201
|
Kiselev SL, Kustikova OS, Korobko EV, Prokhortchouk EB, Kabishev AA, Lukanidin EM, Georgiev GP. Molecular cloning and characterization of the mouse tag7 gene encoding a novel cytokine. J Biol Chem 1998; 273:18633-18639. [PMID: 9660837 DOI: 10.1074/jbc.273.29.18633] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cloning of the mouse tag7 gene encoding a novel cytokine is described. The Tag7 protein consists of 182 amino acids. Genomic organization of the tag7 gene and its promoter region remind those of the genes of the tumor necrosis factor locus, although the tag7 gene is not linked to this locus. The gene is located on chromosome 7 at the area that corresponds to band 7A3, which has genetic linkage with lupus-like disease in mouse models. tag7 transcription is essential for lymphoid organs. It is also detected in certain areas of lungs, brain, and intestine and in some tumors. Tag7 protein is detectable in both cell-associated and soluble forms. The soluble form of Tag7 triggers apoptosis in mouse L929 cells in vitro and does not involve NF-kappaB activation. The relationship between Tag7 and tumor necrosis factor family of ligands is discussed.
Collapse
Affiliation(s)
- S L Kiselev
- Institute of Gene Biology, 34/5 Vavilova St., Moscow 117334, Russia.
| | | | | | | | | | | | | |
Collapse
|
202
|
Declercq W, Denecker G, Fiers W, Vandenabeele P. Cooperation of Both TNF Receptors in Inducing Apoptosis: Involvement of the TNF Receptor-Associated Factor Binding Domain of the TNF Receptor 75. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
TNF-R55 is the main receptor mediating TNF-induced cytotoxicity. However, in some cells TNF-R75 also signals cell death. In PC60 cells, the presence of both receptor types is required to induce apoptosis following either specific TNF-R55 or TNF-R75 triggering, pointing to a mechanism of receptor cooperation. In this study, we extend previous observations and show that TNF-R55 and TNF-R75 cooperation in the case of apoptosis in PC60 cells is bidirectional. We also demonstrate ligand-independent TNF-R55-mediated cooperation in TNF-R75-induced granulocyte/macrophage-CSF secretion, but not vice versa. To determine which part of the intracellular TNF-R75 sequence was responsible for the observed receptor cooperation in apoptosis, we introduced different TNF-R75 mutant constructs in PC60 cells already expressing TNF-R55. Our data indicate that an intact TNF-R-associated factors 1 and 2 (TRAF1/TRAF2)-binding domain is required for receptor cooperation. These findings suggest a role for the TRAF complex in TNF-R cooperation in the induction of cell death in PC60 cells. Nevertheless, introduction of a dominant negative (DN) TRAF2 molecule was not able to affect receptor cooperation. Remarkably, TRAF2-DN overexpression, which was found to inhibit the TNF-dependent recruitment of endogenous wild-type TRAF2 to the TNF-R75 signaling complex, could neither block TNF-R55- or TNF-R75-induced NF-κB activation nor granulocyte/macrophage-CSF secretion. Possibly, additional factors different from TRAF2 are involved in TNF-mediated NF-κB activation.
Collapse
Affiliation(s)
- Wim Declercq
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Ghent, Belgium
| | - Geertrui Denecker
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Ghent, Belgium
| | - Walter Fiers
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Ghent, Belgium
| | - Peter Vandenabeele
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, Ghent, Belgium
| |
Collapse
|
203
|
Singh A, Ni J, Aggarwal BB. Death domain receptors and their role in cell demise. J Interferon Cytokine Res 1998; 18:439-50. [PMID: 9712359 DOI: 10.1089/jir.1998.18.439] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apoptotic signals are transduced by five death domain-containing receptors--TNFR1, Fas, DR3, DR4, and DR5--by binding to their ligands. The intracellular portion of all these receptors contains a region, approximately 80 amino acids long, referred to as the "death domain" (DD). On activation by its ligand, the DD recruits various proteins that mediate cell death. These proteins, in turn, recruit other proteins via their DDs or death effector domains (DED). The actual destruction of the cell, however, is accomplished by serial activation of a family of proteases referred to as caspases. Cell death is, in part, regulated by transmembrane decoy receptors that contain either none of or only part of the DD. This article briefly reviews what is known about the receptors and other proteins involved in apoptosis. In addition, because numerous proteins that mediate apoptosis have been discovered independently and simultaneously and thus are known by many different names, a comprehensive cross-referenced list of these proteins is provided.
Collapse
Affiliation(s)
- A Singh
- Department of Molecular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
204
|
Affiliation(s)
- A Haunstetter
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Mass 02115, USA
| | | |
Collapse
|
205
|
Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, Dodds RA, James IE, Rosenberg M, Lee JC, Young PR. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273:14363-7. [PMID: 9603945 DOI: 10.1074/jbc.273.23.14363] [Citation(s) in RCA: 877] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
TRAIL is a tumor necrosis factor-related ligand that induces apoptosis upon binding to its death domain-containing receptors, DR4 and DR5. Two additional TRAIL receptors, TRID/DcR1 and DcR2, lack functional death domains and function as decoy receptors for TRAIL. We have identified a fifth TRAIL receptor, namely osteoprotegerin (OPG), a secreted tumor necrosis factor receptor homologue that inhibits osteoclastogenesis and increases bone density in vivo. OPG-Fc binds TRAIL with an affinity of 3.0 nM, which is slightly weaker than the interaction of TRID-Fc or DR5-Fc with TRAIL. OPG inhibits TRAIL-induced apoptosis of Jurkat cells. Conversely, TRAIL blocks the anti-osteoclastogenic activity of OPG. These data suggest potential cross-regulatory mechanisms by OPG and TRAIL.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Apoptosis Regulatory Proteins
- Binding, Competitive
- GPI-Linked Proteins
- Glycoproteins/physiology
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunohistochemistry
- Jurkat Cells
- Ligands
- Membrane Glycoproteins/physiology
- Mice
- Microscopy, Fluorescence
- Oligopeptides
- Osteoclasts/cytology
- Osteoprotegerin
- Peptides/immunology
- Protein Binding/physiology
- Receptors, Cytoplasmic and Nuclear
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/classification
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Member 10c
- Receptors, Tumor Necrosis Factor, Member 25
- Recombinant Fusion Proteins/metabolism
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Necrosis Factor Decoy Receptors
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- J G Emery
- Department of Molecular Biology, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Affiliation(s)
- V Cryns
- Center for Endocrinology, Metabolism and Molecular Medicine, Northwestern University School of Medicine, Chicago, Illinois 60611 USA
| | | |
Collapse
|
207
|
Zhang C, Xu Y, Gu J, Schlossman SF. A cell surface receptor defined by a mAb mediates a unique type of cell death similar to oncosis. Proc Natl Acad Sci U S A 1998; 95:6290-5. [PMID: 9600958 PMCID: PMC27661 DOI: 10.1073/pnas.95.11.6290] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell death is mediated by distinct pathways including apoptosis and oncosis in response to various death signals. To characterize molecules involved in cell death, a panel of mAbs was raised by immunizing mice with apoptotic cells. One of these antibodies, designated anti-Porimin (for pro-oncosis receptor inducing membrane injury), was found to directly induce a unique type of cell death in Jurkat cells. Anti-Porimin defines a 110-kDa cell surface receptor on Jurkat cells. Functionally, anti-Porimin alone rapidly mediates pore formation on the plasma membrane and induces cell death without participation of complement. Both the cellular expression and functional characteristics of the Porimin antigen indicate that it is distinct from the CD95 (Fas/Apo-1) and other cell receptors known to induce apoptosis. Anti-Porimin-mediated cell death was preceded by cell aggregation, formation of plasma membrane pores, and the appearance of membrane blebs. More important, these cells show neither DNA fragmentation nor apoptotic bodies, but display lethal damage of the cell membrane. Cell death by anti-Porimin is distinct from complement-dependent cytolysis or complement-independent apoptosis but is similar to that described for oncosis, a form of cell death accompanied by the membrane damage followed by karyolysis. The induction of cell death by anti-Porimin may represent a unique cell surface receptor-mediated pathway of cell death in the human lymphoid system.
