201
|
Chen Y, Deng L, Maeno-Hikichi Y, Lai M, Chang S, Chen G, Zhang JF. Formation of an Endophilin-Ca2+ Channel Complex Is Critical for Clathrin-Mediated Synaptic Vesicle Endocytosis. Cell 2003; 115:37-48. [PMID: 14532001 DOI: 10.1016/s0092-8674(03)00726-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A tight balance between synaptic vesicle exocytosis and endocytosis is fundamental to maintaining synaptic structure and function. Calcium influx through voltage-gated Ca2+ channels is crucial in regulating synaptic vesicle exocytosis. However, much less is known about how Ca2+ regulates vesicle endocytosis or how the endocytic machinery becomes enriched at the nerve terminal. We report here a direct interaction between voltage-gated Ca2+ channels and endophilin, a key regulator of clathrin-mediated synaptic vesicle endocytosis. Formation of the endophlin-Ca2+ channel complex is Ca2+ dependent. The primary Ca2+ binding domain resides within endophilin and regulates both endophilin-Ca2+ channel and endophilin-dynamin complexes. Introduction into hippocampal neurons of a dominant-negative endophilin construct, which constitutively binds to Ca2+ channels, significantly reduces endocytosis-mediated uptake of FM 4-64 dye without abolishing exocytosis. These results suggest an important role for Ca2+ channels in coordinating synaptic vesicle recycling by directly coupling to both exocytotic and endocytic machineries.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pharmacology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
202
|
Carattino MD, Hill WG, Kleyman TR. Arachidonic acid regulates surface expression of epithelial sodium channels. J Biol Chem 2003; 278:36202-13. [PMID: 12837767 DOI: 10.1074/jbc.m300312200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial Na+ channels (ENaCs) are regulated by the phospholipase A2 (PLA2) product arachidonic acid. Pharmacological inhibition of PLA2 with aristolochic acid induced a significant increase in amiloride-sensitive currents in Xenopus oocytes expressing ENaC. Arachidonic acid or 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolized analog of arachidonic acid, induced a time-dependent inhibition of Na+ transport. These effects were also observed by co-expression of a calcium-independent or a calcium-dependent PLA2. Channels with a truncated alpha, beta,or gamma C terminus were not inhibited by arachidonic acid or ETYA. Furthermore, mutation of Tyr618 in the PY motif of the beta subunit abrogated the inhibitory effect of ETYA, suggesting that intact PY motifs participate in arachidonic acid-mediated ENaC inhibition. Analyses of channels expressing a series of beta subunit C-terminal truncations revealed a second region N-terminal to the PY motif (spanning residues betaVal580-betaGly599) that allowed for ETYA-mediated ENaC inhibition. Analyses of both ENaC surface expression and ENaC trafficking with mutants that either gate channels open or closed in response to [(2-(trimethylammonium) ethyl] methanethiosulfonate bromide, or with brefeldin A, suggest that ETYA reduces channel surface expression by inhibiting ENaC exocytosis and increasing ENaC endocytosis.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
203
|
Pathre P, Shome K, Blumental-Perry A, Bielli A, Haney CJ, Alber S, Watkins SC, Romero G, Aridor M. Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export. EMBO J 2003; 22:4059-69. [PMID: 12912905 PMCID: PMC175780 DOI: 10.1093/emboj/cdg390] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The small GTPase Sar1p controls the assembly of the cytosolic COPII coat that mediates export from the endoplasmic reticulum (ER). Here we demonstrate that phospholipase D (PLD) activation is required to support COPII-mediated ER export. PLD activity by itself does not lead to the recruitment of COPII to the membranes or ER export. However, PLD activity is required to support Sar1p-dependent membrane tubulation, the subsequent Sar1p-dependent recruitment of Sec23/24 and Sec13/31 COPII complexes to ER export sites and ER export. Sar1p recruitment to the membrane is PLD independent, yet activation of Sar1p is required to stimulate PLD activity on ER membranes, thus PLD is temporally regulated to support ER export. Regulated modification of membrane lipid composition is required to support the cooperative interactions that enable selective transport, as we demonstrate here for the mammalian COPII coat.
Collapse
Affiliation(s)
- Purnima Pathre
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Drecktrah D, Chambers K, Racoosin EL, Cluett EB, Gucwa A, Jackson B, Brown WJ. Inhibition of a Golgi complex lysophospholipid acyltransferase induces membrane tubule formation and retrograde trafficking. Mol Biol Cell 2003; 14:3459-69. [PMID: 12925777 PMCID: PMC181581 DOI: 10.1091/mbc.e02-11-0711] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies have suggested that formation of Golgi membrane tubules involves the generation of membrane-associated lysophospholipids by a cytoplasmic Ca2+-independent phospholipase A2 (PLA2). Herein, we provide additional support for this idea by showing that inhibition of lysophospholipid reacylation by a novel Golgi-associated lysophosphatidylcholine acyltransferase (LPAT) induces the rapid tubulation of Golgi membranes, leading in their retrograde movement to the endoplasmic reticulum. Inhibition of the Golgi LPAT was achieved by 2,2-dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976), a previously characterized antagonist of acyl-CoA cholesterol acyltransferase. The effect of CI-976 was similar to that of brefeldin A, except that the coatomer subunit beta-COP remained on Golgi-derived membrane tubules. CI-976 also enhanced the cytosol-dependent formation of tubules from Golgi complexes in vitro and increased the levels of lysophosphatidylcholine in Golgi membranes. Moreover, preincubation of cells with PLA2 antagonists inhibited the ability of CI-976 to induce tubules. These results suggest that Golgi membrane tubule formation can result from increasing the content of lysophospholipids in membranes, either by stimulation of a PLA2 or by inhibition of an LPAT. These two opposing enzyme activities may help to coordinately regulate Golgi membrane shape and tubule formation.
Collapse
Affiliation(s)
- Daniel Drecktrah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 2003; 10:870-80. [PMID: 12867994 DOI: 10.1038/sj.cdd.4401260] [Citation(s) in RCA: 575] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mitochondria exist as dynamic networks that often change shape and subcellular distribution. The number and morphology of mitochondria within a cell are controlled by precisely regulated rates of organelle fusion and fission. Recent reports have described dramatic alterations in mitochondrial morphology during the early stages of apoptotic cell death, a fragmentation of the network and the remodeling of the cristae. Surprisingly, proteins discovered to control mitochondrial morphology appear to also participate in apoptosis and proteins associated with the regulation of apoptosis have been shown to affect mitochondrial ultrastructure. In this review the recent progress in understanding the mechanisms governing mitochondrial morphology and the latest advances connecting the regulation of mitochondrial morphology with programmed cell death are discussed.
Collapse
Affiliation(s)
- M Karbowski
- The Biochemistry Section, SNB, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
206
|
Abstract
Membrane traffic requires the generation of high-curvature lipid-bound transport carriers represented by tubules and vesicles. The mechanisms through which membranes are deformed has gained much recent attention. A major advance has been the demonstration that direct interactions between cytosolic proteins and lipid bilayers are important in the acquisition of membrane curvature. Rather than being driven only by the formation of membrane-associated structural scaffolds, membrane deformation requires physical perturbation of the lipid bilayer. A variety of proteins have been identified that directly bind and deform membranes. An emerging theme in this process is the importance of amphipathic peptides that partially penetrate the lipid bilayer.
