201
|
van Zelm MC, Pumar M, Shuttleworth P, Aui PM, Smart JM, Grigg A, Bosco JJ. Functional Antibody Responses Following Allogeneic Stem Cell Transplantation for TP53 Mutant pre-B-ALL in a Patient With X-Linked Agammaglobulinemia. Front Immunol 2019; 10:895. [PMID: 31105705 PMCID: PMC6498405 DOI: 10.3389/fimmu.2019.00895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with X-linked agammaglobulinemia (XLA) have failure of B-cell development with lack of immunoglobulin (Ig) production. While immunoglobulin replacement therapy (IgRT) is beneficial, XLA patients remain at risk for infections, structural lung damage, and rarely, neoplasia. Allogeneic stem cell transplantation (alloSCT) may offer a potential cure, but is associated with significant life-threatening complications. Here, we present a 25-year old XLA patient who developed pre-B acute lymphocytic leukemia (ALL) with somatic TP53 mutation, and treatment for this high-risk malignancy involved full myeloablative conditioning and a HLA-matched sibling alloSCT. Full donor chimerism was achieved for CD3+ and CD3- cell fractions. The patient remains in morphological and flow cytometric remission 14 months post-transplant, with late-onset oral GvHD requiring low dose prednisolone and cyclosporin. Following IgRT discontinuation at 4 months post-transplantation, humoral immunity was established within 14 months as reflected by normal numbers of total B cells, memory B cells, serum IgG, IgM, and IgA, and production of specific IgG responses to Prevenar-13 vaccination. This is only the second reported case of an XLA patient with pre-B-ALL, and the most detailed report of engraftment following alloSCT in XLA. Together with the two previous XLA cases treated with alloSCT, our report provides evidence for the potential for successful humoral reconstitution with alloSCT in patients with B-cell intrinsic antibody deficiency. These observations may be relevant given IgRT, while beneficial, remains an imperfect solution to long-term infectious complications.
Collapse
Affiliation(s)
- Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology Research, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Marsus Pumar
- Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology Research, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Peter Shuttleworth
- Department of Clinical Haematology and Olivia Newton John Cancer Research Institute, Austin Health, Melbourne, VIC, Australia
| | - Pei M Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Joanne M Smart
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Andrew Grigg
- Department of Clinical Haematology and Olivia Newton John Cancer Research Institute, Austin Health, Melbourne, VIC, Australia
| | - Julian J Bosco
- Allergy, Asthma and Clinical Immunology Service, Department of Respiratory, Allergy and Clinical Immunology Research, Central Clinical School, The Alfred Hospital, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| |
Collapse
|
202
|
Jones TPW, Buckland M, Breuer J, Lowe DM. Viral infection in primary antibody deficiency syndromes. Rev Med Virol 2019; 29:e2049. [PMID: 31016825 DOI: 10.1002/rmv.2049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
Patients with primary antibody deficiency syndromes such as X-linked agammaglobulinemia (XLA) and common variable immunodeficiency (CVID) are at increased risk of severe and invasive infection. Viral infection in these populations has been of increasing interest as evidence mounts that viruses contribute significant morbidity and mortality: this is mediated both directly and via aberrant immune responses. We explain the importance of the humoral immune system in defence against viral pathogens before highlighting several significant viral syndromes in patients with antibody deficiency. We explore historical cases of hepatitis C via contaminated immunoglobulin products, the predisposition to invasive enteroviral infections, prolonged excretion of vaccine-derived poliovirus, the morbidity of chronic norovirus infection, and recent literature revealing the importance of respiratory viral infections. We discuss evidence that herpesviruses may play a role in driving the inflammatory disease seen in a subset of patients. We explore the phenomenon of within-host evolution during chronic viral infection and the potential emergence of new pathogenic strains. We highlight novel and emerging viruses identified via deep sequencing techniques. We describe the treatment strategies that have been attempted in all these scenarios and the urgent outstanding questions for research.
Collapse
Affiliation(s)
- Timothy P W Jones
- Department of Infectious Disease and Microbiology, Royal Free Hospital, London, UK
| | - Matthew Buckland
- Institute of Immunity and Transplantation, Royal Free Campus, University College, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - David M Lowe
- Institute of Immunity and Transplantation, Royal Free Campus, University College, London, UK
| |
Collapse
|
203
|
Feng Y, Duan W, Cu X, Liang C, Xin M. Bruton's tyrosine kinase (BTK) inhibitors in treating cancer: a patent review (2010-2018). Expert Opin Ther Pat 2019; 29:217-241. [PMID: 30888232 DOI: 10.1080/13543776.2019.1594777] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Bruton's tyrosine kinase (BTK) plays a critical role in the regulation of survival, proliferation, activation and differentiation of B-lineage cells. It participates by regulating multiple cellular signaling pathways, including B cell receptor and FcR signaling cascades. BTK is abundantly expressed and constitutively active in the pathogenesis of B cell hematological malignancies, as well as several autoimmune diseases. Therefore, BTK is considered as an attractive target for treatment of B-lineage lymphomas, leukemias, and some autoimmune diseases. Many industry and academia efforts have been made to explore small molecular BTK inhibitors. AREAS COVERED This review aims to provide an overview of the patented BTK inhibitors for the treatment of cancer from 2010 to 2018. EXPERT OPINION BTK inhibitors attract much interest for their therapeutic potential in the treatment of cancers and autoimmune diseases, especially for B cell hematological malignancies. In 2013, ibrutinib was approved by the FDA as the first-in-class BTK inhibitors for the treatment of mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), and now it is also undergoing clinical evaluation for other indications in either single or combined therapy. It is clear that BTK inhibitors can provide a promising clinical benefit in treating B-lineage lymphomas and leukemias.
Collapse
Affiliation(s)
- Yifan Feng
- a Department of Medicinal Chemistry, School of Pharmacy, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi P.R. China
| | - Weiming Duan
- a Department of Medicinal Chemistry, School of Pharmacy, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi P.R. China
| | - Xiaochuan Cu
- b Department of Orthopedics , People's Hospital of Fufeng County in Shaanxi Province , Baoji , Shaanxi P.R. China
| | - Chengyuan Liang
- c Department of Pharmacy , Shaanxi University of Science & Technology , Xi'an , Shaanxi P.R. China
| | - Minhang Xin
- a Department of Medicinal Chemistry, School of Pharmacy, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi P.R. China
| |
Collapse
|
204
|
Haselmayer P, Camps M, Liu-Bujalski L, Nguyen N, Morandi F, Head J, O'Mahony A, Zimmerli SC, Bruns L, Bender AT, Schroeder P, Grenningloh R. Efficacy and Pharmacodynamic Modeling of the BTK Inhibitor Evobrutinib in Autoimmune Disease Models. THE JOURNAL OF IMMUNOLOGY 2019; 202:2888-2906. [PMID: 30988116 DOI: 10.4049/jimmunol.1800583] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Because of its role in mediating both B cell and Fc receptor signaling, Bruton's tyrosine kinase (BTK) is a promising target for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Evobrutinib is a novel, highly selective, irreversible BTK inhibitor that potently inhibits BCR- and Fc receptor-mediated signaling and, thus, subsequent activation and function of human B cells and innate immune cells such as monocytes and basophils. We evaluated evobrutinib in preclinical models of RA and SLE and characterized the relationship between BTK occupancy and inhibition of disease activity. In mouse models of RA and SLE, orally administered evobrutinib displayed robust efficacy, as demonstrated by reduction of disease severity and histological damage. In the SLE model, evobrutinib inhibited B cell activation, reduced autoantibody production and plasma cell numbers, and normalized B and T cell subsets. In the RA model, efficacy was achieved despite failure to reduce autoantibodies. Pharmacokinetic/pharmacodynamic modeling showed that mean BTK occupancy in blood cells of 80% was linked to near-complete disease inhibition in both RA and SLE mouse models. In addition, evobrutinib inhibited mast cell activation in a passive cutaneous anaphylaxis model. Thus, evobrutinib achieves efficacy by acting both on B cells and innate immune cells. Taken together, our data show that evobrutinib is a promising molecule for the chronic treatment of B cell-driven autoimmune disorders.
Collapse
Affiliation(s)
- Philipp Haselmayer
- Translational Innovation Platform Immunology, Merck KGaA, Darmstadt 64293, Germany
| | | | - Lesley Liu-Bujalski
- Medicinal Chemistry, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Ngan Nguyen
- Medicinal Chemistry, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Federica Morandi
- Molecular Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Jared Head
- Molecular Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Alison O'Mahony
- Eurofins DiscoverX Corporation, South San Francisco, CA 94080
| | - Simone C Zimmerli
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| | - Lisa Bruns
- Translational Innovation Platform Immunology, Merck KGaA, Darmstadt 64293, Germany
| | - Andrew T Bender
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| | - Patricia Schroeder
- Translational Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Roland Grenningloh
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| |
Collapse
|
205
|
Trevijano-Contador N, Pirofski L. Antibody immunity and natural resistance to cryptococcosis. CURRENT TROPICAL MEDICINE REPORTS 2019; 6:50-54. [PMID: 31134140 DOI: 10.1007/s40475-019-00174-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The encapsulated fungus Cryptococcus neoformans (Cn) causes cryptococcal meningitis (CM). There are ~180,000 deaths per year worldwide attributed to CM, which is the most common cause of meningitis in adults with HIV in sub-Saharan Africa. HIV infection with advanced immunodeficiency is the most important predisposing risk factor for CM, highlighting the critical role that T cell mediated immunity plays in disease prevention. Numerous studies in the past decade demonstrate that antibody immunity also plays a role in resistance to CM, although its role has taken more time to establish. In mice, B cells reduce early dissemination from lungs to brain, and naïve mouse IgM can enhance fungal containment in the lungs. In concert with these findings, human studies show that patients with CM have lower IgM memory B cell levels and/or different serological profiles than controls. In this article, we review recent data on the role that B cells and/or antibody-based immunity play in host defense against Cn and natural resistance to CM.