Collapse
Affiliation(s)
- C Zhang
- Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
208
|
Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, Morimoto C, Ware CF, Malinin NL, Wallach D, Yagita H, Okumura K. CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J Biol Chem 1998; 273:13353-8. [PMID: 9582383 DOI: 10.1074/jbc.273.21.13353] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD27 is a member of the tumor necrosis factor (TNF) receptor superfamily and is expressed on T, B, and NK cells. The signal via CD27 plays pivotal roles in T-T and T-B cell interactions. Here we demonstrate that overexpression of CD27 activates NF-kappaB and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). Deletion analysis of the cytoplasmic domain of CD27 revealed that the C-terminal PIQEDYR motif was indispensable for both NF-kappaB and SAPK/JNK activation and was also required for the interaction with TNF receptor-associated factor (TRAF) 2 and TRAF5, both of which have been implicated in NF-kappaB activation by members of the TNF-R superfamily. Co-transfection of a dominant negative TRAF2 or TRAF5 blocked NF-kappaB and SAPK/JNK activation induced by CD27. Recently, a TRAF2-interacting kinase has been identified, termed NF-kappaB-inducing kinase (NIK). A kinase-inactive mutant NIK blocked CD27-, TRAF2-, and TRAF5-mediated NF-kappaB and SAPK/JNK activation. These results indicate that TRAF2 and TRAF5 are involved in NF-kappaB and SAPK/JNK activation by CD27, and NIK is a common downstream kinase of TRAF2 and TRAF5 for NF-kappaB and SAPK/JNK activation.
Collapse
Affiliation(s)
- H Akiba
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Grenet J, Valentine V, Kitson J, Li H, Farrow SN, Kidd VJ. Duplication of the DR3 gene on human chromosome 1p36 and its deletion in human neuroblastoma. Genomics 1998; 49:385-93. [PMID: 9615223 DOI: 10.1006/geno.1998.5300] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human DR3 gene, whose product is also known as Wsl-1/APO-3/TRAMP/LARD, encodes a tumor necrosis factor-related receptor that is expressed primarily on the surface of thymocytes and lymphocytes. DR3 is capable of inducing both NF-kappa B activation and apoptosis when overexpressed in mammalian cells, although its ligand has not yet been identified. We report here that the DR3 gene locus is tandemly duplicated on human chromosome band 1p36.2-p36.3 and that these genes are hemizygously deleted and/or translocated to another chromosome in neuroblastoma (NB) cell lines with amplified MYCN. Duplication of at least a portion of the DR3 gene, including the extracellular and transmembrane regions but not the cytoplasmic domain, was demonstrated by both fluorescence in situ hybridization and genomic Southern blotting. In most NB cell lines, both the DR3 and the DR3L sequences are simultaneously deleted and/or translocated to another chromosome. Finally, DR3/ Wsl-1 protein expression is quite variable among these NB cell lines, with very low or undetectable levels in 7 of 17 NB cell lines.
Collapse
Affiliation(s)
- J Grenet
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA
| | | | | | | | | | | |
Collapse
|
210
|
Walker LS, McLeod JD, Boulougouris G, Patel YI, Hall ND, Sansom DM. Down-regulation of CD28 via Fas (CD95): influence of CD28 on T-cell apoptosis. Immunology 1998; 94:41-7. [PMID: 9708185 PMCID: PMC1364329 DOI: 10.1046/j.1365-2567.1998.00490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Following antigen engagement of the T-cell receptor (TCR), T-cell survival is largely dictated by the provision of additional signals, such as those from costimulatory receptors and cytokine receptors. Whilst CD28-mediated signalling is increasingly associated with survival, ligation of alternative T-cell antigens, such as Fas (CD95), can trigger apoptosis. The T-cell response following antigen engagement may therefore be influenced by the relative expression levels of these coreceptors as well as by the availability of their ligands (CD80/86 and Fas-L). In this study we demonstrate functional interplay between the death receptor Fas and the costimulatory receptor CD28 in human T cells. In Jurkat T cells, we show that Fas signalling leads to rapid and selective CD28 down-regulation, and that this is associated with a specific decrease in mRNA for CD28, indicating that mechanisms exist which target CD28 at a transcriptional level. Moreover, cells that down-regulate CD28 also undergo apoptosis. Studies on activated human peripheral blood T cells demonstrate that cells expressing high levels of CD28 are resistant to Fas-mediated apoptosis whereas cells expressing low levels are more susceptible, implicating CD28 in the provision of anti-apoptotic signals. Consistent with this hypothesis, direct ligation of CD28 using B7 transfectants concomitant with anti-Fas challenge protects from apoptosis. Since antigen-presenting cells may express Fas-L under certain circumstances, the maintenance of T-cell CD28 expression may be crucial for the prevention of Fas-mediated apoptosis during the course of antigen engagement.
Collapse
Affiliation(s)
- L S Walker
- Bath Institute for Rheumatic Diseases, UK
| | | | | | | | | | | |
Collapse
|
211
|
Abstract
Since the discovery that cells can activate their own suicide program, investigators have attempted to determine whether the events that are associated with this form of cell death are genetically determined. The discovery that the ced-3 gene of Caenorhabditis elegans encodes a cysteine protease essential for developmentally regulated apoptosis ignited interest in this area of research. As a result, we now know that cell death is specified by a number of genes and that this biologic process contributes significantly to development, tumorigenesis, and autoimmune disease. In this review I summarize what is currently known about signaling pathways involved in apoptosis, with particular emphasis on the function of the cysteine proteases known as caspases. However, there is also evidence that protease-independent cell death pathways exist. Is there a relationship between these two distinct mechanisms? If so, how do they communicate? Finally, even though the involvement of tumor necrosis factor/nerve growth factor family of receptors and cysteine proteases has been elegantly established as a component of many apoptotic signaling pathways, what happens downstream of these initial events? Why are only a selected group of cellular proteins--many nuclear--the targets of these proteases? Are nuclear events essential for apoptosis in vivo? Are the cellular genes that encode products involved in apoptotic signaling frequent targets of mutation/alteration during tumorigenesis? These are only a few questions that may be answered in the next ten years.
Collapse
Affiliation(s)
- V J Kidd
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101, USA.
| |
Collapse
|
212
|
Marsters SA, Sheridan JP, Pitti RM, Brush J, Goddard A, Ashkenazi A. Identification of a ligand for the death-domain-containing receptor Apo3. Curr Biol 1998; 8:525-8. [PMID: 9560343 DOI: 10.1016/s0960-9822(98)70204-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor necrosis factor (TNF) cytokine family regulates development and function of the immune system [1]. TNF is expressed primarily by activated lymphocytes and macrophages and induces gene transcription or apoptosis in target cells [2,3]. We have identified a novel relative of TNF that binds to the recently discovered, death-domain-containing receptor called Apo3 [4] (also known as DR3, WSL-1, TRAMP or LARD [5-9]). The Apo3 ligand (Apo3L) is a 249 amino-acid, type II transmembrane protein. The extracellular sequence of Apo3L shows highest identity to that of TNF. We detected Apo3L mRNA in many human tissues and mapped its encoding gene to chromosome 17p13, near the p53 tumor-suppressor gene. Soluble Apo3L induced apoptosis and nuclear factor kappaB (NF-kappaB) activation in human cell lines. Caspase inhibitors blocked apoptosis induction by Apo3L, as did a dominant-negative mutant of the cell death adaptor protein Fas-associated death domain protein (FADD/MORT1), which is critical for apoptosis induction by TNF [3]. Dominant-negative mutants of several factors that play a key role in NF-kappaB induction by TNF [10] inhibited NF-kappaB activation by Apo3L. Thus, Apo3L has overlapping signaling functions with TNF, but displays a much wider tissue distribution.
