201
|
Nikolaienko O, Skrypkina I, Tsyba L, Fedyshyn Y, Morderer D, Buchman V, de la Luna S, Drobot L, Rynditch A. Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation. Cell Signal 2009; 21:753-9. [PMID: 19166927 DOI: 10.1016/j.cellsig.2009.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/03/2009] [Indexed: 10/21/2022]
Abstract
Intersectin 1 (ITSN1) is an adaptor protein involved in clathrin-mediated endocytosis, apoptosis, signal transduction and cytoskeleton organization. Here, we show that ITSN1 forms a complex with adaptor protein Ruk/CIN85, implicated in downregulation of receptor tyrosine kinases. The interaction is mediated by the SH3A domain of ITSN1 and the third or fourth proline-rich blocks of Ruk/CIN85, and does not depend on epidermal growth factor stimulation, suggesting a constitutive association of ITSN1 with Ruk/CIN85. Moreover, both proteins colocalize in MCF-7 cells with their common binding partner, the ubiquitin ligase c-Cbl. The possible biological role of the interaction between ITSN1 and Ruk/CIN85 is discussed.
Collapse
Affiliation(s)
- Oleksii Nikolaienko
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Abstract
Clathrin-mediated endocytosis sorts for degradation of more than 50 different growth factor receptors capable of relaying growth and differentiation signals by means of their cytoplasm-facing, intrinsic tyrosine kinase activity. The kinetics and alternative routings of receptor endocytosis critically regulate growth factor signaling, which underscores the importance of understanding mechanisms underlying fail-safe operation (robustness) and fidelity of the pathway. Like other robust systems, a layered hub-centric network controls receptor endocytosis. Characteristically, the modular hubs (e.g., AP2-Eps15 and Hrs) contain a membrane-anchoring lipid-binding domain, an ubiquitin-binding module, which recruits ubiquitinylated cargo, and a machinery enabling homo-assembly. Scheduled hub transitions, as well as cascades of Rab family guanosine triphosphatases and membrane bending machineries, define points of commitment to vesicle budding, thereby securing unidirectional trafficking. System's bistability permits stimulation by a growth factor, which oscillates a series of switches based on posttranslational protein modifications (i.e., phosphorylation, ubiquitinylation and neddylation), as well as transient low-affinity/high-avidity protein assemblies. Cbl family ubiquitin ligases, along with a set of phosphotyrosine-binding adaptors (e.g., Grb2), integrate receptor endocytosis into the densely wired networks of signal transduction pathways, which are involved in health and disease.
Collapse
Affiliation(s)
- Yaara Zwang
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
203
|
Alternate binding modes for a ubiquitin-SH3 domain interaction studied by NMR spectroscopy. J Mol Biol 2008; 386:391-405. [PMID: 19111555 DOI: 10.1016/j.jmb.2008.11.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 11/22/2022]
Abstract
Surfaces of many binding domains are plastic, enabling them to interact with multiple targets. An understanding of how they bind and recognize their partners is therefore predicated on characterizing such dynamic interfaces. Yet, these interfaces are difficult to study by standard biophysical techniques that often 'freeze' out conformations or that produce data averaged over an ensemble of conformers. In this study, we used NMR spectroscopy to study the interaction between the C-terminal SH3 domain of CIN85 and ubiquitin that involves the 'classical' binding sites of these proteins. Notably, chemical shift titration data of one target with another and relaxation dispersion data that report on millisecond time scale exchange processes are both well fit to a simple binding model in which free protein is in equilibrium with a single bound conformation. However, dissociation constants and chemical shift differences between free and bound states measured from both classes of experiment are in disagreement. It is shown that the data can be reconciled by considering three-state binding models involving two distinct bound conformations. By combining titration and dispersion data, kinetic and thermodynamic parameters of the three-state binding reaction are obtained along with chemical shifts for each state. A picture emerges in which one bound conformer has increased entropy and enthalpy relative to the second and chemical shifts similar to that of the free state, suggesting a less packed interface. This study provides an example of the interplay between entropy and enthalpy to fine-tune molecular interactions involving the same binding surfaces.
Collapse
|
204
|
CD2AP and Cbl-3/Cbl-c constitute a critical checkpoint in the regulation of ret signal transduction. J Neurosci 2008; 28:8789-800. [PMID: 18753381 DOI: 10.1523/jneurosci.2738-08.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are critical for nervous system development and maintenance. GFLs promote survival and growth via activation of the receptor tyrosine kinase (RTK) Ret. In sympathetic neurons, the duration of Ret signaling is governed by how rapidly Ret is degraded after its activation. In an effort to elucidate mechanisms that control the half-life of Ret, we have identified two novel Ret interactors, CD2-associated protein (CD2AP) and Cbl-3. CD2AP, an adaptor molecule involved in the internalization of ubiquitinated RTKs, is associated with Ret under basal, unstimulated conditions in neurons. After Ret activation by GDNF, CD2AP dissociates. Similarly, the E3-ligase Cbl-3 interacts with unphosphorylated Ret and dissociates from Ret after Ret activation. In contrast to their dissociation from autophosphorylated Ret, an interaction between CD2AP and Cbl-3 is induced by GDNF stimulation of sympathetic neurons, suggesting that CD2AP and Cbl-3 dissociate from Ret as a complex. In neurons, the overexpression of CD2AP enhances the degradation of Ret and inhibits GDNF-dependent survival, and gene silencing of CD2AP blocks Ret degradation and promotes GDNF-mediated survival. Surprisingly, Cbl-3 overexpression dramatically stabilizes activated Ret and enhances neuronal survival, even though Cbl-family E3 ligases normally function to trigger RTK downregulation. In combination with CD2AP, however, Cbl-3 promotes Ret degradation rapidly and almost completely blocks survival promotion by GDNF, suggesting that Cbl-3 acts as a switch that is triggered by CD2AP and oscillates between inhibition and promotion of Ret degradation. Consistent with the hypothesis, Cbl-3 silencing in neurons only inhibited Ret degradation and enhanced neuronal survival in combination with CD2AP silencing. CD2AP and Cbl-3, therefore, constitute a checkpoint that controls the extent of Ret downregulation and, thereby, the sensitivity of neurons to GFLs.
Collapse
|
205
|
Barr DJ, Ostermeyer-Fay AG, Matundan RA, Brown DA. Clathrin-independent endocytosis of ErbB2 in geldanamycin-treated human breast cancer cells. J Cell Sci 2008; 121:3155-66. [PMID: 18765569 DOI: 10.1242/jcs.020404] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epidermal growth factor (EGF)-receptor family member ErbB2 is commonly overexpressed in human breast cancer cells and correlates with poor prognosis. Geldanamycin (GA) induces the ubiquitylation, intracellular accumulation and degradation of ErbB2. Whether GA stimulates ErbB2 internalization is controversial. We found that ErbB2 was internalized constitutively at a rate that was not affected by GA in SK-BR-3 breast cancer cells. Instead, GA treatment altered endosomal sorting, causing the transport of ErbB2 to lysosomes for degradation. In contrast to earlier work, we found that ErbB2 internalization occurred by a clathrin- and tyrosine-kinase-independent pathway that was not caveolar, because SK-BR-3 cells lack caveolae. Similar to cargo of the glycosylphosphatidylinositol (GPI)-anchored protein-enriched early endosomal compartment (GEEC) pathway, internalized ErbB2 colocalized with cholera toxin B subunit, GPI-anchored proteins and fluid, and was often seen in short tubules or large vesicles. However, in contrast to the GEEC pathway in other cells, internalization of ErbB2 and fluid in SK-BR-3 cells did not require Rho-family GTPase activity. Accumulation of ErbB2 in vesicles containing constitutively active Arf6-Q67L occurred only without GA treatment; Arf6-Q67L did not slow transport to lysosomes in GA-treated cells. Further characterization of this novel clathrin-, caveolae- and Rho-family-independent endocytic pathway might reveal new strategies for the downregulation of ErbB2 in breast cancer.
Collapse
Affiliation(s)
- Daniel J Barr
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
206
|
|
207
|
Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 2008; 314:3093-106. [PMID: 18793634 DOI: 10.1016/j.yexcr.2008.08.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 02/07/2023]
Abstract
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.
