201
|
Weng Z, Gao H, Hu J, Fan Y, Wang H, Li L. Isoalantolactone induces autophagic cell death in SKOV₃ human ovarian carcinoma cells via upregulation of PEA-15. Oncol Rep 2015; 35:833-40. [PMID: 26718904 DOI: 10.3892/or.2015.4461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
We investigated the effects of isoalantolactone on cell growth inhibition and underlying cell death mechanisms in SKOV3 human ovarian cancer cells. The effects of isoalantolactone on cell proliferation and cell cycle were examined by EdU incorporation assay and DNA content assay. Western blotting was performed to determine the protein expression effects of isoalantolactone on cell cycle‑related proteins, autophagic regulators and PEA‑15. Autophagic vacuoles were observed by acridine orange staining. PEA‑15 knockdown by siRNA was used to confirm that PEA‑15 was involved in isoalantolactone‑induced autophagy of SKOV3 cells. Isoalantolactone inhibited the viability and proliferation of SKOV3 cells in a dose‑ and time‑dependent fashion. Isoalantolactone induced cell cycle arrest at G2/M phase and decreased the expression of cell cycle‑related proteins cyclin B1 and CDK1 in SKOV3 cells. Accordingly, isoalantolactone also induced SKOV3 cell autophagy via accumulation of autophagic vacuoles in the cytoplasm, increased Beclin1 protein expression, and increased LC3 cleavage. Furthermore, we observed that isoalantolactone‑induced autophagy was through increased PEA‑15 expression and the phosphorylation of ERK, whereas less change was observed to autophagy on SKOV3 cells through PEA‑15 knockdown by siRNA. Isoalantolactone‑induced autophagic cell death was further confirmed by pretreatment with the autophagy inhibitor 3‑methyladenine (3‑MA). In conclusion, isoalantolactone induced cell cycle arrest and autophagy and inhibited cell proliferation of SKOV3 cells via the upregulated PEA‑15 expression and the phosphorylation of ERK.
Collapse
Affiliation(s)
- Zhiyong Weng
- Department of Cell Biology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongguo Gao
- Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing 163001, P.R. China
| | - Jiehua Hu
- Educational Technologies and Simulation Training Centre, Naval University of Engineering Tianjin Campus, Tianjin 300450, P.R. China
| | - Yonggang Fan
- Department of Cell Biology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongyan Wang
- Department of Clinical Laboratory, Daqing Oilfield General Hospital, Daqing 163001, P.R. China
| | - Lihua Li
- Department of Cell Biology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
202
|
Mobilization of Copper ions by Flavonoids in Human Peripheral Lymphocytes Leads to Oxidative DNA Breakage: A Structure Activity Study. Int J Mol Sci 2015; 16:26754-69. [PMID: 26569217 PMCID: PMC4661851 DOI: 10.3390/ijms161125992] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022] Open
Abstract
Epidemiological studies have linked dietary consumption of plant polyphenols with lower incidence of various cancers. In particular, flavonoids (present in onion, tomato and other plant sources) induce apoptosis and cytotoxicity in cancer cells. These can therefore be used as lead compounds for the synthesis of novel anticancer drugs with greater bioavailability. In the present study, we examined the chemical basis of cytotoxicity of flavonoids by studying the structure–activity relationship of myricetin (MN), fisetin (FN), quercetin (QN), kaempferol (KL) and galangin (GN). Using single cell alkaline gel electrophoresis (comet assay), we established the relative efficiency of cellular DNA breakage as MN > FN > QN > KL > GN. Also, we determined that the cellular DNA breakage was the result of mobilization of chromatin-bound copper ions and the generation of reactive oxygen species. The relative DNA binding affinity order was further confirmed using molecular docking and thermodynamic studies through the interaction of flavonoids with calf thymus DNA. Our results suggest that novel anti-cancer molecules should have ortho-dihydroxy groups in B-ring and hydroxyl groups at positions 3 and 5 in the A-ring system. Additional hydroxyl groups at other positions further enhance the cellular cytotoxicity of the flavonoids.
Collapse
|
203
|
Hu M, Huang P, Wang Y, Su Y, Zhou L, Zhu X, Yan D. Synergistic Combination Chemotherapy of Camptothecin and Floxuridine through Self-Assembly of Amphiphilic Drug–Drug Conjugate. Bioconjug Chem 2015; 26:2497-506. [DOI: 10.1021/acs.bioconjchem.5b00513] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Minxi Hu
- School of Chemistry and Chemical
Engineering, Shanghai Key Lab of Electrical Insulation and Thermal
Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ping Huang
- School of Chemistry and Chemical
Engineering, Shanghai Key Lab of Electrical Insulation and Thermal
Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yao Wang
- School of Chemistry and Chemical
Engineering, Shanghai Key Lab of Electrical Insulation and Thermal
Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yue Su
- School of Chemistry and Chemical
Engineering, Shanghai Key Lab of Electrical Insulation and Thermal
Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Linzhu Zhou
- School of Chemistry and Chemical
Engineering, Shanghai Key Lab of Electrical Insulation and Thermal
Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical
Engineering, Shanghai Key Lab of Electrical Insulation and Thermal
Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical
Engineering, Shanghai Key Lab of Electrical Insulation and Thermal
Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
204
|
Evidence for caspase-dependent programmed cell death along with repair processes in affected skeletal muscle fibres in patients with mitochondrial disorders. Clin Sci (Lond) 2015; 130:167-81. [PMID: 26527739 DOI: 10.1042/cs20150394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/02/2015] [Indexed: 11/17/2022]
Abstract
Mitochondrial disorders are heterogeneous multisystemic disorders due to impaired oxidative phosphorylation causing defective mitochondrial energy production. Common histological hallmarks of mitochondrial disorders are RRFs (ragged red fibres), muscle fibres with abnormal focal accumulations of mitochondria. In contrast with the growing understanding of the genetic basis of mitochondrial disorders, the fate of phenotypically affected muscle fibres remains largely unknown. We investigated PCD (programmed cell death) in muscle of 17 patients with mitochondrial respiratory chain dysfunction. We documented that in affected muscle fibres, nuclear chromatin is condensed in lumpy irregular masses and cytochrome c is released into the cytosol to activate, along with Apaf-1 (apoptotic protease-activating factor 1), caspase 9 that, in turn, activates effector caspase 3, caspase 6, and caspase 7, suggesting the execution of the intrinsic apoptotic pathway. Whereas active caspase 3 underwent nuclear translocation, AIF (apoptosis-inducing factor) mainly stayed within mitochondria, into which an up-regulated Bax is relocated. The significant increase in caspase 2, caspase 3 and caspase 6 activity strongly suggest that the cell death programme is caspase-dependent and the activation of caspase 2 together with PUMA (p53 up-regulated modulator of apoptosis) up-regulation point to a role for oxidative stress in triggering the intrinsic pathway. Concurrently, in muscle of patients, the number of satellite cells was significantly increased and myonuclei were detected at different stages of myogenic differentiation, indicating that a reparative programme is ongoing in muscle of patients with mitochondrial disorders. Together, these data suggest that, in patients with mitochondrial disorders, affected muscle fibres are trapped in a mitochondria-regulated caspase-dependent PCD while repairing events take place.
Collapse
|
205
|
Kasuba KC, Vavilala SL, D'Souza JS. Apoptosis-like cell death in unicellular photosynthetic organisms — A review. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
206
|
Implication of different domains of the Leishmania major metacaspase in cell death and autophagy. Cell Death Dis 2015; 6:e1933. [PMID: 26492367 PMCID: PMC4632311 DOI: 10.1038/cddis.2015.288] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/16/2023]
Abstract
Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine–cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.