Collapse
Affiliation(s)
- S A Marsters
- Department of Molecular Oncology Genentech Inc 1 DNA Way, South San Francisco, California, 94080-4918, USA
| | | | | | | | | | | |
Collapse
|
213
|
de Villartay JP, Rieux-Laucat F, Fischer A, Le Deist F. Clinical effects of mutations to CD95 (Fas): relevance to autoimmunity? SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 19:301-10. [PMID: 9540158 DOI: 10.1007/bf00787227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
214
|
Walsh CM, Wen BG, Chinnaiyan AM, O'Rourke K, Dixit VM, Hedrick SM. A role for FADD in T cell activation and development. Immunity 1998; 8:439-49. [PMID: 9586634 DOI: 10.1016/s1074-7613(00)80549-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
FADD is a cytoplasmic adapter molecule that links the family of death receptors to the activation of caspases during apoptosis. We have produced transgenic mice expressing a dominantly interfering mutant of FADD, lacking the caspase-dimerizing death effector domain, as well as mice overexpressing the poxvirus serpin, CrmA, an inhibitor of caspases downstream of FADD. While thymocytes from either line of mice were completely protected from CD95-dependent cytotoxicity, neither transgene afforded protection from apoptosis induced during thymocyte selection and neither led to the lymphoproliferative disorders associated with deficiencies in CD95. However, in FADD dominant negative (FADDdd) mice, early thymocyte development was retarded and peripheral lymphocyte pools were devoid of normal populations of T cells. We show that thymocytes and peripheral T cells from FADDdd display signaling anomalies, implying that FADD plays a previously uncharacterized role in T cell development and activation.
Collapse
Affiliation(s)
- C M Walsh
- Department of Biology and the Cancer Center, The University of California, San Diego, La Jolla 92093-0687, USA
| | | | | | | | | | | |
Collapse
|
215
|
Kraft MS, Henning G, Fickenscher H, Lengenfelder D, Tschopp J, Fleckenstein B, Meinl E. Herpesvirus saimiri transforms human T-cell clones to stable growth without inducing resistance to apoptosis. J Virol 1998; 72:3138-45. [PMID: 9525639 PMCID: PMC109767 DOI: 10.1128/jvi.72.4.3138-3145.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus saimiri (HVS) transforms human T cells to stable growth in vitro. Since HVS codes for two different antiapoptotic proteins, growth transformation by HVS might be expected to confer resistance to apoptosis. We found that the expression of both viral antiapoptotic genes was restricted to cultures with viral replication and absent in growth-transformed human T cells. A comparative examination of HVS-transformed T-cell clones and their native parental clones revealed that the expression of Bcl-2, Bcl-X(L), Bax, and members of the tumor necrosis factor receptor (TNF-R) superfamily with a death domain, namely, TNF-RI, CD95, and TRAMP, were not modulated by HVS. Expression of CD30 was induced in HVS-transformed T cells, and these cells also expressed the CD30 ligand. Uninfected and transformed T cells were sensitive to CD95 ligation but resistant to apoptosis mediated by TRAIL or soluble TNF-alpha. CD95 ligand was constitutively expressed on transformed but not uninfected parental T cells. Both cell types showed similar sensitivity to cell death induction or inhibition of T-cell activation mediated by irradiation, oxygen radicals, dexamethasone, cyclosporine, and prostaglandin E2. Altogether, this study strongly suggests that growth transformation by HVS is based not on resistance to apoptosis but, rather, on utilization of normal cellular activation pathways.
Collapse
Affiliation(s)
- M S Kraft
- Institut für Klinische und Molekulare Virologie, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
216
|
|
217
|
Yeh WC, de la Pompa JL, McCurrach ME, Shu HB, Elia AJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deiry WS, Lowe SW, Goeddel DV, Mak TW. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 1998; 279:1954-8. [PMID: 9506948 DOI: 10.1126/science.279.5358.1954] [Citation(s) in RCA: 702] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
FADD (also known as Mort-1) is a signal transducer downstream of cell death receptor CD95 (also called Fas). CD95, tumor necrosis factor receptor type 1 (TNFR-1), and death receptor 3 (DR3) did not induce apoptosis in FADD-deficient embryonic fibroblasts, whereas DR4, oncogenes E1A and c-myc, and chemotherapeutic agent adriamycin did. Mice with a deletion in the FADD gene did not survive beyond day 11.5 of embryogenesis; these mice showed signs of cardiac failure and abdominal hemorrhage. Chimeric embryos showing a high contribution of FADD null mutant cells to the heart reproduce the phenotype of FADD-deficient mutants. Thus, not only death receptors, but also receptors that couple to developmental programs, may use FADD for signaling.
Collapse
Affiliation(s)
- W C Yeh
- Amgen Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Zhang J, Cado D, Chen A, Kabra NH, Winoto A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 1998; 392:296-300. [PMID: 9521326 DOI: 10.1038/32681] [Citation(s) in RCA: 586] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Programmed cell death, or apoptosis, is important in homeostasis of the immune system: for example, non-functional or autoreactive lymphocytes are eliminated through apoptosis. One member of the tumour necrosis factor receptor (TNFR) family, Fas (also known as CD95 or Apo-1), can trigger cell death and is essential for lymphocyte homeostasis. FADD/Mort1 is a Fas-associated protein that is thought to mediate apoptosis by recruiting the protease caspase-8. A dominant-negative mutant of FADD inhibits apoptosis initiated by Fas and other TNFR family members. Other proteins, notably Daxx, also bind Fas and presumably mediate a FADD-independent apoptotic pathway. Here we investigate the role of FADD in vivo by generating FADD-deficient mice. As homozygous mice die in utero, we generated FADD-/- embryonic stem cells and FADD-/- chimaeras in a background devoid of the recombination activating gene RAG-1, which activates rearrangement of the immunoglobulin and T-cell receptor genes. We found that thymocyte subpopulations were apparently normal in newborn chimaeras. Fas-induced apoptosis was completely blocked, indicating that there are no redundant Fas apoptotic pathways. As these mice age, their thymocytes decrease to an undetectable level, although peripheral T cells are present in all older FADD-/- chimaeras. Unexpectedly, activation-induced proliferation is impaired in these FADD-/- T cells, despite production of the cytokine interleukin (IL)-2. These results and the similarities between FADD-/- mice and mice lacking the beta-subunit of the IL-2 receptor suggest that there is an unexpected connection between cell proliferation and apoptosis.
Collapse
Affiliation(s)
- J Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720-3200, USA
| | | | | | | | | |
Collapse
|
219
|
Pan G, Ni J, Yu G, Wei YF, Dixit VM. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 1998; 424:41-5. [PMID: 9537512 DOI: 10.1016/s0014-5793(98)00135-5] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TRAIL/Apo-2L induces rapid apoptosis of a variety of tumor cell lines. A family of tumor necrosis factor receptor-related molecules have been identified as receptors for TRAIL. Herein, we report the identification of another member of the TRAIL receptor family, TRUNDD (TRAIL receptor with a truncated death domain). The TRUNDD transcript was detected in multiple human tissues. TRUNDD is highly homologous to all known TRAIL receptors and has an extracellular TRAIL-binding domain but lacks a functional intracellular death domain and does not induce apoptosis. Consistent with an inhibitory role, ectopic expression of TRUNDD attenuated TRAIL-induced apoptosis in mammalian cells.
