201
|
Benevolensky D, Moraru II, Watras J. Micromolar calcium decreases affinity of inositol trisphosphate receptor in vascular smooth muscle. Biochem J 1994; 299 ( Pt 3):631-6. [PMID: 8192651 PMCID: PMC1138067 DOI: 10.1042/bj2990631] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanism by which Ca2+ inhibits InsP3-induced Ca2+ release from sarcoplasmic reticulum of vascular smooth muscle was investigated. InsP3 binding to sarcoplasmic-reticulum vesicles from dog aortic smooth muscle was inhibited by 51 +/- 6% by 2 microM Ca2+ in the presence of 10 nM [3H]InsP3. Scatchard analysis indicated the presence of two InsP3-binding sites in the absence of Ca2+ (Kd = 2.5 +/- 0.9 and 49 +/- 8 nM InsP3), though the low-affinity site was more prevalent (representing 92 +/- 3% of the total number of binding sites). Ca2+ (2 microM) did not alter InsP3 binding to the high-affinity site (P > 0.05), but increased the Kd of the low-affinity site 3-fold (Kd = 155 +/- 4 nM InsP3; P < 0.001). The possibility that the apparent decrease in InsP3 affinity was caused by Ca(2+)-dependent activation of an endogenous phospholipase C could be excluded, because the Ca(2+)-dependent inhibition of InsP3 binding was completely reversible and insensitive to an inhibitor of phospholipase C. Moreover, Ca2+ did not inhibit InsP3 binding to InsP3 receptor partially purified by heparin-Sepharose chromatography, though another fraction (devoid of InsP3 receptor) restored Ca(2+)-sensitivity of the partially purified InsP3 receptor. Thus Ca2+ binding to a Ca(2+)-sensitizing factor associated with the InsP3 receptor decreases the affinity of the receptor complex for InsP3. This Ca(2+)-sensitizing factor may provide a negative-feedback mechanism for regulating the rise in cytosolic Ca2+ concentration in vascular smooth muscle after hormone activation of the phosphoinositide cascade.
Collapse
MESH Headings
- Animals
- Binding Sites
- Calcium/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Dogs
- Enzyme Activation
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- D Benevolensky
- Department of Medicine, University of Connecticut Health Center, Farmington 06030
| | | | | |
Collapse
|
202
|
Abstract
Ca2+ is a critical second messenger in virtually all cell types, including the various epithelial cell types within the digestive system. When measured in cell populations, Ca2+ signals usually appear as a single transient or prolonged elevation. In individual epithelial cells, signaling patterns often vary from cell to cell and may contain more complex features such as Ca2+ oscillations. Subcellular Ca2+ signals show a further level of complexity, such as Ca2+ waves, and may relate to the polarized structure and function of epithelial cells. The approaches to detect cytosolic Ca2+ signals, the patterns and mechanisms of Ca2+ signaling, and the role of such signals in regulating the function of polarized epithelium within the gastrointestinal tract, pancreas, and liver are reviewed in this report.
Collapse
Affiliation(s)
- M H Nathanson
- Liver Study Unit, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
203
|
Yoshida N, Shigemoto T, Sugai T, Ohmori H. The role of inositol trisphosphate on ACh-induced outward currents in bullfrog saccular hair cells. Brain Res 1994; 644:90-100. [PMID: 8032954 DOI: 10.1016/0006-8993(94)90351-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acetylcholine (ACh) is considered as the most likely candidate for a neurotransmitter of the efferent synapse onto hair cell. In this paper, the nature of this cholinergic receptor mechanism on dissociated bullfrog saccular hair cell was examined by using whole cell recording and Ca2+ sensitive fluorophotometric technique. Both the ACh-induced current and the increase of [Ca2+]i were observed in an oscillatory manner, and were the largest around the basal part of the cell where the efferent synapse is thought to make a contact with the membrane. The reversal potential of ACh-induced current indicated that ACh activated a K+ conductance. The ACh-induced current was reversibly blocked by atropine, d-tubocurarine (dTC), apamin, tetraethylammonium (TEA) and quinine. Neither muscarine nor nicotine mimicked the ACh-induced current. When GTP gamma S was injected into a hair cell, the first ACh application induced an outward current of transient kinetics, but in subsequent trials ACh-induced current lost its decay phase. Intracellularly injected D-myo-inositol 1,4,5-trisphosphate (InsP3) generated outward currents. Intracellularly injected heparin suppressed ACh-induced currents, and lithium (Li+) increased ACh-induced currents. These results indicate that ACh activates a receptor coupled with a guanine nucleotide binding protein (G-protein) which triggers metabolic cascades of InsP3 and Ca2+ leading to the activation of the Ca(2+)-activated K+ channel.