Collapse
Affiliation(s)
- Khashayar Farsad
- Department of Cell Biology, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | |
Collapse
|
207
|
Harjes P, Wanker EE. The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 2003; 28:425-33. [PMID: 12932731 DOI: 10.1016/s0968-0004(03)00168-3] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormally elongated polyglutamine (polyQ) tract in the large protein huntingtin (htt). Currently, both the normal function of htt in neurons and the molecular mechanism by which the expanded polyQ sequence in htt causes selective neurodegeneration remain elusive. Research in past years has identified several htt-interacting proteins such as htt-interacting protein 1, Src homology region 3-containing Grb2-like protein 3, protein kinase C and casein kinase substrate in neurons 1, htt-associated protein 1, postsynaptic density-95, FIP-2 (for 14.7K-interacting protein), specificity protein 1 and nuclear receptor co-repressor. These proteins play roles in clathrin-mediated endocytosis, apoptosis, vesicle transport, cell signalling, morphogenesis and transcriptional regulation, suggesting that htt is also involved in these processes.
Collapse
Affiliation(s)
- Phoebe Harjes
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | | |
Collapse
|
208
|
Abstract
The bioactive phospholipid lysophosphatidic acid (LPA) stimulates cell proliferation, migration and survival by acting on its cognate G-protein-coupled receptors. Aberrant LPA production, receptor expression and signalling probably contribute to cancer initiation, progression and metastasis. The recent identification of ecto-enzymes that mediate the production and degradation of LPA, as well as the development of receptor-selective analogues, indicate mechanisms by which LPA production or action could be modulated for cancer therapy.
Collapse
|
209
|
Marchesan D, Rutberg M, Andersson L, Asp L, Larsson T, Borén J, Johansson BR, Olofsson SO. A phospholipase D-dependent process forms lipid droplets containing caveolin, adipocyte differentiation-related protein, and vimentin in a cell-free system. J Biol Chem 2003; 278:27293-300. [PMID: 12730229 DOI: 10.1074/jbc.m301430200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We developed a microsome-based, cell-free system that assembles newly formed triglyceride (TG) into spherical lipid droplets. These droplets were recovered in the d </= 1.055 g/ml fraction by gradient ultracentrifugation and were similar in size and appearance to those isolated from rat adipocytes and 3T3-L1 cells. Caveolin 1 and 2, vimentin, adipocyte differentiation-related protein, and the 78-kDa glucose regulatory protein were identified on the droplets from the cell-free system. The caveolin was soluble in 1% Triton X-100, as was the caveolin on lipid droplets from 3T3-L1 cells. The lipid droplets from the cell-free system, like those from 3T3-L1 cells, contained TG, diacylglycerol, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The assembly of these TG-containing structures was dependent on the rate of TG biosynthesis and required an activator present in the 160,000 x g supernatant from homogenized rat adipocytes. The activator induced phospholipase D (PLD) activity, and its effect on the release of the TG-containing structures from the microsomes was inhibited by 1-butanol (but not 2-butanol) or 2,3-diphosphoglycerate. The activator could be replaced by a constitutively active PLD or phosphatidic acid. These results indicate that PLD and the formation of phosphatidic acid are important in the assembly of the TG-containing structures.
Collapse
Affiliation(s)
- Denis Marchesan
- Department of Medical Biochemistry and the Wallenberg Laboratory for Cardiovascular Research, Göteborg University, SE-413 45 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Rykx A, De Kimpe L, Mikhalap S, Vantus T, Seufferlein T, Vandenheede JR, Van Lint J. Protein kinase D: a family affair. FEBS Lett 2003; 546:81-6. [PMID: 12829240 DOI: 10.1016/s0014-5793(03)00487-3] [Citation(s) in RCA: 347] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The protein kinase D family of enzymes consists of three isoforms: PKD1/PKCmu PKD2 and PKD3/PKCnu. They all share a similar architecture with regulatory sub-domains that play specific roles in the activation, translocation and function of the enzymes. The PKD enzymes have recently been implicated in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, metastasis, immune responses, apoptosis and cell proliferation.
Collapse
Affiliation(s)
- An Rykx
- Division of Biochemistry, Faculty of Medicine, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
211
|
Kozlovsky Y, Kozlov MM. Membrane fission: model for intermediate structures. Biophys J 2003; 85:85-96. [PMID: 12829467 PMCID: PMC1303068 DOI: 10.1016/s0006-3495(03)74457-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Accepted: 02/27/2003] [Indexed: 11/23/2022] Open
Abstract
Membrane budding-fission is a fundamental process generating intracellular carriers of proteins. Earlier works were focused only on formation of coated buds connected to the initial membrane by narrow membrane necks. We present the theoretical analysis of the whole pathway of budding-fission, including the crucial stage where the membrane neck undergoes fission and the carrier separates from the donor membrane. We consider two successive intermediates of the reaction: 1), a constricted membrane neck coming out of aperture of the assembling protein coat, and 2), hemifission intermediate resulting from self-fusion of the inner monolayer of the neck, while its outer monolayer remains continuous. Transformation of the constricted neck into the hemifission intermediate is driven by the membrane stress produced in the neck by the protein coat. Although apparently similar to hemifusion, the fission is predicted to have an opposite dependence on the monolayer spontaneous curvature. Analysis of the further stages of the process demonstrates that in all practically important cases the hemifission intermediate decays spontaneously into two separate membranes, thereby completing the fission process. We formulate the "job description" for fission proteins by calculating the energy they have to deliver and the radii of the protein coat aperture which have to be reached to drive the fission process.
Collapse
Affiliation(s)
- Yonathan Kozlovsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
212
|
Abstract
Disparate biological processes involve fusion of two membranes into one and fission of one membrane into two. To formulate the possible job description for the proteins that mediate remodeling of biological membranes, we analyze the energy price of disruption and bending of membrane lipid bilayers at the different stages of bilayer fusion. The phenomenology and the pathways of the well-characterized reactions of biological remodeling, such as fusion mediated by influenza hemagglutinin, are compared with those studied for protein-free bilayers. We briefly consider some proteins involved in fusion and fission, and the dependence of remodeling on the lipid composition of the membranes. The specific hypothetical mechanisms by which the proteins can lower the energy price of the bilayer rearrangement are discussed in light of the experimental data and the requirements imposed by the elastic properties of the bilayer.
Collapse
Affiliation(s)
- Leonid V Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, NICHD, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1855, USA.
| | | |
Collapse
|
213
|
Newmyer SL, Christensen A, Sever S. Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev Cell 2003; 4:929-40. [PMID: 12791276 DOI: 10.1016/s1534-5807(03)00157-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The large GTPase dynamin is required for budding of clathrin-coated vesicles from the plasma membrane, after which the clathrin coat is removed by the chaperone Hsc70 and its cochaperone auxilin. Recent evidence suggests that the GTP-bound form of dynamin may recruit factors that execute the fission reaction. Here, we show that dynamin:GTP binds to Hsc70 and auxilin. We mapped two domains within auxilin that interact with dynamin, and these domains inhibit endocytosis when overexpressed in HeLa cells or when added in a permeable cell assay. The inhibition is not due to impairment of clathrin uncoating or to altered clathrin distribution in cells. Thus, in addition to its requirement for clathrin uncoating, our results show that auxilin also acts during the early steps of clathrin-coated vesicle formation. The data suggest that dynamin regulates the action of molecular chaperones in vesicle budding during endocytosis.