Collapse
Affiliation(s)
- G Pan
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
220
|
Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 1998; 8:297-303. [PMID: 9529147 DOI: 10.1016/s1074-7613(00)80535-x] [Citation(s) in RCA: 969] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The death domain serine/threonine kinase RIP interacts with the death receptors Fas and tumor necrosis receptor 1 (TNFR1). In vitro, RIP stimulates apoptosis, SAPK/JNK, and NF-kappaB activation. To define the physiologic role(s) that RIP plays in regulating apoptosis in vivo, we introduced a rip null mutation in mice through homologous recombination. RIP-deficient mice appear normal at birth but fail to thrive, displaying extensive apoptosis in both the lymphoid and adipose tissue and dying at 1-3 days of age. In contrast to a normal thymic anti-Fas response, rip-/- cells are highly sensitive to TNFalpha-induced cell death. Sensitivity to TNFalpha-mediated cell death in rip-/- cells is accompanied by a failure to activate the transcription factor NF-kappaB.
Collapse
Affiliation(s)
- M A Kelliher
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
221
|
Relaix F, Wei XJ, Wu X, Sassoon DA. Peg3/Pw1 is an imprinted gene involved in the TNF-NFkappaB signal transduction pathway. Nat Genet 1998; 18:287-91. [PMID: 9500555 DOI: 10.1038/ng0398-287] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor (TNF) mediates a variety of biological activities including cell proliferation, differentiation and programmed cell death. The specific response to TNF depends upon cell type and reflects the presence of specific regulatory proteins that participate in the TNF response pathway. TNF signal transduction is mediated by TRAF2 which binds the TNF Receptor2 (TNFR2) and activates NFkappaB. We previously identified a gene Pw1, which encodes a large zinc-finger containing protein. We have determined that Pw1 is identical to Peg3, a paternally expressed gene of unknown function (and will therefore be referred to as Peg3 throughout this text). We report here that Peg3 associates specifically with TRAF2 but not with other TRAF family members. Peg3 expression activates NFkappaB via IkappaB-NFkappaB dissociation and acts synergistically with TRAF2. Transfection of a truncated Peg3 containing the TRAF2 interaction site, abolishes NFkappaB activation by TRAF2 and/or TNF. We conclude that Peg3 is a regulator of the TNF response. These data reveal the involvement of an imprinted gene in this pathway.
Collapse
Affiliation(s)
- F Relaix
- Brookdale Center for Molecular and Developmental Biology, Mount Sinai Medical Center, New York, New York 10029, USA
| | | | | | | |
Collapse
|
222
|
Warzocha K, Salles G. The tumor necrosis factor signaling complex: choosing a path toward cell death or cell proliferation. Leuk Lymphoma 1998; 29:81-92. [PMID: 9638978 DOI: 10.3109/10428199809058384] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signal transduction pathways which are initiated by the tumor necrosis factor (TNF) utilize receptors which are devoid of intrinsic catalytic activity. Recently identified two families of proteins that directly associate with the cytoplasmic domains of the TNF receptor family members, have partially bridged a molecular gap within the TNF-induced signaling pathways. Clearly, there are numerous alternate routes that originate from the TNF ligand-receptor assembly and terminate on the diverse cellular responses, including proliferation, differentiation, or death. This review focuses on recent advances characterizing the TNF ligand-receptor signaling network, which allow to better understand its participation in a life-death balance within the target cell.
Collapse
Affiliation(s)
- K Warzocha
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, France
| | | |
Collapse
|
223
|
Kajino K, Kajino Y, Greene MI. Fas- and perforin-independent mechanism of cytotoxic T lymphocyte. Immunol Res 1998; 17:89-93. [PMID: 9479571 DOI: 10.1007/bf02786434] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in elimination of virus-infected cells (1). Recent studies revealed at least two distinct mechanisms that CTLs utilize to destroy their target cells. Both mechanisms induce target cell apoptosis specifically and directionally, but these processes are totally different. One is pore formation on target cell membrane by perforin secreted from CTLs (perforin-granzyme pathway), and the other is ligation of Fas, which is expressed on the surface of target cells and Fas ligand, on the surface of CTLs (Fas-FasL pathway) (2). Here we review our work and describe CTL clones that have novel lytic mechanisms derived from CD4-CD8- lymph node cells of gld mice.
Collapse
Affiliation(s)
- K Kajino
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | |
Collapse
|
224
|
Yamaguchi K, Kinosaki M, Goto M, Kobayashi F, Tsuda E, Morinaga T, Higashio K. Characterization of structural domains of human osteoclastogenesis inhibitory factor. J Biol Chem 1998; 273:5117-23. [PMID: 9478964 DOI: 10.1074/jbc.273.9.5117] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoclastogenesis inhibitory factor (OCIF) is a heparin-binding secretory glycoprotein that belongs to the tumor necrosis factor receptor (TNFR) family. OCIF is present both as a approximately 60-kDa monomer and a disulfide-linked homodimer. We attempted to characterize the seven structural domains of OCIF by determining the capabilities of various OCIF mutants to inhibit osteoclastogenesis, to interact with heparin, and to form dimers. We also examined a potential of domains 5 and 6, death domain homologous regions (DDHs), for inducing cell death by expressing OCIF/Fas fusion proteins. Our results show that: (i) the N-terminal portion of OCIF containing domains 1-4, which have structural similarity to the extracellular domains of the TNFR family proteins, is sufficient to inhibit osteoclastogenesis; (ii) a heparin-binding site is located in domain 7, and affinity for heparin does not correlate with the inhibitory activity; (iii) Cys-400 in domain 7 is the residue responsible for dimer formation; and (iv) the C-terminal portion containing domains 5 and 6, DDHs, has a high potential for mediating a cytotoxic signal when it is expressed in cells as an OCIF/Fas fusion protein in which the transmembrane region of Fas is inserted in front of DDHs.
Collapse
Affiliation(s)
- K Yamaguchi
- Research Institute of Life Science, Snow Brand Milk Products Co., Ltd., 519 Ishibashi-machi, Shimotsuga-gun, Tochigi 329-0512, Japan.
| | | | | | | | | | | | | |
Collapse
|
225
|
Abstract
Tumour necrosis factor (TNF) receptor family members regulate processes that range from cell proliferation to programmed cell death. The extracellular, ligand-binding domains of these proteins consist of small, cysteine-rich subdomains, first observed in the three-dimensional structures of the type I TNF receptor. A structure-based alignment of TNFR family members indicates that the extracellular domains are constructed primarily of two small polypeptide modules. These modules play distinctive structural roles in the architecture of the domains. Analogues of at least one of these modules can be found in the domains of other receptors and extracellular proteins. Variations in their sequence and order of assembly are expected to account for differences in shape, flexibility and ligand specificity.
Collapse
Affiliation(s)
- J H Naismith
- Centre for Biomolecular Sciences, University, St Andrews, Scotland, UK.
| | | |
Collapse
|
226
|
Abstract
The induction of apoptosis of virus-infected cells is an important host defense mechanism against invading pathogens. Some viruses express anti-apoptotic proteins that efficiently block apoptosis induced by death receptors or in response to stress signaled through mitochondria. Viral interference with host cell apoptosis leads to enhanced viral replication and may promote cancer.