Collapse
Affiliation(s)
- N Trevijano-Contador
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - L Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.poly
| |
Collapse
|
206
|
Ghosh AK, Samanta I, Mondal A, Liu WR. Covalent Inhibition in Drug Discovery. ChemMedChem 2019; 14:889-906. [PMID: 30816012 DOI: 10.1002/cmdc.201900107] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Although covalent inhibitors have been used as therapeutics for more than a century, there has been general resistance in the pharmaceutical industry against their further development due to safety concerns. This inclination has recently been reverted after the development of a wide variety of covalent inhibitors to address human health conditions along with the US Food and Drug Administration (FDA) approval of several covalent therapeutics for use in humans. Along with this exciting resurrection of an old drug discovery concept, this review surveys enzymes that can be targeted by covalent inhibitors for the treatment of human diseases. We focus on protein kinases, RAS proteins, and a few other enzymes that have been studied extensively as targets for covalent inhibition, with the aim to address challenges in designing effective covalent drugs and to provide suggestions in the area that have yet to be explored.
Collapse
Affiliation(s)
- Avick Kumar Ghosh
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Indranil Samanta
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Anushree Mondal
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, Corner of Ross and Spence Streets, College Station, TX, 77843, USA
| |
Collapse
|
207
|
El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, Bousfiha AA, Cancrini C, Condino-Neto A, Dbaibo G, Derfalvi B, Dogu F, Edgar JM, Eley B, El-Owaidy RH, Espinosa-Padilla SE, Galal N, Haerynck F, Hanna-Wakim R, Hossny E, Ikinciogullari A, Kamal E, Kanegane H, Kechout N, Lau YL, Morio T, Moschese V, Neves JF, Ouederni M, Paganelli R, Paris K, Pignata C, Plebani A, Qamar FN, Qureshi S, Radhakrishnan N, Rezaei N, Rosario N, Routes J, Sanchez B, Sediva A, Seppanen MRJ, Serrano EG, Shcherbina A, Singh S, Siniah S, Spadaro G, Tang M, Vinet AM, Volokha A, Sullivan KE. X-linked agammaglobulinemia (XLA):Phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J 2019; 12:100018. [PMID: 30937141 PMCID: PMC6439403 DOI: 10.1016/j.waojou.2019.100018] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/29/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND X-linked agammaglobulinemia is an inherited immunodeficiency recognized since 1952. In spite of seven decades of experience, there is still a limited understanding of regional differences in presentation and complications. This study was designed by the Primary Immunodeficiencies Committee of the World Allergy Organization to better understand regional needs, challenges and unique patient features. METHODS A survey instrument was designed by the Primary Immunodeficiencies Committee of the World Allergy Organization to collect both structured and semi-structured data on X-linked agammaglobulinemia. The survey was sent to 54 centers around the world chosen on the basis of World Allergy Organization participation and/or registration in the European Society for Immunodeficiencies. There were 40 centers that responded, comprising 32 countries. RESULTS This study reports on 783 patients from 40 centers around the world. Problems with diagnosis are highlighted by the reported delays in diagnosis>24 months in 34% of patients and the lack of genetic studies in 39% of centers Two infections exhibited regional variation. Vaccine-associated paralytic poliomyelitis was seen only in countries with live polio vaccination and two centers reported mycobacteria. High rates of morbidity were reported. Acute and chronic lung diseases accounted for 41% of the deaths. Unusual complications such as inflammatory bowel disease and large granular lymphocyte disease, among others were specifically enumerated, and while individually uncommon, they were collectively seen in 20.3% of patients. These data suggest that a broad range of both inflammatory, infectious, and autoimmune conditions can occur in patients. The breadth of complications and lack of data on management subsequently appeared as a significant challenge reported by centers. Survival above 20 years of age was lowest in Africa (22%) and reached above 70% in Australia, Europe and the Americas. Centers were asked to report their challenges and responses (n = 116) emphasized the difficulties in access to immunoglobulin products (16%) and reflected the ongoing need for education of both patients and referring physicians. CONCLUSIONS This is the largest study of patients with X-linked agammaglobulinemia and emphasizes the continued morbidity and mortality of XLA despite progress in diagnosis and treatment. It presents a world view of the successes and challenges for patients and physicians alike. A pivotal finding is the need for education of physicians regarding typical symptoms suggesting a possible diagnosis of X-linked agammaglobulinemia and sharing of best practices for the less common complications.
Collapse
Affiliation(s)
- Zeinab A. El-Sayed
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Irina Abramova
- Department of Immunology, National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Juan Carlos Aldave
- Primary Immunodeficiency Unit, Allergy and Immunology Division, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Allergy and Clinical Immunology Unit, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Liliana Bezrodnik
- Immunology Unit Hospital de Niños Ricardo Gutiérrez and CIC (Clinical Immunology Center), CABA, Buenos Aires, Argentina
| | - Rachida Boukari
- Department of Immunology, Institut Pasteur d’Algérie, Faculty of Medicine, Algiers, Algeria
| | - Ahmed Aziz Bousfiha
- Clinical Immunology Unit, P1, Ibn Rushd Hospital, Laboratoire d’Immunologie Clinique, Inflammation et Allergie LICIA and Medicine and Pharmacy Faculty of Hassan II University, Casablanca, Morocco
| | - Caterina Cancrini
- University Department of Pediatrics, Unit of Immune and Infectious Diseases, Childrens' Hospital Bambino Gesù, “University of Rome Tor Vergata”, Rome, Italy
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo – Sp, Brazil
| | - Ghassan Dbaibo
- Division of Pediatric Infectious Diseases and Center for Infectious Diseases Research, Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Beata Derfalvi
- Dalhousie University, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Figen Dogu
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - J.David M. Edgar
- The Royal Hospitals & Queen's University Belfast, United Kingdom
| | - Brian Eley
- Paediatric Infectious Diseases Unit, Red Cross War Memorial Children's Hospital and the Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Rasha Hasan El-Owaidy
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | | | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab, Ghent University, Belgium
- Centre for Primary Immunodeficiency, Department of Pediatric Pulmonology and Immunology, Ghent University Hospital, Belgium
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases and Center for Infectious Diseases Research, Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Elham Hossny
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Aydan Ikinciogullari
- Ankara University School of Medicine, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Ebtihal Kamal
- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, University of Khartoum, Sudan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nadia Kechout
- Department of Immunology, Institut Pasteur d’Algérie, Faculty of Medicine, Algiers, Algeria
| | - Yu Lung Lau
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Tor Vergata University Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Joao Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central and CEDOC Nova Medical School, Lisboa, Portugal
| | - Monia Ouederni
- Pediatric Immuno-hematology Unit, Bone Marrow Transplantation Center, University Tunis El Manar, Faculty of Medicine, Tunis, Tunisia
| | - Roberto Paganelli
- Department of Medicine and Sciences of Aging, University “G. d’Annunzio” of Chieti-Pescara, Italy
| | | | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Farah Naz Qamar
- Department of Pediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Sonia Qureshi
- Department of Pediatric and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Nita Radhakrishnan
- Department of Pediatric Hematology Oncology, Super Speciality Pediatric Hospital and PG Teaching Institute, Noida, India
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, and Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - John Routes
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Berta Sanchez
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mikko RJ. Seppanen
- Rare Diseases Center, Children's Hospital and Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Edith Gonzalez Serrano
- The Immunodeficiencies Research Unit, National Institute of Pediatrics, Mexico City, Mexico
| | - Anna Shcherbina
- Department of Immunology, National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Surjit Singh
- Department of Pediatrics and Chief, Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sangeetha Siniah
- Paediatric Institute Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
- Department of Allergy and Immunology, The Royal Children's Hospital Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Mimi Tang
- The University of Melbourne, Australia
| | | | - Alla Volokha
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy of Postgraduate Education and Center for Clinical Immunology, City Children's Hospital N1, Kiev, Ukraine
| | - Kathleen E. Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
208
|
Evaluation of Patient Follow-up with Transient Hypogammaglobulinemia in Infancy Diagnosis. JOURNAL OF CONTEMPORARY MEDICINE 2019. [DOI: 10.16899/gopctd.534014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
209
|
Anzilotti C, Swan DJ, Boisson B, Deobagkar-Lele M, Oliveira C, Chabosseau P, Engelhardt KR, Xu X, Chen R, Alvarez L, Berlinguer-Palmini R, Bull KR, Cawthorne E, Cribbs AP, Crockford TL, Dang TS, Fearn A, Fenech EJ, de Jong SJ, Lagerholm BC, Ma CS, Sims D, van den Berg B, Xu Y, Cant AJ, Kleiner G, Leahy TR, de la Morena MT, Puck JM, Shapiro RS, van der Burg M, Chapman JR, Christianson JC, Davies B, McGrath JA, Przyborski S, Santibanez Koref M, Tangye SG, Werner A, Rutter GA, Padilla-Parra S, Casanova JL, Cornall RJ, Conley ME, Hambleton S. An essential role for the Zn 2+ transporter ZIP7 in B cell development. Nat Immunol 2019; 20:350-361. [PMID: 30718914 PMCID: PMC6561116 DOI: 10.1038/s41590-018-0295-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022]
Abstract
Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.