Collapse
Affiliation(s)
- N Yoshida
- Department of Physiology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | |
Collapse
|
204
|
Tanaka Y, Tashjian A. Thimerosal potentiates Ca2+ release mediated by both the inositol 1,4,5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78117-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
205
|
Luminal communication between intracellular calcium stores modulated by GTP and the cytoskeleton. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34058-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
206
|
Tsukioka M, Iino M, Endo M. pH dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in permeabilized smooth muscle cells of the guinea-pig. J Physiol 1994; 475:369-75. [PMID: 8006822 PMCID: PMC1160390 DOI: 10.1113/jphysiol.1994.sp020078] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The dependence on pH of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied in saponin-skinned smooth muscle cells from guinea-pig portal vein, using the indicator fura-2 to monitor Ca2+ release. 2. Increasing pH between 6.7 and 7.3 enhanced the rate of IP3-induced Ca2+ release at all the Ca2+ concentrations above 30 nM without changing the bell-shaped dependence of the Ca2+ release rate on Ca2+ concentration with a peak near 300 nM. 3. The ascending limb of the biphasic Ca2+ dependence was shifted slightly toward the lower Ca2+ concentration at pH 7.3, suggesting an increase in the Ca2+ sensitivity of IP3-induced Ca2+ release at the higher pH. 4. With the elevation in pH from 6.7 to 7.3 at 100 nM Ca2+, about 7-fold higher IP3 concentration was required to release half of the Ca2+ in the store within 15 s. This pH-dependent change in the IP3 sensitivity was smaller at 1 microM Ca2+ and was indiscernible in the absence of Ca2+. 5. These results suggest that H+ may inhibit binding of IP3 and Ca2+ to the modulator sites of the Ca2+ release mechanism. However, these effects on the binding sites may not fully explain the complex effect of pH, and there may be pH-dependent step(s) involved in the gating mechanism of IP3 channels. The present study demonstrates the importance of pH as a modulator of IP3-induced Ca2+ release.
Collapse
Affiliation(s)
- M Tsukioka
- Department of Pharmacology, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
207
|
Goldin SM, Finch EA, Reddy NL, Hu LY, Subbarao K. Exocytosis, calcium oscillations, and novel glutamate release blockers as resolved by rapid superfusion. Ann N Y Acad Sci 1994; 710:271-86. [PMID: 7908785 DOI: 10.1111/j.1749-6632.1994.tb26635.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S M Goldin
- Cambridge NeuroScience, Massachusetts 02139
| | | | | | | | | |
Collapse
|
208
|
Missiaen L, De Smedt H, Parys J, Casteels R. Co-activation of inositol trisphosphate-induced Ca2+ release by cytosolic Ca2+ is loading-dependent. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37273-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
209
|
Yagodin SV, Holtzclaw L, Sheppard CA, Russell JT. Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes. JOURNAL OF NEUROBIOLOGY 1994; 25:265-80. [PMID: 8195790 DOI: 10.1002/neu.480250307] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In astrocytes in primary culture, activation of neurotransmitter receptors results in intracellular calcium signals that propagate as waves across the cell. Similar agonist-induced calcium waves have been observed in astrocytes in organotypic cultures in response to synaptic activation. By using primary cultured astrocytes grown on glass coverslips, in conjunction with fluorescence microscopy we have analyzed agonist-induced Ca2+ wave initiation and propagation in individual cells. Both norepinephrine and glutamate elicited Ca2+ signals which were initiated focally and discretely in one region of the cell, from where the signals spread as waves along the entire length of the cell. Analysis of the wave propagation and the waveform revealed that the propagation was nonlinear with one or more focal loci in the cytoplasm where the wave was regeneratively amplified. These individual loci appear as discrete focal areas 7-15 microns in diameter and having intrinsic oscillatory properties that differ from each other. The wave initiation locus and the different amplification loci remained invariant in space during the course of the experiment and supported an identical spatiotemporal pattern of signalling in any given cell in response to multiple agonist applications and when stimulated with different agonists which are coupled via InsP3. Cytoplasmic Ca2+ concentration at rest was consistently higher (17 +/- 4 nM, mean +/- S.E.M.) in the wave initiation locus compared with the rest of the cytoplasm. The nonlinear propagation results from significant changes in signal rise times, amplitudes, and wave velocity in cellular regions of active loci. Analysis of serial slices across the cell revealed that the rise times and amplitudes of local signals were as much as three- to fourfold higher in the loci of amplification. A phenomenon of hierarchy in local amplitudes of the signal in the amplification loci was observed with the wave initiation locus having the smallest and the most distal locus having the largest amplitude. By this mechanism locally very high concentrations of Ca2+ are achieved in strategic locations in the cell in response to receptor activation. While the average wave velocity calculated over the length of the cell was 10-15 microns/s, in the active loci rates as high as 40 microns/s were measured. Wave velocity was fivefold lower in regions of the cell separating active loci. The differences in the intrinsic oscillatory periods give rise to local Ca2+ waves that show the properties of collision and annihilation. It is hypothesized that the wave front provokes regenerative Ca2+ release from specialized areas in the cell where the endoplasmic reticulum is endowed with higher density of InsP3 receptor channels.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S V Yagodin
- Section on Neuronal Secretory Systems, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
210
|
Ellis-Davies GC, Kaplan JH. Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci U S A 1994; 91:187-91. [PMID: 8278362 PMCID: PMC42911 DOI: 10.1073/pnas.91.1.187] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The synthesis and properties of a caged calcium are described. The compound is an ortho-nitrophenyl derivative of EGTA. It is synthesized in 10 steps and with 24% overall yield. The photosensitive chelator, nitrophenyl-EGTA, has a Kd value for Ca2+ of 80 nM and for Mg2+ of 9 mM. Upon exposure to UV radiation (approximately 350 nm), the chelator is cleaved, yielding iminodiacetic acid photoproducts with low Ca affinity (Kd = 1 mM). The quantum yield of photolysis of nitrophenyl-EGTA in the presence of Ca2+ is 0.23 and in the absence of Ca2+ is 0.20. In experiments with chemically skinned skeletal muscle fibers, a fully relaxed fiber equilibrated with nitrophenyl-EGTA-Ca2+ complex, in the presence of 1 mM free Mg2+, maximally contracted after a single flash from a frequency-doubled ruby laser (347 nm). Half-maximal tension was achieved in 18 ms at 15 degrees C. Nitrophenyl-EGTA provides a tool for the investigation of the mechanism of Ca(2+)-dependent physiological processes, since under conditions of normal intracellular Ca2+ and Mg2+ concentrations, only Ca2+ is bound by the photolabile chelator and on illumination released rapidly and in high photochemical yield.
