as a valid model to study tumor biology. Development and homeostasis in multicellular organisms are dependent on a complex interplay between cell proliferation, migration, differentiation, and cell death. The Wnt signaling pathway is a major signaling pathway during embryonic development and is the key regulator of self-renewal homeostasis in several adult tissues. A large body of knowledge on adult stem-cell biology has arisen from the study of the intestinal epithelium over the past 20 years. The Wnt pathway has appeared as its principal regulator of homeostatic self-renewal. Moreover, most cancers of the intestine are caused by activating mutations in the Wnt pathway. Recently, zebrafish models have been developed to study Wnt pathway-induced cancer. An appealing avenue for cancer research in zebrafish is large-scale screens to identify chemotherapeutic and chemopreventive agents in conjunction with the in vivo imaging approaches that zebrafish affords.
Collapse
Affiliation(s)
- Ana Faro
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | | | | |
Collapse
|
249
|
Hiraku Y. Formation of 8-nitroguanine, a nitrative DNA lesion, in inflammation-related carcinogenesis and its significance. Environ Health Prev Med 2010; 15:63-72. [PMID: 19921494 PMCID: PMC2824100 DOI: 10.1007/s12199-009-0118-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 10/15/2009] [Indexed: 12/24/2022] Open
Abstract
Chronic infection and inflammation contribute to a substantial part of environmental carcinogenesis. Recently, it has been estimated that chronic inflammation accounts for approximately 25% of cancer cases. Various infectious diseases and physical, chemical, and immunological factors participate in inflammation-related carcinogenesis. Under inflammatory conditions, reactive oxygen and nitrogen species, which are generated from inflammatory and epithelial cells, may play an important role in carcinogenesis by causing DNA damage. 8-Nitroguanine is a mutagenic DNA lesion formed during chronic inflammation. In an earlier publication, our group reported the results of an immunohistochemical analysis of animals infected with the liver fluke Opisthorchis viverrini and demonstrated for the first time that 8-nitroguanine was formed at the sites of carcinogenesis. This DNA lesion was found to accumulate in the carcinogenic process in clinical specimens of cancer-prone inflammatory diseases caused by various pathogens, including human papillomavirus and Epstein-Barr virus. Moreover, strong 8-nitroguanine formation in tumor tissues was closely associated with a poor prognosis. On the basis of these findings, 8-nitroguanine could be a potential biomarker to evaluate the risk of inflammation-related carcinogenesis and the prognosis of cancer patients. In this review, the significance of 8-nitroguanine formation in inflammation-related carcinogenesis and tumor progression will be discussed.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, 514-8507 Japan
| |
Collapse
|
250
|
Hiraku Y. Formation of 8-nitroguanine, a nitrative DNA lesion, in inflammation-related carcinogenesis and its significance. Environ Health Prev Med 2010; 15:63-72. [PMID: 19921494 DOI: 10.1007/s12199-009-0118-5/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 10/15/2009] [Indexed: 05/25/2023] Open
Abstract
Chronic infection and inflammation contribute to a substantial part of environmental carcinogenesis. Recently, it has been estimated that chronic inflammation accounts for approximately 25% of cancer cases. Various infectious diseases and physical, chemical, and immunological factors participate in inflammation-related carcinogenesis. Under inflammatory conditions, reactive oxygen and nitrogen species, which are generated from inflammatory and epithelial cells, may play an important role in carcinogenesis by causing DNA damage. 8-Nitroguanine is a mutagenic DNA lesion formed during chronic inflammation. In an earlier publication, our group reported the results of an immunohistochemical analysis of animals infected with the liver fluke Opisthorchis viverrini and demonstrated for the first time that 8-nitroguanine was formed at the sites of carcinogenesis. This DNA lesion was found to accumulate in the carcinogenic process in clinical specimens of cancer-prone inflammatory diseases caused by various pathogens, including human papillomavirus and Epstein-Barr virus. Moreover, strong 8-nitroguanine formation in tumor tissues was closely associated with a poor prognosis. On the basis of these findings, 8-nitroguanine could be a potential biomarker to evaluate the risk of inflammation-related carcinogenesis and the prognosis of cancer patients. In this review, the significance of 8-nitroguanine formation in inflammation-related carcinogenesis and tumor progression will be discussed.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, 514-8507 Japan
| |
Collapse
|