Collapse
|
208
|
Daniele T, Di Tullio G, Santoro M, Turacchio G, De Matteis MA. ARAP1 regulates EGF receptor trafficking and signalling. Traffic 2008; 9:2221-35. [PMID: 18764928 DOI: 10.1111/j.1600-0854.2008.00823.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The activation state of the EGF receptor (EGF-R) is tightly controlled in the cell so as to prevent excessive signalling, with the dangerous consequences that this would have on cell growth and proliferation. This control occurs at different levels, with a key level being the trafficking and degradation of the EGF-R itself. Multiple guanosine triphosphatases belonging to the Arf, Rab and Rho families and their accessory proteins have key roles in these processes. In this study, we have identified ARAP1, a multidomain protein with both Arf GTPase-activating protein (GAP) and Rho GAP activities, as a novel component of the machinery that controls the trafficking and signalling of the EGF-R. We show that ARAP1 localizes to multiple cell compartments, including the Golgi complex, as previously reported, and endosomal compartments, where it is enriched in the internal membranes of multivesicular bodies. ARAP1 distribution is controlled by its phosphorylation and by its interactions with the 3- and 4-phosphorylated phosphoinositides through its five PH domains. We provide evidence that ARAP1 controls the late steps of the endocytic trafficking of the EGF-R, with ARAP1 knockdown leading to EGF-R accumulation in a sorting/late endosomal compartment and to the inhibition of EGF-R degradation that is accompanied by prolonged signalling.
Collapse
Affiliation(s)
- Tiziana Daniele
- Laboratory of Physiopathology of Secretion, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | |
Collapse
|
209
|
Bezsonova I, Bruce MC, Wiesner S, Lin H, Rotin D, Forman-Kay JD. Interactions between the Three CIN85 SH3 Domains and Ubiquitin: Implications for CIN85 Ubiquitination. Biochemistry 2008; 47:8937-49. [DOI: 10.1021/bi800439t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Irina Bezsonova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - M. Christine Bruce
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Silke Wiesner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Hong Lin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Daniela Rotin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| | - Julie D. Forman-Kay
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 1A8, Program in Molecular Structure and Function and Program in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
210
|
Cipriani NA, Abidoye OO, Vokes E, Salgia R. MET as a target for treatment of chest tumors. Lung Cancer 2008; 63:169-79. [PMID: 18672314 DOI: 10.1016/j.lungcan.2008.06.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 06/15/2008] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase MET has been studied of a large variety of human cancers, including lung and mesothelioma. The MET receptor and its ligand HGF (hepatocyte growth factor) play important roles in cell growth, survival and migration, and dysregulation of the HGF-MET pathway leads to oncogenic changes including tumor proliferation, angiogenesis and metastasis. In small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), and malignant pleural mesothelioma (MPM), MET is dysregulated via overexpression, constitutive activation, gene amplification, ligand-dependent activation, mutation or epigenetic mechanisms. New drugs targeted against MET and HGF are currently being investigated in vitro and in vivo, with promising results. These drugs function at a variety of steps within the HGF-MET pathway, including MET expression at the RNA or protein level, the ligand-receptor interaction, and tyrosine kinase function. This paper will review the structure, function, mechanisms of tumorigenesis, and potential for therapeutic inhibition of the MET receptor in lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Nicole A Cipriani
- Department of Medicine, University of Chicago Medical Center, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
211
|
Zhou ZR, Gao HC, Zhou CJ, Chang YG, Hong J, Song AX, Lin DH, Hu HY. Differential ubiquitin binding of the UBA domains from human c-Cbl and Cbl-b: NMR structural and biochemical insights. Protein Sci 2008; 17:1805-14. [PMID: 18596201 DOI: 10.1110/ps.036384.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The Cbl proteins, RING-type E3 ubiquitin ligases, are responsible for ubiquitinating the activated tyrosine kinases and targeting them for degradation. Both c-Cbl and Cbl-b have a UBA (ubiquitin-associated) domain at their C-terminal ends, and these two UBA domains share a high sequence similarity (75%). However, only the UBA from Cbl-b, but not from c-Cbl, can bind ubiquitin (Ub). To understand the mechanism by which the UBA domains specifically interact with Ub with different affinities, we determined the solution NMR structures of these two UBA domains, cUBA from human c-Cbl and UBAb from Cbl-b. Their structures show that these two UBA domains share the same fold, a compact three-helix bundle, highly resembling the typical UBA fold. Chemical shift perturbation experiments reveal that the helix-1 and loop-1 of UBAb form a predominately hydrophobic surface for Ub binding. By comparing the Ub-interacting surface on UBAb and its counterpart on cUBA, we find that the hydrophobic patch on cUBA is interrupted by a negatively charged residue Glu12. Fluorescence titration data show that the Ala12Glu mutant of UBAb completely loses the ability to bind Ub, whereas the mutation disrupting the dimerization has no significant effect on Ub binding. This study provides structural and biochemical insights into the Ub binding specificities of the Cbl UBA domains, in which the hydrophobic surface distribution on the first helix plays crucial roles in their differential affinities for Ub binding. That is, the amino acid residue diversity in the helix-1 region, but not the dimerization, determines the abilities of various UBA domains binding with Ub.
Collapse
Affiliation(s)
- Zi-Ren Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Bian M, Yu M, Yang S, Gao H, Huang Y, Deng C, Gao Y, Sun F, Huang F. Expression of Cbl-interacting protein of 85 kDa in MPTP mouse model of Parkinson's disease and 1-methyl-4-phenyl-pyridinium ion-treated dopaminergic SH-SY5Y cells. Acta Biochim Biophys Sin (Shanghai) 2008; 40:505-12. [PMID: 18535749 DOI: 10.1111/j.1745-7270.2008.00423.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The newly discovered Cbl-interacting protein of 85 kDa (CIN85) is involved in many cellular processes, but its functions in the brain and in neurodegenerative diseases remain unclear. In this paper, we investigated the distribution of CIN85 protein in different regions of adult mouse brain using Western blot analysis and immunohistochemistry, and found that CIN85 was ubiquitously expressed in mouse brain. In the striatum and substantia nigra, two regions most deeply affected in Parkinson's disease, the level of CIN85 protein was relatively high. In the MPTP mouse model of Parkinson's disease, the expression of CIN85 in the striatum and substantia nigra was complicated. But in 1-methyl-4-phenyl-pyridinium ion-treated human dopaminergic SH-SY5Y cells, the expression of CIN85 increased dramatically. Knocking down of CIN85 by short hairpin RNA reduced SH-SY5Y cell death. Therefore, CIN85 might play different roles in the dopaminergic cell line and in the nigrostriatum of mouse brain under neurotoxin challenge.
Collapse
Affiliation(s)
- Minjuan Bian
- National Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters K, Finley D, Dikic I. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008; 453:481-8. [PMID: 18497817 PMCID: PMC2839886 DOI: 10.1038/nature06926] [Citation(s) in RCA: 499] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 03/19/2008] [Indexed: 11/08/2022]
Abstract
Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin through a conserved amino-terminal region termed the pleckstrin-like receptor for ubiquitin (Pru) domain, which binds K48-linked diubiquitin with an affinity of approximately 90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like (UBL) domains of UBL-ubiquitin-associated (UBA) proteins. In yeast, a synthetic phenotype results when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Because Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome.
Collapse
Affiliation(s)
- Koraljka Husnjak
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
- Tumor Biology Program, Mediterranean Institute for Life Sciences, Mestrovicevo setaliste, 21000 Split, Croatia
| | - Suzanne Elsasser
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Naixia Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiang Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Leah Randles
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yuan Shi
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Kay Hofmann
- Miltenyi Biotec GmbH, Stoeckheimer Weg 1, D-50829, Koeln, Germany
| | - Kylie Walters
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Ivan Dikic
- Institute of Biochemistry II and Cluster of Excellence Macromolecular Complexes, Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt (Main), Germany
- Tumor Biology Program, Mediterranean Institute for Life Sciences, Mestrovicevo setaliste, 21000 Split, Croatia
- Department of Immunology, Medical School University of Split, Soltanska 2, 21 000 Split, Croatia
| |
Collapse
|
214
|
Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci 2008; 15:725-37. [PMID: 18468901 DOI: 10.1016/j.jocn.2008.03.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 01/11/2023]
Abstract
Invasion of tissues by malignant tumours is facilitated by tumour cell migration and degradation of extracellular matrix (ECM) barriers. Several invasive neoplasms, including head and neck squamous cell carcinoma, breast carcinoma, melanoma and glioma, contain tumour cells that can form actin-rich protrusions with ECM proteolytic activity called invadopodia. These dynamic organelle-like structures adhere to, and digest, collagens, laminins and fibronectin. Invadopodia are dependent on multiple transmembrane, cytoplasmic and secreted proteins engaged in cell adhesion, signal transduction, actin assembly, membrane regulation and ECM proteolysis. Strategies aimed at disrupting invadopodia could form the basis of novel anti-invasive therapies for treating patients. Here we review the molecular basis of invadopodia formation with particular emphasis on the intracellular signaling networks that are essential for invadopodia activity and examine the potential role of these structures in glioma invasion.