Collapse
Affiliation(s)
- Consuelo Anzilotti
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David J Swan
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163 Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Catarina Oliveira
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Xijin Xu
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rui Chen
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Alvarez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Katherine R Bull
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tanya L Crockford
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tarana Singh Dang
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Amy Fearn
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emma J Fenech
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Sarah J de Jong
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - B Christoffer Lagerholm
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, New South Wales, Australia
| | - David Sims
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Cant
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gary Kleiner
- Pediatric Allergy and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - T Ronan Leahy
- Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - M Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Blood and Bone Marrow Transplantation, University of California, San Francisco, CA, USA
- UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | | | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - J Ross Chapman
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, New South Wales, Australia
| | - Andreas Werner
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - Sergi Padilla-Parra
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Dynamic Structural Virology Group, Biocruces Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163 Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Richard J Cornall
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Mary Ellen Conley
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
210
|
Keaney J, Gasser J, Gillet G, Scholz D, Kadiu I. Inhibition of Bruton's Tyrosine Kinase Modulates Microglial Phagocytosis: Therapeutic Implications for Alzheimer's Disease. J Neuroimmune Pharmacol 2019; 14:448-461. [PMID: 30758770 PMCID: PMC6707957 DOI: 10.1007/s11481-019-09839-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
Bruton’s tyrosine kinase (BTK), a critical component of B cell receptor signaling, has recently been implicated in regulation of the peripheral innate immune response. However, the role of BTK in microglia, the resident innate immune cells of the central nervous system, and its involvement in the pathobiology of neurodegenerative disease has not been explored. Here we found that BTK is a key regulator of microglial phagocytosis. Using potent BTK inhibitors and small interfering RNA (siRNA) against BTK, we observed that blockade of BTK activity decreased activation of phospholipase gamma 2, a recently identified genetic risk factor in Alzheimer’s disease (AD), and reduced phagocytosis in rodent microglia and human monocyte-derived macrophages. Inhibition of BTK signaling also decreased microglial uptake of synaptosomes but did not have major impacts on other key microglial functions such as migration and cytokine release. Similarly, blocking BTK function ex vivo in acute brain slices reduced microglial phagocytosis and maintained numbers of resting microglia. In brain tissues from the 5xFAD mouse model of AD, levels of microglial BTK were elevated while in two gene expression datasets of post-mortem AD patient brain tissues, upregulation of BTK transcript was observed. Our study provides novel insights into the role of BTK in regulating microglial phagocytosis and uptake of synaptic structures and suggests that inhibiting microglial BTK may improve cognition in AD by preventing microglial activation and synaptic loss. Microglial-mediated synapse loss has been implicated in AD pathogenesis. Inhibition of BTK decreases activation of PLCγ2, a genetic risk factor in AD, and reduces microglial phagocytosis and uptake of synaptic structures. As such BTK inhibition may represent a therapeutic route to prevent microglial activation and synapse loss in AD ![]()
Collapse
Affiliation(s)
- James Keaney
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium.
| | - Julien Gasser
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Gaëlle Gillet
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Diana Scholz
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Irena Kadiu
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium.
| |
Collapse
|
211
|
Heimall J. Genetic Testing to Diagnose Primary Immunodeficiency Disorders and to Identify Targeted Therapy. Immunol Allergy Clin North Am 2019; 39:129-140. [DOI: 10.1016/j.iac.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
212
|
Rip J, de Bruijn MJW, Appelman MK, Pal Singh S, Hendriks RW, Corneth OBJ. Toll-Like Receptor Signaling Drives Btk-Mediated Autoimmune Disease. Front Immunol 2019; 10:95. [PMID: 30761150 PMCID: PMC6363707 DOI: 10.3389/fimmu.2019.00095] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is a signaling molecule involved in development and activation of B cells through B-cell receptor (BCR) and Toll-like receptor (TLR) signaling. We have previously shown that transgenic mice that overexpress human Btk under the control of the CD19 promoter (CD19-hBtk) display spontaneous germinal center formation, increased cytokine production, anti-nuclear autoantibodies (ANAs), and systemic autoimsmune disease upon aging. As TLR and BCR signaling are both implicated in autoimmunity, we studied their impact on splenic B cells. Using phosphoflow cytometry, we observed that phosphorylation of ribosomal protein S6, a downstream Akt target, was increased in CD19-hBtk B cells following BCR stimulation or combined BCR/TLR stimulation, when compared with wild-type (WT) B cells. The CD19-hBtk transgene enhanced BCR-induced B cell survival and proliferation, but had an opposite effect following TLR9 or combined BCR/TLR9 stimulation. Although the expression of TLR9 was reduced in CD19-hBtk B cells compared to WT B cells, a synergistic effect of TLR9 and BCR stimulation on the induction of CD25 and CD80 was observed in CD19-hBtk B cells. In splenic follicular (Fol) and marginal zone (MZ) B cells from aging CD19-hBtk mice BCR signaling stimulated in vitro IL-10 production in synergy with TLR4 and particularly TLR9 stimulation, but not with TLR3 and TLR7. The enhanced capacity of CD19-hBtk Fol B cells to produce the pro-inflammatory cytokines IFNγ and IL-6 compared with WT B cells was however not further increased following in vitro BCR or TLR9 stimulation. Finally, we used crosses with mice deficient for the TLR-associated molecule myeloid differentiation primary response 88 (MyD88) to show that TLR signaling was crucial for spontaneous formation of germinal centers, increased IFNγ, and IL-6 production by B cells and anti-nuclear autoantibody induction in CD19-hBtk mice. Taken together, we conclude that high Btk expression does not only increase B cell survival following BCR stimulation, but also renders B cells more sensitive to TLR stimulation, resulting in increased expression of CD80, and IL-10 in activated B cells. Although BCR-TLR interplay is complex, our findings show that both signaling pathways are crucial for the development of pathology in a Btk-dependent model for systemic autoimmune disease.
Collapse
Affiliation(s)
- Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | | | | | - Simar Pal Singh
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
213
|
Now Is the Time to Use Molecular Gene Testing for the Diagnosis of Primary Immune Deficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:833-838. [PMID: 30639929 DOI: 10.1016/j.jaip.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
The discovery of chromosomes, genes, and DNA in the early 20th century paved the way for the development of techniques to examine the role of these elements in disease pathogenesis. Since the start of the 21st century, genetic testing and particularly next-generation sequencing has allowed for a rapid rate of gene disease associations for a broad range of primary immunodeficiency patients. At the same time, biologic and small molecule-based therapies targeting specific molecular pathways have been developed and are being applied clinically and in research settings to treat genetically defined immunodeficiencies. In recent years, both the American Academy of Allergy Asthma and Immunology and the Clinical Immunology Society have recommended the use of genetic testing for diagnosis, therapy guidance, and genetic counseling in patients with clinical symptoms of primary immunodeficiency.
Collapse
|
214
|
Schnute ME, Benoit SE, Buchler IP, Caspers N, Grapperhaus ML, Han S, Hotchandani R, Huang N, Hughes RO, Juba BM, Kim KH, Liu E, McCarthy E, Messing D, Miyashiro JS, Mohan S, O’Connell TN, Ohren JF, Parikh MD, Schmidt M, Selness SR, Springer JR, Thanabal V, Trujillo JI, Walker DP, Wan ZK, Withka JM, Wittwer AJ, Wood NL, Xing L, Zapf CW, Douhan J. Aminopyrazole Carboxamide Bruton's Tyrosine Kinase Inhibitors. Irreversible to Reversible Covalent Reactive Group Tuning. ACS Med Chem Lett 2019; 10:80-85. [PMID: 30655951 DOI: 10.1021/acsmedchemlett.8b00461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Potent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies. The lead cyanamide-based inhibitors demonstrated excellent kinome selectivity and rat pharmacokinetic properties.
Collapse
Affiliation(s)
| | | | | | - Nicole Caspers
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | - Seungil Han
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | | | | | | | | | | | | | | | - Jeffrey F. Ohren
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | - Mihir D. Parikh
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | - John I. Trujillo
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | - Jane M. Withka
- Medicine Design, Pfizer, Groton, Connecticut 06340, United States
| | | | | | | | | | | |
Collapse
|
215
|
Wu TT. Other Inflammatory Disorders of Duodenum. SURGICAL PATHOLOGY OF NON-NEOPLASTIC GASTROINTESTINAL DISEASES 2019:239-263. [DOI: 10.1007/978-3-030-15573-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
216
|
Doğruel D, Serbes M, Şaşihüseyinoğlu A, Yılmaz M, Altıntaş D, Bişgin A. Clinical and genetic profiles of patients with X-linked agammaglobulinemia from southeast Turkey: Novel mutations in BTK gene. Allergol Immunopathol (Madr) 2019; 47:24-31. [PMID: 30072168 DOI: 10.1016/j.aller.2018.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/05/2018] [Accepted: 03/27/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is characterized by absent or severely reduced B cells, low or undetectable immunoglobulin levels, and clinically by extracellular bacterial infections which mainly compromise the respiratory tract. We aimed to analyze the clinical, immunological and genetic characteristics of 22 male children with XLA. METHODS Twenty-two children with XLA from 12 unrelated families were enrolled in this study. Clinical and demographic features of patients, serum immunoglobulin levels, percentage of B cells and BTK gene mutations were reviewed retrospectively. RESULTS We identified 12 different mutations in 22 patients from 12 unrelated families. The most frequent type of mutation was premature stop codon (33.3%). Ten mutations had been reported previously including three missense mutations (c.1774T>C, c.1684C>T, c.83G>T), three premature stop codons (c.1558C>T, c.1573C>T, c.753G>A), two splice-site (c.683-1G>A, c.1567-12_1567-9delTTTG) and two small nucleotide deletions (c.902-904_delAAG, c.179_181delAGA). Two novel mutations of the BTK gene were also presented and included one splice-site mutation (c.391+1G>C) and one premature stop codon mutation (c.1243_1243delG). Six out of 12 mutations of the BTK gene were located in the SH1 domain, two in the PH domain, two in the SH3 domain and two in the SH2 domain. Three patients had a history of severe infection before diagnosis. We did not identify any correlation between severity of clinical symptoms and the genotype. CONCLUSIONS Our results show that mutations in southeast Turkey could be different from those in the rest of the world and molecular genetic tests are an important tool for early confirmed diagnosis of XLA.
Collapse
|
217
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) is a multifactorial disease caused by dysregulated immune responses to commensal or pathogenic intestinal microbes, resulting in chronic intestinal inflammation. However, a subset of patients with IBD diagnosed <6 years of age, known as very early-onset (VEO)-IBD, can be phenotypically and genetically distinct from older onset IBD. We aim to review the clinical presentation of children with VEO-IBD and recent discoveries that point to the underlying genomic and immunologic drivers of disease, and the significant impact on our therapeutic decisions. RECENT FINDINGS VEO-IBD is increasing in incidence and is associated with more severe disease, aggressive progression, and poor response to most conventional therapies. This article will review some of the genetic findings in this population and the subsequent impact on therapy, with targeted approaches. SUMMARY Children with VEO-IBD may present with a different phenotype and more severe disease than older children and adults. An integrated approach combining genetics, immunology, and traditional IBD evaluations can lead to the identification of causal defects that directly impact management. These strategies can also be employed in older onset refractory IBD.