Collapse
|
207
|
Mácsik LL, Somogyi I, Opper B, Bovári-Biri J, Pollák E, Molnár L, Németh P, Engelmann P. Induction of apoptosis-like cell death by coelomocyte extracts from Eisenia andrei earthworms. Mol Immunol 2015; 67:213-22. [DOI: 10.1016/j.molimm.2015.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 12/24/2022]
|
208
|
Synthesis and biological evaluation of a novel betulinic acid derivative as an inducer of apoptosis in human colon carcinoma cells (HT-29). Eur J Med Chem 2015; 102:93-105. [DOI: 10.1016/j.ejmech.2015.07.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/16/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022]
|
209
|
Nielsen JS, Larsson A, Ledet T, Turina M, Tønnesen E, Krog J. Rough-Form Lipopolysaccharide Increases Apoptosis in Human CD4⁺ and CD8⁺ T Lymphocytes. Scand J Immunol 2015; 75:193-202. [PMID: 21854408 DOI: 10.1111/j.1365-3083.2011.02613.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunosuppression induced by lymphocyte apoptosis is considered an important factor in the pathogenesis of sepsis and has been demonstrated in both animal models of lipopolysaccharide (LPS)-induced endotoxemia and septic patients. As rough-form LPS (R-LPS) has recently been shown to elicit a stronger immunological response than regular smooth-form LPS (S-LPS), we aimed to assess the apoptosis-inducing capabilities of R-LPS in different subsets of lymphocytes (CD4(+) T cells, CD8(+) T cell, B cells and NK cells). Using multicolour flow cytometry on human peripheral blood mononuclear cells, we found that R-LPS increased apoptosis in CD4(+) and CD8(+) T cells assessed by annexin V and propidium iodide (AV(+) PI(-)), compared with both S-LPS-stimulated and unstimulated cells. 7-Amino-actinomycin D and staining for intracellular active caspase-3, which are considered later signs of apoptosis, did not reveal the same results. Both forms appeared to inhibit apoptosis in B cells, but no LPS-form-specific effect was seen on B or NK cells. Our results indicate that R-LPS induces a stronger AV(+) PI(-)-assessed apoptotic response in T cells than S-LPS. Our findings emphasize the importance of T cell apoptosis in endotoxemia and advocates for control of LPS form in both endotoxemia research and clinical trials with Gram-negative infections.
Collapse
Affiliation(s)
- J S Nielsen
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - A Larsson
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - T Ledet
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - M Turina
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - E Tønnesen
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| | - J Krog
- Department of Anesthesiology and Intensive Care Medicine, Aarhus University Hospital, Aarhus, DenmarkDepartment of Biochemical Pathology, Aarhus University Hospitals, Aarhus, DenmarkDepartment of Anaesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, SwedenDepartment of Surgery, University of Zurich Hospital, Zurich, Switzerland
| |
Collapse
|
210
|
Farhan M, Zafar A, Chibber S, Khan HY, Arif H, Hadi SM. Mobilization of copper ions in human peripheral lymphocytes by catechins leading to oxidative DNA breakage: A structure activity study. Arch Biochem Biophys 2015; 580:31-40. [PMID: 26142371 DOI: 10.1016/j.abb.2015.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
Abstract
Epidemiological studies suggest that dietary consumption of plant polyphenols is related to a lower incidence of various cancers. Among these compounds catechins (present in green tea and other beverages) are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. Thus these compounds can be used as leads to synthesize novel anticancer drugs with greater bioavailability. In view of this in this paper we have examined the chemical basis of cytotoxicity of catechins by studying the structure-activity relationship between catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG). Using single cell alkaline gel electrophoresis (comet assay) we have established the relative efficiency of cellular DNA breakage as EGCG>EGC>EC>C. We also show that cellular DNA breakage is the result of mobilization of copper ions bound to chromatin and the generation of reactive oxygen species. Further the relative DNA binding affinity order was confirmed using molecular docking and thermodynamic studies by studying the interaction of catechins with calf thymus DNA. The results suggest that the synthesis of any novel anti cancer molecule based on the structure of catechins should have as many galloyl moieties as possible resulting in an increased number of hydroxyl groups that may facilitate the binding of the molecule to cellular DNA.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Sandesh Chibber
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Husain Yar Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - S M Hadi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
211
|
Farhan M, Rizvi A, Naseem I, Hadi SM, Ahmad A. Targeting increased copper levels in diethylnitrosamine induced hepatocellular carcinoma cells in rats by epigallocatechin-3-gallate. Tumour Biol 2015; 36:8861-7. [DOI: 10.1007/s13277-015-3649-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022] Open
|
212
|
Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics 2015; 5:559-82. [PMID: 25825597 PMCID: PMC4377726 DOI: 10.7150/thno.11548] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.
Collapse
|
213
|
Multiple protective mechanisms of alpha-lipoic acid in oxidation, apoptosis and inflammation against hydrogen peroxide induced toxicity in human lymphocytes. Mol Cell Biochem 2015; 403:179-86. [DOI: 10.1007/s11010-015-2348-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/30/2015] [Indexed: 12/17/2022]
|
214
|
Ahamed M, Alhadlaq HA, Ahmad J, Siddiqui MA, Khan ST, Musarrat J, Al-Khedhairy AA. Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells. J Appl Toxicol 2015; 35:640-50. [DOI: 10.1002/jat.3097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/20/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University; Riyadh 11451 Saudi Arabia
| | - Hisham A. Alhadlaq
- Department of Physics and Astronomy, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Javed Ahmad
- Department of Zoology, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Maqsood A. Siddiqui
- Department of Zoology, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Shams T. Khan
- Department of Zoology, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences; Aligarh Muslim University; Aligarh 202002 India
| | | |
Collapse
|
215
|
Ahmad J, Alhadlaq HA, Siddiqui MA, Saquib Q, Al-Khedhairy AA, Musarrat J, Ahamed M. Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure. ENVIRONMENTAL TOXICOLOGY 2015; 30:137-148. [PMID: 23776134 DOI: 10.1002/tox.21879] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
Due to advent of nanotechnology, nickel nanoparticles (Ni NPs) are increasingly recognized for their utility in various applications including catalysts, sensors and electronics. However, the environmental and human health effects of Ni NPs have not been fully investigated. In this study, we examined toxic effects of Ni NPs in human liver (HepG2) cells. Ni NPs were prepared and characterized by X-ray diffraction, transmission electron microscopy and dynamic light scattering. We observed that Ni NPs (size, ∼28 nm; concentration range, 25-100 μg/mL) induced cytotoxicity in HepG2 cells and degree of induction was concentration-dependent. Ni NPs were also found to induce oxidative stress in dose-dependent manner evident by induction of reactive oxygen species and depletion of glutathione. Cell cycle analysis of cells treated with Ni NPs exhibited significant increase of apoptotic cell population in subG1 phase. Ni NPs also induced caspase-3 enzyme activity and apoptotic DNA fragmentation. Upregulation of cell cycle checkpoint gene p53 and bax/bcl-2 ratio with a concomitant loss in mitochondrial membrane potential suggested that Ni NPs induced apoptosis in HepG2 cells was mediated through mitochondrial pathway. This study warrants that applications of Ni NPs should be carefully assessed as to their toxicity to human health.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
216
|
Pongrakhananon V, Luanpitpong S, Stueckle TA, Wang L, Nimmannit U, Rojanasakul Y. Carbon nanotubes induce apoptosis resistance of human lung epithelial cells through FLICE-inhibitory protein. Toxicol Sci 2015; 143:499-511. [PMID: 25412619 PMCID: PMC4306727 DOI: 10.1093/toxsci/kfu251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chronic exposure to single-walled carbon nanotubes (SWCNT) has been reported to induce apoptosis resistance of human lung epithelial cells. As resistance to apoptosis is a foundation of neoplastic transformation and cancer development, we evaluated the apoptosis resistance characteristic of the exposed lung cells to understand the pathogenesis mechanism. Passage control and SWCNT-transformed human lung epithelial cells were treated with known inducers of apoptosis via the intrinsic (antimycin A and CDDP) or extrinsic (FasL and TNF-α) pathway and analyzed for apoptosis by DNA fragmentation, annexin-V expression, and caspase activation assays. Whole-genome microarray was performed to aid the analysis of apoptotic gene signaling network. The SWCNT-transformed cells exhibited defective death receptor pathway in association with cellular FLICE-inhibitory protein (c-FLIP) overexpression. Knockdown or chemical inhibition of c-FLIP abrogated the apoptosis resistance of SWCNT-transformed cells. Whole-genome expression signature analysis confirmed these findings. This study is the first to demonstrate carbon nanotube-induced defective death receptor pathway and the role of c-FLIP in the process.