Collapse
Affiliation(s)
- Sherri L Newmyer
- G.W. Hooper Foundation, The University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
214
|
Grewal S, Ponnambalam S, Walker JH. Association of cPLA2-alpha and COX-1 with the Golgi apparatus of A549 human lung epithelial cells. J Cell Sci 2003; 116:2303-10. [PMID: 12711701 DOI: 10.1242/jcs.00446] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cytosolic phospholipase A2-alpha (cPLA2-alpha) is an 85 kDa, Ca2+-sensitive enzyme involved in receptor-mediated prostaglandin synthesis. In airway epithelial cells, the release of prostaglandins is crucial in regulating the inflammatory response. Although prostaglandin release has been studied in various epithelial cell models, the subcellular location of cPLA2-alpha in these cells is unknown. Using high-resolution confocal microscopy of the human A549 lung epithelial cell line, we show that cPLA2-alpha relocates from the cytosol and nuclei to a juxtanuclear region following stimulation with the Ca2+ ionophore A23187. Double staining with rhodamine-conjugated wheat germ agglutinin confirmed this region to be the Golgi apparatus. Markers specific for Golgi subcompartments revealed that cPLA2-alpha is predominantly located at the trans-Golgi stack and the trans-Golgi network following elevation of cytosolic Ca2+. Furthermore, treatment of cells with the Golgi-disrupting agent brefeldin A caused a redistribution of cPLA2-alpha, confirming that cPLA2-alpha associates with Golgi-derived membranes. Finally, a specific co-localization of cPLA2-alpha with cyclooxygenase-1 but not cyclooxygenase-2 was evident at the Golgi apparatus. These results, combined with recent data on the role of PLA2 activity in maintaining Golgi structure and function, suggest that Golgi localization of cPLA2-alpha may be involved in membrane trafficking in epithelial cells.
Collapse
Affiliation(s)
- Seema Grewal
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | |
Collapse
|
215
|
Wucherpfennig T, Wilsch-Bräuninger M, González-Gaitán M. Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol 2003; 161:609-24. [PMID: 12743108 PMCID: PMC2172938 DOI: 10.1083/jcb.200211087] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
During constitutive endocytosis, internalized membrane traffics through endosomal compartments. At synapses, endocytosis of vesicular membrane is temporally coupled to action potential-induced exocytosis of synaptic vesicles. Endocytosed membrane may immediately be reused for a new round of neurotransmitter release without trafficking through an endosomal compartment. Using GFP-tagged endosomal markers, we monitored an endosomal compartment in Drosophila neuromuscular synapses. We showed that in conditions in which the synaptic vesicles pool is depleted, the endosome is also drastically reduced and only recovers from membrane derived by dynamin-mediated endocytosis. This suggests that membrane exchange takes place between the vesicle pool and the synaptic endosome. We demonstrate that the small GTPase Rab5 is required for endosome integrity in the presynaptic terminal. Impaired Rab5 function affects endo- and exocytosis rates and decreases the evoked neurotransmitter release probability. Conversely, Rab5 overexpression increases the release efficacy. Therefore, the Rab5-dependent trafficking pathway plays an important role for synaptic performance.
Collapse
Affiliation(s)
- Tanja Wucherpfennig
- Max-Planck Institut für Molekulare Zellbiologie und Genetik, Dresden, Germany
| | | | | |
Collapse
|
216
|
|
217
|
Hirayama S, Bajari TM, Nimpf J, Schneider WJ. Receptor-mediated chicken oocyte growth: differential expression of endophilin isoforms in developing follicles. Biol Reprod 2003; 68:1850-60. [PMID: 12606338 DOI: 10.1095/biolreprod.102.012427] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Receptor-mediated endocytosis of yolk precursors via clathrin-coated structures is the key mechanism underlying rapid chicken oocyte growth. In defining oocyte-specific components of clathrin-mediated events, we have to date identified oocyte-specific yolk transport receptors, but little is known about the oocytes' supporting endocytic machinery. Important proteins implicated in clathrin-mediated endocytosis and recycling are the endophilins, which thus far have been studied primarily in synaptic vesicle formation; in the present study, as a different highly active endocytic system, we exploit rapidly growing chicken oocytes. Molecular characterization of the chicken endophilins I, II, and III revealed that their mammalian counterparts have been highly conserved. All chicken endophilins interact via their SH3 domain with the avian dynamin and synaptojanin homologues and, thus, share key functional properties of mammalian endophilins. The genes show different expression patterns: As in mammals, expression is low to undetectable in the liver and high in the brain; in ovarian follicles harboring oocytes that are rapidly growing via receptor-mediated endocytosis, levels of endophilins II and III, but not of endophilin I, are high. Immunohistochemical analysis of follicles demonstrated that endophilin II is mainly present in the theca interna but that endophilin III predominates within the oocyte proper. Moreover, in a chicken strain with impaired oocyte growth and absence of egg-laying because of a genetic defect in the receptor for yolk endocytosis, endophilin III is diminished in oocytes, whereas endophilin III levels in the brain and endophilin II localization to theca cells are unaltered. Thus, the present study reveals that the endophilins differentially contribute to oocyte endocytosis and development.
Collapse
Affiliation(s)
- Satoshi Hirayama
- Institute of Medical Biochemistry, Department of Molecular Genetics, BioCenter and University of Vienna, Austria
| | | | | | | |
Collapse
|
218
|
Chupin V, Killian JA, de Kruijff B. Effect of phospholipids and a transmembrane peptide on the stability of the cubic phase of monoolein: implication for protein crystallization from a cubic phase. Biophys J 2003; 84:2373-81. [PMID: 12668446 PMCID: PMC1302804 DOI: 10.1016/s0006-3495(03)75043-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The cubic phase of monoolein has successfully been used for crystallization of a number of membrane proteins. However, the mechanism of protein crystallization in the cubic phase is still unknown. It was hypothesized, that crystallization occurs at locally formed patches of bilayers. To get insight into the stability of the cubic phase, we investigated the effect of different phospholipids and a model transmembrane peptide on the lipid organization in mixed monoolein systems. Deuterium-labeled 1-oleoyl-rac-[(2)H(5)]-glycerol was used as a selective probe for (2)H NMR. The phase behavior of the phospholipids was followed by (31)P NMR. Upon incorporation of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, or phosphatidic acid, the cubic phase of monoolein transformed into the L(alpha) or H(II) phase depending on the phase preference of the phospholipid and its concentration. The ability of phospholipids to destabilize the cubic phase was found to be dependent on the phospholipid packing properties. Electrostatic repulsion facilitated the cubic-to-L(alpha) transition. Incorporation of the transmembrane peptide KALP31 induced formation of the L(alpha) phase with tightly packed lipid molecules. In all cases when phase separation occurs, monoolein and phospholipid participate in both phases. The implications of these findings for protein crystallization are discussed.