Collapse
Affiliation(s)
- G C Ellis-Davies
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085
| | | |
Collapse
|
211
|
Abstract
Cyclic adenosine diphosphate-ribose, an endogenous metabolite of nicotinamide adenine dinucleotide was first characterized as a potent Ca2+ mobilizing agent in sea urchin eggs. Mounting evidence points to it being an endogenous activator of Ca(2+)-induced Ca2+ release by non-skeletal muscle ryanodine receptors in several invertebrate and mammalian cell types. Cyclic adenosine diphosphate-ribose is synthesized by adenosine diphosphate-ribosyl cyclases, which have been found to be widespread enzymes. Recent data suggests that cyclic adenosine diphosphate-ribose may function as a second messenger in sea urchin eggs at fertilization and in stimulus secretion coupling in pancreatic beta-cells. A second messenger role for cyclic adenosine diphosphate-ribose requires that its intracellular levels be under the control of extracellular stimuli. Another second messenger, cGMP, stimulates the synthesis of cyclic adenosine diphosphate-ribose from nicotinamide adenine dinucleotide by activating the adenosine diphosphate-ribosyl cyclase pathway in sera urchin eggs and egg homogenates, suggesting that cyclic adenosine diphosphate-ribose may be an intracellular messenger for cell surface receptors or nitric oxide, which activate cGMP-producing guanylate cyclases. Cyclic adenosine diphosphate-ribose may have a similar role to inositol trisphosphate in controlling intracellular calcium signalling with these two calcium-mobilizing second messengers activating ryanodine receptors and inositol trisphosphate receptors respectively.
Collapse
Affiliation(s)
- A Galione
- Department of Pharmacology, Oxford University, UK
| |
Collapse
|
212
|
Missiaen L, Parys JB, De Smedt H, Oike M, Casteels R. Partial calcium release in response to submaximal inositol 1,4,5-trisphosphate receptor activation. Mol Cell Endocrinol 1994; 98:147-56. [PMID: 8143924 DOI: 10.1016/0303-7207(94)90133-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Even a prolonged application of a submaximal dose of Ins(1,4,5)P3 is unable to release the same amount of Ca2+ from the Ins(1,4,5)P3-sensitive store as a higher dose of Ins(1,4,5)P3. Low doses of Ins(1,4,5)P3 therefore only induce a partial release of the stored Ca2+. In this review, we will focus on the mechanisms that may contribute to this behaviour. Molecular heterogeneity of the Ins(1,4,5)P3 receptor can contribute to such behaviour if all the gene products and alternatively spliced isoforms would have different functional properties and be located in different store units. We will show that the control of the Ins(1,4,5)P3 receptor by by luminal Ca2+ also contributes to the partial release behaviour; it can set the sensitivity of the Ins(1,4,5)P3 receptor and the decreasing luminal Ca2+ concentration may inhibit further release while some Ca2+ is still left in the store. It is finally possible that the Ins(1,4,5)P3 receptor may adapt to a maintained stimulus.
Collapse
Affiliation(s)
- L Missiaen
- Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg, Belgium
| | | | | | | | | |
Collapse
|
213
|
Baran I. Exit from mitosis induced by a calcium transient: the relation to the MPF and InsP3 dynamics. Biosystems 1994; 33:203-14. [PMID: 7888611 DOI: 10.1016/0303-2647(94)90005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells divide only after passing through a control point in late G1. This passage is followed by the accumulation of the mitotic cyclin which binds to p34cdc2, allowing for the subsequent phosphorylation and dephosphorylation of the latter protein. It is the active MPF, i.e. the phosphorylated mitotic cyclin-p34cdc2 kinase complex that triggers entry into mitosis. MPF becomes increasingly active as the cell forwards to anaphase, when a sudden increase in InsP3 takes place. This in turn induces a large Ca2+ release in cytosol from internal calcium stores and a calcium-dependent positive feedback control on InsP3-induced calcium release enhances the effect on InsP3-mediated Ca2+ transient. Meanwhile, empty calcium stores signal to plasma membrane for a constant calcium influx at high InsP3 levels. The cytosolic calcium excess is assumed to activate the CaMKll holloenzyme which involves the production of the ubiquitination complex necessary for cyclin degradation and MPF inactivation. Accordingly, a mathematical model was proposed by means of an eight-dimensional dynamical system that yields the time dependence of the main cellular quantities in a picture of the mitosis specific events.
Collapse
Affiliation(s)
- I Baran
- Biophysics Laboratory, Biotehnos S.A., Bucharest, Romania
| |
Collapse
|
214
|
Swann K, Ozil JP. Dynamics of the calcium signal that triggers mammalian egg activation. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 152:183-222. [PMID: 8206704 DOI: 10.1016/s0074-7696(08)62557-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- K Swann
- MRC Experimental Embryology and Teratology Unit, St. George's Hospital Medical School, London, United Kingdom
| | | |
Collapse
|
215
|
Abstract
Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release depends on the cytoplasmic concentration of Ca2+ in a biphasic manner: activated with the increase in Ca2+ up to approximately 300 nM and inhibited by its further increase. Kinetic studies of the Ca2+ release with rapid increase in Ca2+ or InsP3 using respective caged compounds indicated that the effects of Ca2+ appear immediately upon change in the Ca2+ concentration. Recovery from the Ca(2+)-dependent inhibition seemed also rapid after reduction in the Ca2+ concentration. These results indicate that there is a Ca(2+)-mediated positive feedback control of InsP3-induced Ca2+ release below 300 nM Ca2+. This feedback control seems to explain, at least partly, the phenomenon that InsP3 is more effective in the Ca2+ stores with greater Ca2+ loading. The Ca(2+)-mediated feedback control is also expected to give rise to temporally or spatially confined Ca2+ release as well as Ca2+ wave within the cells.