Collapse
Affiliation(s)
- Varisa Pongrakhananon
- *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand
| | - Sudjit Luanpitpong
- *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand
| | - Todd A Stueckle
- *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand
| | - Liying Wang
- *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand
| | - Ubonthip Nimmannit
- *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand
| | - Yon Rojanasakul
- *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand *Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, and National Nanotechnology Center, Pathumthani, Thailand
| |
Collapse
|
217
|
Abstract
During development, stress, infection, or normal homeostasis, billions of cells die on a daily basis, and the responsibility of clearing these cellular corpses lies with the phagocytes of innate immune system. This process, termed efferocytosis , is critical for the prevention of inflammation and autoimmunity , as well as modulation of the adaptive immune response. Defective clearance of dead cells is characteristic of many human autoimmune or autoinflammatory disorders, such as systemic lupus erythematosus (SLE), atherosclerosis, and diabetes. The mechanisms that phagocytes employ to sense, engulf, and process dead cells for an appropriate immune response have been an area of great interest. However, insight into novel mechanisms of programmed cell death , such as necroptosis, has shed light on the fact that while the diner (or phagocyte) is important, the meal itself (the type of dead cell) can play a crucial role in shaping the pursuant immune response.
Collapse
Affiliation(s)
- Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
218
|
Chakraborty D, Maity A, Jain CK, Hazra A, Bharitkar YP, Jha T, Majumder HK, Roychoudhury S, Mondal NB. Cytotoxic potential of dispirooxindolo/acenaphthoquino andrographolide derivatives against MCF-7 cell line. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00469h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dispiro andrographolides induce a caspase-dependent apoptotic cell death pathway in breast cancer (MCF-7) cells.
Collapse
Affiliation(s)
- Debanjana Chakraborty
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Arindam Maity
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Chetan K. Jain
- Molecular Parasitology Laboratory
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Abhijit Hazra
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Yogesh P. Bharitkar
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Tarun Jha
- Department of Pharmaceutical Technology
- Division of Medicinal and Pharmaceutical Chemistry
- PO Box No. 17020
- Jadavpur University
- Kolkata-700 032
| | - Hemanta K. Majumder
- Molecular Parasitology Laboratory
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| | - Nirup B. Mondal
- Department of Chemistry
- Indian Institute of Chemical Biology
- Council of Scientific and Industrial Research
- Kolkata 700032
- India
| |
Collapse
|
219
|
Abstract
Multiplexed assay chemistries provide for multiple measurements of cellular parameters within a single assay well. This experimental practice is not only more cost efficient, but also provides more information about a compound or treatment. The ability to combine the activity profiles within the same sample provides a level of normalization not possible with parallel assays. Furthermore, multiplexing caspase activity assays with viability and/or cytotoxicity assays can support conclusions regarding cytotoxic mechanism and provide normalization, which may help correct for differences in cell number.
Collapse
Affiliation(s)
- Andrew L Niles
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA,
| | | |
Collapse
|
220
|
Calcitriol induced redox imbalance and DNA breakage in cells sharing a common metabolic feature of malignancies: Interaction with cellular copper (II) ions leads to the production of reactive oxygen species. Tumour Biol 2014; 36:3661-8. [DOI: 10.1007/s13277-014-3004-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
|
221
|
Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young SM, Drago I, Bahr BA, Puliti A, Codazzi F, Quattrini A, Casari G. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest 2014; 125:263-74. [PMID: 25485680 DOI: 10.1172/jci74770] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 11/06/2014] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 28 (SCA28) is a neurodegenerative disease caused by mutations of the mitochondrial protease AFG3L2. The SCA28 mouse model, which is haploinsufficient for Afg3l2, exhibits a progressive decline in motor function and displays dark degeneration of Purkinje cells (PC-DCD) of mitochondrial origin. Here, we determined that mitochondria in cultured Afg3l2-deficient PCs ineffectively buffer evoked Ca²⁺ peaks, resulting in enhanced cytoplasmic Ca²⁺ concentrations, which subsequently triggers PC-DCD. This Ca²⁺-handling defect is the result of negative synergism between mitochondrial depolarization and altered organelle trafficking to PC dendrites in Afg3l2-mutant cells. In SCA28 mice, partial genetic silencing of the metabotropic glutamate receptor mGluR1 decreased Ca²⁺ influx in PCs and reversed the ataxic phenotype. Moreover, administration of the β-lactam antibiotic ceftriaxone, which promotes synaptic glutamate clearance, thereby reducing Ca²⁺ influx, improved ataxia-associated phenotypes in SCA28 mice when given either prior to or after symptom onset. Together, the results of this study indicate that ineffective mitochondrial Ca²⁺ handling in PCs underlies SCA28 pathogenesis and suggest that strategies that lower glutamate stimulation of PCs should be further explored as a potential treatment for SCA28 patients.
Collapse
|
222
|
Cyran N, Klepal W, Städler Y, Schönenberger J, von Byern J. Alterations in the mantle epithelium during transition from hatching gland to adhesive organ of Idiosepius pygmaeus (Mollusca, Cephalopoda). Mech Dev 2014; 135:43-57. [PMID: 25483816 DOI: 10.1016/j.mod.2014.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Epithelial gland systems play an important role in marine molluscs in fabricating lubricants, repellents, fragrances, adhesives or enzymes. In cephalopods the typically single layered epithelium provides a highly dynamic variability and affords a rapid rebuilding of gland cells. While the digestive hatching gland (also named Hoyle organ) is obligatory for most cephalopods, only four genera (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions by means of glandular cells in an adhesive area on the mantle or tentacles. In Idiosepius this adhesive organ is restricted to the posterior part of the fin region on the dorsal mantle side and well developed in the adult stage. Two gland cell types could be distinguished, which produce different contents of the adhesive. During the embryonic development the same body area is occupied by the temporary hatching gland. The question arises, in which way the hatching gland degrades and is replaced by the adhesive gland. Ultrastructural analyses as well as computer tomography scans were performed to monitor the successive post hatching transformation in the mantle epithelium from hatching gland degradation to the formation of the adhesive organ. According to our investigations the hatching gland cells degrade within about 1 day after hatching by a type of programmed cell death and leave behind a temporary cellular gap in this area. First glandular cells of the adhesive gland arise 7 days after hatching and proceed evenly over the posterior mantle epithelium. In contrast, the accompanying reduction of a part of the dorsal mantle musculature is already established before hatching. The results demonstrate a distinct independence between the two gland systems and illustrate the early development of the adhesive organ as well as the corresponding modifications within the mantle.