Collapse
|
215
|
Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 2008; 65:1566-84. [PMID: 18259690 PMCID: PMC3060045 DOI: 10.1007/s00018-008-7440-8] [Citation(s) in RCA: 510] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in regulating cell proliferation, survival, differentiation and migration. The ErbB receptors carry out both redundant and restricted functions in mammalian development and in the maintenance of tissues in the adult mammal. Loss of regulation of the ErbB receptors underlies many human diseases, most notably cancer. Our understanding of the function and complex regulation of these receptors has fueled the development of targeted therapeutic agents for human malignancies in the last 15 years. Here we review the biology of ErbB receptors, including their structure, signaling, regulation, and roles in development and disease, then briefly touch on their increasing roles as targets for cancer therapy.
Collapse
Affiliation(s)
- M. J. Wieduwilt
- Department of Medicine, Comprehensive Cancer Center, University of California, San Francisco, UCSF, Box 0875, San Francisco, CA 94143-0875 USA
| | - M. M. Moasser
- Department of Medicine, Comprehensive Cancer Center, University of California, San Francisco, UCSF, Box 0875, San Francisco, CA 94143-0875 USA
| |
Collapse
|
216
|
Havrylov S, Ichioka F, Powell K, Borthwick EB, Baranska J, Maki M, Buchman VL. Adaptor Protein Ruk/CIN85 is Associated with a Subset of COPI-Coated Membranes of the Golgi Complex. Traffic 2008; 9:798-812. [DOI: 10.1111/j.1600-0854.2008.00724.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
217
|
Chang WL, Liou W, Pen HC, Chou HY, Chang YW, Li WH, Chiang W, Pai LM. The gradient of Gurken, a long-range morphogen, is directly regulated by Cbl-mediated endocytosis. Development 2008; 135:1923-33. [PMID: 18434418 DOI: 10.1242/dev.017103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The asymmetric localization of gurken mRNA and post-translational sorting mechanisms are responsible for the polar distribution of Gurken protein in Drosophila. However, endocytosis of Egfr, the receptor for Gurken in the follicle cells, also plays a role in shaping the extracellular gradient of the Gurken morphogen. Previously, we have found that mutation in the Cbl gene caused elevated Egfr signaling along the dorsoventral axis, and resulted in dorsalization phenotypes in embryos and egg shells. Here, we report that overexpression of the Cbl long isoform significantly changed Gurken distribution. Using an HRP-Gurken fusion protein, we demonstrate that internalization of the Gurken-Egfr complex depends on the activity of Cbl. Increased levels of CblL promote the internalization of this complex, leading to the reduction of free ligands. The Gurken-Egfr complex trafficks through the Rab5/Rab7 associated endocytic pathway to the lysosomal degradation compartment for signaling termination. We observe endocytic Gurken not only in the dorsal but also in the ventral follicle cells, which is, to our knowledge, the first visualization of Gurken on the ventral side of egg chambers. Our results show that Gurken travels towards the lateral/posterior of the egg chamber in the absence of Cbl, suggesting that Cbl actively regulates Gurken distribution through promoting endocytosis and subsequent degradation.
Collapse
Affiliation(s)
- Wei-Ling Chang
- Department of Biochemistry, Chang Gung University, Tao-Yuan, 333, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
218
|
A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation. Mol Cell Biol 2008; 28:3020-37. [PMID: 18316398 DOI: 10.1128/mcb.01809-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The precise role of Cbl in epidermal growth factor (EGF) receptor (EGFR) endocytosis and trafficking remains to be fully uncovered. Here, we showed that mutant EGFR1044, which was truncated after residue 1044, did not associate with c-Cbl and was not ubiquitinated initially in response to EGF but was internalized with kinetics similar to those of wild-type EGFR. This finding indicates that c-Cbl-mediated ubiquitination is not required for EGF-induced EGFR endocytosis. We also showed that the previously identified internalization-deficient mutant receptor EGFR1010LL/AA bound to c-Cbl and was fully ubiquitinated in response to EGF, which indicates that c-Cbl binding and ubiquitination are not sufficient for EGFR internalization. We next investigated EGFR trafficking following EGFR internalization. We found that c-Cbl disassociation from EGFR occurred well in advance of EGFR degradation and that this event was concurrent with the selective dephosphorylation of EGFR at Y1045. This finding suggests that once EGFR is ubiquitinated, continual Cbl association is not required for EGFR degradation. Because EGFR1044 is ubiquitinated and degraded similarly to wild-type EGFR, we examined the role of another prominent Cbl homologue, Cbl-b, and found that Cbl-b was associated with both EGFR and EGFR1044. Further study showed that Cbl-b bound to EGFR at two regions: one in the C-terminal direction from residue 1044 and one in the N-terminal direction from residue 958. Moreover, Cbl-b association with EGFR rose markedly following a decrease in c-Cbl association, corresponding to a second peak of EGFR ubiquitination occurring later in EGFR trafficking. Using RNA interference to knock down both c-Cbl and Cbl-b, we were able to abolish EGFR downregulation. This knockdown had no affect on the rate of EGF-induced EGFR internalization. We found that the two Cbls accounted for total receptor ubiquitination and that while c-Cbl and Cbl-b are each alone sufficient to effect EGFR degradation, both are involved in the physiological, EGF-mediated process of receptor downregulation. Furthermore, these data ultimately reveal a previously unacknowledged temporal interplay of two major Cbl homologues with the trafficking of EGFR.
Collapse
|
219
|
Roepstorff K, Grøvdal L, Grandal M, Lerdrup M, van Deurs B. Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem Cell Biol 2008; 129:563-78. [PMID: 18288481 PMCID: PMC2323030 DOI: 10.1007/s00418-008-0401-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2008] [Indexed: 12/14/2022]
Abstract
ErbB receptors (EGFR (ErbB1), ErbB2, ErbB3, and ErbB4) are important regulators of normal growth and differentiation, and they are involved in the pathogenesis of cancer. Following ligand binding and receptor activation, EGFR is endocytosed and transported to lysosomes where the receptor is degraded. This downregulation of EGFR is a complex and tightly regulated process. The functions of ErbB2, ErbB3, and ErbB4 are also regulated by endocytosis to some extent, although the current knowledge of these processes is sparse. Impaired endocytic downregulation of signaling receptors is frequently associated with cancer, since it can lead to increased and uncontrolled receptor signaling. In this review we describe the current knowledge of ErbB receptor endocytic downregulation. In addition, we outline how ErbB receptors can escape endocytic downregulation in cancer, and we discuss how targeted anti-cancer therapy may induce endocytic downregulation of ErbB receptors.
Collapse
Affiliation(s)
- Kirstine Roepstorff
- Department of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
220
|
Systematic mutagenesis of the murine gammaherpesvirus 68 M2 protein identifies domains important for chronic infection. J Virol 2008; 82:3295-310. [PMID: 18234799 DOI: 10.1128/jvi.02234-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) infection of inbred mice represents a genetically tractable small-animal model for assessing the requirements for the establishment of latency, as well as reactivation from latency, within the lymphoid compartment. By day 16 postinfection, MHV68 latency in the spleen is found in B cells, dendritic cells, and macrophages. However, as with Epstein-Barr virus, by 3 months postinfection MHV68 latency is predominantly found in isotype-switched memory B cells. The MHV68 M2 gene product is a latency-associated antigen with no discernible homology to any known cellular or viral proteins. However, depending on experimental conditions, the M2 protein has been shown to play a critical role in both the efficient establishment of latency in splenic B cells and reactivation from latently infected splenic B cells. Inspection of the sequence of the M2 protein reveals several hallmarks of a signaling molecule, including multiple PXXP motifs and two potential tyrosine phosphorylation sites. Here, we report the generation of a panel of recombinant MHV68 viruses harboring mutations in the M2 gene that disrupt putative functional motifs. Subsequent analyses of the panel of M2 mutant viruses revealed a functionally important cluster of PXXP motifs in the C-terminal region of M2, which have previously been implicated in binding Vav proteins (P. A. Madureira, P. Matos, I. Soeiro, L. K. Dixon, J. P. Simas, and E. W. Lam, J. Biol. Chem. 280:37310-37318, 2005; L. Rodrigues, M. Pires de Miranda, M. J. Caloca, X. R. Bustelo, and J. P. Simas, J. Virol. 80:6123-6135, 2006). Further characterization of two adjacent PXXP motifs in the C terminus of the M2 protein revealed differences in the functions of these domains in M2-driven expansion of primary murine B cells in culture. Finally, we show that tyrosine residues 120 and 129 play a critical role in both the establishment of splenic latency and reactivation from latency upon explant of splenocytes into tissue culture. Taken together, these analyses will aide future studies for identifying M2 interacting partners and B-cell signaling pathways that are manipulated by the M2 protein.