Collapse
Affiliation(s)
- M Iino
- Department of Pharmacology, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
216
|
Abstract
Intercellular Ca2+ waves initiated by mechanical or chemical stimuli propagate between cells via gap junctions. The ability of a wide diversity of cells to display intercellular Ca2+ waves suggests that these Ca2+ waves may represent a general mechanism by which cells communicate. Although Ca2+ may permeate gap junctions, the intercellular movement of Ca2+ is not essential for the propagation of Ca2+ waves. The messenger that moves from one cell to the next through gap junctions appears to be IP3 and a regenerative mechanism for IP3 may be required to effect multicellular communication. Extracellularly mediated Ca2+ signaling also exists and this could be employed to supplement or replace gap junctional communication. The function of intercellular Ca2+ waves may be the coordination of cooperative cellular responses to local stimuli.
Collapse
Affiliation(s)
- M J Sanderson
- Department of Anatomy and Cell Biology, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
217
|
Affiliation(s)
- R Zucker
- Molecular and Cell Biology Department, University of California at Berkeley 94720
| |
Collapse
|
218
|
Affiliation(s)
- M D Bootman
- AFRC Laboratory of Molecular Signalling, Department of Zoology, Cambridge University, UK
| |
Collapse
|
219
|
Lee HC, Galione A, Walseth TF. Cyclic ADP-ribose: metabolism and calcium mobilizing function. VITAMINS AND HORMONES 1994; 48:199-257. [PMID: 7941427 DOI: 10.1016/s0083-6729(08)60499-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- H C Lee
- Department of Physiology, University of Minnesota, Minneapolis
| | | | | |
Collapse
|
220
|
Cheek TR, Moreton RB, Berridge MJ, Stauderman KA, Murawsky MM, Bootman MD. Quantal Ca2+ release from caffeine-sensitive stores in adrenal chromaffin cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74220-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
221
|
Nicholls JA, Gillespie JI, Greenwell JR. The time course of intracellular calcium movements in single human umbilical vein smooth muscle cells. Pflugers Arch 1993; 425:225-32. [PMID: 8309783 DOI: 10.1007/bf00374171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Intracellular Ca2+ ([Ca2+]i) was measured in single isolated human umbilical vein smooth muscle cells. Stimulation with histamine, in the absence of external Ca2+, mobilised Ca2+ from intracellular stores. When repeated brief applications of agonist were used, the time to onset, amplitude and rate of rise of the Ca2+ transients were found to change. Two components could often be discerned in the rising phase of the transients, an initial slow "pacemaker" and a second faster and larger component. Following the first histamine-activated transient the basal level of [Ca2+]i was invariably lower than that prior to stimulation. This lower value was maintained whilst the cell remained in Ca(2+)-free solution, but could be returned to a higher level if the cell was exposed to external Ca2+. When the mobilisation of the intracellular store was reduced to undetectable levels, re-exposure to Ca(2+)-containing medium reactivated responses. In the absence of external Ca2+, continuous application of histamine activated a series of transient increases in intracellular Ca2+, which decreased progressively in amplitude and rate of rise. The interval between transients also increased. These findings are discussed in terms of the activation of inositol trisphosphate-sensitive intracellular Ca2+ stores and their sensitivity to cytoplasmic Ca2+ and intrasarcoplasmic reticulum Ca2+.
Collapse
Affiliation(s)
- J A Nicholls
- Department of Physiological Sciences, Medical School, University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
222
|
|
223
|
Abstract
Cellular oscillations of cytosolic free Ca2+ ([Ca2+]i) have been observed in many cell types in response to cell surface receptor agonists acting through inositol 1,4,5-trisphosphate (InsP3). In a number of cases where appropriate spatial and temporal resolution have been used to examine these [Ca2+]i oscillations, they have been found to be organized as repetitive waves of Ca2+ increase that propagate through the cytosol of individual cells. In some cases Ca2+ waves also occur as a single pass through stimulated cells. This review discusses the factors underlying the spatial organization of [Ca2+]i signals in the form of Ca2+ waves. In addition, potential mechanisms for the initiation and subsequent propagation of these Ca2+ waves are described.
Collapse
Affiliation(s)
- T A Rooney
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
224
|
Eichwald C, Kaiser F. Model for receptor-controlled cytosolic calcium oscillations and for external influences on the signal pathway. Biophys J 1993; 65:2047-58. [PMID: 8298034 PMCID: PMC1225940 DOI: 10.1016/s0006-3495(93)81236-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The external stimulation of many cells by a hormone, for example, often leads to an oscillating cytosolic calcium concentration. This periodic behavior is now designated the cytosolic calcium oscillator. A theoretical model is presented that describes this behavior on the basis of inositol(1,4,5)trisphosphate-induced calcium oscillations. In contrast to other models only a single positive feedback loop is taken into account to obtain oscillations. The model includes important innovations compared to other approaches. It includes the contribution of extracellular calcium and its modification after the stimulation of the cell. Furthermore, the signal pathway that leads to cytosolic calcium oscillations is described in more detail than in other models. This enables investigations on the influence of additional parameters like external electromagnetic fields on the signal transduction pathway. The model and the calculations are based on the theory of nonlinear self-sustained oscillators.