Collapse
Affiliation(s)
- Norbert Cyran
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructural Research, University of Vienna, Althanstrasse 14, Vienna 1090, Austria.
| | - Waltraud Klepal
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructural Research, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Yannick Städler
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Jürg Schönenberger
- Department of Structural and Functional Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Janek von Byern
- Center for Integrative Bioinformatics Vienna, Max F Perutz Laboratories, Dr. Bohr-Gasse 9, Vienna 1030, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, Vienna 1200, Austria
| |
Collapse
|
223
|
Shoae-Hagh P, Rahimifard M, Navaei-Nigjeh M, Baeeri M, Gholami M, Mohammadirad A, Abdollahi M. Zinc oxide nanoparticles reduce apoptosis and oxidative stress values in isolated rat pancreatic islets. Biol Trace Elem Res 2014; 162:262-9. [PMID: 25183395 DOI: 10.1007/s12011-014-0113-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/19/2014] [Indexed: 11/24/2022]
Abstract
Although toxic effects of zinc oxide nanoparticles (ZnO NPs) have been previously studied, there are still controversies in terms of dose, size, shape, and affecting cells. By such a perspective, in this study, small size of ZnO NPs with a diameter of 10 nm at low concentrations was studied for any effect on the viability and function of isolated rat pancreatic islets. Islets of Langerhans were isolated and assessed for viability, functionality (insulin secretion), cytosolic reactive oxygen species (ROS), and apoptosis by flow cytometry. The LC50 of ZnO NPs was found at 1,400 ng/mL at the first phase of the study. A meaningful increase in viability of islets and insulin secretion in basal and even stimulated concentrations of glucose was found by ZnO NPs (70 ng/mL) with p < 0.001 and p < 0.05, respectively. Likewise, ZnO NPs in 70 ng/mL concentration decreased cytosolic ROS generation (p < 0.05). In the meantime, the percentage of early stage of apoptotic cells dropped down to 17 % (from 29 % of control). These results for the first time confirm that ZnO NPs are not only safe when used at dose of 70 ng/mL but also improve viability and function of pancreatic islets and meanwhile reduce oxidative stress and prevent cells from entering the apoptotic phase.
Collapse
|
224
|
Rakashanda S, Qazi AK, Majeed R, Andrabi SM, Hamid A, Sharma PR, Amin S. Plant-derived protease inhibitors LC-pi (Lavatera cashmeriana) inhibit human lung cancer cell proliferation in vitro. Nutr Cancer 2014; 67:156-66. [PMID: 25412192 DOI: 10.1080/01635581.2015.967876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to check the anticancer activity of purified protease inhibitors of Lavatera cashmeriana viz LC-pi I, II, III, and IV (Lavatera cashmeriana protease inhibitors) on A549 (lung) cell. It was found that LC-pi I and II significantly inhibited the proliferation of A549 cells with IC₅₀ value of 54 μg/ml and 38 μg/ml, respectively, whereas inhibition by LC-pi III and IV was negligible. LC-pi I and II were further found to inhibit formation of colonies in a dose-dependent manner. Also, both inhibitors were found to induce apoptosis causing chromatin condensation and DNA fragmentation, without loss of mitochondrial membrane potential. Cell cycle revealed a significant increase of subG₀/G₁ phase cells that are apoptotic cells. We also demonstrated a dose-dependent decrease in migration of A549 cells on cell migration assay by both inhibitors. Taken together, we demonstrate that LC-pi I and II inhibited proliferation through arresting cells before apoptosis, inducing apoptosis and inhibiting cell migration in human lung cancer cells, but the study warrants further investigation. Our results support the notion that plant protease inhibitors may have the potential to advance as chemopreventive agents.
Collapse
Affiliation(s)
- Syed Rakashanda
- a Department of Biochemistry , The University of Kashmir , Srinagar , India
| | | | | | | | | | | | | |
Collapse
|
225
|
Brazilian red propolis induces apoptosis-like cell death and decreases migration potential in bladder cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:639856. [PMID: 25530785 PMCID: PMC4235187 DOI: 10.1155/2014/639856] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/06/2014] [Indexed: 01/24/2023]
Abstract
Natural products continue to be an invaluable resource of anticancer drug discovery in recent years. Propolis is known for its biological activities such as antimicrobial and antitumor effects. This study assessed the effects of Brazilian red propolis (BRP) on apoptosis and migration potential in human bladder cancer cells. The effect of BRP ethanolic extract (25, 50, and 100 μg/mL) on 5637 cells was determined by MTT, LIVE/DEAD, and migration (scratch assay) assays. Apoptosis induction was investigated through flow cytometry and gene expression profile was investigated by qRT-PCR. Results showed cytotoxicity on MTT and LIVE/DEAD assays, with IC50 values of 95 μg/mL in 24 h of treatment. Cellular migration of 5637 cells was significantly inhibited through lower doses of BRP ethanolic extract (25 and 50 μg/mL). Flow cytometry analyses showed that BRP induced cytotoxicity through apoptosis-like mechanisms in 5637 cells and qRT-PCR revealed increased levels of Bax/Bcl-2 ratio, p53, AIF, and antioxidant enzymes genes. Data suggest that BRP may be a potential source of drugs to bladder cancer treatment.
Collapse
|
226
|
Chang SH, Lee HJ, Kang B, Yu KN, Minai-Tehrani A, Lee S, Kim SU, Cho MH. Methylmercury induces caspase-dependent apoptosis and autophagy in human neural stem cells. J Toxicol Sci 2014; 38:823-31. [PMID: 24213001 DOI: 10.2131/jts.38.823] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylmercury (MeHg) is a well-known human neurotoxic agent whose exposure sources are mainly environmental and aquatic-derived food. MeHg is reported to induce central nervous system disability. However, the exact mechanism of MeHg-induced neurotoxicity is still unknown. In this study, to investigate which cell death signaling pathway is related with MeHg-induced cytotoxicity, the effects of MeHg on apoptosis and autophagy were evaluated in HB1.F3 human neural stem cells (NSCs). Human NSCs were treated with 1 μM of MeHg for 48 hr and the effect of MeHg on cell signaling pathway was elucidated. MeHg inhibited Akt1/mTOR signaling that led to induction of caspase-dependent apoptosis and autophagy in the NSCs. Furthermore, retinoic acid (RA)-induced neuronal differentiation was inhibited by MeHg. Taken together, these results suggest that MeHg inhibits the differentiation of human NSCs by induction of caspase-dependent apoptosis and autophagy.