Collapse
Affiliation(s)
- Maire A Conrad
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia Philadelphia, Pennsylvania,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia Philadelphia, Pennsylvania,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
218
|
Geier CB, Sauerwein KMT, Leiss-Piller A, Zmek I, Fischer MB, Eibl MM, Wolf HM. Hypomorphic Mutations in the BCR Signalosome Lead to Selective Immunoglobulin M Deficiency and Impaired B-cell Homeostasis. Front Immunol 2018; 9:2984. [PMID: 30619340 PMCID: PMC6305442 DOI: 10.3389/fimmu.2018.02984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
B cell activation via the B cell receptor (BCR) signalosome involves participation of signaling molecules such as BTK and BLNK. Genetic defects in these molecules are known to impair B cell differentiation and subsequently lead to agammaglobulinemia. Here we identified novel mutations in BTK and BLNK in two unrelated patients that perturb the intrinsic B-cell receptor signaling pathway and lead to selective IgM deficiency, whereas production of other immunoglobulin isotypes and IgG antibody response remain intact. Currently it is unknown how BCR signaling strength affects mature B cell development in humans. Both patients show reduced levels of BCR signalosome phosphorylation as well as impaired BCR-dependent Ca2+ influx, which was accompanied by a marked decrease in IgD+IgM+CD27+ MZ-like B-cells. We further describe reduced expression of essential B cell differentiation factors such as BAFF-R and T-Bet in the patients' B-cells, which might contribute to the observed deficiency of MZ-like B cells. MZ-like B cells are known to produce natural IgM antibodies that play an essential role in immune homeostasis. By using surface plasmon resonance (SPR) technology and a synthetic blood group A trisaccharide as antigen we were able to show that both patients lack the presence of anti-blood group A IgM considered to be prototypical natural antibodies whereas IgG levels were normal. Antibody binding dynamics and binding affinity of anti-blood group A IgG were comparable between patients and healthy controls. These results indicate that human IgM deficiency can be associated with signaling defects in the BCR signalosome, defective production of natural IgM antibodies in the blood group A/B/0 system and abnormalities in B cell development.
Collapse
Affiliation(s)
| | | | | | | | - Michael B Fischer
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria.,Department for Health Science and Biomedicine, Danube University Krems, Krems, Austria
| | - Martha M Eibl
- Immunology Outpatient Clinic, Vienna, Austria.,Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria.,Medical School, Sigmund Freud Private University, Vienna, Austria
| |
Collapse
|
219
|
Abstract
INTRODUCTION Protein kinases are involved in various cellular functions. About 2% of the human genome encodes for protein kinases. Dysregulation of protein kinases is implicated in various processes of carcinogenesis. The advent of protein kinase inhibitors in cancer therapy has led to a paradigm shift in cancer therapy. Several protein kinase inhibitors have been approved by FDA in the last few decades. Areas covered: This article provides a review of the FDA approved protein kinase inhibitors as of December 2017 for the well-known oncogenic protein kinases. A list of FDA approved protein kinase inhibitors and their FDA approved clinical indications were cataloged. The role of the respective oncogenic protein kinases in carcinogenesis and cancer progression and the relevant landmark clinical trials of respective protein kinase inhibitors leading up to the FDA approval were PubMed searched and discussed. Expert commentary: Further understanding of the molecular origin of various cancers would help identify new targets. Use of biomarker profiling might select the patient population that would benefit better from kinase inhibitors. Clinical trials should be designed to identify the appropriate sequence of the available kinase inhibitors. It would prove to be useful to test these drugs in the adjuvant setting.
Collapse
Affiliation(s)
- Radhamani Kannaiyan
- University of Arizona College of Medicine at South Campus, Tucson, Arizona, USA
| | | |
Collapse
|
220
|
Pokhrel NK, Kim YG, Kim HJ, Kim HJ, Lee JH, Choi SY, Kwon TG, Lee HJ, Kim JY, Lee Y. A novel Bruton's tyrosine kinase inhibitor, acalabrutinib, suppresses osteoclast differentiation and Porphyromonas gingivalis lipopolysaccharide-induced alveolar bone resorption. J Periodontol 2018; 90:546-554. [PMID: 30387495 DOI: 10.1002/jper.18-0334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Periodontitis is not only one of the most prevalent inflammatory diseases among adults, but also commonly linked to numerous systemic conditions including cardiovascular diseases, stroke, and diabetes. Although osteoclasts are responsible for the alveolar bone resorption during periodontitis pathogenesis, the development of pharmacologic strategies targeting these cells has not been vastly fruitful. METHODS Bone marrow macrophages were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL) to examine the direct effect of acalabrutinib on osteoclastogenesis. Ca2+ oscillation and nuclear localization of NFATc1 in osteoclast precursors were examined to determine the precise molecular mechanism. LPS-induced alveolar bone loss model was employed for studying effect in in vivo bone resorption. RESULTS Acalabrutinib directly inhibited RANKL and LPS-induced in vitro osteoclast differentiation. In addition, acalabrutinib inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases and reduced the expression of NF-κB. The inhibitory mechanism involved suppression of Ca2+ oscillation in osteoclast precursors resulting in the decreased NFATc1 expression and nuclear localization, which is a crucial prerequisite for osteoclastogenesis. The administration of acalabrutinib significantly reduced P. gingivalis lipopolysaccharide-induced alveolar bone erosion in mice. CONCLUSION These data indicate that acalabrutinib is an effective inhibitor of osteoclastogenesis both in vitro and in vivo, with a potential for a novel strategy against bone destruction by periodontitis.
Collapse
Affiliation(s)
- Nitin Kumar Pokhrel
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hyo Jeong Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry & Institute of Translational Dental Science, Pusan National University, Yangsan, Korea
| | - Ji Hye Lee
- Department of Oral Pathology, School of Dentistry & Institute of Translational Dental Science, Pusan National University, Yangsan, Korea
| | - So-Young Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea.,Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea.,Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
221
|
Smith T, Cunningham-Rundles C. Primary B-cell immunodeficiencies. Hum Immunol 2018; 80:351-362. [PMID: 30359632 DOI: 10.1016/j.humimm.2018.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Primary B-cell immunodeficiencies refer to diseases resulting from impaired antibody production due to either molecular defects intrinsic to B-cells or a failure of interaction between B-cells and T-cells. Patients typically have recurrent infections and can vary with presentation and complications depending upon where the defect has occurred in B-cell development or the degree of functional impairment. In this review, we describe B-cell specific immune defects categorized by presence or absence of peripheral B-cells, immunoglobulins isotypes and evidence of antibody impairment.
Collapse
Affiliation(s)
- Tukisa Smith
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States; The Rockefeller University, Laboratory of Biochemical Genetics and Metabolism, 1230 York Avenue, Box 179, New York, NY 10065, United States.
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Clinical Immunology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029-6574, United States.
| |
Collapse
|
222
|
Rada M, Barlev N, Macip S. BTK: a two-faced effector in cancer and tumour suppression. Cell Death Dis 2018; 9:1064. [PMID: 30337526 PMCID: PMC6193937 DOI: 10.1038/s41419-018-1122-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022]
Abstract
Many genes of the human genome display pleiotropic activity, playing an important role in two or more unrelated pathways. Surprisingly, some of these functions can even be antagonistic, often letting to divergent functional outcomes depending on microenviromental cues and tissue/cell type-dependent parameters. Lately, the Bruton’s tyrosine kinase (BTK) has emerged as one of such pleiotropic genes, with opposing effects in cancer pathways. While it has long been considered oncogenic in the context of B cell malignancies, recent data shows that BTK can also act as a tumour suppressor in other cells, as an essential member of the p53 and p73 responses to damage. Since BTK inhibitors are already being used clinically, it is important to carefully review these new findings in order to fully understand the consequences of blocking BTK activity in all the cells of the organism.
Collapse
Affiliation(s)
- Miran Rada
- Department of Surgery, McGill University Health Center Research Institute, Cancer Research Program, Montreal, Quebec, Canada.,Department of Biology, School of Science, Faculty of Science and Education Sciences, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
| | - Nickolai Barlev
- Institute of Cytology, RAS, Saint-Petersburg, Russia. .,Cell Signaling Laboratory, Moscow Institute of Physics and Technology, Dolgoprudnoye, Moscow Region, Russia.
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
223
|
Chalmers SA, Glynn E, Garcia SJ, Panzenbeck M, Pelletier J, Dimock J, Seccareccia E, Bosanac T, Khalil S, Harcken C, Webb D, Nabozny G, Fine JS, Souza D, Klein E, Herlitz L, Ramanujam M, Putterman C. BTK inhibition ameliorates kidney disease in spontaneous lupus nephritis. Clin Immunol 2018; 197:205-218. [PMID: 30339790 DOI: 10.1016/j.clim.2018.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
Lupus nephritis is a common disease manifestation of SLE, in which immune complex deposition and macrophage activation are important contributors to disease pathogenesis. Bruton's tyrosine kinase (BTK) plays an important role in both B cell and FcgammaR mediated myeloid cell activation. In the current study, we examined the efficacy of BI-BTK-1, a recently described irreversible BTK inhibitor, in the classical NZB × NZW F1 (NZB/W) and MRL/lpr spontaneous mouse models of SLE. NZB/W mice were randomly assigned to a treatment (0.3 mg/kg, 1 mg/kg, 3 mg/kg and 10 mg/kg) or control group and began treatment at 22 weeks of age. The experimental setup was similar in MRL/lpr mice, but with a single treated (10 mg/kg, beginning at 8-9 weeks of age) and control group. A separate experiment was performed in the MRL/lpr strain to assess the ability of BI-BTK-1 to reverse established kidney disease. Early treatment with BI-BTK-1 significantly protected NZB/W and MRL/lpr mice from the development of proteinuria, correlating with significant renal histological protection, decreased anti-DNA titers, and increased survival in both strains. BI-BTK-1 treated mice displayed a significant decrease in nephritis-associated inflammatory mediators (e.g. LCN2 and IL-6) in the kidney, combined with a significant inhibition of immune cell infiltration and accumulation. Importantly, BI-BTK-1 treatment resulted in the reversal of established kidney disease. BTK inhibition significantly reduced total B cell numbers and all B cell subsets (immature, transitional, follicular, marginal zone, and class switched) in the spleen of NZB/W mice. Overall, the significant efficacy of BI-BTK-1 in ameliorating multiple pathological endpoints associated with kidney disease in two distinct murine models of spontaneous lupus nephritis provides a strong rationale for BTK inhibition as a promising treatment approach for lupus nephritis.