Collapse
Affiliation(s)
- V Chupin
- Biochemistry of Membranes Department, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| | | | | |
Collapse
|
219
|
Clark MR, Massenburg D, Zhang M, Siemasko K. Molecular mechanisms of B cell antigen receptor trafficking. Ann N Y Acad Sci 2003; 987:26-37. [PMID: 12727621 DOI: 10.1111/j.1749-6632.2003.tb06030.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
B lymphocytes are among the most efficient cells of the immune system in capturing, processing, and presenting MHC class II restricted peptides to T cells. Antigen capture is essentially restricted by the specificity of the clonotypic antigen receptor expressed on each B lymphocyte. However, receptor recognition is only one factor determining whether an antigen is processed and presented. The context of antigen encounter is crucial. In particular, polyvalent arrays of repetitive epitopes, indicative of infection, accelerate the delivery of antigen to specialized processing compartments, and up-regulate the surface expression of MHC class II and co-stimulatory molecules such as B7. Recent studies have demonstrated that receptor-mediated signaling and receptor-facilitated peptide presentation to T cells are intimately related. For example, rapid sorting of endocytosed receptor complexes through early endosomes requires the activation of the tyrosine Syk. This proximal kinase initiates all BCR-dependent signaling pathways. Subsequent entry into the antigen-processing compartment requires the tyrosine phosphorylation of the BCR constituent Igalpha and direct recruitment of the linker protein BLNK. Signals from the BCR also regulate the biophysical and biochemical properties of the targeted antigen-processing compartments. These observations indicate that the activation and recruitment of signaling molecules by the BCR orchestrate a complex series of cellular responses that favor the presentation of even rare or low-affinity antigens if encountered in contexts indicative of infection. The requirement for BCR signaling provides possible mechanisms by which cognate B:T cell interactions can be controlled by the milieu in which antigen engagement occurs.
Collapse
Affiliation(s)
- Marcus R Clark
- University of Chicago, Section of Rheumatology, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
220
|
Brown WJ, Chambers K, Doody A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 2003; 4:214-21. [PMID: 12694560 DOI: 10.1034/j.1600-0854.2003.00078.x] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Since the mid-1990s, there have been tremendous advances in our understanding of the roles that lipid-modifying enzymes play in various intracellular membrane trafficking events. Phospholipases represent the largest group of lipid-modifying enzymes and accordingly display a wide range of functions. The largest class of phospholipases are the phospholipase A(2) (PLA2) enzymes, and these have been most extensively studied for their roles in the generation lipid signaling molecules, e.g. arachidonic acid. In recent years, however, cytoplasmic PLA2 enzymes have also become increasingly associated with various intracellular trafficking events, such as the formation of membrane tubules from the Golgi complex and endosomes, and membrane fusion events in the secretory and endocytic pathways. Moreover, the ability of cytoplasmic PLA2 enzymes to directly affect the structure and function of membranes by altering membrane curvature suggests novel functional roles for these enzymes. This review will focus on the role of cytoplasmic PLA2 enzymes in intracellular membrane trafficking and the mechanisms by which they influence membrane structure and function.
Collapse
Affiliation(s)
- William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
221
|
Abstract
Binding of external factors to cell membrane receptors triggers intracellular signalling pathways that ultimately determine if the cell proliferates, differentiates or undergoes apoptosis. Activated receptors also initiate a cascade of events, called negative receptor signalling, that decreases the amplitude of positive signals and modulates the level of cell stimulation. Recent studies have revealed that negative signalling by receptor tyrosine kinases involves coordinated action of ubiquitin ligases (i.e. Cbl), adaptor proteins (i.e. Grb2 and CIN85), inhibitory molecules (i.e. Sprouty), cytoplasmic kinases (i.e. activated Cdc42-associated kinase) and phosphoinositol metabolites. These inhibitory signals are essential for normal cell functioning, and their deregulation often results in human diseases.
Collapse
Affiliation(s)
- Ivan Dikic
- Ludwig Institute for Cancer Research, Husargatan 3, SE-75 124 Uppsala, Sweden.
| | | |
Collapse
|
222
|
Abstract
In this review we describe the potential roles of the actin cytoskeleton in receptor-mediated endocytosis in mammalian cells and summarize the efforts of recent years in establishing a relationship between these two cellular functions. With molecules such as dynamin, syndapin, HIP1R, Abp1, synaptojanin, N-WASP, intersectin, and cortactin a set of molecular links is now available and it is likely that their further characterization will reveal the basic principles of a functional interconnection between the membrane cytoskeleton and the vesicle-budding machinery. We will therefore discuss proteins involved in endocytic clathrin coat formation and accessory factors to control and regulate coated vesicle formation but we will also focus on actin cytoskeletal components such as the Arp2/3 complex, spectrin, profilin, and motor proteins involved in actin dynamics and organization. Additionally, we will discuss how phosphoinositides, such as PI(4,5)P2, small GTPases thought to control the actin cytoskeleton, such as Rho, Rac, and Cdc42, or membrane trafficking, such as Rab GTPases and ARF proteins, and different kinases may participate in the functional connection of actin and endocytosis. We will compare the concepts and different molecular mechanisms involved in mammalian cells with yeast as well as with specialized cells, such as epithelial cells and neurons, because different model organisms often offer complementary advantages for further studies in this thriving field of current cell biological research.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | |
Collapse
|
223
|
Abstract
The plasma membrane is the interface between cells and their harsh environment. Uptake of nutrients and all communication among cells and between cells and their environment occurs through this interface. 'Endocytosis' encompasses several diverse mechanisms by which cells internalize macromolecules and particles into transport vesicles derived from the plasma membrane. It controls entry into the cell and has a crucial role in development, the immune response, neurotransmission, intercellular communication, signal transduction, and cellular and organismal homeostasis. As the complexity of molecular interactions governing endocytosis are revealed, it has become increasingly clear that it is tightly coordinated and coupled with overall cell physiology and thus, must be viewed in a broader context than simple vesicular trafficking.
Collapse
Affiliation(s)
- Sean D Conner
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
224
|
Kooijman EE, Chupin V, de Kruijff B, Burger KNJ. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 2003; 4:162-74. [PMID: 12656989 DOI: 10.1034/j.1600-0854.2003.00086.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The local generation of phosphatidic acid plays a key role in the regulation of intracellular membrane transport through mechanisms which are largely unknown. Phosphatidic acid may recruit and activate downstream effectors, or change the biophysical properties of the membrane and directly induce membrane bending and/or destabilization. To evaluate these possibilities, we determined the phase properties of phosphatidic acid and lysophosphatidic acid at physiological conditions of pH and ion concentrations. In single-lipid systems, unsaturated phosphatidic acid behaved as a cylindrical, bilayer-preferring lipid at cytosolic conditions (37 degrees C, pH 7.2, 0.5 mM free Mg2+), but acquired a type-II shape at typical intra-Golgi conditions, a mildly acidic pH and submillimolar free Ca2+ (pH 6.6-5.9, 0.3 mM Ca2+). Lysophosphatidic acid formed type-I lipid micelles in the absence of divalent cations, but anhydrous cation-lysophosphatidic acid bilayer complexes in their presence. These data suggest a similar molecular shape for phosphatidic acid and lysophosphatidic acid at cytosolic conditions; however, experiments in mixed-lipid systems indicate that their shape is not identical. Lysophosphatidic acid stabilized the bilayer phase of unsaturated phosphatidylethanolamine, while the opposite effect was observed in the presence of phosphatidic acid. These results support the hypothesis that a conversion of lysophosphatidic acid into phosphatidic acid by endophilin or BARS (50 kDa brefeldin A ribosylated substrate) may induce negative spontaneous monolayer curvature and regulate endocytic and Golgi membrane fission. Alternative models for the regulation of membrane fission based on the strong dependence of the molecular shape of (lyso)phosphatidic acid on pH and divalent cations are also discussed.