Collapse
Affiliation(s)
- Seung-Hee Chang
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Korea
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS-126 in models of ovarian cancer. Arch Gynecol Obstet 2014; 291:131-41. [PMID: 25115278 DOI: 10.1007/s00404-014-3389-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE Platinum resistance is the most crucial problem for treatment of ovarian cancer. There is a clinical need for new treatment strategies which overcome platinum resistance. Recently high level of AKT was shown to be involved in platinum resistance and furthermore in resistance against Natural-killer (NK)-cell mediated killing in ovarian cancer. METHODS Here, we investigate the ability of the PI3K/AKT inhibitor AEZS-126 alone and in combination with rapamycin to selectively target ovarian cancer cell proliferation and survival in vitro by MTT-assays and FACS based analysis. Furthermore the mechanism of cytotoxicity is analysed by FACS based assays. The NK-killing efficiency of ovarian cancer cells with and without pre-treatment with AEZS-126 was analysed. RESULTS AEZS-126 showed good anti-tumour activity in in vitro models of ovarian cancer. Main mechanism of cytotoxicity seems to be necroptosis which could be abrogated by co-incubation with necrostatin-1. Furthermore pre-treatment of platinum resistant cells with AEZS-126 resulted in an increased accessibility of these tumour cells for killing by NK-cells. CONCLUSION We demonstrated the highly efficient anti-tumour activity of AEZS-126 in in vitro models of ovarian cancer. Due to the good anti-tumour activity and the expected increase in NK-cell mediated killing even of platinum resistant tumour cells, AEZS-126 seems to be a promising candidate for clinical testing in ovarian cancer.
Collapse
|
228
|
Lee DH, Porta M, Jacobs DR, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev 2014; 35:557-601. [PMID: 24483949 PMCID: PMC5393257 DOI: 10.1210/er.2013-1084] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that travel with lipids and accumulate mainly in adipose tissue. Recent human evidence links low-dose POPs to an increased risk of type 2 diabetes (T2D). Because humans are contaminated by POP mixtures and POPs possibly have nonmonotonic dose-response relations with T2D, critical methodological issues arise in evaluating human findings. This review summarizes epidemiological results on chlorinated POPs and T2D, and relevant experimental evidence. It also discusses how features of POPs can affect inferences in humans. The evidence as a whole suggests that, rather than a few individual POPs, background exposure to POP mixtures-including organochlorine pesticides and polychlorinated biphenyls-can increase T2D risk in humans. Inconsistent statistical significance for individual POPs may arise due to distributional differences in POP mixtures among populations. Differences in the observed shape of the dose-response curves among human studies may reflect an inverted U-shaped association secondary to mitochondrial dysfunction or endocrine disruption. Finally, we examine the relationship between POPs and obesity. There is evidence in animal studies that low-dose POP mixtures are obesogenic. However, relationships between POPs and obesity in humans have been inconsistent. Adipose tissue plays a dual role of promoting T2D and providing a relatively safe place to store POPs. Large prospective studies with serial measurements of a broad range of POPs, adiposity, and clinically relevant biomarkers are needed to disentangle the interrelationships among POPs, obesity, and the development of T2D. Also needed are laboratory experiments that more closely mimic real-world POP doses, mixtures, and exposure duration in humans.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu 700-422, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science (D.-H.L.), Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Barcelona 08193, Spain; Division of Epidemiology (D.R.J.), School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455; Department of Nutrition (D.R.J.), University of Oslo, 0313 Oslo, Norway; and University of Massachusetts-Amherst (L.N.V.), School of Public Health, Division of Environmental Health Sciences, Amherst, Massachusetts 01003
| | | | | | | |
Collapse
|
229
|
Ghosh S, Bishayee K, Khuda-Bukhsh AR. Graveoline isolated from ethanolic extract of Ruta graveolens triggers apoptosis and autophagy in skin melanoma cells: a novel apoptosis-independent autophagic signaling pathway. Phytother Res 2014; 28:1153-62. [PMID: 24343999 DOI: 10.1002/ptr.5107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/21/2013] [Accepted: 11/25/2013] [Indexed: 11/08/2022]
Abstract
Anti-cancer drugs generally kill cancer cells by apoptosis but fail to do so when they become resistant and escape apoptosis signals. But these resistant cells can still be killed by autophagy. Therefore, drugs having both apoptotic and autophagic abilities are solicited in effective cancer management. In search of such a drug, we examined the efficacy of graveoline, a bioactive compound isolated from Ruta graveolens on skin melanoma A375 cells through the use of specific signaling cascades and their inhibitors. Cytotoxicity of graveoline was tested by conducting MTT assay. Induction of autophagy and apoptosis was checked. Expression of related proteins and their localization were studied by conducting immunoblot assay and through confocal microscopy, respectively. We found graveoline-induced Beclin-1 associated autophagy in A375 cells and 3-methyladenine, an inhibitor of autophagy did not affect apoptosis. Conversely, caspase inhibitor that blocked apoptosis did not affect autophagic cell death, suggesting thereby that these two were independent events. Use of reactive oxygen species (ROS) scavengers inhibited cell death, but blocking autophagy did not affect graveoline-induced ROS generation, suggesting that ROS generation ensued autophagy. Thus, graveoline-induced both apoptotic and autophagic cell death in skin melanoma cells, a desirable quality in effective anti-cancer drug design.
Collapse
Affiliation(s)
- Samrat Ghosh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | | | | |
Collapse
|
230
|
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn Ther 2014; 2:1-23. [PMID: 25048553 DOI: 10.1016/s1572-1000(05)00030-x] [Citation(s) in RCA: 503] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) has been known for over a hundred years, but is only now becoming widely used. Originally developed as a tumor therapy, some of its most successful applications are for non-malignant disease. In the second of a series of three reviews, we will discuss the mechanisms that operate in PDT on a cellular level. In Part I [Castano AP, Demidova TN, Hamblin MR. Mechanism in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 2004;1:279-93] it was shown that one of the most important factors governing the outcome of PDT, is how the photosensitizer (PS) interacts with cells in the target tissue or tumor, and the key aspect of this interaction is the subcellular localization of the PS. PS can localize in mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes. An explosion of investigation and explorations in the field of cell biology have elucidated many of the pathways that mammalian cells undergo when PS are delivered in tissue culture and subsequently illuminated. There is an acute stress response leading to changes in calcium and lipid metabolism and production of cytokines and stress proteins. Enzymes particularly, protein kinases, are activated and transcription factors are expressed. Many of the cellular responses are centered on mitochondria. These effects frequently lead to induction of apoptosis either by the mitochondrial pathway involving caspases and release of cytochrome c, or by pathways involving ceramide or death receptors. However, under certain circumstances cells subjected to PDT die by necrosis. Although there have been many reports of DNA damage caused by PDT, this is not thought to be an important cell-death pathway. This mechanistic research is expected to lead to optimization of PDT as a tumor treatment, and to rational selection of combination therapies that include PDT as a component.
Collapse
Affiliation(s)
- Ana P Castano
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| | - Tatiana N Demidova
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Cellular, Molecular and Developmental Biology, Tufts University, USA
| | - Michael R Hamblin
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| |
Collapse
|
231
|
Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis 2014; 5:e1325. [PMID: 25032848 PMCID: PMC4123081 DOI: 10.1038/cddis.2014.287] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranscriptional regulation of gene expression, and exerting regulatory roles in plethora of biological processes. In recent years, miRNAs have received increased attention for their crucial role in health and disease, including in cardiovascular disease. This review summarizes the role of miRNAs in regulation of cardiac cell death/cell survival pathways, including apoptosis, autophagy and necrosis. It is envisaged that these miRNAs may explain the mechanisms behind the pathogenesis of many cardiac diseases, and, most importantly, may provide new avenues for therapeutic intervention that will limit cardiomyocyte cell death before it irreversibly affects cardiac function. Through an in-depth literature analysis coupled with integrative bioinformatics (pathway and synergy analysis), we dissect here the landscape of complex relationships between the apoptosis-regulating miRNAs in the context of cardiomyocyte cell death (including regulation of autophagy–apoptosis cross talk), and examine the gaps in our current understanding that will guide future investigations.