Collapse
|
221
|
Goto E, Mito-Yoshida M, Uematsu M, Aoki M, Matsuki Y, Ohmura-Hoshino M, Hotta H, Miyagishi M, Ishido S. An excellent monitoring system for surface ubiquitination-induced internalization in mammals. PLoS One 2008; 3:e1490. [PMID: 18231577 PMCID: PMC2204058 DOI: 10.1371/journal.pone.0001490] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/30/2007] [Indexed: 11/23/2022] Open
Abstract
Background At present, it is difficult to visualize the internalization of surface receptors induced by ubiquitination that is taken place at the plasma membrane in mammals. This problem makes it difficult to reveal molecular basis for ubiquitination-mediated internalization in mammals. Methodology/Principle Findings In order to overcome it, we have generated T-REx-c-MIR, a novel mammalian Tet-on B cell line using a constitutively active E3 ubiquitin ligase, c-MIR, and its artificial target molecule. By applying the surface biotinylation method to T-REx-c-MIR, we succeeded to monitor the fate of surface target molecules after initiation of ubiquitination process by doxycycline (Dox)-induced c-MIR expression. Target molecules that pre-existed at the plasma membrane before induction of c-MIR expression were oligo-ubiquitinated and degraded by Dox-induced c-MIR expression. Dox-induced c-MIR expression initiated rapid internalization of surface target molecules, and blockage of the internalization induced the accumulation of the surface target molecules that were newly ubiquitinated by c-MIR. Inhibition of the surface ubiquitination by down-regulating ubiquitin conjugating enzyme E2 impaired the internalization of target molecules. Finally, a complex of c-MIR and target molecule was detected at the plasma membrane. Conclusions/Significances These results demonstrate that in T-REx-c-MIR, surface target molecule is ubiquitinated at the plasma membrane and followed by being internalized from the plasma membrane. Thus, T-REx-c-MIR is a useful experimental tool to analyze how surface ubiquitination regulates internalization in mammals.
Collapse
Affiliation(s)
- Eiji Goto
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Mari Mito-Yoshida
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Mika Uematsu
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Masami Aoki
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Yohei Matsuki
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Mari Ohmura-Hoshino
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | - Hak Hotta
- Department of Pathology and Microbiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Makoto Miyagishi
- 21st Century COE Program, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ishido
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
222
|
Abstract
Accumulating evidence suggests that E3 ubiquitin ligases play important roles in cancer development. In this article, we provide a comprehensive summary of the roles of the Nedd4-like family of E3 ubiquitin ligases in human cancer. There are nine members of the Nedd4-like E3 family, all of which share a similar structure, including a C2 domain at the N-terminus, two to four WW domains in the middle of the protein, and a homologous to E6-AP COOH terminus domain at the C-terminus. The assertion that Nedd4-like E3s play a role in cancer is supported by the overexpression of Smurf2 in esophageal squamous cell carcinoma, WWP1 in prostate and breast cancer, Nedd4 in prostate and bladder cancer, and Smurf1 in pancreatic cancer. Because Nedd4-like E3s regulate ubiquitin-mediated trafficking, lysosomal or proteasomal degradation, and nuclear translocation of multiple proteins, they modulate important signaling pathways involved in tumorigenesis like TGFbeta, EGF, IGF, VEGF, SDF-1, and TNFalpha. Additionally, several Nedd4-like E3s directly regulate various cancer-related transcription factors from the Smad, p53, KLF, RUNX, and Jun families. Interestingly, multiple Nedd4-like E3s show ligase independent function. Furthermore, Nedd4-like E3s themselves are frequently regulated by phosphorylation, ubiquitination, translocation, and transcription in cancer cells. Because the regulation and biological output of these E3s is such a complex process, study of the role of these E3s in cancer development poses some challenges. However, understanding the oncogenic potential of these E3s may facilitate the identification and development of biomarkers and drug targets in human cancer.
Collapse
Affiliation(s)
- Ceshi Chen
- The Center for Cell Biology and Cancer Research, Albany Medical College, 47, New Scotland Ave., Albany, NY 12208, USA.
| | | |
Collapse
|
223
|
Identification of the domain in ErbB2 that restricts ligand-induced degradation. Cell Signal 2008; 20:779-86. [PMID: 18255265 DOI: 10.1016/j.cellsig.2007.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/21/2007] [Indexed: 11/23/2022]
Abstract
Ligand-induced receptor degradation is an important process for down-regulation of plasma membrane receptors. While epidermal growth factor receptor (EGFR) is rapidly internalised and degraded upon ligand stimulation, ErbB2, the closest member to EGFR in ErbB receptor family, is resistant in ligand-induced degradation. To understand the molecular mechanisms underlying the impairment in ligand-induced degradation of ErbB2, we attempted to determine structural factor in ErbB2 that restricts the degradation. By analysis of ligand-induced degradation of EGFR/ErbB2 chimeras, we have identified a region between amino acid residues F1030 and L1075 in ErbB2 as the domain that restricts the ligand-induced degradation. We designated this domain as the Blocking ErbB2 Degradation or the BED domain. Replacement of the BED domain in an EGFR/ErbB2 chimera with the corresponding region of EGFR changed this chimera from a non-degradable to a degradable receptor, indicating that the BED domain is the factor restricting the ligand-induced degradation of ErbB2. In addition, we found that a non-degradable EGFR/ErbB2 chimera was not defective in tyrosine phosphorylation, ubiquitination and interaction with c-Cbl, rather, was defective in ligand-induced internalisation, suggesting that the endocytosis defect is the cause restricting the degradation of ErbB2, and that c-Cbl-catalysed mono-ubiquitination is not involved in the impairment in ligand-induced degradation of ErbB2.
Collapse
|
224
|
Kwoh C, Shannon MB, Miner JH, Shaw A. Pathogenesis of nonimmune glomerulopathies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:349-74. [PMID: 18039119 DOI: 10.1146/annurev.pathol.1.110304.100119] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonimmune glomerulopathies are an area of significant research. This review discusses the development of focal segmental glomerulosclerosis, with particular attention to the role of the podocyte in the initiation of glomerulosclerosis and the contribution to glomerulosclerosis from capillary hypertension and soluble factors such as transforming growth factor beta, platelet-derived growth factor, vascular endothelial growth factor, and angiotensin. The effects of these factors on endothelial and mesangial cells are also discussed. In addition, we review our current understanding of the slit diaphragm (a specialized cell junction found in the kidney), slit diaphragm-associated proteins (including nephrin, podocin, alpha-actinin-4, CD2-associated protein, and transient receptor potential channel 6), and the role of these proteins in glomerular disease. We also discuss the most recent research on the pathogenesis of collapsing glomerulosclerosis, human immunodeficiency virus associated nephropathy, Denys-Drash, diabetic nephropathy, Alport syndrome, and other diseases related to the interaction between the podocyte and the glomerular basement membrane.
Collapse
Affiliation(s)
- Christopher Kwoh
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63113, USA.
| | | | | | | |
Collapse
|
225
|
Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, Bennett AM, Nathanson MH. c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 2007; 283:4344-51. [PMID: 18073207 DOI: 10.1074/jbc.m706550200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatocyte growth factor (HGF) is important for cell proliferation, differentiation, and related activities. HGF acts through its receptor c-Met, which activates downstream signaling pathways. HGF binds to c-Met at the plasma membrane, where it is generally believed that c-Met signaling is initiated. Here we report that c-Met rapidly translocates to the nucleus upon stimulation with HGF. Ca(2+) signals that are induced by HGF result from phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate formation within the nucleus rather than within the cytoplasm. Translocation of c-Met to the nucleus depends upon the adaptor protein Gab1 and importin beta1, and formation of Ca(2+) signals in turn depends upon this translocation. HGF may exert its particular effects on cells because it bypasses signaling pathways in the cytoplasm to directly activate signaling pathways in the nucleus.