Collapse
Affiliation(s)
- C Eichwald
- Institute of Applied Physics--Nonlinear Dynamics, Technical University of Darmstadt, Germany
| | | |
Collapse
|
225
|
Parys JB, Missiaen L, De Smedt H, Casteels R. Loading dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in the clonal cell line A7r5. Implications for the mechanism of quantal Ca2+ release. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74589-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
226
|
Abstract
Ca2+ signals control or modulate diverse cellular processes such as cell growth, muscle contraction, hormone secretion, and neuronal plasticity. Elevations in intracellular Ca2+ concentrations can be highly localized to micron and submicron domains or propagated as intra- and intercellular waves over distances as large as 1 mm. Localized, subcellular Ca2+ spikes are thought to selectively activate effector systems such as Ca2+ activated chloride currents in pancreatic acinar cells, neurotransmitter release in synaptic nerve terminals, and morphological changes in neural growth cones. In contrast, long-ranged Ca2+ waves synchronize the activities of different cytoplasmic regions of a single cell, such as cortical granule exocytosis after egg fertilization or coordinate the activities of many cells, such as ciliary beating in pulmonary epithelium. The purpose of this review is to delineate the role of Ca2+ in the generation of localized, subcellular Ca2+ spikes and long-ranged intracellular and intercellular Ca2+ waves.
Collapse
|
227
|
Shin J, Richard EA, Lisman JE. Ca2+ is an obligatory intermediate in the excitation cascade of limulus photoreceptors. Neuron 1993; 11:845-55. [PMID: 8240808 DOI: 10.1016/0896-6273(93)90114-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have investigated the role of Ca2+ in the excitation of Limulus photoreceptors by intracellular injection of the Ca2+ buffer, 5,5'-dibromo-BAPTA. Buffer with free Ca2+ of 0.5 or 5 microM slowed the rising edge of the light response over 100-fold and greatly reduced both the transient and plateau phases of the light response, as expected if Ca2+ elevation is necessary for all phases of excitation. Injection of buffers with free Ca2+ of 5 or 45 microM, levels normally reached during light, evoked sustained inward current as expected if Ca2+ is sufficient for excitation. The transduction cascade appears due to a single pathway that sequentially involves 1,4,5-trisphosphate inositol, Ca2+, and cyclic GMP.
Collapse
Affiliation(s)
- J Shin
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | |
Collapse
|
228
|
Tsunoda Y. Receptor-operated Ca2+ signaling and crosstalk in stimulus secretion coupling. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:105-56. [PMID: 8218335 DOI: 10.1016/0304-4157(93)90008-c] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the cells of higher eukaryotic organisms, there are several messenger pathways of intracellular signal transduction, such as the inositol 1,4,5-trisphosphate/Ca2+ signal, voltage-dependent and -independent Ca2+ channels, adenylate cyclase/cyclic adenosine 3',5'-monophosphate, guanylate cyclase/cyclic guanosine 3',5'-monophosphate, diacylglycerol/protein kinase C, and growth factors/tyrosine kinase/tyrosine phosphatase. These pathways are present in different cell types and impinge on each other for the modulation of the cell function. Ca2+ is one of the most ubiquitous intracellular messengers mediating transcellular communication in a wide variety of cell types. Over the last decades it has become clear that the activation of many types of cells is accompanied by an increase in cytosolic free Ca2+ concentration ([Ca2+]i) that is thought to play an important part in the sequence of events occurring during cell activation. The Ca2+ signal can be divided into two categories: receptor- and voltage-operated Ca2+ signal. This review describes and integrates some recent views of receptor-operated Ca2+ signaling and crosstalk in the context of stimulus-secretion coupling.
Collapse
Affiliation(s)
- Y Tsunoda
- Department of Faculty Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
229
|
Atri A, Amundson J, Clapham D, Sneyd J. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J 1993; 65:1727-39. [PMID: 8274661 PMCID: PMC1225900 DOI: 10.1016/s0006-3495(93)81191-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We construct a minimal model of cytosolic free Ca2+ oscillations based on Ca2+ release via the inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channel (IP3R) of a single intracellular Ca2+ pool. The model relies on experimental evidence that the cytosolic free calcium concentration ([Ca2+]c) modulates the IP3R in a biphasic manner, with Ca2+ release inhibited by low and high [Ca2+]c and facilitated by intermediate [Ca2+]c, and that channel inactivation occurs on a slower time scale than activation. The model produces [Ca2+]c oscillations at constant [IP3] and reproduces a number of crucial experiments. The two-dimensional spatial model with IP3 dynamics, cytosolic diffusion of IP3 (Dp = 300 microns 2 s-1), and cytosolic diffusion of Ca2+ (Dc = 20 microns 2 s-1) produces circular, planar, and spiral waves of Ca2+ with speeds of 7-15 microns.s-1, which annihilate upon collision. Increasing extracellular [Ca2+] influx increases wave speed and baseline [Ca2+]c. A [Ca2+]c-dependent Ca2+ diffusion coefficient does not alter the qualitative behavior of the model. An important model prediction is that channel inactivation must occur on a slower time scale than activation in order for waves to propagate. The model serves to capture the essential macroscopic mechanisms that are involved in the production of intracellular Ca2+ oscillations and traveling waves in the Xenopus laevis oocyte.