Collapse
|
232
|
Repnik U, Hafner Česen M, Turk B. Lysosomal membrane permeabilization in cell death: concepts and challenges. Mitochondrion 2014; 19 Pt A:49-57. [PMID: 24984038 DOI: 10.1016/j.mito.2014.06.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
Late endocytic compartments include late endosomes, lysosomes and hybrid organelles. In the acidic lumen, cargo material derived from endocytosed and phagocytosed extracellular material and autophagy-derived intracellular material is degraded. In the event of lysosomal membrane permeabilization (LMP), the function of endo/lysosomal compartment is affected and the luminal contents are released into the cytosol to various extents. LMP can be a result of osmotic lysis or direct membranolytic activity of the compounds that accumulate in the lumen of endo/lysosomes. In addition to several synthetic compounds, such as dipeptide methyl esters and lysosomotropic detergents, endogenous agents that can cause LMP include ROS and lipid metabolites such as sphingosine and phosphatidic acid. Depending on the cell type and the dose, LMP can initiate the lysosomal apoptotic pathway, pyroptosis or necrosis. LMP can also amplify cell death signaling that was initiated outside the endocytic compartment, and hamper cell recovery via autophagy. However, mechanisms that connect LMP with cell death signaling are poorly understood, with the exception of the proteolytic activation of Bid by aspartic cathepsin D and cysteine cathepsins. Determination of LMP in a cell model system is methodologically challenging. Even more difficult is to prove that LMP is the primary event leading to cell death. Nevertheless, LMP may prove to be a valuable approach in therapy, either as a trigger of cell death or as a mechanism of therapeutic drug release in the case of delivery systems that target the endocytic pathway.
Collapse
Affiliation(s)
- Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Maruša Hafner Česen
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; Center of Excellence CIPKeBiP, Jamova 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|
233
|
Endogenous XIAP, but not other members of the inhibitory apoptosis protein family modulates cerebellar granule neurons survival. Int J Dev Neurosci 2014; 37:26-35. [PMID: 24955869 DOI: 10.1016/j.ijdevneu.2014.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/15/2014] [Accepted: 06/15/2014] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death plays a critical role during cerebellar development. In particular, it has been shown in vivo and in vitro that developing cerebellar granule neurons (CGN) die apoptotically. Apoptosis involves a series of morphological changes and the activation of caspases. Inhibitor of apoptosis proteins (IAPs) is implicated in negative regulation of caspase activation and apoptotic cell death. Although apoptotic death of CGN has been extensively studied, there is no information about the role of IAPs in the developing cerebellum. Here, we studied the participation of some members of IAPs in the survival of the developing rat CGN in culture and under physiological conditions. Under these conditions, we found a differential expression pattern of cIAP-1, cIAP-2, XIAP and survivin during cerebellar development in an age-dependent manner, highlighting the significant increase of XIAP levels. We also detected an interaction between XIAP and caspase 3 at postnatal day (P) 12 and 16. On the other hand, we found a significant decrease of XIAP levels in cultured CGN maintained in chronic potassium deprivation, an apoptotic condition, suggesting a possible relationship between XIAP levels and neuronal viability. Under these conditions, we also detected the interaction of XIAP with active caspase-3. The down-regulation of XIAP in CGN cultured under survival conditions (chronic potassium depolarization) induced a reduction of cell viability and an increment of apoptotic cells. These findings support the idea that IAPs could be involved in the survival of CGN and that XIAP might be critical for neuronal survival in cerebellar development and during chronic depolarization in cultured CGN through a mechanism involving caspase inhibition.
Collapse
|
234
|
Schultze E, Ourique A, Yurgel VC, Begnini KR, Thurow H, de Leon PMM, Campos VF, Dellagostin OA, Guterres SR, Pohlmann AR, Seixas FK, Beck RCR, Collares T. Encapsulation in lipid-core nanocapsules overcomes lung cancer cell resistance to tretinoin. Eur J Pharm Biopharm 2014; 87:55-63. [DOI: 10.1016/j.ejpb.2014.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 01/26/2014] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
|
235
|
Iakimova E, Atanassov A, Woltering E. Chemical- and Pathogen-Induced Programmed Cell Death in Plants. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2005.10817292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
236
|
Betulinic acid-induced mitochondria-dependent cell death is counterbalanced by an autophagic salvage response. Cell Death Dis 2014; 5:e1169. [PMID: 24722294 PMCID: PMC5424116 DOI: 10.1038/cddis.2014.139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 12/12/2022]
Abstract
Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid that exerts potent anti-cancer effects in vitro and in vivo. It was shown to induce apoptosis via a direct effect on mitochondria. This is largely independent of proapoptotic BAK and BAX, but can be inhibited by cyclosporin A (CsA), an inhibitor of the permeability transition (PT) pore. Here we show that blocking apoptosis with general caspase inhibitors did not prevent cell death, indicating that alternative, caspase-independent cell death pathways were activated. BetA did not induce necroptosis, but we observed a strong induction of autophagy in several cancer cell lines. Autophagy was functional as shown by enhanced flux and degradation of long-lived proteins. BetA-induced autophagy could be blocked, just like apoptosis, with CsA, suggesting that autophagy is activated as a response to the mitochondrial damage inflicted by BetA. As both a survival and cell death role have been attributed to autophagy, autophagy-deficient tumor cells and mouse embryo fibroblasts were analyzed to determine the role of autophagy in BetA-induced cell death. This clearly established BetA-induced autophagy as a survival mechanism and indicates that BetA utilizes an as yet-undefined mechanism to kill cancer cells.
Collapse
|
237
|
Ovarian basaloid carcinoma with shadow cell differentiation. Case Rep Pathol 2014; 2014:391947. [PMID: 24639909 PMCID: PMC3929990 DOI: 10.1155/2014/391947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022] Open
Abstract
So-called shadow cell differentiation (SCD) is typical for pilomatrixoma and other skin lesions with follicular differentiation, but it was rarely described also in some visceral carcinomas. We report a case of ovarian basaloid carcinoma with SCD. The tumor presented as a 14 cm ovarian mass in a 45-year-old woman, and therefore the adnexectomy and hysterectomy were performed. The tumor was of high stage. Multiple metastases were found in the liver, retroperitoneal and mediastinal lymph nodes, and the lung. Histologically, the tumor showed a pattern of high-grade basaloid carcinoma with numerous shadow cells. Extensive histologic examination did not reveal any glandular or preexisting teratoma component. Immunohistochemically, the tumor expressed markers of squamous cell differentiation, such as p63, cytokeratin 5/6, and high-molecular-weight keratin. Cytokeratin 7 and CA125 were positive in scattered cells of the lesion. Estrogen and progesterone receptor, vimentin, and p53 were negative. Beta-catenin showed nuclear and cytoplasmic positivity, indicating possible tumor proliferation/differentiation via Wnt signaling pathway. To our knowledge, SCD in basaloid carcinoma of the ovary was not described before. In addition to the description of the case, we review the literature on SCD in visceral carcinomas.