Collapse
Affiliation(s)
- Dawidson A Gomes
- Department of Internal Medicine and Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Sato Y, Taoka M, Sugiyama N, Kubo KI, Fuchigami T, Asada A, Saito T, Nakajima K, Isobe T, Hisanaga SI. Regulation of the interaction of Disabled-1 with CIN85 by phosphorylation with Cyclin-dependent kinase 5. Genes Cells 2007; 12:1315-27. [DOI: 10.1111/j.1365-2443.2007.01139.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
227
|
hSef potentiates EGF-mediated MAPK signaling through affecting EGFR trafficking and degradation. Cell Signal 2007; 20:518-33. [PMID: 18096367 DOI: 10.1016/j.cellsig.2007.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/16/2007] [Accepted: 11/16/2007] [Indexed: 12/15/2022]
Abstract
Sef (similar expression to fgf genes) was identified as an effective antagonist of fibroblast growth factor (FGF) in vertebrates. Previous reports have demonstrated that Sef interacts with FGF receptors (FGFRs) and inhibits FGF signaling, however, its role in regulating epidermal growth factor receptor (EGFR) signaling remains unclear. In this report, we found that hSef localizes to the plasma membrane (PM) and is subjected to rapid internalization and well localizes in early/recycling endosomes while poorly in late endosomes/lysosomes. We observed that hSef interacts and functionally colocalizes with EGFR in early endosomes in response to EGF stimulation. Importantly, we demonstrated that overexpression of hSef attenuates EGFR degradation and potentiates EGF-mediated mitogen-activated protein kinase (MAPK) signaling by interfering EGFR trafficking. Finally, our data showed that, with overexpression of hSef, elevated levels of Erk phosphorylation and differentiation of rat pheochromocytoma (PC12) cells occur in response to EGF stimulation. Taken together, these data suggest that hSef plays a positive role in the EGFR-mediated MAPK signaling pathway. This report, for the first time, reveals opposite roles for Sef in EGF and FGF signalings.
Collapse
|
228
|
Abstract
Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
229
|
Abstract
The Rho GTPases are implicated in almost every fundamental cellular process. They act as molecular switches that cycle between an active GTP-bound and an inactive GDP-bound state. Their slow intrinsic GTPase activity is greatly enhanced by RhoGAPs (Rho GTPase-activating proteins), thus causing their inactivation. To date, more than 70 RhoGAPs have been identified in eukaryotes, ranging from yeast to human, and based on sequence homology of their RhoGAP domain, we have grouped them into subfamilies. In the present Review, we discuss their regulation, biological functions and implication in human diseases.
Collapse
Affiliation(s)
- Joseph Tcherkezian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | |
Collapse
|
230
|
Peruzzi G, Molfetta R, Gasparrini F, Vian L, Morrone S, Piccoli M, Frati L, Santoni A, Paolini R. The adaptor molecule CIN85 regulates Syk tyrosine kinase level by activating the ubiquitin-proteasome degradation pathway. THE JOURNAL OF IMMUNOLOGY 2007; 179:2089-96. [PMID: 17675467 DOI: 10.4049/jimmunol.179.4.2089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Triggering of mast cells and basophils by IgE and Ag initiates a cascade of biochemical events that lead to cell degranulation and the release of allergic mediators. Receptor aggregation also induces a series of biochemical events capable of limiting FcepsilonRI-triggered signals and functional responses. Relevant to this, we have recently demonstrated that Cbl-interacting 85-kDa protein (CIN85), a multiadaptor protein mainly involved in the process of endocytosis and vesicle trafficking, regulates the Ag-dependent endocytosis of the IgE receptor, with consequent impairment of FcepsilonRI-mediated cell degranulation. The purpose of this study was to further investigate whether CIN85 could alter the FcepsilonRI-mediated signaling by affecting the activity and/or expression of molecules directly implicated in signal propagation. We found that CIN85 overexpression inhibits the FcepsilonRI-induced tyrosine phosphorylation of phospholipase Cgamma, thus altering calcium mobilization. This functional defect is associated with a substantial decrease of Syk protein levels, which are restored by the use of selective proteasome inhibitors, and it is mainly due to the action of the ubiquitin ligase c-Cbl. Furthermore, coimmunoprecipitation experiments demonstrate that CIN85 overexpression limits the ability of Cbl to bind suppressor of TCR signaling 1 (Sts1), a negative regulator of Cbl functions, while CIN85 knockdown favors the formation of Cbl/Sts1 complexes. Altogether, our findings support a new role for CIN85 in regulating Syk protein levels in RBL-2H3 cells through the activation of the ubiquitin-proteasome pathway and provide a mechanism for this regulation involving c-Cbl ligase activity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens/immunology
- Antigens/metabolism
- Basophils/immunology
- Basophils/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line
- Endocytosis/genetics
- Endocytosis/immunology
- Gene Expression
- Humans
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Intracellular Signaling Peptides and Proteins/metabolism
- Mast Cells/immunology
- Mast Cells/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Phospholipase C gamma
- Phosphorylation
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/immunology
- Proteasome Endopeptidase Complex/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/immunology
- Proto-Oncogene Proteins c-cbl/metabolism
- Rats
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, IgE/genetics
- Receptors, IgE/immunology
- Receptors, IgE/metabolism
- Syk Kinase
- Ubiquitin/genetics
- Ubiquitin/immunology
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Department of Experimental Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Zhang M, Veselits M, O'Neill S, Hou P, Reddi AL, Berlin I, Ikeda M, Nash PD, Longnecker R, Band H, Clark MR. Ubiquitinylation of Igβ Dictates the Endocytic Fate of the B Cell Antigen Receptor. THE JOURNAL OF IMMUNOLOGY 2007; 179:4435-43. [PMID: 17878339 DOI: 10.4049/jimmunol.179.7.4435] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In both infection and autoimmunity, the development of high-affinity Abs and memory requires B cells to efficiently capture and process Ags for presentation to cognate T cells. Although a great deal is known about how Ags are processed, the molecular mechanisms by which the BCR captures Ag for processing are still obscure. In this study, we demonstrate that the Ig beta component of the BCR is diubiquitinylated and that this is dependent on the E3 ligase Itch. Itch-/- B lymphocytes manifest both a defect in ligand-induced BCR internalization and endocytic trafficking to late endosomal Ag-processing compartments. In contrast, analysis of ubiquitinylation-defective receptors demonstrated that the attachment of ubiquitins to Ig beta is required for endosomal sorting and for the presentation of Ag to T cells, yet, ubiquitinylation is dispensable for receptor internalization. Membrane-bound Ig mu was not detectably ubiquitinylated nor were the conserved lysines in the mu cytosolic tail required for trafficking to late endosomes. These results demonstrate that ubiquitinylation of a singular substrate, Ig beta, is required for a specific receptor trafficking event. However, they also reveal that E3 ligases play a broader role in multiple processes that determine the fate of Ag-engaged BCR complexes.
Collapse
Affiliation(s)
- Miao Zhang
- Section of Rheumatology, Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Sun J, Pedersen M, Bengtsson S, Rönnstrand L. Grb2 mediates negative regulation of stem cell factor receptor/c-Kit signaling by recruitment of Cbl. Exp Cell Res 2007; 313:3935-42. [PMID: 17904548 DOI: 10.1016/j.yexcr.2007.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/18/2007] [Accepted: 08/27/2007] [Indexed: 11/25/2022]
Abstract
Aberrant activation of c-Kit is involved in a number of human diseases including cancers and leukemias. Certain receptor tyrosine kinases, such as epidermal growth factor receptor, have been shown to indirectly recruit Cbl through the adapter protein Grb2, leading to receptor ubiquitination and degradation. In order to study the role of Grb2 in c-Kit degradation, a series of mutations of the Grb2 binding sites in c-Kit were generated (Y703F, Y936F, and Y703F/Y936F). Since other signal transduction molecules are also known to bind Y703 and Y936, the more selective asparagine-to-alanine (N-to-A) mutants N705A, N938A, and N705A/N938A were generated. We could clearly demonstrate that binding of Grb2 was dependent on intact phosphorylation sites Y703 and Y936. Furthermore, we could demonstrate the presence of Cbl in a complex with Grb2 and c-Kit. Thus, Grb2 is able to indirectly recruit Cbl to c-Kit. In the N-to-A mutants, Cbl phosphorylation was strongly reduced, which correlated with reduced ubiquitination of c-Kit as well as decreased internalization and degradation of the receptor. Taken together, we have demonstrated that, in addition to its role in positive signaling via the Ras/Erk pathway, Grb2 mediates c-Kit degradation through recruitment of Cbl to c-Kit, leading to ubiquitination of c-Kit followed by internalization and degradation.
Collapse
Affiliation(s)
- Jianmin Sun
- Experimental Clinical Chemistry, Department of Laboratory Medicine, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
233
|
Janz JM, Sakmar TP, Min KC. A Novel Interaction between Atrophin-interacting Protein 4 and β-p21-activated Kinase-interactive Exchange Factor Is Mediated by an SH3 Domain. J Biol Chem 2007; 282:28893-28903. [PMID: 17652093 DOI: 10.1074/jbc.m702678200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-talk between G protein-coupled receptors and receptor tyrosine kinase signaling pathways is crucial to the efficient relay and integration of cellular information. Here we identify and define the novel binding interaction of the E3 ubiquitin ligase atrophin-interacting protein 4 (AIP4) with the GTP exchange factor beta-p21-activated kinase-interactive exchange factor (beta PIX). We demonstrate that this interaction is mediated in part by the beta PIX-SH3 domain binding to a proline-rich stretch of AIP4. Analysis of the interaction by isothermal calorimetry is consistent with a heterotrimeric complex with one AIP4-derived peptide binding to two beta PIX-SH3 domains. We determined the crystal structure of the beta PIX-SH3.AIP4 complex to 2.0-A resolution. In contrast to the calorimetry results, the crystal structure shows a monomeric complex in which AIP4 peptide binds the beta PIX-SH3 domain as a canonical Class I ligand with an additional type II polyproline helix that makes extensive contacts with another face of beta PIX. Taken together, the novel interaction between AIP4 and beta PIX represents a new regulatory node for G protein-coupled receptor and receptor tyrosine kinase signal integration. Our structure of the beta PIX-SH3.AIP4 complex provides important insight into the mechanistic basis for beta PIX scaffolding of signaling components, especially those involved in cross-talk.