Collapse
Affiliation(s)
- Edgar E Kooijman
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | | | | | | |
Collapse
|
225
|
Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JCM. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 2003; 14:1240-54. [PMID: 12631737 PMCID: PMC151593 DOI: 10.1091/mbc.e02-08-0501] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasma membranes in eukaryotic cells display asymmetric lipid distributions with aminophospholipids concentrated in the inner and sphingolipids in the outer leaflet. This asymmetry is maintained by ATP-driven lipid transporters whose identities are unknown. The yeast plasma membrane contains two P-type ATPases, Dnf1p and Dnf2p, with structural similarity to ATPase II, a candidate aminophospholipid translocase from bovine chromaffin granules. Loss of Dnf1p and Dnf2p virtually abolished ATP-dependent transport of NBD-labeled phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine from the outer to the inner plasma membrane leaflet, leaving transport of sphingolipid analogs unaffected. Labeling with trinitrobenzene sulfonic acid revealed that the amount of phosphatidylethanolamine exposed on the surface of Deltadnf1Deltadnf2 cells increased twofold relative to wild-type cells. Phosphatidylethanolamine exposure by Deltadnf1Deltadnf2 cells further increased upon removal of Drs2p, an ATPase II homolog in the yeast Golgi. These changes in lipid topology were accompanied by a cold-sensitive defect in the uptake of markers for bulk-phase and receptor-mediated endocytosis. Our findings demonstrate a requirement for Dnf1p and Dnf2p in lipid translocation across the yeast plasma membrane. Moreover, it appears that Dnf1p, Dnf2p and Drs2p each help regulate the transbilayer lipid arrangement in the plasma membrane, and that this regulation is critical for budding endocytic vesicles.
Collapse
Affiliation(s)
- Thomas Pomorski
- Department of Membrane Enzymology, Center for Biomembranes and Lipid Enzymology, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
226
|
Otsuki M, Itoh T, Takenawa T. Neural Wiskott-Aldrich syndrome protein is recruited to rafts and associates with endophilin A in response to epidermal growth factor. J Biol Chem 2003; 278:6461-9. [PMID: 12477732 DOI: 10.1074/jbc.m207433200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neural Wiskott-Aldrich syndrome protein (N-WASP) has been implicated in endocytosis; however, little is known about how it interacts functionally with the endocytic machinery. Sucrose gradient fractionation experiments and immunofluorescence studies with anti-N-WASP antibody revealed that N-WASP is recruited together with clathrin and dynamin, which play essential roles in clathrin-mediated endocytosis, to lipid rafts in an epidermal growth factor (EGF)-dependent manner. Endophilin A (EA) binds to dynamin and plays an essential role in the fission step of clathrin-mediated endocytosis. In the present study, we show that the Src homology 3 (SH3) domain of EA associates with the proline-rich domain of N-WASP and dynamin in vitro. Co-immunoprecipitation assays with anti-N-WASP antibody revealed that EGF induces association of N-WASP with EA. In addition, EA enhances N-WASP-induced actin-related protein 2/3 (Arp2/3) complex activation in vitro. Immunofluorescence studies revealed that actin accumulates at sites where N-WASP and EA are co-localized after EGF stimulation. Furthermore, studies of overexpression of the SH3 domain of EA indicate that EA may regulate EGF-induced recruitment of N-WASP to lipid rafts. These results suggest that, upon EGF stimulation, N-WASP interacts with EA through its proline-rich domain to induce the fission step of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Makiko Otsuki
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
227
|
Modregger J, Schmidt AA, Ritter B, Huttner WB, Plomann M. Characterization of Endophilin B1b, a brain-specific membrane-associated lysophosphatidic acid acyl transferase with properties distinct from endophilin A1. J Biol Chem 2003; 278:4160-7. [PMID: 12456676 DOI: 10.1074/jbc.m208568200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized mammalian endophilin B1, a novel member of the endophilins and a representative of their B subgroup. The endophilins B show the same domain organization as the endophilins A, which contain an N-terminal domain responsible for lipid binding and lysophosphatidic acid acyl transferase activity, a central coiled-coil domain for oligomerization, a less conserved linker region, and a C-terminal Src homology 3 (SH3) domain. The endophilin B1 gene gives rise to at least three splice variants, endophilin B1a, which shows a widespread tissue distribution, and endophilins B1b and B1c, which appear to be brain-specific. Endophilin B1, like endophilins A, binds to palmitoyl-CoA, exhibits lysophosphatidic acid acyl transferase activity, and interacts with dynamin, amphiphysins 1 and 2, and huntingtin. However, in contrast to endophilins A, endophilin B1 does not bind to synaptojanin 1 and synapsin 1, and overexpression of its SH3 domain does not inhibit transferrin endocytosis. Consistent with this, immunofluorescence analysis of endophilin B1b transfected into fibroblasts shows an intracellular reticular staining, which in part overlaps with that of endogenous dynamin. Upon subcellular fractionation of brain and transfected fibroblasts, endophilin B1 is largely recovered in association with membranes. Together, our results suggest that the action of the endophilins is not confined to the formation of endocytic vesicles from the plasma membrane, with endophilin B1 being associated with, and presumably exerting a functional role at, intracellular membranes.
Collapse
Affiliation(s)
- Jan Modregger
- Center for Biochemistry II, Medical Faculty, Joseph-Stelzmann-Strasse 52, University of Cologne, Germany
| | | | | | | | | |
Collapse
|
228
|
Watts JL, Phillips E, Griffing KR, Browse J. Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants. Genetics 2003; 163:581-9. [PMID: 12618397 PMCID: PMC1462460 DOI: 10.1093/genetics/163.2.581] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arachidonic acid and other long-chain polyunsaturated fatty acids (PUFAs) are important structural components of membranes and are implicated in diverse signaling pathways. The Delta6 desaturation of linoleic and linolenic acids is the rate-limiting step in the synthesis of these molecules. C. elegans fat-3 mutants lack Delta6 desaturase activity and fail to produce C20 PUFAs. We examined these mutants and found that development and behavior were affected as a consequence of C20 PUFA deficiency. While fat-3 mutants are viable, they grow slowly, display considerably less spontaneous movement, have an altered body shape, and produce fewer progeny than do wild type. In addition, the timing of an ultradian rhythm, the defecation cycle, is lengthened compared to wild type. Since all these defects can be ameliorated by supplementing the nematode diet with gamma-linolenic acid or C20 PUFAs of either the n6 or the n3 series, we can establish a causal link between fatty acid deficiency and phenotype. Similar epidermal tissue defects and slow growth are hallmarks of human fatty acid deficiency.
Collapse
Affiliation(s)
- Jennifer L Watts
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.
| | | | | | | |
Collapse
|
229
|
Davidsen J, Jørgensen K, Andresen TL, Mouritsen OG. Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:95-101. [PMID: 12507763 DOI: 10.1016/s0005-2736(02)00659-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Polymer-coated liposomes can act as versatile drug-delivery systems due to long vascular circulation time and passive targeting by leaky blood vessels in diseased tissue. We present an experimental model system illustrating a new principle for improved and programmable drug-delivery, which takes advantage of an elevated activity of secretory phospholipase A(2) (PLA(2)) at the diseased target tissue. The secretory PLA(2) hydrolyses a lipid-based proenhancer in the carrier liposome, producing lyso-phospholipids and free fatty acids, which are shown in a synergistic way to lead to enhanced liposome destabilization and drug release at the same time as the permeability of the target membrane is enhanced. Moreover, the proposed system can be made thermosensitive and offers a rational way for developing smart liposome-based drug delivery systems. This can be achieved by incorporating specific lipid-based proenhancers or prodestabilisers into the liposome carrier, which automatically becomes activated by PLA(2) only at the diseased target sites, such as inflamed or cancerous tissue.