Collapse
Affiliation(s)
- Samantha A Chalmers
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elizabeth Glynn
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Sayra J Garcia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Mark Panzenbeck
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Josephine Pelletier
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Janice Dimock
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Elise Seccareccia
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA; Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Todd Bosanac
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Sara Khalil
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Christian Harcken
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Deborah Webb
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Gerald Nabozny
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Jay S Fine
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Donald Souza
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Elliott Klein
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA.
| | - Meera Ramanujam
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
224
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
225
|
Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018; 392:880-890. [PMID: 30215383 PMCID: PMC6173801 DOI: 10.1016/s0140-6736(18)31767-7] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
Abstract
Bronchiectasis is characterised by pathological dilation of the airways. More specifically, the radiographic demonstration of airway enlargement is the common feature of a heterogeneous set of conditions and clinical presentations. No approved therapies exist for the condition other than for bronchiectasis caused by cystic fibrosis. The heterogeneity of bronchiectasis is a major challenge in clinical practice and the main reason for difficulty in achieving endpoints in clinical trials. Recent observations of the past 2 years have improved the understanding of physicians regarding bronchiectasis, and have indicated that it might be more effective to classify patients in a different way. Patients could be categorised according to a heterogeneous group of endotypes (defined by a distinct functional or pathobiological mechanism) or by clinical phenotypes (defined by relevant and common features of the disease). In doing so, more specific therapies needed to effectively treat patients might finally be developed. Here, we describe some of the recent advances in endotyping, genetics, and disease heterogeneity of bronchiectasis including observations related to the microbiome.
Collapse
Affiliation(s)
- Patrick A. Flume
- Departments of Medicine and Pediatrics, Medical University
of South Carolina, Charleston, SC, USA.
| | | | | |
Collapse
|
226
|
Palma M, Krstic A, Peña Perez L, Berglöf A, Meinke S, Wang Q, Blomberg KEM, Kamali-Moghaddam M, Shen Q, Jaremko G, Lundin J, De Paepe A, Höglund P, Kimby E, Österborg A, Månsson R, Smith CIE. Ibrutinib induces rapid down-regulation of inflammatory markers and altered transcription of chronic lymphocytic leukaemia-related genes in blood and lymph nodes. Br J Haematol 2018; 183:212-224. [PMID: 30125946 DOI: 10.1111/bjh.15516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/11/2018] [Indexed: 01/05/2023]
Abstract
In chronic lymphocytic leukaemia (CLL) patients, treatment with the Bruton tyrosine kinase inhibitor ibrutinib induces a rapid shift of tumour cells from lymph nodes (LN) to peripheral blood (PB). Here, we characterized in depth the dynamics of ibrutinib-induced inflammatory, transcriptional and cellular changes in different compartments immediately after treatment initiation in seven relapsed/refractory CLL patients. Serial PB and LN samples were taken before start and during the first 29 days of treatment. Changes in plasma inflammation-related biomarkers, CLL cell RNA expression, B-cell activation and migration markers expression, and PB mononuclear cell populations were assessed. A significant reduction of 10 plasma inflammation markers, the majority of which were chemokines and not CLL-derived, was observed within hours, and was paralleled by very early increase of CD19+ circulating cells. At the RNA level, significant and continuous changes in transcription factors and signalling molecules linked to B-cell receptor signalling and CLL biology was observed in both PB and LN CLL cells already after 2 days of treatment. In conclusion, ibrutinib seems to instantly shut off an ongoing inflammatory response and interfere with diverse sensitive pathways in the LN.
Collapse
Affiliation(s)
- Marzia Palma
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Haematology, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Krstic
- Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Peña Perez
- Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Berglöf
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Meinke
- Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Qing Wang
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Qiujin Shen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Georg Jaremko
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Lundin
- Department of Haematology, Karolinska University Hospital, Stockholm, Sweden
| | - Ayla De Paepe
- Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kimby
- Department of Haematology, Karolinska University Hospital, Stockholm, Sweden.,Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Haematology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Department of Haematology, Karolinska University Hospital, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
227
|
Stark AK, Chandra A, Chakraborty K, Alam R, Carbonaro V, Clark J, Sriskantharajah S, Bradley G, Richter AG, Banham-Hall E, Clatworthy MR, Nejentsev S, Hamblin JN, Hessel EM, Condliffe AM, Okkenhaug K. PI3Kδ hyper-activation promotes development of B cells that exacerbate Streptococcus pneumoniae infection in an antibody-independent manner. Nat Commun 2018; 9:3174. [PMID: 30093657 PMCID: PMC6085315 DOI: 10.1038/s41467-018-05674-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is a major cause of pneumonia and a leading cause of death world-wide. Antibody-mediated immune responses can confer protection against repeated exposure to S. pneumoniae, yet vaccines offer only partial protection. Patients with Activated PI3Kδ Syndrome (APDS) are highly susceptible to S. pneumoniae. We generated a conditional knock-in mouse model of this disease and identify a CD19+B220- B cell subset that is induced by PI3Kδ signaling, resides in the lungs, and is correlated with increased susceptibility to S. pneumoniae during early phases of infection via an antibody-independent mechanism. We show that an inhaled PI3Kδ inhibitor improves survival rates following S. pneumoniae infection in wild-type mice and in mice with activated PI3Kδ. These results suggest that a subset of B cells in the lung can promote the severity of S. pneumoniae infection, representing a potential therapeutic target.
Collapse
Affiliation(s)
- Anne-Katrien Stark
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Anita Chandra
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 OQQ, UK
- Cambridge University Hospitals NHS Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Krishnendu Chakraborty
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - Rafeah Alam
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
| | - Valentina Carbonaro
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
| | - Jonathan Clark
- Biological Chemistry Laboratory, Babraham Institute, Cambridge, CB21 3AT, UK
| | - Srividya Sriskantharajah
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Glyn Bradley
- Computational Biology and Statistics, Target Sciences, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Alex G Richter
- Department of Immunology, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Edward Banham-Hall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 OQQ, UK
- Cambridge University Hospitals NHS Trust, Hills Road, Cambridge, CB2 0QQ, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, CB2 OQQ, UK
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, CB2 OQQ, UK
| | - J Nicole Hamblin
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Edith M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, S10 2RX, UK
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB21 3AT, UK.
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| |
Collapse
|
228
|
Liu L, Shi B, Li X, Wang X, Lu X, Cai X, Huang A, Luo G, You Q, Xiang H. Design and synthesis of benzofuro[3,2-b]pyridin-2(1H)-one derivatives as anti-leukemia agents by inhibiting Btk and PI3Kδ. Bioorg Med Chem 2018; 26:4537-4543. [DOI: 10.1016/j.bmc.2018.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
|
229
|
Yosef A, Touloukian EZ, Nambudiri VE. Ibrutinib in the management of Waldenstrom macroglobulinemia. J Oncol Pharm Pract 2018; 25:434-441. [PMID: 29996737 DOI: 10.1177/1078155218786037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bruton tyrosine kinase plays a critical role in hastening cell proliferation. Bruton tyrosine kinase inhibitors are a class of immunotheraputic agents that disrupt this signaling pathway. Ibrutinib, a novel Bruton tyrosine kinase inhibitor approved by the Food and Drug Administration (FDA) for the treatment of Waldenstrom macroglobulinemia in patients who have failed treatment with other agents, has emerged as an important therapeutic agent in the management of Waldenstrom macroglobulinemia and other plasma cell dyscrasias. Ibrutinib has shown to increase progression free survival and improve overall mortality. We present a review of ibrutinib, beginning with an overview of the Bruton tyrosine kinase pathway and clinically relevant gene mutations impacting treatment and prognosis for patients with Waldenstrom macroglobulinemia, followed by evidence supporting therapeutic indications for ibrutinib, and detailing its safety and efficacy evidence, current clinical guidelines, adverse effects and their management, and finally challenges of drug resistance. We also present findings on newly developed Bruton tyrosine kinase inhibitors in the therapeutic pipeline to provide readers insight into this rapidly evolving corner of oncology pharmacy practice.
Collapse
Affiliation(s)
- Amir Yosef
- Grand Strand Regional Medical Center, Myrtle Beach, USA
| | | | | |
Collapse
|
230
|
Park CH, Kim D, Jung H, Jeon JH, Achary R, Lee JY, Kim P, Jung H, Hwang JY, Ryu DH, Du Ha J, Cho SY. Design and Synthesis of Novel 3-(2-Aminopyridin-3-yl)-1,2,4-Triazolo[4,3-b
]Pyridazine Derivatives as a Reversible Bruton's Tyrosine Kinase Inhibitors. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chi Hoon Park
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 South Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 South Korea
| | - Dukwoon Kim
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 South Korea
| | - Hyeonseok Jung
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 South Korea
| | - Jeong Hee Jeon
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 South Korea
| | - Raghavendra Achary
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 South Korea
| | - Joo-Youn Lee
- Korea Chemical Bank; Korea Research Institute of Chemical Technology; Daejeon 305-550 South Korea
| | - Pilho Kim
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 South Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 South Korea
| | - Heejung Jung
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 South Korea
| | - Jong Yeon Hwang
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 South Korea
- Department of Medicinal and Pharmaceutical Chemistry; University of Science and Technology; Daejeon 305-550 South Korea
| | - Do Hyun Ryu
- Department of Chemistry; Sungkyunkwan University; Suwon 440-746 South Korea
| | - Jae Du Ha
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 South Korea
| | - Sung Yun Cho
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-606 South Korea
| |
Collapse
|
231
|
Rodgers TD, Reagan PM. Targeting the B-cell receptor pathway: a review of current and future therapies for non-Hodgkin's lymphoma. Expert Opin Emerg Drugs 2018; 23:111-122. [PMID: 29781323 DOI: 10.1080/14728214.2018.1479396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION The B-cell receptor (BCR) pathway is a crucial aspect of mature lymphocytes and is maintained in B-cell neoplasms. Many small module inhibitors targeting kinases within the BCR pathway are approved, with others in development, offering alternative treatment options to standard chemoimmunotherapy. Areas covered: This review covers both approved inhibitors and investigational inhibitors of spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), and phosphoinositide-3-kinase (PI3K) in the treatment of B-cell lymphomas. To collect relevant articles, a literature search was completed through the use of PubMed and abstracts from ASH and ASCO national meetings. Search terms including non-Hodgkin lymphoma, and BCR inhibitors, as well as the individual drug names, were utilized. The majority of included studies are dated from 2012 to March 2018. Expert opinion: BCR pathway inhibitors, such as ibrutinib and idelalisib, are novel treatments for non-Hodgkin lymphomas. While providing alternative treatment options to those with high-risk disease, poor functional status, and relapsed disease, outside of chronic lymphocytic leukemia (CLL), they have been limited to the relapsed/refractory setting. Their mechanisms of action, off/on-target effects, and resistance patterns create unique therapeutic dilemmas. It is our opinion that more specific inhibitors, as well as combination therapy, will define the future for BCR inhibitors.