Collapse
Affiliation(s)
- A Atri
- Department of Biomathematics, UCLA School of Medicine 90024-1766
| | | | | | | |
Collapse
|
230
|
Isenberg G. Membrane potential modulates inositol 1,4,5-trisphosphate-mediated Ca2+ transients in guinea-pig coronary myocytes. J Physiol 1993; 470:35-44. [PMID: 8308733 PMCID: PMC1143904 DOI: 10.1113/jphysiol.1993.sp019845] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Vascular smooth muscle cells were isolated from the coronary artery of the guinea-pig. At 2.5 mM [Ca2+]o and 36 degrees C, whole cell membrane currents were recorded under voltage-clamp and the concentration of ionized calcium in the cytoplasm ([Ca2+]i) was monitored by indo-1 fluorescence. 2. At -60 mV, [Ca2+]i was 143 +/- 36 mM (mean +/- S.D.) and was insensitive to clamp steps to +100 mV. During 1 min application of acetylcholine (ACh, 10 microM) [Ca2+]i increased within approximately 2 s to 1480 +/- 250 nM. During the subsequent slow decay, [Ca2+]i was transiently increased by depolarizing clamp steps and decreased during hyperpolarizing steps. [Ca2+]i transients in response to caffeine (10 mM) could not be modulated by voltage steps. The results suggest that modulation of [Ca2+]i by membrane potential involves inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-induced Ca2+ release (IICR). 3. Modulation of IICR by membrane potential did not depend on sarcolemmal Ca2+ fluxes; it persisted after block of sarcolemmal Ca2+ fluxes with 3 mM lanthanum or after a change to nominally Ca(2+)-free bathing solutions. 4. Modulation of [Ca2+]i by membrane potential was recorded during cell dialysis of 50 microM GTP-gamma-S in the absence of ACh. Cell dialysis of exogenous Ins(1,4,5)P3 (50 or 100 microM) did not mimic the effects. The sensitivity of [Ca2+]i to depolarizing clamp steps was also induced by cell dialysis of lithium ions which, presumably, inhibited the breakdown of Ins(1,4,5)P3. The results are compatible with the idea that the membrane potential modulates the liberation of Ins(1,4,5)P3. 5. Modulation of IICR by membrane potential is discussed as a new mechanism that contributes to the regulation of activator calcium and to the modulation of contraction in vascular smooth muscle cells.
Collapse
|
231
|
Parys JB, Missiaen L, De Smedt H, Droogmans G, Casteels R. Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth-muscle cells. Pflugers Arch 1993; 424:516-22. [PMID: 8255736 DOI: 10.1007/bf00374916] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is no consensus about the different types of Ca2+ transport processes in the endoplasmic reticulum that are targeted by the sulphydryl reagent thimerosal. We have therefore investigated how thimerosal affects the various Ca2+ transport processes in permeabilized A7r5 smooth-muscle cells, using an unidirectional 45Ca2+ flux technique. Thimerosal up to a concentration of 32 microM did not have an effect on the passive 45Ca2+ leak from the stores, while higher concentrations increased this aspecific leak. Thimerosal inhibited the endoplasmic reticulum Ca2+ pump with an EC50 of 9 microM. Thimerosal exerted a biphasic effect on the Ca2+ release induced by inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] with a stimulation of the release at thimerosal concentrations below 10 microM, and an inhibitory effect at higher concentrations. Thimerosal (2.5-250 microM) did not exert an effect on the specific binding of [3H]Ins(1,4,5)P3 to its receptor, indicating that it probably did not act at the level of the binding site. This finding contrasts with the effect of the closely related sulphydryl reagent parachloromercuriphenylsulphonate, which, at high concentrations, inhibited [3H]Ins(1,4,5)P3 binding. The effects of thimerosal were largely prevented by the sulphydryl reducing agent dithiothreitol (3 mM). We conclude that thimerosal concentrations ranging from 0.32 to 1 microM can stimulate the Ins(1,4,5)P3-induced Ca2+ release without inhibiting the Ca2+ pumps or without increasing the passive Ca2+ permeability of the endoplasmic reticulum.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/metabolism
- Cell Line
- Cell Membrane Permeability
- Dithiothreitol/pharmacology
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Kinetics
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sulfhydryl Compounds/pharmacology
- Thimerosal/pharmacology
Collapse
Affiliation(s)
- J B Parys
- Laboratorium voor Fysiologie, K. U. Leuven, Belgium
| | | | | | | | | |
Collapse
|
232
|
Toescu E, Lawrie A, Gallacher D, Petersen O. The pattern of agonist-evoked cytosolic Ca2+ oscillations depends on the resting intracellular Ca2+ concentration. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46680-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
233
|
Cheek TR, McGuinness OM, Vincent C, Moreton RB, Berridge MJ, Johnson MH. Fertilisation and thimerosal stimulate similar calcium spiking patterns in mouse oocytes but by separate mechanisms. Development 1993; 119:179-89. [PMID: 8275854 DOI: 10.1242/dev.119.1.179] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of freshly ovulated mouse oocytes to a fertilising spermatozoon, thimerosal, Sr2+ or acetylcholine induced similar Ca2+ spiking responses. We propose that each of the four agents reduces the threshold for Ca2+ release from internal stores, but by different mechanisms. All agents except thimerosal stimulated oocyte activation, but thimerosal caused dissassembly of the meiotic spindle and thus prevented progress into interphase. Dithiothreitol (DTT) completely blocked and reversed the spiking responses induced by thimerosal, but facilitated and accelerated those induced by spermatozoa, Sr2+ and acetylcholine. The stimulatory effect of DTT was not simply a consequence of progress into interphase, but was attributable, at least in part, to an enhancement of divalent cation entry, as measured by Mn2+ quench analysis of fura-2 in both fertilised and unfertilised oocytes. Possible mechanisms by which DTT might achieve its effects are discussed.