Collapse
Affiliation(s)
- Jesper Davidsen
- Department of Pharmaceutics, The Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | |
Collapse
|
230
|
Morgan JR, Augustine GJ, Lafer EM. Synaptic vesicle endocytosis: the races, places, and molecular faces. Neuromolecular Med 2003; 2:101-14. [PMID: 12428806 DOI: 10.1385/nmm:2:2:101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Accepted: 05/29/2002] [Indexed: 12/21/2022]
Abstract
The classical experiments on synaptic vesicle recycling in the 1970s by Heuser and Reese, Ceccarelli, and their colleagues raised opposing theories regarding the speed, mechanisms, and locations of membrane retrieval at the synapse. The Heuser and Reese experiments supported a model in which synaptic vesicle recycling is mediated by the formation of coated vesicles, is relatively slow, and occurs distally from active zones, the sites of neurotransmitter release. Because heavy levels of stimulation were needed to visualize the coated vesicles, Ceccarelli's experiments argued that synaptic vesicle recycling does not require the formation of coated vesicles, is relatively fast, and occurs directly at the active zone in a "kiss-and-run" reversal of exocytosis under more physiological conditions. For the next thirty years, these models have provided the foundation for studies of the rates, locations, and molecular elements involved in synaptic vesicle endocytosis. Here, we describe the evidence supporting each model and argue that the coated vesicle pathway is the most predominant physiological mechanism for recycling synaptic vesicles.
Collapse
Affiliation(s)
- Jennifer R Morgan
- Yale University School of Medicine--HHMI, Department of Cell Biology, New Haven, CT 06510, USA
| | | | | |
Collapse
|
231
|
Nanjundan M, Possmayer F. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1-23. [PMID: 12471011 DOI: 10.1152/ajplung.00029.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.
Collapse
Affiliation(s)
- Meera Nanjundan
- Department of Obstetrics and Gynaecology, Canadian Institutes of Health Research Group in Fetal and Neonatal Health and Development, The University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5
| | | |
Collapse
|
232
|
Abstract
The endocytic pathway receives cargo from the cell surface via endocytosis, biosynthetic cargo from the late Golgi complex, and various molecules from the cytoplasm via autophagy. This review focuses on the dynamics of the endocytic pathway in relationship to these processes and covers new information about the sorting events and molecular complexes involved. The following areas are discussed: dynamics at the plasma membrane, sorting within early endosomes and recycling to the cell surface, the role of the cytoskeleton, transport to late endosomes and sorting into multivesicular bodies, anterograde and retrograde Golgi transport, as well as the autophagic pathway.
Collapse
Affiliation(s)
- Naomi E Bishop
- School of Biological Sciences, University of Manchester, Manchester, Ml 3 9PT United Kingdom
| |
Collapse
|
233
|
Abstract
Phospholipids are emerging as novel second messengers in plant cells. They are rapidly formed in response to a variety of stimuli via the activation of lipid kinases or phospholipases. These lipid signals can activate enzymes or recruit proteins to membranes via distinct lipid-binding domains, where the local increase in concentration promotes interactions and downstream signaling. Here, the latest developments in phospholipid-based signaling are discussed, including the lipid kinases and phospholipases that are activated, the signals they produce, the domains that bind them, the downstream targets that contain them and the processes they control.
Collapse
Affiliation(s)
- Harold J G Meijer
- Swammerdam Institute for Life Sciences, Department of Plant Physiology, University of Amsterdam, NL-1098 SM Amsterdam, The Netherlands
| | | |
Collapse
|
234
|
Basañez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 2002; 277:49360-5. [PMID: 12381734 DOI: 10.1074/jbc.m206069200] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During apoptosis, Bax-type proteins permeabilize the outer mitochondrial membrane to release intermembrane apoptogenic factors into the cytosol via a poorly understood mechanism. We have proposed that Bax and DeltaN76Bcl-x(L) (the Bax-like cleavage fragment of Bcl-x(L)) function by forming pores that are at least partially composed of lipids (lipidic pore formation). Since the membrane monolayer must bend during lipidic pore formation, we here explore the effect of intrinsic membrane monolayer curvature on pore formation. Nonlamellar lipids with positive intrinsic curvature such as lysophospholipids promoted membrane permeabilization, whereas nonlamellar lipids with negative intrinsic curvature such as diacylglycerol and phosphatidylethanolamine inhibited membrane permeabilization. The differential effects of nonlamellar lipids on membrane permeabilization were not correlated with lipid-induced changes in membrane binding or insertion of Bax or DeltaN76Bcl-x(L). Altogether, these results are consistent with a model whereby Bax-type proteins change the bending propensity of the membrane to form pores comprised at least in part of lipids in a structure of net positive monolayer curvature.
Collapse
Affiliation(s)
- Gorka Basañez
- Laboratory of Cellular and Molecular Biophysics, NICHD/National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
235
|
Abstract
The physiological and pathological importance of lysophosphatidic acid (LPA) in the nervous system is underscored by its presence, as well as the expression of its receptors in neural tissues. In fact, LPA produces responses in a broad range of cell types related to the function of the nervous system. These cell types include neural cell lines, neural progenitors, primary neurons, oligodendrocytes, Schwann cells, astrocytes, microglia, and brain endothelial cells. LPA-induced cell type-specific effects include changes in cell morphology, promotion of cell proliferation and cell survival, induction of cell death, changes in ion conductance and Ca2+ mobilization, induction of pain transmission, and stimulation of vasoconstriction. These effects are mediated through a number of G protein-coupled LPA receptors that activate various downstream signaling cascades. This review provides a current summary of LPA-induced effects in neural cells in vitro or in vivo in combination with our current understanding of the signaling pathways responsible for these effects.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0636, USA
| | | | | | | |
Collapse
|
236
|
Abstract
Lysophosphatidic acid (LPA), a growth factor-like lysophospholipid, induces diverse cellular responses. The identification of the first LPA receptor gene, through studies of neuroproliferative regions within the embryonic cerebral cortex, has led to the classification of a family of at least eight lysophospholipid receptors with diverse roles in organismal development and function. A growing body of literature has identified roles for LPA signaling under physiological and pathological conditions, particularly within the developing nervous system. Here the authors review features of the LPA receptor family and cellular responses of nervous system-derived cells, and discuss developmental and pathological roles for LPA signaling in the nervous system.
Collapse
Affiliation(s)
- Nobuyuki Fukushima
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|
237
|
Yamada J, Kuramochi Y, Takagi M, Watanabe T, Suga T. Human brain acyl-CoA hydrolase isoforms encoded by a single gene. Biochem Biophys Res Commun 2002; 299:49-56. [PMID: 12435388 DOI: 10.1016/s0006-291x(02)02587-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acyl-CoA hydrolases are a group of enzymes that catalyze the hydrolysis of acyl-CoA thioesters to free fatty acids and CoA-SH. The human brain acyl-CoA hydrolase (BACH) gene comprises 13 exons, generating several isoforms through the alternative use of exons. Four first exons (1a-1d) can be used, and three patterns of splicing occur at exon X located between exons 7 and 8 that contains an internal 3(')-splice acceptor site and creates premature stop codons. When examined with green fluorescent protein-fusion constructs expressed in Neuro-2a cells, the nuclear localization signal encoded by exon 9 was functional by itself, whereas the whole structure was cytosolic, suggesting nuclear translocation of the enzyme. This was consistent with dual staining of the cytosol and nucleus in certain neurons by immunohistochemistry using anti-BACH antibody. The mitochondrial targeting signals encoded by exons 1b and 1c were also functional and directed mitochondrial localization of BACH isoforms with the signals. Although BACH mRNA containing the sequence derived from exon 1a, but not exon X, was exclusively expressed in human brain, these results suggest that the human BACH gene can express long-chain acyl-CoA hydrolase activity in multiple intracellular compartments by generating BACH isoforms with differential localization signals to affect various cellular functions that involve acyl-CoAs.