Collapse
Affiliation(s)
- Jay M Janz
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, New York 10021.
| | - Thomas P Sakmar
- Laboratory of Molecular Biology and Biochemistry, The Rockefeller University, New York, New York 10021
| | - K Christopher Min
- Department of Neurology, Columbia University, New York, New York 10032
| |
Collapse
|
234
|
Sargin B, Choudhary C, Crosetto N, Schmidt MHH, Grundler R, Rensinghoff M, Thiessen C, Tickenbrock L, Schwäble J, Brandts C, August B, Koschmieder S, Bandi SR, Duyster J, Berdel WE, Müller-Tidow C, Dikic I, Serve H. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 2007; 110:1004-12. [PMID: 17446348 DOI: 10.1182/blood-2007-01-066076] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
In acute myeloid leukemia (AML), mutational activation of the receptor tyrosine kinase (RTK) Flt3 is frequently involved in leukemic transformation. However, little is known about a possible role of highly expressed wild-type Flt3 in AML. The proto-oncogene c-Cbl is an important regulator of RTK signaling, acting through its ubiquitin ligase activity and as a platform for several signaling adaptor molecules. Here, we analyzed the role of c-Cbl in Flt3 signal transduction and myeloid transformation. C-Cbl physically interacted with Flt3 and was tyrosine phosphorylated in the presence of Flt3-ligand (FL). Overexpression of a dominant-negative form of c-Cbl (Cbl-70Z) inhibited FL-induced Flt3 ubiquitylation and internalization, indicating involvement of c-Cbl in Flt3 signaling. DNA sequencing of AML bone marrow revealed a case with a c-Cbl point mutation (Cbl-R420Q). Cbl-R420Q inhibited Flt3 internalization and ubiquitylation. Coexpression of Cbl-R420Q or Cbl-70Z with Flt3 induced cytokine-independent growth and survival of 32Dcl3 cells in the absence of FL. Also, the mutant Cbl proteins altered the amplitude and duration of Flt3-dependent signaling events. Our results indicate an important role of Cbl proteins in Flt3 signal modulation. Also, the data suggest a novel mechanism of leukemic transformation in AML by mutational inactivation of negative RTK regulators.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- COS Cells
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chlorocebus aethiops
- Gene Expression Regulation, Leukemic
- Genes, Dominant
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Phosphorylation
- Point Mutation
- Protein Binding
- Protein Processing, Post-Translational
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/metabolism
- Signal Transduction
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Bülent Sargin
- Department of Medicine, Hematology and Oncology, and Interdisciplinary Center for Clinical Research, University Hospital Münster, Albert-Schweitzer-Strasse 33, 48129 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Gaidos G, Soni S, Oswald DJ, Toselli PA, Kirsch KH. Structure and function analysis of the CMS/CIN85 protein family identifies actin-bundling properties and heterotypic-complex formation. J Cell Sci 2007; 120:2366-77. [PMID: 17606992 DOI: 10.1242/jcs.004333] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the CMS/CIN85 protein family participate in clathrin-mediated endocytosis and play a crucial role in maintaining the kidney filtration barrier. The CMS protein structure includes three Src homology 3 (SH3) domains and a proline-rich (PR) region that is connected by a `linker' sequence to a coiled-coil (CC) domain. We show that CMS is a component of special actin-rich adhesion structures – podosomes – and demonstrate specific actin-binding properties of CMS. We have found that the entire C-terminal half of CMS is necessary for efficient binding to filamentous actin (F-actin). CMS and CIN85 can crosslink F-actin into bundles, a function that depends on the PR region and the CC domain. Removal of these domains reduces migration. CMS can also form heterotypic complexes with CIN85. CIN85 is expressed as multiple isoforms that share the CC domain, suggesting that heterotypic interactions with CMS provides a mechanism to regulate CMS binding to F-actin and thus for modulating dynamic rearrangements of the cytoskeleton.
Collapse
Affiliation(s)
- Gabriel Gaidos
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
236
|
Reddi AL, Ying G, Duan L, Chen G, Dimri M, Douillard P, Druker BJ, Naramura M, Band V, Band H. Binding of Cbl to a phospholipase Cgamma1-docking site on platelet-derived growth factor receptor beta provides a dual mechanism of negative regulation. J Biol Chem 2007; 282:29336-47. [PMID: 17620338 DOI: 10.1074/jbc.m701797200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin conjugation to receptor tyrosine kinases is a critical biochemical step in attenuating their signaling through lysosomal degradation. Our previous studies have established Cbl as an E3 ubiquitin ligase for ubiquitinylation and degradation of platelet-derived growth factor receptor (PDGFR) alpha and PDGFRbeta. However, the role of endogenous Cbl in PDGFR regulation and the molecular mechanisms of this regulation remain unclear. Here, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and degradation of PDGFRbeta; this involves the Cbl TKB domain binding to PDGFRbeta phosphotyrosine 1021, a known phospholipase C (PLC) gamma1 SH2 domain-binding site. Lack of Cbl or ablation of the Cbl-binding site on PDGFRbeta impedes receptor sorting to the lysosome. Cbl-deficient cells also show more PDGF-induced PLCgamma1 association with PDGFRbeta and enhanced PLC-mediated cell migration. Thus, Cbl-dependent negative regulation of PDGFRbeta involves a dual mechanism that concurrently promotes ubiquitin-dependent lysosomal sorting of the receptor and competitively reduces the recruitment of a positive mediator of receptor signaling.
Collapse
Affiliation(s)
- Alagarsamy Lakku Reddi
- Division of Molecular Oncology, Evanston Northwestern Healthcare Research Institute, Northwestern University, Evanston, Illinois 60201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Bachmaier K, Toya S, Gao X, Triantafillou T, Garrean S, Park GY, Frey RS, Vogel S, Minshall R, Christman JW, Tiruppathi C, Malik AB. E3 ubiquitin ligase Cblb regulates the acute inflammatory response underlying lung injury. Nat Med 2007; 13:920-6. [PMID: 17618294 DOI: 10.1038/nm1607] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 05/21/2007] [Indexed: 12/16/2022]
Abstract
The E3 ubiquitin ligase Cblb has a crucial role in the prevention of chronic inflammation and autoimmunity. Here we show that Cblb also has an unexpected function in acute lung inflammation. Cblb attenuates the sequestration of inflammatory cells in the lungs after administration of lipopolysaccharide (LPS). In a model of polymicrobial sepsis in which acute lung inflammation depends on the LPS receptor (Toll-like receptor 4, TLR-4), the loss of Cblb expression accentuates acute lung inflammation and reduces survival. Loss of Cblb significantly increases sepsis-induced release of inflammatory cytokines and chemokines. Cblb controls the association between TLR4 and the intracellular adaptor MyD88. Expression of wild-type Cblb, but not expression of a Cblb mutant that lacks E3 ubiquitin ligase function, prevents the activity of a reporter gene for the transcription factor nuclear factor-kappaB (NF-kappaB) in monocytes that have been challenged with LPS. The downregulation of TLR4 expression on the cell surface of neutrophils is impaired in the absence of Cblb. Our data reveal that Cblb regulates the TLR4-mediated acute inflammatory response that is induced by sepsis.
Collapse
Affiliation(s)
- Kurt Bachmaier
- Department of Pharmacology, College of Medicine, University of Illinois, E403, Medical Science Building, M/C 868, 835 S. Wolcott Avenue, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Mills IG. The interplay between clathrin-coated vesicles and cell signalling. Semin Cell Dev Biol 2007; 18:459-70. [PMID: 17692542 DOI: 10.1016/j.semcdb.2007.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 01/26/2023]
Abstract
Internalization of cargo proteins and lipids at the cell surface occurs in both a constitutive and signal-regulated manner through clathrin-mediated and other endocytic pathways. Clathrin-coated vesicle formation is a principal uptake route in response to signalling events. Protein-lipid and protein-protein interactions control both the targeting of signalling molecules and their binding partners to membrane compartments and the assembly of clathrin coats. An emerging aspect of membrane trafficking research is now addressing how signalling cascades and vesicle coat assembly and subsequently disassembly are integrated.