Collapse
Affiliation(s)
- T R Cheek
- Department of Zoology, University of Cambridge, UK
| | | | | | | | | | | |
Collapse
|
234
|
Kasai H, Li YX, Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 1993; 74:669-77. [PMID: 8395348 DOI: 10.1016/0092-8674(93)90514-q] [Citation(s) in RCA: 292] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Agonists trigger Ca2+ waves and oscillations in exocrine gland cells. Our confocal Ca2+ imaging revealed three distinct phases during the Ca2+ waves in the rat pancreatic acinar cell. Rises in Ca2+ concentration were initiated at a small trigger zone, or T zone, in the granular area; then, Ca2+ waves rapidly spread within the area and, at high agonist concentrations, propagated slowly toward the basal pole. Injection of inositol 1,4,5-trisphosphate (IP3) or Ca2+ from patch pipettes demonstrated the presence of high sensitivity IP3 receptors at the T zone, Ca(2+)-induced Ca2+ release channels in the granular area, and low sensitivity IP3 receptors in the basal area. The IP3 receptors at the T zone appeared to generate autonomous Ca2+ spikes and to initiate patterned Ca2+ oscillations. Thus, heterogeneous cytosolic localization of Ca2+ release channels plays a key role in Ca2+ waves and oscillations.
Collapse
Affiliation(s)
- H Kasai
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
235
|
Sullivan KM, Busa WB, Wilson KL. Calcium mobilization is required for nuclear vesicle fusion in vitro: implications for membrane traffic and IP3 receptor function. Cell 1993; 73:1411-22. [PMID: 8391933 DOI: 10.1016/0092-8674(93)90366-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We studied the fusion of nuclear vesicles bound to chromatin in Xenopus egg extracts. Fusion was inhibited by 5 mM BAPTA, a Ca2+ buffer that suppresses cytosolic [Ca2+] gradients. The BAPTA-inhibited step in fusion was biochemically distinct from, and occurred later than, the GTP gamma S-sensitive step mediated by the monomeric GTPase, ADP-ribosylation factor. Exogenous inositol 1,4,5-trisphosphate (IP3), which triggers Ca2+ release from lumenal stores via IP3 receptors, stimulated fusion in the presence of BAPTA. This rescue was specific, because inositol 1,3,4-trisphosphate had no effect. Heparin, a potent antagonist of IP3 receptors, independently blocked fusion in an IP3-reversible manner. We suggest that phosphoinositide signaling may regulate nuclear vesicle fusion.
Collapse
Affiliation(s)
- K M Sullivan
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
236
|
D'Andrea P, Zacchetti D, Meldolesi J, Grohovaz F. Mechanism of [Ca2+]i oscillations in rat chromaffin cells. Complex Ca(2+)-dependent regulation of a ryanodine-insensitive oscillator. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82458-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
237
|
Oldershaw KA, Taylor CW. Luminal Ca2+ increases the affinity of inositol 1,4,5-trisphosphate for its receptor. Biochem J 1993; 292 ( Pt 3):631-3. [PMID: 8391254 PMCID: PMC1134158 DOI: 10.1042/bj2920631] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Luminal Ca2+ has been proposed to regulate the sensitivity of intracellular Ca2+ stores to InsP3 and perhaps thereby to contribute to the mechanisms responsible for regenerative intracellular Ca2+ signals. Since Ca2+ release from intracellular stores is accompanied by K+ influx into the stores, InsP3-stimulated Ca2+ mobilization can be inhibited by substantially reducing the [K+] of incubation media. By measuring [3H]InsP3 binding to permeabilized hepatocytes in K(+)-deficient media, thereby preventing InsP3-stimulated Ca2+ mobilization, we have examined the effects of Ca2+ within the intracellular stores on equilibrium binding of InsP3 to its receptor. Our results demonstrate a small, but significant (P < 0.05, n = 8-9), effect of luminal Ca2+ on InsP3 binding; the concentration of InsP3 causing half-maximal displacement of [3H]InsP3 (1.25 nM) was 3.5 nM for empty stores and 2.1 nM for stores containing Ca2+. Our results suggest that at least part of the stimulatory effect of luminal Ca2+ on InsP3-stimulated Ca2+ mobilization may result from an effect of luminal Ca2+ on InsP3 binding to its receptor.
Collapse
Affiliation(s)
- K A Oldershaw
- Department of Pharmacology, University of Cambridge, U.K
| | | |
Collapse
|
238
|
Abstract
Intracellular Ca2+ oscillations and waves are commonly observed both in excitable cells, including neurons, and in non-excitable cells. Current attempts to describe and explain these complex intracellular signals suggest that the oscillations are the result of a highly regulated mechanism, the details of which vary among different cells. Recently, the Xenopus oocyte has become an important model system in which a single pool of IP3 receptors release Ca2+ to initiate waves. The intrinsic bell-shaped dependence of the IP3 receptor on Ca2+ is sufficient to explain the regenerative wave phenomenon.