Collapse
Affiliation(s)
- J Tschopp
- Institute of Biochemistry, BIL Research Center, Epalinges, Switzerland
| | | | | | | |
Collapse
|
227
|
Wajant H, Johannes FJ, Haas E, Siemienski K, Schwenzer R, Schubert G, Weiss T, Grell M, Scheurich P. Dominant-negative FADD inhibits TNFR60-, Fas/Apo1- and TRAIL-R/Apo2-mediated cell death but not gene induction. Curr Biol 1998; 8:113-6. [PMID: 9427646 DOI: 10.1016/s0960-9822(98)70042-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fas/Apo1 and other cytotoxic receptors of the tumor necrosis factor receptor (TNFR) family contain a cytoplasmic death domain (DD) [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] that activates the apoptotic process by interacting with the DD-containing adaptor proteins TNFR-associated DD protein (TRADD) [12] [13] and Fas-associated DD protein (FADD/MORT1) [14] [15], leading to the activation of cysteine proteases of the caspase family [16]. Stimulation of Fas/Apo1 leads to the formation of a receptor-bound death-inducing signaling complex (DISC), consisting of FADD and two different forms of caspase-8 [17] [18] [19]. Transient expression of a dominant-negative mutant of FADD impairs TNFR60-mediated and Fas/Apo1-mediated apoptosis [13] [20], but has no effect on TNF-related apoptosis-inducing ligand (TRAIL/Apo2L)-induced cell death [7] [8] [9] [10] [21]. To study the function of FADD in DD-receptor signaling in more detail, we established HeLa cells that stably expressed a green fluorescent protein (GFP)-tagged dominant-negative mutant of FADD, GFP-DeltaFADD. Interestingly, expression of this mutant inhibited cell death induced by TNFR60, Fas/Apo1 and TRAIL-R/Apo2. In addition, GFP-DeltaFADD did not interfere with TNF-mediated gene induction or with activation of NF-kappaB or Jun N-terminal kinase (JNK), demonstrating that FADD is part of the TNFR60-initiated apoptotic pathway but does not play a role in TNFR60-mediated gene induction. Fas/Apo1-mediated activation of JNK was unaffected by the expression of GFP-DeltaFADD, suggesting that in Fas/Apo1 signaling the apoptotic pathway and the activation of JNK diverge at a level proximal to the receptor, upstream of or parallel to FADD.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Warzocha K, Ribeiro P, Charlot C, Renard N, Coiffier B, Salles G. A new death receptor 3 isoform: expression in human lymphoid cell lines and non-Hodgkin's lymphomas. Biochem Biophys Res Commun 1998; 242:376-9. [PMID: 9446802 DOI: 10.1006/bbrc.1997.7948] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two isoforms encoding the full-length transmembrane death receptor 3 (DR3) were isolated from mRNAs of a panel of human cell lines and tumor tissues obtained from patients with follicular non-Hodgkin's lymphoma. A new DR3 variant (DR3 beta) was characterized by 2 insertions of respectively 20- and 7-base pairs (bp) which result in a predictive translated polypeptide differing from the described DR3 molecule by a 28 amino-acid stretch in the extracellular domain. DR3 was shown to be expressed in all cell lines and lymphoma samples tested, whereas DR3 beta expression was restricted to lymphoid T-cell and immature B-cell lines and to selected cases with follicular lymphoma. These data provide new insight into the molecular heterogeneity of DR3, suggesting the presence of several receptor isoforms that can participate in lymphoid cell homeostasis.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- Electrophoresis, Agar Gel
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Lymphoma, Non-Hodgkin/metabolism
- Membrane Proteins/chemistry
- Molecular Sequence Data
- RNA, Messenger/analysis
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Member 25
- Sequence Analysis, DNA
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- K Warzocha
- Department of Hematology, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | | | | | | | | | | |
Collapse
|
229
|
Mongkolsapaya J, Cowper AE, Xu XN, Morris G, McMichael AJ, Bell JI, Screaton GR. Cutting Edge: Lymphocyte Inhibitor of TRAIL (TNF-Related Apoptosis-Inducing Ligand): A New Receptor Protecting Lymphocytes from the Death Ligand TRAIL. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Apoptosis can be triggered by the engagement of cell surface receptors by their ligands. A growing number of receptors belonging to the TNF receptor family have been identified that contain a conserved cytoplasmic death domain. These include Fas, TNF-R1, lymphocyte-associated receptor of death (LARD), DR4, and TNF-related apoptosis-inducing ligand receptor inducer of cell killing-2 (TRICK2). The latter two are receptors for the cytotoxic ligand TNF-related apoptosis-inducing ligand (TRAIL), and one of the paradoxes raised by the cloning of these molecules was why do most cells not die upon contact with the widely expressed TRAIL molecule? This is a particular problem for lymphocytes that express DR4 and TRICK2 and are in constant circulation through TRAIL-expressing tissues. We have cloned LIT (lymphocyte inhibitor of TRAIL), which lacks a death domain. LIT is expressed predominantly on PBL, where it can competitively inhibit TRAIL-induced apoptosis through DR4/TRICK2, and may function to modulate lymphocyte sensitivity to TRAIL.
Collapse
Affiliation(s)
- Juthathip Mongkolsapaya
- Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alison E. Cowper
- Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Xiao-Ning Xu
- Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Gwilym Morris
- Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew J. McMichael
- Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - John I. Bell
- Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Gavin R. Screaton
- Molecular Immunology Group, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
230
|
Abstract
Members of the tumor necrosis factor (TNF) family such as CD95 (APO-1/Fas) ligand (L) trigger apoptosis in lymphoid cells. Recently, a new member of apoptosis-inducing ligands, TRAIL (TNF-related-apoptosis-inducing-ligand)/Apo-2 ligand, was identified that might act in a similar way. We compared TRAIL and CD95L-induced apoptosis in human lymphoid cells. Expression of TRAIL was found in CD4+ and CD8 T cells following activation, suggesting that TRAIL participates in T cell-mediated induction of apoptosis. Similar to CD95L, TRAIL-induced apoptosis in target cells is mediated by activation of caspases (ICE/Ced-3 proteases). However, different human lymphoid cell lines and peripheral T cells differ in sensitivity towards induction of apoptosis by TRAIL and CD95L. In addition, T cells are highly sensitive towards CD95L-induced apoptosis after prolonged activation in vitro, but remain completely resistant to TRAIL-induced apoptosis. In contrast, T cells from HIV-1-infected patients previously shown to exhibit increased CD95 sensitivity are even more susceptible towards TRAIL-induced cell death. These data suggest that TRAIL might participate in CD95-independent apoptosis of lymphoid cells and might be involved in deregulated apoptosis in diseases such as leukemias and HIV-1 infection.
Collapse
Affiliation(s)
- I Jeremias
- Division of Molecular Oncology/Pediatrics, German Cancer Research Center, Heidelberg
| | | | | | | |
Collapse
|
231
|
Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, Moore G, Truneh A. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene 1997; 204:35-46. [PMID: 9434163 DOI: 10.1016/s0378-1119(97)00509-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel (TL1), a recently described (TL2) TNF-like, and three recently described TNF receptor-like (TR1, TR2, TR3) molecules were identified by searching a cDNA database. TL1 and TL2 are type-II membrane proteins. TR2 and TR3 are type-I membrane proteins whereas TR1 appears to be a secreted protein. TL1, TL2, TR2 and TR3 were expressed in hematopoietic cells, whereas TR1 was not. Northern blots hybridized with the cDNA probes revealed multiple forms of RNA as well as inducible expression of TL1, TL2, TR2 and TR3. TL2 and TR3, in particular, were highly induced in activated CD4+ T cells. Radiation hybrid mapping localized TR1 and TL2 to 8q24 and 3q26, respectively, which are not near any known superfamily members. TL1 was mapped to 9q32, near CD30L (9q33) and TR2 and TR3 mapped to the region of chromosome 1 that contains the TNFR-II, 4-1BB, OX40 and CD30 gene cluster at 1p36. Only TR3 in this cluster possesses a death domain. Southern blot analysis revealed the presence of TL and TR genes in different mammalian species. TL2, TR1, TR2 and TR3 were recently described by others as TRAIL/Apo-2L, OPG, HVEM and DR3/WSL-1/Apo-3/TRAMP/LARD, respectively.