Collapse
Affiliation(s)
- Thomas D Rodgers
- a James P. Wilmot Cancer Institute, University of Rochester Medical Center , Rochester , NY.,b Department of Medicine , Division of Hematology Oncology , United States
| | - Patrick M Reagan
- b Department of Medicine , Division of Hematology Oncology , United States
| |
Collapse
|
232
|
Padem N, Park L, Antoon JW. Case 1: Abscess in a 9-year-old Boy. Pediatr Rev 2018; 39:310. [PMID: 29858293 DOI: 10.1542/pir.2017-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nurcicek Padem
- Department of General Pediatrics and Adolescent Medicine and
| | - Lucy Park
- Department of Pediatric Allergy and Immunology, Children's Hospital, University of Illinois Hospital & Health Sciences System, Chicago, IL
| | - James W Antoon
- Department of General Pediatrics and Adolescent Medicine and
| |
Collapse
|
233
|
King J, Borte S, Brodszki N, von Döbeln U, Smith CIE, Hammarström L. Kappa-deleting recombination excision circle levels remain low or undetectable throughout life in patients with X-linked agammaglobulinemia. Pediatr Allergy Immunol 2018. [PMID: 29543351 DOI: 10.1111/pai.12893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jovanka King
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Immunopathology, SA Pathology, Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, North Adelaide, South Australia
| | - Stephan Borte
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.,ImmunoDeficiencyCenter Leipzig (IDCL) at Hospital St. Georg gGmbH Leipzig, Leipzig, Germany
| | - Nicholas Brodszki
- Department of Pediatrics, Children's Hospital Lund, Skåne University Hospital, Lund, Sweden
| | - Ulrika von Döbeln
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Clinical Research Center, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
234
|
Pitfalls of Combining Novel Agents in Lymphoma. Curr Treat Options Oncol 2018; 19:35. [PMID: 29808236 DOI: 10.1007/s11864-018-0548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
OPINION STATEMENT As our knowledge of lymphoma and its intricate signaling pathways has grown, so has the development of novel agents. While their mechanisms of action vary considerably, these therapies supplement and in some cases offer alternatives to standard chemotherapy. Initial studies have highlighted tolerable side effects though in the majority of instances limited efficacy when used as monotherapy. Research has focused on combining these novel agents to improve outcomes and perhaps offer refined treatment options. Novel combinations represent new territory, inherently dissimilar to combination chemotherapy with new pitfalls and challenges given their unique mechanisms of action. Though promising, it is crucial to consider the complex interplay that can occur. While there is potential for improved outcomes, there is also the possibility of unexpected toxicities. For this reason, it is critical that novel combinations be carefully considered and tested in clinical trials before widespread use. Thus far, research has shown that combination therapies are successful when not only avoiding overlapping toxicity but also capitalizing on synergy. We believe that more specific targets and an improved understanding of their off-/on-target effects will further successful novel combinations.
Collapse
|
235
|
Zhang Z, Zhang D, Liu Y, Yang D, Ran F, Wang ML, Zhao G. Targeting Bruton's tyrosine kinase for the treatment of B cell associated malignancies and autoimmune diseases: Preclinical and clinical developments of small molecule inhibitors. Arch Pharm (Weinheim) 2018; 351:e1700369. [DOI: 10.1002/ardp.201700369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Zhang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Daoguang Zhang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Yang Liu
- The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Dezhi Yang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Fansheng Ran
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| | - Michael L. Wang
- The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Guisen Zhao
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences; Shandong University; Jinan Shandong P.R. China
| |
Collapse
|
236
|
Vince N, Mouillot G, Malphettes M, Limou S, Boutboul D, Guignet A, Bertrand V, Pellet P, Gourraud PA, Debré P, Oksenhendler E, Théodorou I, Fieschi C. Genetic screening of male patients with primary hypogammaglobulinemia can guide diagnosis and clinical management. Hum Immunol 2018; 79:571-577. [PMID: 29709555 DOI: 10.1016/j.humimm.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
The precise diagnosis of an immunodeficiency is sometimes difficult to assess, especially due to the large spectrum of phenotypic variation reported among patients. Common variable immunodeficiency disorders (CVID) do not have, for a large part, an identified genetic cause. The identification of a causal genetic mutation is important to confirm, or in some cases correct, the diagnosis. We screened >150 male patients with hypogammaglobulinemia for mutations in three genes involved in pediatric X-linked primary immunoglobulin deficiency: CD40LG, SH2D1A and BTK. The SH2D1A screening allowed to reclassify two individuals with an initial CVID presentation as XLP after mutations identification. All these mutations were associated with a lack of protein expression. In addition, 4 patients with a primary diagnosis of CVID and one with a primary IgG subclass deficiency were requalified as XLA after identifying BTK mutations. Interestingly, two out of these 5 patients carried a damaging coding BTK mutation associated with a lower, but detectable, BTK expression in monocytes, suggesting that a dysfunctional protein explains the disease phenotype in these patients. In conclusion, our results advocate to include SH2D1A and BTK in newly developed targeted NGS genetic testing, to contribute to providing the most appropriate medical treatment and genetic counselling.
Collapse
Affiliation(s)
- Nicolas Vince
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.
| | - Gaël Mouillot
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Marion Malphettes
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; Ecole Centrale de Nantes, Nantes, France
| | - David Boutboul
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Angélique Guignet
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Véronique Bertrand
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Philippe Pellet
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Patrice Debré
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Eric Oksenhendler
- Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Ioannis Théodorou
- Laboratoire Central d'Immunologie Cellulaire et Tissulaire, Hôpital Pitié Salpêtrière et INSERM UMR-S945, Bâtiment CERVI, Paris, France
| | - Claire Fieschi
- EA3963, Université Paris 7 Denis Diderot, Centre Hayem, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France; Département d'Immunologie Clinique, Hôpital Saint-Louis, AP-HP, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | |
Collapse
|
237
|
Bhaskaran M, Cornwell PD, Sorden SD, Elwell MR, Russell NR, Pritt ML, Vahle JL. Pancreatic Effects of a Bruton's Tyrosine Kinase Small-molecule Inhibitor in Rats Are Strain-dependent. Toxicol Pathol 2018; 46:460-472. [PMID: 29699458 DOI: 10.1177/0192623318770163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inhibitors of Bruton's tyrosine kinase (BTK) are under development as potential therapies for various autoimmune diseases. In repeat-dose toxicity studies, small-molecule BTK inhibitors (BTKi) have been reported to cause a constellation of histologic effects at the pancreatic endocrine-exocrine interface in male rats; however, similar findings were not reported in other species. Since the BTKi-induced pancreatic effect is morphologically similar to well-documented spontaneous changes (predominantly characterized by insular/peri-insular hemorrhage, pigment deposition, chronic inflammation, and fibrosis) that are known to vary by rat strain, we investigated potential strain-dependent differences in the pancreatic effects of a small-molecule BTKi, LY3337641. Following 13 weeks of LY3337641 treatment, Crl:CD(SD) rats were most sensitive, Crl:WI(Han) rats were of intermediate sensitivity, and Hsd:SD rats were least sensitive. These strain differences appear to be related to differences in rate of weight gain across strains and sexes; however, a definitive mechanism was not determined. This study demonstrated that BTKi-induced pancreatic effects were highly dependent on rat strain and correlated with differences in the incidence and severity of the spontaneous background change. When considered with the lack of pancreas effects in nonrat species, these changes in rats are unlikely predictive of similar changes in humans administered a BTK inhibitor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John L Vahle
- 1 Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
238
|
Li Y, Cui N, Zheng PS, Yang WT. BMX/Etk promotes cell proliferation and tumorigenicity of cervical cancer cells through PI3K/AKT/mTOR and STAT3 pathways. Oncotarget 2018; 8:49238-49252. [PMID: 28514765 PMCID: PMC5564764 DOI: 10.18632/oncotarget.17493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022] Open
Abstract
Bone marrow X-linked kinase (BMX, also known as Etk) has been reported to be involved in cell proliferation, differentiation, apoptosis, migration and invasion in several types of tumors, but its role in cervical carcinoma remains poorly understood. In this study, we showed that BMX expression exhibits a gradually increasing trend from normal cervical tissue to cervical cancer in situ and then to invasive cervical cancer tissue. Through BMX-IN-1, a potent and irreversible BMX kinase inhibitor, inhibited the expression of BMX, the cell proliferation was significantly decreased. Knockdown of BMX in HeLa and SiHa cervical cancer cell lines using two different silencing technologies, TALEN and shRNA, inhibited cell growth in vitro and suppressed xenograft tumor formation in vivo, whereas overexpression of BMX in the cell line C-33A significantly increased cell proliferation. Furthermore, a mechanism study showed that silencing BMX blocked cell cycle transit from G0/G1 to S or G2/M phase, and knockdown of BMX inhibited the expression of p-AKT and p-STAT3. These results suggested that BMX can promote cell proliferation through PI3K/AKT/mTOR and STAT3 signaling pathways in cervical cancer cells.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Nan Cui
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of The People's Republic of China, Xi'an, People's Republic of China
| | - Wen-Ting Yang
- Department of Reproductive Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