Collapse
Affiliation(s)
- Ian G Mills
- Cancer Research UK, Cambridge Research Institute, Robinson Way, Cambridge CB2 ORE, UK.
| |
Collapse
|
239
|
Dikic I, Schmidt MHH. Malfunctions within the Cbl interactome uncouple receptor tyrosine kinases from destructive transport. Eur J Cell Biol 2007; 86:505-12. [PMID: 17553592 DOI: 10.1016/j.ejcb.2007.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 12/14/2022] Open
Abstract
Proteins of the Cbl family are adaptor molecules and ubiquitin ligases with major functions in the regulation, intracellular transport and degradation of receptor tyrosine kinases (RTKs). Due to this central role, mutations that cause malfunctions of Cbl or their associated proteins - termed the Cbl interactome - easily lead to the transformation of affected cells and eventually the development of cancer. This review intends to give an overview on the mechanisms of Cbl-mediated cell transformation in light of the dysregulated intracellular trafficking of RTKs.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
240
|
Pakkasjärvi N, Kerosuo L, Nousiainen H, Gentile M, Saharinen J, Suhonen S, Sariola H, Peltonen L, Kestilä M, Wartiovaara K. Neural precursor cells from a fatal human motoneuron disease differentiate despite aberrant gene expression. Dev Neurobiol 2007; 67:270-84. [PMID: 17443787 DOI: 10.1002/dneu.20350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Precursor cells of the human central nervous system can be cultured in vitro to reveal pathogenesis of diseases or developmental disorders. Here, we have studied the biology of neural precursor cells (NPCs) from patients of lethal congenital contracture syndrome (LCCS), a severe motoneuron disease leading to prenatal death before the 32nd gestational week. LCCS fetuses are immobile because of a motoneuron defect, seen as degeneration of the anterior horn and descending tracts of the developing spinal cord. The genetic defect for the syndrome is unknown. We show that NPCs isolated postmortem from LCCS fetuses grow and are maintained in culture, but display increased cell cycle activity. Global transcript analysis of undifferentiated LCCS precursor cells present with changes in EGF-related signaling when compared with healthy age-matched human controls. Further, we show that LCCS-derived NPCs differentiate into cells of neuronal and glial lineage and that the initial differentiation is not accompanied by overt apoptosis. Cells expressing markers Islet-1 and Hb9 are also generated from the LCCS NPCs, suggesting that the pathogenic mechanism of LCCS does not directly affect the differentiation capacity or survival of the cells, but the absence of motoneurons in LCCS may be caused by a noncell autonomous mechanism.
Collapse
Affiliation(s)
- Niklas Pakkasjärvi
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Liu Y, Purvis J, Shih A, Weinstein J, Agrawal N, Radhakrishnan R. A multiscale computational approach to dissect early events in the Erb family receptor mediated activation, differential signaling, and relevance to oncogenic transformations. Ann Biomed Eng 2007; 35:1012-25. [PMID: 17273938 PMCID: PMC3021414 DOI: 10.1007/s10439-006-9251-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/12/2006] [Indexed: 11/24/2022]
Abstract
We describe a hierarchical multiscale computational approach based on molecular dynamics simulations, free energy-based molecular docking simulations, deterministic network-based kinetic modeling, and hybrid discrete/continuum stochastic dynamics protocols to study the dimer-mediated receptor activation characteristics of the Erb family receptors, specifically the epidermal growth factor receptor (EGFR). Through these modeling approaches, we are able to extend the prior modeling of EGF-mediated signal transduction by considering specific EGFR tyrosine kinase (EGFRTK) docking interactions mediated by differential binding and phosphorylation of different C-terminal peptide tyrosines on the RTK tail. By modeling signal flows through branching pathways of the EGFRTK resolved on a molecular basis, we are able to transcribe the effects of molecular alterations in the receptor (e.g., mutant forms of the receptor) to differing kinetic behavior and downstream signaling response. Our molecular dynamics simulations show that the drug sensitizing mutation (L834R) of EGFR stabilizes the active conformation to make the system constitutively active. Docking simulations show preferential characteristics (for wildtype vs. mutant receptors) in inhibitor binding as well as preferential enhancement of phosphorylation of particular substrate tyrosines over others. We find that in comparison to the wildtype system, the L834R mutant RTK preferentially binds the inhibitor erlotinib, as well as preferentially phosphorylates the substrate tyrosine Y1068 but not Y1173. We predict that these molecular level changes result in preferential activation of the Akt signaling pathway in comparison to the Erk signaling pathway for cells with normal EGFR expression. For cells with EGFR over expression, the mutant over activates both Erk and Akt pathways, in comparison to wildtype. These results are consistent with qualitative experimental measurements reported in the literature. We discuss these consequences in light of how the network topology and signaling characteristics of altered (mutant) cell lines are shaped differently in relationship to native cell lines.
Collapse
Affiliation(s)
- Yingting Liu
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Jeremy Purvis
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Shih
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Joshua Weinstein
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Neeraj Agrawal
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
242
|
Abstract
Alix is a cytosolic protein in mammalian cells that was originally identified on the basis of its association with pro-apoptotic signaling. More recent evidence has established that Alix has a hand in regulating other cellular mechanisms, including endocytic membrane trafficking and cell adhesion. Although Alix appears to participate directly in these various activities, the role it plays in each process has largely been inferred from the functions of proteins with which it interacts. For example, recruitment of Alix to endosomes is mediated by its N-terminal Bro1 domain, the structure of which was recently solved for its yeast orthologue, Bro1. The diversity of Alix functions is due to its proline-rich C-terminus, which provides multiple protein-binding sites. With this blueprint in hand, we can now ask whether Alix acts simply as an adaptor that links different proteins into networks or, instead, contributes a specific function to distinct molecular machineries.
Collapse
Affiliation(s)
- Greg Odorizzi
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| |
Collapse
|
243
|
Furukawa M, Nagatomo I, Kumagai T, Yamadori T, Takahashi R, Yoshimura M, Yoneda T, Takeda Y, Goya S, Matsuoka H, Kijima T, Yoshida M, Osaki T, Tachibana I, Greene MI, Kawase I. Gefitinib-sensitive EGFR lacking residues 746-750 exhibits hypophosphorylation at tyrosine residue 1045, hypoubiquitination, and impaired endocytosis. DNA Cell Biol 2007; 26:178-85. [PMID: 17417946 DOI: 10.1089/dna.2006.0573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gefitinib-sensitive nonsmall cell lung cancers (NSCLC) are characterized by somatic mutations in the kinase domain of epidermal growth factor receptor (EGFR). The mutant EGFR forms are reported to mediate characteristic signal transduction pathways that are different from those mediated by the wild-type EGFR and are involved in transformation in vivo. We have examined signal transduction pathways initiated from a frequently identified gefitinib-sensitizing mutant EGFR lacking residues 746-750 by employing a mouse fibroblast cell line that is free of endogenous EGFR and transiently transfected COS-7 cells. Upon EGF stimulation, the deletion-mutant EGFR mediated prolonged downstream signals. The analysis of the phosphotyrosine patterns of the receptor revealed that the deletion-mutant EGFR lacked phosphorylation at tyrosine residue 1045, which is the major binding site of Cbl. The EGF-induced endocytosis of the deletion-mutant EGFR was impaired. The ubiquitination and downregulation of the deletion-mutant EGFR were also reduced. On the other hand, another mutant, EGFR, possessing a L858R substitution, exhibited phosphorylation at 1045 and its downstream signalings were not prolonged. These data suggest that the signal transduction pathways initiated from these mutant forms are different, and that impaired endocytosis might be responsible for the prolonged signals mediated by the deletion-mutant EGFR.
Collapse
Affiliation(s)
- Mitsugi Furukawa
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Omerovic J, Santangelo L, Puggioni EMR, Marrocco J, Dall'Armi C, Palumbo C, Belleudi F, Di Marcotullio L, Frati L, Torrisi MR, Cesareni G, Gulino A, Alimandi M. The E3 ligase Aip4/Itch ubiquitinates and targets ErbB‐4 for degradation. FASEB J 2007; 21:2849-62. [PMID: 17463226 DOI: 10.1096/fj.06-7925com] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ErbB-4 receptors are unique in the EGFR/ErbB family for the ability to associate with WW domain-containing proteins. To identify new ligands of the cytoplasmic tail of ErbB-4, we panned a brain cDNA phage library with ErbB-4 peptides containing sequence motifs corresponding to putative docking sites for class-I WW domains. This approach led to identification of AIP4/Itch, a member of the Nedd4-like family of E3 ubiquitin protein ligases, as a protein that specifically interacts with and ubiquitinates ErbB-4 in vivo. Interaction with the ErbB-4 receptors occurs via the WW domains of AIP4/Itch. Functional analyses demonstrate that AIP4/Itch is recruited to the ErbB-4 receptor to promote its polyubiquitination and degradation, thereby regulating stability of the receptor and access of receptor intracellular domains to the nuclear compartment. These findings expand our understanding of the mechanisms contributing to the integrity of the ErbB signaling network and mechanistically link the cellular ubiquitination pathway of AIP4/Itch to the ErbB-4 receptor.