Collapse
Affiliation(s)
- K B Tan
- SmithKline Beecham Pharmaceuticals, Department of Molecular Immunology, King of Prussia, PA 19406-0939, USA.
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 1997; 272:32401-10. [PMID: 9405449 DOI: 10.1074/jbc.272.51.32401] [Citation(s) in RCA: 524] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The members of the tumor necrosis factor (TNF) family play pivotal roles in the regulation of the immune system. Here we describe a new ligand in this family, designated TWEAK. The mouse and human versions of this protein are unusually conserved with 93% amino acid identity in the receptor binding domain. The protein was efficiently secreted from cells indicating that, like TNF, TWEAK may have the long range effects of a secreted cytokine. TWEAK transcripts were abundant and found in many tissues, suggesting that TWEAK and TRAIL belong to a new group of widely expressed ligands. Like many members of the TNF family, TWEAK was able to induce interleukin-8 synthesis in a number of cell lines. The human adenocarcinoma cell line, HT29, underwent apoptosis in the presence of both TWEAK and interferon-gamma. Thus, TWEAK resembles many other TNF ligands in the capacity to induce cell death; however, the fact that TWEAK-sensitive cells are relatively rare suggests that TWEAK along with lymphotoxins alpha/beta and possibly CD30L trigger death via a weaker, nondeath domain-dependent mechanism.
Collapse
Affiliation(s)
- Y Chicheportiche
- Department of Pathology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, Kataoka T, Holler N, Tschopp J. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 1997; 7:831-6. [PMID: 9430228 DOI: 10.1016/s1074-7613(00)80401-x] [Citation(s) in RCA: 547] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TRAIL induces apoptosis through two closely related receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Here we show that TRAIL-R1 can associate with TRAIL-R2, suggesting that TRAIL may signal through heteroreceptor signaling complexes. Both TRAIL receptors bind the adaptor molecules FADD and TRADD, and both death signals are interrupted by a dominant negative form of FADD and by the FLICE-inhibitory protein FLIP. The recruitment of TRADD may explain the potent activation of NF-kappaB observed by TRAIL receptors. Thus, TRAIL receptors can signal both death and gene transcription, functions reminiscent of those of TNFR1 and TRAMP, two other members of the death receptor family.
Collapse
Affiliation(s)
- P Schneider
- Institute of Biochemistry, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
234
|
|
235
|
Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 1997; 7:821-30. [PMID: 9430227 DOI: 10.1016/s1074-7613(00)80400-8] [Citation(s) in RCA: 550] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Death receptor 4 (DR4) is a recently described receptor for the cytotoxic ligand TRAIL that reportedly uses a FADD-independent pathway to induce apoptosis and does not activate the NF-kappaB pathway. We have isolated a new member of the tumor necrosis factor receptor (TNFR) family, designated DR5, which bears a high degree of sequence homology to DR4. However, contrary to the previous reports, both DR4- and DR5-induced apoptosis can be blocked by dominant-negative FADD, and both receptors can activate NF-kappaB using a TRADD-dependent pathway. Finally, both receptors can interact with FADD, TRADD, and RIP. Thus, both DR5 and DR4 use FADD, TRADD, and RIP in their signal transduction pathways, and FADD is the common mediator of apoptosis by all known death domain-containing receptors.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Apoptosis
- Base Sequence
- Carrier Proteins/metabolism
- Caspase 8
- Caspase 9
- Caspases
- Cell Line
- Cloning, Molecular
- Cricetinae
- Cysteine Endopeptidases/metabolism
- DNA, Complementary
- Fas-Associated Death Domain Protein
- Humans
- Molecular Sequence Data
- NF-kappa B/metabolism
- Proteins/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Member 25
- Sequence Analysis, DNA
- TNF Receptor-Associated Factor 1
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P M Chaudhary
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
236
|
Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D, Yuan J, Gurney A, Goddard AD, Godowski P, Ashkenazi A. A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 1997; 7:1003-6. [PMID: 9382840 DOI: 10.1016/s0960-9822(06)00422-2] [Citation(s) in RCA: 490] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Apo2 ligand (Apo2L [1], also called TRAIL for tumor necrosis factor (TNF)-related apoptosis-inducing ligand [2]) belongs to the TNF family and activates apoptosis in tumor cells. Three closely related receptors bind Apo2L: DR4 and DR5, which contain cytoplasmic death domains and signal apoptosis, and DcR1, a decoy receptor that lacks a cytoplasmic tail and inhibits Apo2L function [3-5]. By cross-hybridization with DcR1, we have identified a fourth Apo2L receptor, which contains a cytoplasmic region with a truncated death domain. We subsequently named this protein decoy receptor 2 (DcR2). The DcR2 gene mapped to human chromosome 8p21, as did the genes encoding DR4, DR5 and DcR1. A single DcR2 mRNA transcript showed a unique expression pattern in human tissues and was particularly abundant in fetal liver and adult testis. Upon overexpression, DcR2 did not activate apoptosis or nuclear factor-kappaB; however, it substantially reduced cellular sensitivity to Apo2L-induced apoptosis. These results suggest that DcR2 functions as an inhibitory Apo2L receptor.
Collapse
Affiliation(s)
- S A Marsters
- Department of Molecular Oncology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080-4918, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Lee SY, Reichlin A, Santana A, Sokol KA, Nussenzweig MC, Choi Y. TRAF2 is essential for JNK but not NF-kappaB activation and regulates lymphocyte proliferation and survival. Immunity 1997; 7:703-13. [PMID: 9390693 DOI: 10.1016/s1074-7613(00)80390-8] [Citation(s) in RCA: 374] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TRAF2 is believed to mediate the activation of NF-kappaB and JNK induced by the tumor necrosis factor receptor (TNFR) superfamily, which elicits pleiotropic responses in lymphocytes. We have investigated the physiological roles of TRAF2 in these processes by expressing a lymphocyte-specific dominant negative form of TRAF2, thereby blocking this protein's effector function. We find that the TNFR superfamily signals require TRAF2 for activation of JNK but not NF-kappaB. In addition, we show that TRAF2 induces NF-kappaB-independent antiapoptotic pathways during TNF-induced apoptosis. Inhibition of TRAF2 leads to splenomegaly, lymphadenopathy, and an increased number of B cells. These findings indicate that TRAF2 is involved in the regulation of lymphocyte function and growth in vivo.