239
|
Ali N, Malik F, Jafri SIM, Naglak M, Sundermeyer M, Pickens PV. Analysis of Efficacy and Tolerability of Bruton Tyrosine Kinase Inhibitor Ibrutinib in Various B-cell Malignancies in the General Community: A Single-center Experience. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 17S:S53-S61. [PMID: 28760303 DOI: 10.1016/j.clml.2017.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ibrutinib, an irreversible inhibitor of Bruton tyrosine kinase (BTK), is a novel drug that has shown significant efficacy and survival benefit for treatment of various B-cell malignancies. The primary objective of the present study was to investigate the efficacy of ibrutinib therapy in various B-cell malignancies in the general community. The secondary objectives included studying the adverse effects, ibrutinib-induced peripheral lymphocytosis, and effect on immunoglobulin levels. PATIENTS AND METHODS The present study was a retrospective observational cohort analysis conducted at Abington Jefferson Health. The clinical response was determined from the hematologist's assessment and evaluated independently using the response criteria for each B-cell malignancy. Adverse effects were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The Wilcoxon signed-rank test was used to compare immunoglobulin levels before and after ibrutinib. Forty five patients with B-cell malignancies and receiving ibrutinib therapy were eligible. RESULTS The median age was 73 years (range, 49-96 years), and 84.4% of the patients had received ≥ 1 previous therapy. The best overall response rate of all cohorts combined was 63.8%. The greatest overall response rate was observed in patients with chronic lymphocytic leukemia or small lymphocytic lymphoma (76.1%), followed by those with Waldenström macroglobulinemia (75%). Of the 45 patients, 88.9% experienced adverse effects. Antiplatelet activity of ibrutinib was most commonly observed (30.5%). Of note, 5 patients (11%) developed new-onset atrial fibrillation after drug initiation. Peripheral lymphocytosis after drug initiation was observed in most patients, with a peak level at 1 month (median lymphocyte count, 2.7 × 103 cells/μL). Although the IgG levels at 3, 6, and 12 months had decreased (P = .01 for all) compared with the levels before ibrutinib, the IgA levels had not increased at 3, 6, 12, and 24 months (P = .6, P = .5, P = .3, and P = .9, respectively). CONCLUSION Ibrutinib is a highly effective and tolerable drug for B-cell malignancies in the general community. In contrast to the previously reported rate of 5% to 7%, we observed a higher rate (11%) of atrial fibrillation, which might have resulted from the smaller sample size in the present study and the multiple comorbidities. Nonetheless, this treatment-limiting side effect requires further elucidation. Paradoxical lymphocytosis at the outset of therapy was a common and benign finding. In conjunction with the reported trials, the IgG levels decreased in the first year of continued therapy. However, the IgA levels did not increase, even after 2 years of therapy.
Collapse
Affiliation(s)
- Naveed Ali
- Department of Internal Medicine, Abington Jefferson Health, Abington, PA.
| | - Faizan Malik
- Department of Internal Medicine, Abington Jefferson Health, Abington, PA
| | | | - Mary Naglak
- Department of Internal Medicine, Abington Jefferson Health, Abington, PA
| | - Mark Sundermeyer
- Department of Hematology and Oncology, Abington Jefferson Health, Abington, PA
| | - Peter V Pickens
- Department of Hematology and Oncology, Abington Jefferson Health, Abington, PA
| |
Collapse
|
240
|
Heimall JR, Hagin D, Hajjar J, Henrickson SE, Hernandez-Trujillo HS, Tan Y, Kobrynski L, Paris K, Torgerson TR, Verbsky JW, Wasserman RL, Hsieh EWY, Blessing JJ, Chou JS, Lawrence MG, Marsh RA, Rosenzweig SD, Orange JS, Abraham RS. Use of Genetic Testing for Primary Immunodeficiency Patients. J Clin Immunol 2018; 38:320-329. [PMID: 29675737 DOI: 10.1007/s10875-018-0489-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
Genetic testing plays a critical role in diagnosis for many primary immunodeficiency diseases. The goals of this report are to outline some of the challenges that clinical immunologists face routinely in the use of genetic testing for patient care. In addition, we provide a review of the types of genetic testing used in the diagnosis of PID, including their strengths and limitations. We describe the strengths and limitations of different genetic testing approaches for specific clinical contexts that raise concern for specific PID disorders in light of the challenges reported by the clinical immunologist members of the CIS in a recent membership survey. Finally, we delineate the CIS's recommendations for the use of genetic testing in light of these issues.
Collapse
Affiliation(s)
- Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, University of Pennsylvania, Wood Building 3rd Floor, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - David Hagin
- Allergy and Immunology Division, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Joud Hajjar
- Department of Pediatrics, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, University of Pennsylvania, Wood Building 3rd Floor, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
- Wherry Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Hillary S Hernandez-Trujillo
- Division of Infectious Disease & Immunology, Connecticut Children's Medical Center, Hartford, CT, USA
- CT Asthma and Allergy Center, West Hartford, CT, USA
| | - Yuval Tan
- The Charles Bronfman Institute of Personalized Medicine, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kenneth Paris
- Division of Allergy-Immunology, LSU Health Sciences Center, Children's Hospital, New Orleans, LA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James W Verbsky
- Pediatrics and Microbiology and Molecular Genetics Section of Pediatric Rheumatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Elena W Y Hsieh
- Department of Immunology and Microbiology, Department of Pediatrics, Division of Allergy and Immunology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Jack J Blessing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Janet S Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia Health System, Charlottesville, VA, USA
| | - Rebecca A Marsh
- Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jordan S Orange
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
241
|
Garcillán B, Figgett WA, Infantino S, Lim EX, Mackay F. Molecular control of B-cell homeostasis in health and malignancy. Immunol Cell Biol 2018; 96:453-462. [PMID: 29499091 DOI: 10.1111/imcb.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
Altered B-cell homeostasis underlies a wide range of pathologies, from cancers to autoimmunity and immunodeficiency. The molecular safeguards against those disorders, which also allow effective immune responses, are therefore particularly critical. Here, we review recent findings detailing the fine control of B-cell homeostasis, during B-cell development, maturation in the periphery and during activation and differentiation into antibody-producing cells.
Collapse
Affiliation(s)
- Beatriz Garcillán
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - William A Figgett
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Simona Infantino
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ee Xin Lim
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Fabienne Mackay
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
242
|
Abstract
Chronic lymphocytic leukemia (CLL), the most frequent type of leukemia in western countries, is characterized by the progressive accumulation in blood, bone marrow and lymphoid tissues of monoclonal B lymphocytes with a characteristic immunophenotype. Despite advances in therapy and improved outcome, in most instances CLL is an incurable disorder. Signaling via the B-cell receptor (BCR), the upregulation of anti-apoptotic proteins, and the cross-talk between CLL cells and microenvironment constitute key factors in the pathogenesis of CLL. Currently, inhibitors of kinases like BTK or PI3K blocking BCR signaling, and molecules that mimic the BH3 domain to compete with BCL-2 are established tools in the treatment of CLL. As the complex biology of CLL is rapidly unfolding, the number of small molecules targeting CLL molecular pathways is increasing and it is likely that they will further improve the outcome of patients with this form of leukemia.
Collapse
Affiliation(s)
- Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Emili Montserrat
- Department of Hematology, Institute of Hematology and Oncology, University of Barcelona, Hospital Clínic, Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
243
|
Yousaf R, Ahmed ZM, Giese AP, Morell RJ, Lagziel A, Dabdoub A, Wilcox ER, Riazuddin S, Friedman TB, Riazuddin S. Modifier variant of METTL13 suppresses human GAB1-associated profound deafness. J Clin Invest 2018; 128:1509-1522. [PMID: 29408807 DOI: 10.1172/jci97350] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/30/2018] [Indexed: 12/29/2022] Open
Abstract
A modifier variant can abrogate the risk of a monogenic disorder. DFNM1 is a locus on chromosome 1 encoding a dominant suppressor of human DFNB26 recessive, profound deafness. Here, we report that DFNB26 is associated with a substitution (p.Gly116Glu) in the pleckstrin homology domain of GRB2-associated binding protein 1 (GAB1), an essential scaffold in the MET proto-oncogene, receptor tyrosine kinase/HGF (MET/HGF) pathway. A dominant substitution (p.Arg544Gln) of METTL13, encoding a predicted methyltransferase, is the DFNM1 suppressor of GAB1-associated deafness. In zebrafish, human METTL13 mRNA harboring the modifier allele rescued the GAB1-associated morphant phenotype. In mice, GAB1 and METTL13 colocalized in auditory sensory neurons, and METTL13 coimmunoprecipitated with GAB1 and SPRY2, indicating at least a tripartite complex. Expression of MET-signaling genes in human lymphoblastoid cells of individuals homozygous for p.Gly116Glu GAB1 revealed dysregulation of HGF, MET, SHP2, and SPRY2, all of which have reported variants associated with deafness. However, SPRY2 was not dysregulated in normal-hearing humans homozygous for both the GAB1 DFNB26 deafness variant and the dominant METTL13 deafness suppressor, indicating a plausible mechanism of suppression. Identification of METTL13-based modification of MET signaling offers a potential therapeutic strategy for a wide range of associated hearing disorders. Furthermore, MET signaling is essential for diverse functions in many tissues including the inner ear. Therefore, identification of the modifier of MET signaling is likely to have broad clinical implications.