Collapse
Affiliation(s)
- Junji Yamada
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Science, Hachioji, 192-0392, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
238
|
Abstract
Recent work has shown that the protein epsin 1 induces highly curved lipidic structures when added with clathrin to appropriate lipid mixtures. This property may be a critical factor in the 'curvature stress cycle' of membrane trafficking.
Collapse
Affiliation(s)
- Ralph Nossal
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
239
|
Schmidt AA. Rôle de la modification des lipides dans la biogenèse de vésicules et la fission. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/200218111137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
240
|
Freyberg Z, Bourgoin S, Shields D. Phospholipase D2 is localized to the rims of the Golgi apparatus in mammalian cells. Mol Biol Cell 2002; 13:3930-42. [PMID: 12429836 PMCID: PMC133604 DOI: 10.1091/mbc.02-04-0059] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid, a molecule known to have multiple physiological roles, including release of nascent secretory vesicles from the trans-Golgi network. In mammalian cells two forms of the enzyme, PLD1 and PLD2, have been described. We recently demonstrated that PLD1 is localized to the Golgi apparatus, nuclei, and to a lesser extent, plasma membrane. Due to its low abundance, the intracellular localization of PLD2 has been characterized only indirectly through overexpression of chimeric proteins. Using antibodies specific to PLD2, together with immunofluorescence microscopy, herein we demonstrate that a significant fraction of endogenous PLD2 localized to the perinuclear Golgi region and was also distributed throughout cells in dense cytoplasmic puncta; a fraction of which colocalized with caveolin-1 and the plasma membrane. On treatment with brefeldin A, PLD2 translocated into the nucleus in a manner similar to PLD1, suggesting a potential role in nuclear signaling. Most significantly, cryoimmunogold electron microscopy demonstrated that in pituitary GH(3) cells >90% of PLD2 present in the Golgi apparatus was localized to cisternal rims and peri-Golgi vesicles exclusively. The data are consistent with a model whereby PLD2 plays a role in Golgi vesicular transport.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
241
|
Kjaerulff O, Verstreken P, Bellen HJ. Synaptic vesicle retrieval: still time for a kiss. Nat Cell Biol 2002; 4:E245-8. [PMID: 12415277 DOI: 10.1038/ncb1102-e245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ole Kjaerulff
- Division of Neurophysiology, Department of Medical Physiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | | | | |
Collapse
|
242
|
Andresen BT, Rizzo MA, Shome K, Romero G. The role of phosphatidic acid in the regulation of the Ras/MEK/Erk signaling cascade. FEBS Lett 2002; 531:65-8. [PMID: 12401205 DOI: 10.1016/s0014-5793(02)03483-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is an important second messenger produced by the activation of numerous cell surface receptors. Recent data have suggested that PA regulates multiple cellular processes. This review addresses primarily the role of PA in the regulation of the Erk1/2 cascade pathway. A model for the regulation of Erk1/2 phosphorylation by cell surface receptors is presented. According to this model, agonists stimulate the binding of GTP to Ras and the activation of phospholipase D to generate phosphatidic acid. PA promotes the binding of cRaf-1 kinase to the membrane, where it interacts with Ras.GTP and other regulatory components of the pathway. Ras-Raf complexes remain bound to the surface of endosomes, where scaffolding complexes involving Ras, cRaf-1, MEK and Erk are formed. Complete activation and coupling of the cascade requires endocytosis, a process that is also modulated by PA.
Collapse
Affiliation(s)
- Bradley T Andresen
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
243
|
Abstract
When a nascent vesicle buds, the membrane must curve. Several mechanisms have been proposed for curvature creation or stabilization. Structural analysis of the ENTH domain of the endocytic protein epsin has suggested a new mechanism, in which the ENTH domain pushes its way into membranes, thus bending them into shape.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
244
|
Vitale N, Chasserot-Golaz S, Bailly Y, Morinaga N, Frohman MA, Bader MF. Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF)6 by ARF nucleotide binding site opener at the plasma membrane. J Cell Biol 2002; 159:79-89. [PMID: 12379803 PMCID: PMC2173505 DOI: 10.1083/jcb.200203027] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ADP ribosylation factor (ARF) GTP binding proteins are believed to mediate cytoskeletal remodeling and vesicular trafficking along the secretory pathway. Here we show that ARF6 is specifically associated with dense-core secretory granules in neuroendocrine PC12 cells. Stimulation with a secretagogue triggers the recruitment of secretory granules to the cell periphery and the concomitant activation of ARF6 by the plasma membrane-associated guanine nucleotide exchange factor, ARF nucleotide binding site opener (ARNO). Expression of the constitutively inactive ARF6(T27N) mutant inhibits secretagogue-dependent exocytosis from PC12 cells. Using a mutant of ARF6 specifically impaired for PLD1 stimulation, we find that ARF6 is functionally linked to phospholipase D (PLD)1 in the exocytotic machinery. Finally, we show that ARNO, ARF6, and PLD1 colocalize at sites of exocytosis, and we demonstrate direct interaction between ARF6 and PLD1 in stimulated cells. Together, these results provide the first direct evidence that ARF6 plays a role in calcium-regulated exocytosis in neuroendocrine cells, and suggest that ARF6-stimulated PLD1 activation at the plasma membrane and consequent changes in membrane phospholipid composition are critical for formation of the exocytotic fusion pore.
Collapse
Affiliation(s)
- Nicolas Vitale
- Unité Propre de Recherche 2356, Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France.
| | | | | | | | | | | |
Collapse
|
245
|
Abstract
CIN85 and CMS belong to a family of ubiquitously expressed adaptor molecules containing three SH3 domains, a proline-rich region and a coiled-coil domain. By binding to numerous proteins they assemble multimeric complexes implicated in cell-specific signals controlling T-cell activation, kidney glomeruli function or apoptosis in neuronal cells. CIN85/CMS also associate with accessory endocytic proteins, components of the actin cytoskeleton as well as other adaptor proteins involved in receptor tyrosine kinase (RTK) signaling. These interactions enable CIN85/CMS to function within a network of signaling pathways that co-ordinate critical steps involved in downregulation and degradation of RTKs.
Collapse
Affiliation(s)
- Ivan Dikic
- Ludwig Institute for Cancer Research, Husargatan 3, SE-75 124, Uppsala, Sweden.
| |
Collapse
|
246
|
Abstract
Endophilin-1, a cytoplasmic Src homology 3 (SH3) domain-containing protein, localises in brain presynaptic nerve termini. Endophilin dimerises through its N-terminus, and participates at multiple stages in clathrin-coated endocytosis, from early membrane invagination to synaptic vesicle uncoating. Both its C-terminal SH3 domain and N-terminus are required for endocytosis. Through its SH3 domain, endophilin bound to proline-rich domains (PRDs) in other endocytic proteins, including synaptojanin and dynamin. The N-terminal region possesses unique functions affecting lipid membrane curvature, through lysophosphatidic acid acyl transferase (LPAAT) activity and direct binding and tubulating activity. In addition to synaptic vesicle formation, endophilin-1 complexes with signalling molecules, including cell surface receptors, metalloprotease disintegrins and germinal centre kinase-like kinase (GLK). Therefore, endophilin-1 may serve to couple vesicle biogenesis with intracellular signalling cascades.