Collapse
Affiliation(s)
- J Amundson
- Department of Pharmacology, Physiology and Biophysics, Mayo Foundation, Rochester, MN 55905
| | | |
Collapse
|
239
|
Faddis MN, Brown JE. Intracellular injection of heparin and polyamines. Effects on phototransduction in limulus ventral photoreceptors. J Gen Physiol 1993; 101:909-31. [PMID: 8331323 PMCID: PMC2216746 DOI: 10.1085/jgp.101.6.909] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Heparin is thought to inhibit InsP3 binding to receptors involved in the intracellular release of Ca2+. Injection of heparin into Limulus ventral photoreceptors to high intracellular concentrations reduces the amplitude and slows the rate of rise of voltage-clamp currents induced by brief flashes, tends to make the responses to long flashes more "square," and tends to block the light-induced rise in [Ca2+]i detected by arsenazo III. In these ways, intracellular heparin mimics the effects of high concentrations of intracellular BAPTA or EGTA. In addition, the effects of heparin are attenuated by prior injection of BAPTA to high intracellular concentrations. Neomycin and spermine are thought to inhibit phospholipase C activity. Injections of spermine or neomycin to low intracellular concentrations largely mimic the effects of intracellular heparin. These findings suggest that the predominant effect of polyamines is to inhibit light-induced production of InsP3 by phospholipase C activity and thereby reduce the light-induced increase in [Ca2+]i. Our findings suggest that excitation can proceed in the absence of InsP3-induced increases in [Ca2+]i, but (a) the gain and speed of transduction are reduced and (b) adaptation is largely blocked.
Collapse
Affiliation(s)
- M N Faddis
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
240
|
Magnusson A, Haug LS, Walaas SI, Ostvold AC. Calcium-induced degradation of the inositol (1,4,5)-trisphosphate receptor/Ca(2+)-channel. FEBS Lett 1993; 323:229-32. [PMID: 8388808 DOI: 10.1016/0014-5793(93)81345-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ca(2+)-induced degradation of the neuronal inositol (1,4,5)-trisphosphate receptor, a protein which regulates Ca(2+)-release from intracellular stores, has been examined. The IP3-receptor, immunopurified from rat cerebellum, appeared to be an excellent substrate for purified Ca(2+)-activated neutral protease (calpain). Incubation of membranes or immunopurified IP3-receptor with Ca2+ and cerebellar cytosol also resulted in degradation of the receptor. Two main fragments with approximate molecular masses of 130 and 95 kDa were generated, both of which appeared to derive from the carboxyterminal Ca(2+)-channel-containing part of the protein. These data suggest that activation of the IP3-receptor, by causing increases in intracellular [Ca2+], might result in degradation of the N-terminal, IP3-binding part of the receptor.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Calcium/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Calpain/antagonists & inhibitors
- Calpain/pharmacology
- Cell Membrane/metabolism
- Cerebellum/metabolism
- Chromatography, Affinity
- Dipeptides/pharmacology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Leupeptins/pharmacology
- Male
- Molecular Weight
- Neurons/metabolism
- Phosphorylation
- Rats
- Receptors, Cell Surface/drug effects
- Receptors, Cell Surface/isolation & purification
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear
- Testis/metabolism
- Tumor Cells, Cultured
- Vas Deferens/metabolism
Collapse
Affiliation(s)
- A Magnusson
- Neurochemical Laboratory, University of Oslo, Norway
| | | | | | | |
Collapse
|
241
|
Marshall I, Taylor C. Biphasic effects of cytosolic Ca2+ on Ins(1,4,5)P3-stimulated Ca2+ mobilization in hepatocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)38639-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
242
|
Camacho P, Lechleiter JD. Increased frequency of calcium waves in Xenopus laevis oocytes that express a calcium-ATPase. Science 1993; 260:226-9. [PMID: 8385800 DOI: 10.1126/science.8385800] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
When inositol 1,4,5-triphosphate (IP3) receptors are activated, calcium is released from intracellular stores in excitatory propagating waves that annihilate each other upon collision. The annihilation phenomenon suggests the presence of an underlying refractory period that controls excitability. Enhanced calcium-adenosine triphosphatase (ATPase) activity might alter the refractory period of calcium release. Expression of messenger RNA encoding the avian calcium-ATPase (SERCA1) in Xenopus laevis oocytes increased the frequency of IP3-induced calcium waves and narrowed the width of individual calcium waves. The effect of SERCA1 expression on calcium wave frequency was dependent on the concentration of IP3 and was larger at higher (1 microM) than at lower (0.1 microM) concentrations of IP3. The results demonstrate that calcium pump activity can control IP3-mediated calcium signaling.
Collapse
Affiliation(s)
- P Camacho
- Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908
| | | |
Collapse
|
243
|
Abstract
Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium/physiology
- Calcium Channels
- Cell Cycle
- Cell Division
- Cell Transformation, Neoplastic
- Female
- Fertilization
- GTP-Binding Proteins/physiology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Male
- Models, Biological
- Neuronal Plasticity
- Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Cholinergic/physiology
- Receptors, Cytoplasmic and Nuclear
- Ryanodine/pharmacology
- Ryanodine Receptor Calcium Release Channel
- Second Messenger Systems
- Signal Transduction
- Synapses/physiology
Collapse
Affiliation(s)
- M J Berridge
- AFRC Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| |
Collapse
|
244
|
Affiliation(s)
- A Galione
- University Department of Pharmacology, Oxford, United Kingdom
| |
Collapse
|