Collapse
Affiliation(s)
- Rizwan Yousaf
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, Maryland, USA
| | - Zubair M Ahmed
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, Maryland, USA
| | - Arnaud Pj Giese
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, Maryland, USA
| | - Robert J Morell
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Ayala Lagziel
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Alain Dabdoub
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, USA
| | - Edward R Wilcox
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Sheikh Riazuddin
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.,Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Saima Riazuddin
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, Maryland, USA.,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan.,Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| |
Collapse
|
244
|
Esenboga S, Cagdas D, Ozgur TT, Gur Cetinkaya P, Turkdemir LM, Sanal O, VanDerBurg M, Tezcan I. Clinical and genetic features of the patients with X-Linked agammaglobulinemia from Turkey: Single-centre experience. Scand J Immunol 2018; 87. [PMID: 29424453 DOI: 10.1111/sji.12647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022]
Abstract
X-linked agammaglobulinemia is a primary immunodeficiency disorder resulting from BTK gene mutations. There are many studies in the literature suggesting contradictory ideas about phenotype-genotype correlation. The aim of this study was to identify the mutations and clinical findings of patients with XLA in Turkey, to determine long-term complications related to the disease and to analyse the phenotype-genotype correlation. Thirty-two patients with XLA diagnosed between 1985 and 2016 in Pediatric Immunology Department of Hacettepe University Ihsan Dogramaci Children's Hospital were investigated. A clinical survey including clinical features of the patients was completed, and thirty-two patients from 26 different families were included in the study. Getting early diagnosis and regular assessment with imaging techniques seem to be the most important issues for improving the health status of the patients with XLA. Early molecular analysis gives chance for definitive diagnosis and genetic counselling, but not for predicting the clinical severity and prognosis.
Collapse
Affiliation(s)
- S Esenboga
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - D Cagdas
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - T T Ozgur
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - P Gur Cetinkaya
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - L M Turkdemir
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - O Sanal
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - M VanDerBurg
- Erasmus Medical Center, Laboratory Medical Immunology, Division of Immunology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - I Tezcan
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
245
|
Wu J, Zhang M, Liu D. Bruton tyrosine kinase inhibitor ONO/GS-4059: from bench to bedside. Oncotarget 2018; 8:7201-7207. [PMID: 27776353 PMCID: PMC5351700 DOI: 10.18632/oncotarget.12786] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023] Open
Abstract
The Bruton tyrosine kinase (BTK) inhibitor, ibrutinib, has been approved for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstroms macroglobulinemia. Acquired resistance to ibrutinib due to BTK C481S mutation has been reported. Mutations in PLC?2 can also mediate resistance to ibrutinib. Untoward effects due to off-target effects are also disadvantages of ibrutinib. More selective and potent BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292) are being investigated. This review summarized the preclinical research and clinical data of ONO/GS-4059.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Oncology, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Delong Liu
- Department of Oncology, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
246
|
Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer 2018; 17:57. [PMID: 29455639 PMCID: PMC5817726 DOI: 10.1186/s12943-018-0779-z] [Citation(s) in RCA: 488] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature B cells. Shortly after its discovery, BTK was placed in the signal transduction pathway downstream of the B cell antigen receptor (BCR). More recently, small-molecule inhibitors of this kinase have shown excellent anti-tumor activity, first in animal models and subsequently in clinical studies. In particular, the orally administered irreversible BTK inhibitor ibrutinib is associated with high response rates in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) and mantle-cell lymphoma (MCL), including patients with high-risk genetic lesions. Because ibrutinib is generally well tolerated and shows durable single-agent efficacy, it was rapidly approved for first-line treatment of patients with CLL in 2016. To date, evidence is accumulating for efficacy of ibrutinib in various other B cell malignancies. BTK inhibition has molecular effects beyond its classic role in BCR signaling. These involve B cell-intrinsic signaling pathways central to cellular survival, proliferation or retention in supportive lymphoid niches. Moreover, BTK functions in several myeloid cell populations representing important components of the tumor microenvironment. As a result, there is currently a considerable interest in BTK inhibition as an anti-cancer therapy, not only in B cell malignancies but also in solid tumors. Efficacy of BTK inhibition as a single agent therapy is strong, but resistance may develop, fueling the development of combination therapies that improve clinical responses. In this review, we discuss the role of BTK in B cell differentiation and B cell malignancies and highlight the importance of BTK inhibition in cancer therapy.
Collapse
Affiliation(s)
- Simar Pal Singh
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Department of Immunology, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
247
|
Stubbs A, Bangs C, Shillitoe B, Edgar JD, Burns SO, Thomas M, Alachkar H, Buckland M, McDermott E, Arumugakani G, Jolles MS, Herriot R, Arkwright PD. Bronchiectasis and deteriorating lung function in agammaglobulinaemia despite immunoglobulin replacement therapy. Clin Exp Immunol 2018; 191:212-219. [PMID: 28990652 PMCID: PMC5758375 DOI: 10.1111/cei.13068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Immunoglobulin replacement therapy enhances survival and reduces infection risk in patients with agammaglobulinaemia. We hypothesized that despite regular immunoglobulin therapy, some patients will experience ongoing respiratory infections and develop progressive bronchiectasis with deteriorating lung function. One hundred and thirty-nine (70%) of 199 patients aged 1-80 years from nine cities in the United Kingdom with agammaglobulinaemia currently listed on the UK Primary Immune Deficiency (UKPID) registry were recruited into this retrospective case study and their clinical and laboratory features analysed; 94% were male, 78% of whom had Bruton tyrosine kinase (BTK) gene mutations. All patients were on immunoglobulin replacement therapy and 52% had commenced therapy by the time they were 2 years old. Sixty per cent were also taking prophylactic oral antibiotics; 56% of patients had radiological evidence of bronchiectasis, which developed between the ages of 7 and 45 years. Multivariate analysis showed that three factors were associated significantly with bronchiectasis: reaching 18 years old [relative risk (RR) = 14·2, 95% confidence interval (CI) = 2·7-74·6], history of pneumonia (RR = 3·9, 95% CI = 1·1-13·8) and intravenous immunoglobulin (IVIG) rather than subcutaneous immunoglobulin (SCIG) = (RR = 3·5, 95% CI = 1·2-10·1), while starting immunoglobulin replacement after reaching 2 years of age, gender and recent serum IgG concentration were not associated significantly. Independent of age, patients with bronchiectasis had significantly poorer lung function [predicted forced expiratory volume in 1 s 74% (50-91)] than those without this complication [92% (84-101)] (P < 0·001). We conclude that despite immunoglobulin replacement therapy, many patients with agammaglobulinaemia can develop chronic lung disease and progressive impairment of lung function.
Collapse
Affiliation(s)
- A. Stubbs
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
| | - C. Bangs
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
- UKPIN UKPID Registry TeamUKPINLondonUK
| | - B. Shillitoe
- Department of ImmunologyGreat Northern Children's HospitalNewcastle upon TyneUK
| | - J. D. Edgar
- UKPIN UKPID Registry TeamUKPINLondonUK
- Regional Immunology ServiceThe Royal HospitalsBelfastUK
| | - S. O. Burns
- Department of ImmunologyRoyal Free Hospital, Institute of Immunology and Transplantation, University CollegeLondonUK
| | - M. Thomas
- ImmunologyNHS Greater Glasgow & ClydeGlasgowUK
| | - H. Alachkar
- ImmunologySalford Royal Foundation TrustManchesterUK
| | - M. Buckland
- UKPIN UKPID Registry TeamUKPINLondonUK
- ImmunologySt Bartholomew's HospitalLondonUK
| | | | | | - M. S. Jolles
- Department of ImmunologyUniversity Hospital of WalesCardiffUK
| | - R. Herriot
- ImmunologyAberdeen Royal InfirmaryAberdeenUK
| | - P. D. Arkwright
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
| |
Collapse
|
248
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
249
|
Strategies to overcome resistance mutations of Bruton's tyrosine kinase inhibitor ibrutinib. Future Med Chem 2018; 10:343-356. [PMID: 29347836 DOI: 10.4155/fmc-2017-0145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ibrutinib, as the first Bruton's tyrosine kinase (Btk) inhibitor, has been shown to have clinically significant activity in leukemias and lymphomas. However, the initially responsive tumors will develop resistance during the process of treatment in few patients. Here, we summarized the mechanism of acquired resistance and suggested the next-generation Btk inhibitors that override the target resistance. Moreover, the development of combination of selective antagonists or inhibitors targeting to multiple protein kinases have increased therapeutic potency to reduce the risk of the emergence of kinases inhibitor resistance. Thus, the reported combination of therapeutic drugs as an alternative therapy to overcome ibrutinib collapse or reduce the risk of the emergence of Btk inhibitor resistance also has been reviewed.
Collapse
|
250
|
Sharapova S, Pashchenko O, Guryanova I, Migas A, Kondratenko I, Aleinikova O. Recent thymic emigrants, T regulatory cells, and BAFF level in children with X-linked agammaglobulinaemia in association with chronic respiratory disease. Allergol Immunopathol (Madr) 2018; 46:58-66. [PMID: 28477853 DOI: 10.1016/j.aller.2017.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/24/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND X-linked agammaglobulinaemia (XLA) is a genetic disorder affecting B cell maturation, which is characterised by a low number of B cells, agammaglobulinaemia and increased susceptibility to a variety of bacterial infections. This study was performed to assess T cell subpopulations in a group of children with XLA in association with chronic respiratory disease (CRD). METHODS Numbers of T cell subpopulations (CD3+, CD4+, CD8+, CD3+DR+, naïve, memory, recent thymic emigrants (RTE), regulatory T cells, follicular T helpers) were measured by eight-colour flow cytometry in 22 XLA patients and 50 controls. BAFF level was measured by ELISA. RESULTS XLA patients with CRD had a significantly lower percentage of RTE numbers and Tregs, while significantly higher absolute counts of lymphocytes, CD3+, CD8+, CD3+DR+ and CD4+CD45RO+ T cells were detected as compared with healthy controls. In patients with XLA without CRD, the number of follicular T helper cells was altered significantly (percentage and absolute), as compared with healthy controls. Additionally, they had significantly higher counts (percentage and absolute) of CD4+CD45RA+ cells and lower percentage of CD4+CD45RO+ cells in comparison with healthy controls. CONCLUSIONS Our study affords new information concerning CRD and T cell subsets that differentiate or are maintained in the absence of B cells in children with XLA. T cell's homeostasis depends on the presence of chronic respiratory disease that may be caused by the delay in diagnosis.
Collapse
|