Collapse
Affiliation(s)
- Anne T Reutens
- Centre for Child Health Research and the Western Australian Institute for Medical Research, The University of WA, Telethon Institute for Child Health Research, 100 Roberts Road, WA 6008, Subiaco, Australia.
| | | |
Collapse
|
247
|
Ford MGJ, Mills IG, Peter BJ, Vallis Y, Praefcke GJK, Evans PR, McMahon HT. Curvature of clathrin-coated pits driven by epsin. Nature 2002; 419:361-6. [PMID: 12353027 DOI: 10.1038/nature01020] [Citation(s) in RCA: 755] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2002] [Accepted: 07/17/2002] [Indexed: 02/06/2023]
Abstract
Clathrin-mediated endocytosis involves cargo selection and membrane budding into vesicles with the aid of a protein coat. Formation of invaginated pits on the plasma membrane and subsequent budding of vesicles is an energetically demanding process that involves the cooperation of clathrin with many different proteins. Here we investigate the role of the brain-enriched protein epsin 1 in this process. Epsin is targeted to areas of endocytosis by binding the membrane lipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)). We show here that epsin 1 directly modifies membrane curvature on binding to PtdIns(4,5)P(2) in conjunction with clathrin polymerization. We have discovered that formation of an amphipathic alpha-helix in epsin is coupled to PtdIns(4,5)P(2) binding. Mutation of residues on the hydrophobic region of this helix abolishes the ability to curve membranes. We propose that this helix is inserted into one leaflet of the lipid bilayer, inducing curvature. On lipid monolayers epsin alone is sufficient to facilitate the formation of clathrin-coated invaginations.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Amino Acid Sequence
- Animals
- Biopolymers/chemistry
- Biopolymers/metabolism
- Brain
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Clathrin/chemistry
- Clathrin/metabolism
- Clathrin/ultrastructure
- Coated Pits, Cell-Membrane/chemistry
- Coated Pits, Cell-Membrane/metabolism
- Coated Pits, Cell-Membrane/ultrastructure
- Crystallography, X-Ray
- Drosophila melanogaster
- Endocytosis
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Liposomes/chemistry
- Liposomes/metabolism
- Membrane Proteins/metabolism
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Neuropeptides/chemistry
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Vesicular Transport Proteins
Collapse
|
248
|
Abstract
Studies in cell-free systems and the lamprey giant synapse have implicated crucial roles for amphiphysin and endophilin in synaptic transmission. However, null mutants at the amphiphysin locus of Drosophila are viable and have no demonstrable synaptic vesicle-recycling defect. This has necessitated a re-examination of the role of Src homology 3 domain-containing proteins in synaptic vesicle recycling. In this report, we show that endophilin-deficient eye clones in Drosophila have an altered electroretinogram. A characteristic of this defect is its aggravation during heightened visual stimulation. It is shown that endophilin is primarily required in the nervous system. Decreased endophilin activity results in alterations in the neuromuscular junction structure and physiology. Immunofluorescence studies show colocalization of endophilin with dynamin consistent with a possible role in synaptic vesicle recycling.
Collapse
|
249
|
Henneberry AL, Wright MM, McMaster CR. The major sites of cellular phospholipid synthesis and molecular determinants of Fatty Acid and lipid head group specificity. Mol Biol Cell 2002; 13:3148-61. [PMID: 12221122 PMCID: PMC124149 DOI: 10.1091/mbc.01-11-0540] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Revised: 06/05/2002] [Accepted: 06/20/2002] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylcholine and phosphatidylethanolamine are the two main phospholipids in eukaryotic cells comprising ~50 and 25% of phospholipid mass, respectively. Phosphatidylcholine is synthesized almost exclusively through the CDP-choline pathway in essentially all mammalian cells. Phosphatidylethanolamine is synthesized through either the CDP-ethanolamine pathway or by the decarboxylation of phosphatidylserine, with the contribution of each pathway being cell type dependent. Two human genes, CEPT1 and CPT1, code for the total compliment of activities that directly synthesize phosphatidylcholine and phosphatidylethanolamine through the CDP-alcohol pathways. CEPT1 transfers a phosphobase from either CDP-choline or CDP-ethanolamine to diacylglycerol to synthesize both phosphatidylcholine and phosphatidylethanolamine, whereas CPT1 synthesizes phosphatidylcholine exclusively. We show through immunofluorescence that brefeldin A treatment relocalizes CPT1, but not CEPT1, implying CPT1 is found in the Golgi. A combination of coimmunofluorescence and subcellular fractionation experiments with various endoplasmic reticulum, Golgi, and nuclear markers confirmed that CPT1 was found in the Golgi and CEPT1 was found in both the endoplasmic reticulum and nuclear membranes. The rate-limiting step for phosphatidylcholine synthesis is catalyzed by the amphitropic CTP:phosphocholine cytidylyltransferase alpha, which is found in the nucleus in most cell types. CTP:phosphocholine cytidylyltransferase alpha is found immediately upstream cholinephosphotransferase, and it translocates from a soluble nuclear location to the nuclear membrane in response to activators of the CDP-choline pathway. Thus, substrate channeling of the CDP-choline produced by CTP:phosphocholine cytidylyltransferase alpha to nuclear located CEPT1 is the mechanism by which upregulation of the CDP-choline pathway increases de novo phosphatidylcholine biosynthesis. In addition, a series of CEPT1 site-directed mutants was generated that allowed for the assignment of specific amino acid residues as structural requirements that directly alter either phospholipid head group or fatty acyl composition. This pinpointed glycine 156 within the catalytic motif as being responsible for the dual CDP-alcohol specificity of CEPT1, whereas mutations within helix 214-228 allowed for the orientation of transmembrane helices surrounding the catalytic site to be definitively positioned.
Collapse
Affiliation(s)
- Annette L Henneberry
- The Atlantic Research Centre, Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, B3H 4H7 Canada
| | | | | |
Collapse
|
250
|
Cockcroft S, Way G, O'Luanaigh N, Pardo R, Sarri E, Fensome A. Signalling role for ARF and phospholipase D in mast cell exocytosis stimulated by crosslinking of the high affinity FcepsilonR1 receptor. Mol Immunol 2002; 38:1277-82. [PMID: 12217395 DOI: 10.1016/s0161-5890(02)00075-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to generate the lipid second messenger, phosphatidate (PA). Two mammalian phospholipase Ds (PLD1 and PLD2) have been cloned and both are present in RBL-2H3 mast cells. PLD1 is localised to secretory granules whilst PLD2 is localised to the plasma membrane, and the activity of both enzymes is increased upon antigen stimulation. Primary alcohols specifically interfere with the production of PLD-derived PA and are found to be potent inhibitors of antigen-stimulated exocytosis. One major intracellular regulator for PLD activity and exocytosis is ARF proteins, as depletion by permeabilisation leads to loss of both antigen-mediated PLD activation and exocytosis. Both responses can be restored in depleted cells by re-addition of ARF1 or ARF6. ARF proteins and PLD-derived PA synergistically regulate the activity of a Type I PIP 5-kinasealpha. It is suggested that ARF, by activating PLD and PIP 5-kinase activities regulate PA and PI(4,5)P(2) levels, and both are critical components of the exocytosis machinery in mast cells.
Collapse
Affiliation(s)
- Shamshad Cockcroft
- Department of Physiology, Rockefeller Building, 21 University Street, University College London, WC1E 6JJ, London, UK.
| | | | | | | | | | | |
Collapse
|