Collapse
Affiliation(s)
- S Y Lee
- Laboratory of Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
238
|
Bröker BM, Kraft MS, Klauenberg U, Le Deist F, de Villartay JP, Fleckenstein B, Fleischer B, Meinl E. Activation induces apoptosis in Herpesvirus saimiri-transformed T cells independent of CD95 (Fas, APO-1). Eur J Immunol 1997; 27:2774-80. [PMID: 9394798 DOI: 10.1002/eji.1830271105] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Signaling via the T cell receptor (TCR)/CD3 complex of pre-activated T cells induces apoptosis. Such an activation-induced cell death (AICD) is thought to play an important role in the regulation of cellular immune responses. In this study we analyzed pathways of AICD by using human T cells transformed by Herpesvirus saimiri. These growth-transformed T cells show the phenotype of activated mature T cells and continue to express a functionally intact TCR. We show that human H. saimiri-transformed T cell clones readily undergo cell death upon signaling via the TCR/CD3 complex or via phorbol 12-myristate 13-acetate (PMA) + ionomycin. The AICD in H. saimiri-transformed T cells was detectable a few hours after activation and it was not affected by the presence of interleukin (IL)-2 or by anti-CD4 cross-linking. However, AICD required tyrosine phosphorylation, since it could be blocked by herbimycin A. Cyclosporin A (CsA) did not block the development of AICD, but other consequences of activation in H. saimiri-transformed T cells like the production of interferon-gamma. Surprisingly, the development of AICD was not reduced by neutralizing antibodies to tumor necrosis factor (TNF)-alpha or blocking antibodies directed to CD95 (Fas, APO-1), although H. saimiri-transformed T cells were sensitive to CD95 ligation. To confirm that this form of AICD is really independent of CD95, we have established an H. saimiri-transformed T cell line from a patient with a homozygous deletion in the CD95 gene. This CD95-deficient T cell line was as sensitive to AICD as other CD95-expressing H. saimiri-transformed T cells. In conclusion, we describe here a type of AICD in H. saimiri-transformed T cells that is independent of CD95 and TNF-alpha, not sensitive to CsA, but requires tyrosine phosphorylation. This system should be useful for the investigation of CD95-independent forms of AICD.
Collapse
Affiliation(s)
- B M Bröker
- Bernhard-Nocht-Institut, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
239
|
Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev 1997; 11:2810-21. [PMID: 9353251 PMCID: PMC316646 DOI: 10.1101/gad.11.21.2810] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1997] [Accepted: 08/27/1997] [Indexed: 02/05/2023]
Abstract
CD30 is a cell-surface receptor that can augment lymphocyte activation and survival through its ability to induce the transcription factor NF-kappaB. CD30, however, has also been implicated in the induction of apoptotic cell death of lymphocytes. Here we show that one of the effects of CD30 signal transduction is to render cells sensitive to apoptosis induced by the type 1 tumor necrosis factor receptor (TNFR1). This sensitization is dependent on the TRAF-binding sites within the CD30 cytoplasmic domain. One of the proteins that binds to these sites is TRAF2, a signal transduction molecule that is also utilized by TNFR1 to mediate the activation of several downstream kinases and transcription factors. During CD30 signal transduction, we found that binding of TRAF2 to the cytoplasmic domain of CD30 results in the rapid depletion of TRAF2 and the associated protein TRAF1 by proteolysis. These data suggest a model in which CD30 limits its own ability to transduce cell survival signals through signal-coupled depletion of TRAF2. Depletion of intracellular TRAF2 and its coassociated proteins also increased the sensitivity of the cell to undergoing apoptosis during activation of death-inducing receptors such as TNFR1. Consistent with this hypothesis, expression of a dominant-negative form of TRAF2 was found to potentiate TNFR1-mediated death. These studies provide a potential mechanism through which CD30, as well as other TRAF-binding members of the TNFR superfamily, can negatively regulate cell survival.
Collapse
Affiliation(s)
- C S Duckett
- Howard Hughes Medical Institute, Gwen Knapp Center for Lupus and Immunology Research, and Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
240
|
Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J. Characterization of two receptors for TRAIL. FEBS Lett 1997; 416:329-34. [PMID: 9373179 DOI: 10.1016/s0014-5793(97)01231-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two receptors for TRAIL, designated TRAIL-R2 and TRAIL-R3, have been identified. Both are members of the tumor necrosis factor receptor family. TRAIL-R2 is structurally similar to the death-domain-containing receptor TRAIL-R1 (DR-4), and is capable of inducing apoptosis. In contrast, TRAIL-R3 does not promote cell death. TRAIL-R3 is highly glycosylated and is membrane bound via a putative phosphatidylinositol anchor. The extended structure of TRAIL-R3 is due to the presence of multiple threonine-, alanine-, proline- and glutamine-rich repeats (TAPE repeats). TRAIL-R2 shows a broad tissue distribution, whereas the expression of TRAIL-R3 is restricted to peripheral blood lymphocytes (PBLs) and skeletal muscle. All three TRAIL receptors bind TRAIL with similar affinity, suggesting a complex regulation of TRAIL-mediated signals.
Collapse
Affiliation(s)
- P Schneider
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | |
Collapse
|
241
|
Strasser A, Huang DC, Vaux DL. The role of the bcl-2/ced-9 gene family in cancer and general implications of defects in cell death control for tumourigenesis and resistance to chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:F151-78. [PMID: 9395285 DOI: 10.1016/s0304-419x(97)00019-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell production within an organ is determined by the rate of immigration, proliferation, differentiation, emigration and death of cells. Abnormalities in any one of these processes will disturb normal control of cell production, thereby eliciting hyperplasia can be an early event in neoplasia. Cell death, apoptosis, is a physiological process responsible for removing unwanted cells. It is used in multi-cellular organisms for tissue remodelling during embryogenesis, regulation of cell turnover and as a defence strategy against invading pathogens. In this review article we describe the role of the bcl-2/ced-9 gene family in cancer and discuss the general implications of defects in the apoptosis program for tumourigenesis and resistance of cancer cells to chemotherapy in light of current knowledge of the molecular mechanisms of cell death.
Collapse
Affiliation(s)
- A Strasser
- The Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Victoria, Australia.
| | | | | |
Collapse
|
242
|
von Bülow GU, Bram RJ. NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily. Science 1997; 278:138-41. [PMID: 9311921 DOI: 10.1126/science.278.5335.138] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of the nuclear factor of activated T cells transcription factor (NF-AT) is a key event underlying lymphocyte action. The CAML (calcium-modulator and cyclophilin ligand) protein is a coinducer of NF-AT activation when overexpressed in Jurkat T cells. A member of the tumor necrosis factor receptor superfamily was isolated by virtue of its affinity for CAML. Cross-linking of this lymphocyte-specific protein, designated TACI (transmembrane activator and CAML-interactor), on the surface of transfected Jurkat cells with TACI-specific antibodies led to activation of the transcription factors NF-AT, AP-1, and NFkappaB. TACI-induced activation of NF-AT was specifically blocked by a dominant-negative CAML mutant, thus implicating CAML as a signaling intermediate.
Collapse
Affiliation(s)
- G U von Bülow
- Department of Experimental Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
243
|
Abstract
Apoptosis research has accelerated with the discovery of genes within a common cell death pathway and evidence for their inter-relationship. Breakthroughs include insights into the mechanism of action of the Bcl-2 family, caspases and their targets, and death receptor complexes. Deregulation of apoptosis is evident in tumors and viral infection, as well as in autoimmune disease, immunodeficiency, neurodegeneration, and infertility.
Collapse
Affiliation(s)
- J L Rinkenberger
- Department of Anatomy, University of California, San Francisco 94143-0750, USA.
| | | |
Collapse
|
244
|
Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI. TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 1997; 7:693-6. [PMID: 9285725 DOI: 10.1016/s0960-9822(06)00297-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A subset of the tumour necrosis factor (TNF) receptor family contain a conserved intracellular motif, the death domain. Engagement of these receptors by their respective ligands initiates a signalling cascade that rapidly leads to cell death by apoptosis. We have cloned a new member of this family, TRICK2, the TRAIL (TNF-related apoptosis-inducing ligand) receptor inducer of cell killing 2. TRICK2 is expressed in a number of cell types, and to particularly high levels in lymphocytes and spleen. Two isoforms of the TRICK2 mRNA are generated by alternative pre-mRNA splicing and differ by a 29 amino-acid extension to the extracellular domain. Overexpression of TRICK2 rapidly induced apoptosis in 293T cells; this induction was dependent upon the presence of the death domain of TRICK2. Using a soluble molecule containing the TRICK2 extracellular domain, we demonstrated that TRICK2, like DR4 [1], is a receptor for TRAIL/APO-2L [2,3] and could inhibit TRAIL-induced killing of lymphocyte lines, such as the Jurkat T-cell line. TRAIL is upregulated upon lymphocyte activation, as is the intensively studied ligand for Fas, FasL [4]. TRAIL and its receptors might therefore provide another system for the regulation of lymphocyte selection and proliferation, as well as providing an additional weapon in the armoury of cytotoxic lymphocytes.