Collapse
|
238
|
Comer DM, Elborn JS, Ennis M. Inflammatory and cytotoxic effects of acrolein, nicotine, acetylaldehyde and cigarette smoke extract on human nasal epithelial cells. BMC Pulm Med 2014; 14:32. [PMID: 24581246 PMCID: PMC3945717 DOI: 10.1186/1471-2466-14-32] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 02/25/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cigarette smoke induces a pro-inflammatory response in airway epithelial cells but it is not clear which of the various chemicals contained within cigarette smoke (CS) should be regarded as predominantly responsible for these effects. We hypothesised that acrolein, nicotine and acetylaldehyde, important chemicals contained within volatile cigarette smoke in terms of inducing inflammation and causing addiction, have immunomodulatory effects in primary nasal epithelial cell cultures (PNECs). METHODS PNECs from 19 healthy subjects were grown in submerged cultures and were incubated with acrolein, nicotine or acetylaldehyde prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide (PA LPS). Experiments were repeated using cigarette smoke extract (CSE) for comparison. IL-8 was measured by ELISA, activation of NF-κB by ELISA and Western blotting, and caspase-3 activity by Western blotting. Apoptosis was evaluated using Annexin-V staining and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method. RESULTS CSE was pro-inflammatory after a 24 h exposure and 42% of cells were apoptotic or necrotic after this exposure time. Acrolein was pro-inflammatory for the PNEC cultures (30 μM exposure for 4 h inducing a 2.0 fold increase in IL-8 release) and also increased IL-8 release after stimulation with PA LPS. In contrast, nicotine had anti-inflammatory properties (0.6 fold IL-8 release after 50 μM exposure to nicotine for 24 h), and acetylaldehyde was without effect. Acrolein and nicotine had cellular stimulatory and anti-inflammatory effects respectively, as determined by NF-κB activation. Both chemicals increased levels of cleaved caspase 3 and induced cell death. CONCLUSIONS Acrolein is pro-inflammatory and nicotine anti-inflammatory in PNEC cultures. CSE induces cell death predominantly by apoptotic mechanisms.
Collapse
Affiliation(s)
- David M Comer
- Centre for Infection and Immunity, Health Sciences Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Respiratory Department, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK
| | - Joseph Stuart Elborn
- Centre for Infection and Immunity, Health Sciences Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Respiratory Department, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK
| | - Madeleine Ennis
- Centre for Infection and Immunity, Health Sciences Building, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
239
|
Machado SM, Pacheco-Soares C, Marciano FR, Lobo AO, da Silva NS. Photodynamic therapy in the cattle protozoan Tritrichomonas foetus cultivated on superhydrophilic carbon nanotube. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 36:180-6. [DOI: 10.1016/j.msec.2013.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 11/21/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
240
|
Walsh CM. Grand challenges in cell death and survival: apoptosis vs. necroptosis. Front Cell Dev Biol 2014; 2:3. [PMID: 25364712 PMCID: PMC4206982 DOI: 10.3389/fcell.2014.00003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Craig M Walsh
- Department of Molecular Biology and Biochemistry, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine CA, USA
| |
Collapse
|
241
|
Ahamed M, Alhadlaq HA. Nickel nanoparticle-induced dose-dependent cyto-genotoxicity in human breast carcinoma MCF-7 cells. Onco Targets Ther 2014; 7:269-80. [PMID: 24627639 PMCID: PMC3931666 DOI: 10.2147/ott.s58044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the widespread application of nickel nanoparticles (Ni NPs) in industrial, commercial, and biomedical fields, their response to human cells has not been clearly elucidated. In the study reported here, Ni NPs with a 28 nm diameter were used to study their interaction with human breast carcinoma (MCF-7) cells. Dose-dependent decreased cell viability and damaged cell membrane integrity showed the cytotoxic potential of the Ni NPs. We further found that Ni NPs induce oxidative stress in a dose-dependent manner, as evidenced by glutathione depletion and reactive oxygen species (ROS) generation. Comet assay indicated the dose-dependent induction of DNA damage due to Ni NP exposure. The level of messenger RNA, as well as activity of caspase-3 enzyme, was higher in MCF-7 cells exposed to Ni NPs than in control cells. Moreover, we observed statistically significant correlations of ROS with cell viability (R2=0.984), DNA damage (% tail DNA) (R2=0.982), and caspase-3 enzyme activity (R2=0.991). To the best of our knowledge, this is the first study on human breast cancer cells to have shown the cyto-genotoxicity of Ni NPs, which seems to be mediated through ROS.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia ; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
242
|
The proteome of the differentiating mesencephalic progenitor cell line CSM14.1 in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:351821. [PMID: 24592386 PMCID: PMC3925624 DOI: 10.1155/2014/351821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022]
Abstract
The treatment of Parkinson's disease by transplantation of dopaminergic (DA) neurons from human embryonic mesencephalic tissue is a promising approach. However, the origin of these cells causes major problems: availability and standardization of the graft. Therefore, the generation of unlimited numbers of DA neurons from various types of stem or progenitor cells has been brought into focus. A source for DA neurons might be conditionally immortalized progenitor cells. The temperature-sensitive immortalized cell line CSM14.1 derived from the mesencephalon of an embryonic rat has been used successfully for transplantation experiments. This cell line was analyzed by unbiased stereology of cell type specific marker proteins and 2D-gel electrophoresis followed by mass spectrometry to characterize the differentially expressed proteome. Undifferentiated CSM14.1 cells only expressed the stem cell marker nestin, whereas differentiated cells expressed GFAP or NeuN and tyrosine hydroxylase. An increase of the latter cells during differentiation could be shown. By using proteomics an explanation on the protein level was found for the observed changes in cell morphology during differentiation, when CSM14.1 cells possessed the morphology of multipolar neurons. The results obtained in this study confirm the suitability of CSM14.1 cells as an in vitro model for the study of neuronal and dopaminergic differentiation in rats.
Collapse
|
243
|
Kamal A, Faazil S, Malik MS. Apoptosis-inducing agents: a patent review (2010 - 2013). Expert Opin Ther Pat 2014; 24:339-54. [PMID: 24405450 DOI: 10.1517/13543776.2014.877445] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Apoptosis is an important and extensively studied pathway of programmed cell death, which is central to different physiological processes. Varied pathological implications, not limited to cancer and neurodegenerative diseases, occur if a slight dysfunction happens in the intricate apoptotic pathway. Therefore, it has become one of the prime molecular target for drug discovery and development particularly for diseases like cancer. AREAS COVERED As a promising drug target in the development of cancer chemotherapeutics, apoptosis has received extensive attention and hundreds of thousands of reports have been published. In the present review, the patents filed/published on apoptosis-inducing agents during the period of 2010 - 2013 have been compiled and discussed. EXPERT OPINION Most of the chemotherapeutics employed in cancer treatment leads to suppression of tumor via cell death irrespective of the mechanism of action or molecular target. No effective drug has emerged from the direct activation/inhibition of apoptotic regulatory proteins and of late some potential drugs, such as oblimersen, navitoclax, etc., targeting Bcl-2 family of proteins are under clinical trials. However, most of these molecules lacks efficacy accompanied with significant toxicity and resistance. Concerted efforts are required such as combination therapies and identification of newer selective inhibitor to overcome these limitations.
Collapse
Affiliation(s)
- Ahmed Kamal
- CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry & Pharmacology , Tarnaka, Hyderabad 500007 , India +91 402 719 3157 ; +91 402 719 3189 ;
| | | | | |
Collapse
|
244
|
Abstract
Cell death by apoptosis plays a critical role in regulating the subtle balance between cell death and proliferation to maintain tissue homeostasis. Accordingly, tipping the balance in either direction may cause human disease. Too little cell death may promote tumor formation and progression. In addition, killing of cancer cells by current therapies is largely due to induction of apoptosis in tumor cells. Since a hallmark of human cancers is their resistance to apoptosis, there is a demand to develop novel strategies that restore the apoptotic machinery in order to overcome cancer resistance. Inhibitor of apoptosis proteins (IAPs) block apoptosis at the core of the apoptotic machinery by inhibiting caspases. Elevated levels of IAPs are found in many human cancers and have been associated with poor prognosis. Recent insights into the role of IAPs have provided the basis for various exciting developments that aim to modulate the expression or function of IAPs in human cancers. Targeting IAPs (e.g., by antisense approaches or small-molecule inhibitors) presents a promising novel approach to either directly trigger apoptosis or to potentiate the efficacy of cytotoxic therapies in cancer cells. Thus, inhibition of IAPs such as X chromosome-linked IAP may prove to be a successful strategy to overcome apoptosis resistance of human cancers that deserves further exploitation.