Collapse
Affiliation(s)
- Jasminka Omerovic
- Department of Experimental Medicine and Pathology, University La Sapienza, Viale Regina Elena 324 00161, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Sattler M, Salgia R. c-Met and hepatocyte growth factor: Potential as novel targets in cancer therapy. Curr Oncol Rep 2007; 9:102-8. [PMID: 17288874 DOI: 10.1007/s11912-007-0005-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Receptor tyrosine kinases have come to fruition as therapeutic targets in a variety of malignancies. In this group of targets, the c-Met receptor tyrosine kinase plays an important role in increased cell growth, reduced apoptosis, altered cytoskeletal function, increased metastasis, and other biologic changes. The ligand for c-Met is hepatocyte growth factor (HGF), also known as scatter factor. Met is overexpressed and mutated in a variety of malignancies, among which germline mutations are of particular interest. Most mutations of Met have been found in the juxtamembrane, the tyrosine kinase, and the semaphorin domain. Met gain-of-function mutations lead to deregulated or prolonged tyrosine kinase activity, which is instrumental to its transforming activity. This review summarizes the biologic functions regulated by Met and its structural requirements as well as related developments in targeted therapy. Treatment approaches, including antagonism of HGF binding to Met, targeting of RNA and the Met protein, and inhibition of the tyrosine kinase domain of Met, are highlighted. Targeting of the HGF/Met pathway, alone or in combination with standard therapies, is likely to improve current therapies in Met-dependent malignancies.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medicine, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
246
|
Gauthier NC, Monzo P, Gonzalez T, Doye A, Oldani A, Gounon P, Ricci V, Cormont M, Boquet P. Early endosomes associated with dynamic F-actin structures are required for late trafficking of H. pylori VacA toxin. ACTA ACUST UNITED AC 2007; 177:343-54. [PMID: 17438076 PMCID: PMC2064141 DOI: 10.1083/jcb.200609061] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed by a clathrin- independent pathway into vesicles named GPI-AP–enriched early endosomal compartments (GEECs). We recently showed that the vacuolating toxin VacA secreted by Helicobacter pylori is endocytosed into the GEECs (Gauthier, N.C., P. Monzo, V. Kaddai, A. Doye, V. Ricci, and P. Boquet. 2005. Mol. Biol. Cell. 16:4852–4866). Unlike GPI-APs that are mostly recycled back to the plasma membrane, VacA reaches early endosomes (EEs) and then late endosomes (LEs), where vacuolation occurs. In this study, we used VacA to study the trafficking pathway between GEECs and LEs. We found that VacA routing from GEECs to LEs required polymerized actin. During this trafficking, VacA was transferred from GEECs to EEs associated with polymerized actin structures. The CD2-associated protein (CD2AP), a docking protein implicated in intracellular trafficking, bridged the filamentous actin (F-actin) structures with EEs containing VacA. CD2AP regulated those F-actin structures and was required to transfer VacA from GEECs to LEs. These results demonstrate that sorting from GEECs to LEs requires dynamic F-actin structures on EEs.
Collapse
Affiliation(s)
- Nils C Gauthier
- Unité 627 and 2Unité 568, Institut National de la Santé et de la Recherche Medicale, Faculty of Medicine, 06107 Nice, Cedex 02, France
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Usami Y, Popov S, Göttlinger HG. Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J Virol 2007; 81:6614-22. [PMID: 17428861 PMCID: PMC1900090 DOI: 10.1128/jvi.00314-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The release of human immunodeficiency virus type 1 (HIV-1) and of other retroviruses from certain cells requires the presence of distinct regions in Gag that have been termed late assembly (L) domains. HIV-1 harbors a PTAP-type L domain in the p6 region of Gag that engages an endosomal budding machinery through Tsg101. In addition, an auxiliary L domain near the C terminus of p6 binds to ALIX/AIP1, which functions in the same endosomal sorting pathway as Tsg101. In the present study, we show that the profound release defect of HIV-1 L domain mutants can be completely rescued by increasing the cellular expression levels of ALIX and that this rescue depends on an intact ALIX binding site in p6. Furthermore, the ability of ALIX to rescue viral budding in this system depended on two putative surface-exposed hydrophobic patches on its N-terminal Bro1 domain. One of these patches mediates the interaction between ALIX and the ESCRT-III component CHMP4B, and mutations which disrupt the interaction also abolish the activity of ALIX in viral budding. The ability of ALIX to rescue a PTAP mutant also depends on its C-terminal proline-rich domain (PRD), but not on the binding sites for Tsg101, endophilin, CIN85, or for the newly identified binding partner, CMS, within the PRD. Our data establish that ALIX can have a dramatic effect on HIV-1 release and suggest that the ability to use ALIX may allow HIV-1 to replicate in cells that express only low levels of Tsg101.
Collapse
Affiliation(s)
- Yoshiko Usami
- Program in Gene Function and Expression, University of Massachusetts Medical School, LRB 526, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
248
|
Means RE, Lang SM, Jung JU. The Kaposi's sarcoma-associated herpesvirus K5 E3 ubiquitin ligase modulates targets by multiple molecular mechanisms. J Virol 2007; 81:6573-83. [PMID: 17409151 PMCID: PMC1900076 DOI: 10.1128/jvi.02751-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus encodes two highly related membrane-associated, RING-CH-containing (MARCH) family E3 ubiquitin ligases, K3 and K5, that can down regulate a variety of cell surface proteins through enhancement of their endocytosis and degradation. In this report we present data that while K5 modulation of major histocompatibility complex class I (MHC-I) closely mirrors the mechanisms used by K3, alternative molecular pathways are utilized by this E3 ligase in the down regulation of intercellular adhesion molecule 1 (ICAM-1) and B7.2. Internalization assays demonstrate that down regulation of each target can occur through increased endocytosis from the cell surface. However, mutation of a conserved tyrosine-based endocytosis motif in K5 resulted in a protein lacking the ability to direct an increased rate of MHC-I or ICAM-1 internalization but still able to down regulate B7.2 in a ubiquitin-dependent but endocytosis-independent manner. Further, mutation of two acidic clusters abolished K5-mediated MHC-I degradation while only slightly decreasing ICAM-1 or B7.2 protein destruction. This same mutant abolished detectable ubiquitylation of all targets. These data indicate that while K5 can act as an E3 ubiquitin ligase to directly mediate cell surface molecule destruction, regulation of its targets occurs through multiple pathways, including ubiquitin-independent mechanisms.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
249
|
Abstract
One of the challenges of modern biology is to understand how cells within a developing organism generate, integrate, and respond to dynamic informational cues. Based on over two decades of intensive research, many parts and subroutines of the responsible signal transduction networks have been identified and functionally characterized. From this work, it has become evident that a complicated interplay between signaling pathways, involving extensive feedback regulation and multiple levels of cross-talk, underlies even the "simplest" developmental decision. Thus a signaling pathway can no longer be thought of as a rigid linear process, but rather must be considered a dynamic, self-interacting, and self-adjusting network. The Epidermal Growth Factor Receptor tyrosine kinase signaling pathway provides a prime vantage point from which to explore emerging principles in developmental signal transduction.
Collapse
Affiliation(s)
- Pavithra Vivekanand
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
250
|
Abstract
Increasing evidence from a variety of cell types has highlighted the importance of the actin cytoskeleton during endocytosis. No longer is actin viewed as a passive barrier that must be removed to allow endocytosis to proceed. Rather, actin structures are dynamically organised to assist the remodelling of the cell surface to allow inward movement of vesicles. The majority of our mechanistic insight into the role of actin in endocytosis has come from studies in budding yeast. Although endocytosis in mammalian cells is clearly more complex and subject to a greater array of regulatory signals, recent advances have revealed actin, and actin-regulatory proteins, to be present at endocytic sites. Furthermore, live cell imaging indicates that spatiotemporal aspects of actin recruitment and vesicle formation are likely to be conserved across eukaryotic evolution.
Collapse
Affiliation(s)
- Elizabeth Smythe
- Department of Biomedical Science, Firth Court, Western Bank, University of Sheffield, Sheffield, UK
| | | |
Collapse
|