Collapse
Affiliation(s)
- G R Screaton
- Molecular Immunology Group Institute of Molecular Medicine John Radcliffe Hospital Oxford, OX3 9DS, UK
| | | | | | | | | | | |
Collapse
|
245
|
Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 1997; 16:5386-97. [PMID: 9311998 PMCID: PMC1170170 DOI: 10.1093/emboj/16.17.5386] [Citation(s) in RCA: 876] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TRAIL is a member of the tumor necrosis factor (TNF) family of cytokines and induces apoptosis in a wide variety of cells. Based on homology searching of a private database, a receptor for TRAIL (DR4 or TRAIL-R1) was recently identified. Here we report the identification of a distinct receptor for TRAIL, TRAIL-R2, by ligand-based affinity purification and subsequent molecular cloning. TRAIL-R2 was purified independently as the only receptor for TRAIL detectable on the surface of two different human cell lines that undergo apoptosis upon stimulation with TRAIL. TRAIL-R2 contains two extracellular cysteine-rich repeats, typical for TNF receptor (TNFR) family members, and a cytoplasmic death domain. TRAIL binds to recombinant cell-surface-expressed TRAIL-R2, and TRAIL-induced apoptosis is inhibited by a TRAIL-R2-Fc fusion protein. TRAIL-R2 mRNA is widely expressed and the gene encoding TRAIL-R2 is located on human chromosome 8p22-21. Like TRAIL-R1, TRAIL-R2 engages a caspase-dependent apoptotic pathway but, in contrast to TRAIL-R1, TRAIL-R2 mediates apoptosis via the intracellular adaptor molecule FADD/MORT1. The existence of two distinct receptors for the same ligand suggests an unexpected complexity to TRAIL biology, reminiscent of dual receptors for TNF, the canonical member of this family.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Apoptosis
- Apoptosis Regulatory Proteins
- B-Lymphocytes/metabolism
- Base Sequence
- Carrier Proteins/metabolism
- Chromosome Mapping
- Chromosomes, Human, Pair 8
- Cloning, Molecular
- Cysteine Endopeptidases/metabolism
- Fas-Associated Death Domain Protein
- Humans
- Membrane Glycoproteins/metabolism
- Molecular Sequence Data
- RNA, Messenger/analysis
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/isolation & purification
- Receptors, Tumor Necrosis Factor/metabolism
- Sequence Analysis
- Sequence Homology, Amino Acid
- Serine Proteinase Inhibitors/pharmacology
- Signal Transduction
- TNF-Related Apoptosis-Inducing Ligand
- Tissue Distribution
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- H Walczak
- Immunex Corporation, 51 University Street, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997; 277:815-8. [PMID: 9242610 DOI: 10.1126/science.277.5327.815] [Citation(s) in RCA: 1165] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TRAIL, also called Apo2L, is a cytotoxic protein that induces apoptosis of many transformed cell lines but not of normal tissues, even though its death domain-containing receptor, DR4, is expressed on both cell types. An antagonist decoy receptor (designated as TRID for TRAIL receptor without an intracellular domain) that may explain the resistant phenotype of normal tissues was identified. TRID is a distinct gene product with an extracellular TRAIL-binding domain and a transmembrane domain but no intracellular signaling domain. TRID transcripts were detected in many normal human tissues but not in most cancer cell lines examined. Ectopic expression of TRID protected mammalian cells from TRAIL-induced apoptosis, which is consistent with a protective role. Another death domain-containing receptor for TRAIL (designated as death receptor-5), which preferentially engaged a FLICE (caspase-8)-related death protease, was also identified.
Collapse
Affiliation(s)
- G Pan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | | | | | | | | | | |
Collapse
|
247
|
Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997; 277:818-21. [PMID: 9242611 DOI: 10.1126/science.277.5327.818] [Citation(s) in RCA: 1291] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.
Collapse
Affiliation(s)
- J P Sheridan
- Department of Molecular Oncology, Genentech, South San Francisco, CA 94080-4918, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Régnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M. Identification and characterization of an IkappaB kinase. Cell 1997; 90:373-83. [PMID: 9244310 DOI: 10.1016/s0092-8674(00)80344-x] [Citation(s) in RCA: 970] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Activation of the transcription factor NF-kappaB by tumor necrosis factor (TNF) and interleukin-1 (IL-1) requires the NF-kappaB-inducing kinase (NIK). In a yeast two-hybrid screen for NIK-interacting proteins, we have identified a protein kinase previously known as CHUK. Overexpression of CHUK activates a NF-kappaB-dependent reporter gene. A catalytically inactive mutant of CHUK is a dominant-negative inhibitor of TNF-, IL-1-, TRAF-, and NIK-induced NF-kappaB activation. CHUK associates with the NF-kappaB inhibitory protein, IkappaB-alpha, in mammalian cells. CHUK specifically phosphorylates IkappaB-alpha on both serine 32 and serine 36, modifications that are required for targeted degradation of IkappaB-alpha via the ubiquitin-proteasome pathway. This phosphorylation of IkappaB-alpha is greatly enhanced by NIK costimulation. Thus, CHUK is a NIK-activated IkappaB-alpha kinase that links TNF- and IL-1-induced kinase cascades to NF-kappaB activation.
Collapse
Affiliation(s)
- C H Régnier
- Tularik, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
249
|
Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schröter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388:190-5. [PMID: 9217161 DOI: 10.1038/40657] [Citation(s) in RCA: 1920] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.
Collapse
Affiliation(s)
- M Irmler
- Institute of Biochemistry, Lausanne branch, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Xu XN, Screaton GR, Gotch FM, Dong T, Tan R, Almond N, Walker B, Stebbings R, Kent K, Nagata S, Stott JE, McMichael AJ. Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J Exp Med 1997; 186:7-16. [PMID: 9206992 PMCID: PMC2198954 DOI: 10.1084/jem.186.1.7] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inoculation of macaques with live attenuated SIV strains has been shown to protect against subsequent challenge with wild-type SIV. The protective mechanism(s) remain obscure. To study the effect in more detail, we have investigated the role of virus-specific CTL responses in macaques infected with an attenuated SIV strain (pC8), which has a four-amino acid deletion in the nef gene, as compared with the wild-type SIVmac32H clone (pJ5). Cynomolgus macaques infected with pC8 were protected against subsequent challenge with pJ5 and did not develop any AIDS-like symptoms in the 12 months after infection. The pC8-induced protection was associated with high levels of virus-specific CTL responses to a variety of viral antigens. In contrast, pJ5-infected macaques had little, if any, detectable CTL response to the viral proteins after three months. The latter group of macaques also showed increased Fas expression and apoptotic cell death in both the CD4(+) and CD8(+) populations. In vitro, pJ5 but not pC8 leads to an increase in FasL expression on infected cells. Thus the expression of FasL may protect infected cells from CTL attack, killing viral-specific CTLs in the process, and providing a route for escaping the immune response, leading to the increased pathogenicity of pJ5. pC8, on the other hand does not induce FasL expression, allowing the development of a protective CTL response. Furthermore, interruption of the Fas-FasL interaction allows the regeneration of viral-specific CTL responses in pJ5-infected animals. This observation suggests an additional therapeutic approach to the treatment of AIDS.
Collapse
Affiliation(s)
- X N Xu
- Molecular Immunology, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|