Collapse
Affiliation(s)
- Simone Fulda
- University Children's Hospital, Eythstr. 24-89075, Ulm, Germany.
| |
Collapse
|
245
|
Romoli S, Migliorini A. Analysis of nucleic acid-induced nonimmune cell death in vitro. Methods Mol Biol 2014; 1169:77-86. [PMID: 24957231 DOI: 10.1007/978-1-4939-0882-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Foreign nucleic acids are recognized by germ-line-encoded receptors expressed in immune and nonimmune cells. Activation of the nucleic acid-specific pattern recognition receptors by foreign nucleic acid promotes production of inflammatory cytokines (mostly type I IFNs) and at the later stage leads to cell death. Here, we describe reliable and simple methods to quantify cell death caused by nucleic acid recognition. Additionally, we report two different methods to discriminate between two cell death modalities: apoptosis and necrosis.
Collapse
Affiliation(s)
- Simone Romoli
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Schillerstr. 42, 80336, Munich, Germany
| | | |
Collapse
|
246
|
Yang CB, Pei WJ, Zhao J, Cheng YY, Zheng XH, Rong JH. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. Acta Pharmacol Sin 2014; 35:113-23. [PMID: 24335836 DOI: 10.1038/aps.2013.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/29/2013] [Indexed: 12/13/2022]
Abstract
AIM The purpose of the present study was to investigate the anticancer activity of bornyl caffeate in the human breast cancer cell line MCF-7. METHODS The cell viability was determined using the MTT assay, and apoptosis was initially defined by monitoring the morphology of the cell nuclei and staining an early apoptotic biomarker with Annexin V-FITC. The mitochondrial membrane potential was visualized by JC-1 under fluorescence microscopy, whereas intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. RESULTS Bornyl caffeate induced apoptosis in MCF-7 cells in a dose- and time-dependent manner. Consistently, bornyl caffeate increased Bax and decreased Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and the activation of the mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). Antioxidants attenuated the activation of MAP kinase p38 but barely affected the activation of JNK. Importantly, the cytotoxicity of bornyl caffeate was partially attenuated by scavenging ROS and inhibited by MAP kinases and caspases. CONCLUSION The present study demonstrated that bornyl caffeate induced apoptosis in the cancer cell line MCF-7 via activating the ROS- and JNK-mediated pathways. Thus, bornyl caffeate may be a potential anticancer lead compound.
Collapse
|
247
|
Noori HR. Examples of Hysteresis Phenomena in Biology. SPRINGERBRIEFS IN APPLIED SCIENCES AND TECHNOLOGY 2014. [DOI: 10.1007/978-3-642-38218-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
248
|
Nelis H, D'Herde K, Goossens K, Vandenberghe L, Leemans B, Forier K, Smits K, Braeckmans K, Peelman L, Van Soom A. Equine oviduct explant culture: a basic model to decipher embryo–maternal communication. Reprod Fertil Dev 2014; 26:954-66. [DOI: 10.1071/rd13089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/18/2013] [Indexed: 12/27/2022] Open
Abstract
Equine embryos remain for 6 days in the oviduct and thus there is a need for an in vitro model to study embryo–oviductal interactions in the horse, since this subtle way of communication is very difficult to analyse in vivo. Until now, no equine oviduct explant culture model has been characterised both morphologically and functionally. Therefore, we established a culture system for equine oviduct explants that maintained epithelial morphology during 6 days of culture, as revealed by light microscopy and transmission electron microscopy. We demonstrated the presence of highly differentiated, tall columnar, pseudostratified epithelium with basal nuclei, numerous nucleoli, secretory granules and apical cilia, which is very similar to the in vivo situation. Both epithelium and stromal cells originating from the lamina propria are represented in the explants. Moreover, at least 98% of the cells remained membrane intact and fewer than 2% of the cells were apoptotic after 6 days of culture. Although dark-cell degeneration, which is a hypoxia-related type of cell death, was observed in the centre of the explants, quantitative real-time PCR failed to detect upregulation of the hypoxia-related marker genes HIF1A, VEGFA, uPA, GLUT1 and PAI1. Since the explants remained morphologically and functionally intact and since the system is easy to set up, it appears to be an excellent tool for proteome, transcriptome and miRNome analysis in order to unravel embryo–maternal interactions in the horse.
Collapse
|
249
|
Nishanth Kumar S, Dileep C, Mohandas C, Nambisan B, Ca J. Cyclo(d-Tyr-d-Phe): a new antibacterial, anticancer, and antioxidant cyclic dipeptide fromBacillussp. N strain associated with a rhabditid entomopathogenic nematode. J Pept Sci 2013; 20:173-85. [DOI: 10.1002/psc.2594] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Affiliation(s)
- S. Nishanth Kumar
- Division of Crop Protection/Division of Crop Utilization; Central Tuber Crops Research Institute; Sreekariyam Thiruvananthapuram 695017 India
| | - C. Dileep
- Department of Botany; SD College; Alappuzha 688003 Kerala India
| | - C. Mohandas
- Division of Crop Protection/Division of Crop Utilization; Central Tuber Crops Research Institute; Sreekariyam Thiruvananthapuram 695017 India
| | - Bala Nambisan
- Division of Crop Protection/Division of Crop Utilization; Central Tuber Crops Research Institute; Sreekariyam Thiruvananthapuram 695017 India
| | - Jayaprakas Ca
- Division of Crop Protection/Division of Crop Utilization; Central Tuber Crops Research Institute; Sreekariyam Thiruvananthapuram 695017 India
| |
Collapse
|
250
|
Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells. Mar Drugs 2013; 11:5063-86. [PMID: 24351905 PMCID: PMC3877903 DOI: 10.3390/md11125063] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023] Open
Abstract
Recently, much attention has been given to discovering natural compounds as potent anti-cancer candidates. In the present study, the anti-cancer effects of fumigaclavine C, isolated from a marine-derived fungus, Aspergillus fumigatus, was evaluated in vitro. In order to investigate the impact of fumigaclavine C on inhibition of proliferation and induction of apoptosis in breast cancer, MCF-7 cells were treated with various concentrations of fumigaclavine C, and fumigaclavine C showed significant cytotoxicity towards MCF-7 cells. Anti-proliferation was analyzed via cell mobility and mitogen-activated protein kinase (MAPK) signaling pathway. In addition, fumigaclavine C showed potent inhibition on the protein and gene level expressions of MMP-2, -9 in MCF-7 cells which were manifested in Western blot and reverse transcription polymerase chain reaction (RT-PCR) results. The apoptosis induction abilities of the fumigaclvine C was studied by analyzing the expression of apoptosis related proteins, cell cycle analysis, DNA fragmentation and molecular docking studies. It was found that fumigaclavine C fragmented the MCF-7 cell DNA and arrested the cell cycle by modulating the apoptotic protein expressions. Moreover, fumigaclavine C significantly down-regulated the NF-kappa-B cell survival pathway. Collectively, data suggest that fumigaclavine C has a potential to be developed as a therapeutic candidate for breast cancer.
Collapse
|