201
|
Samra M, Srivastava K. Non-coding RNA and their potential role in cardiovascular diseases. Gene 2023; 851:147011. [DOI: 10.1016/j.gene.2022.147011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
|
202
|
Wallace SR, Pagano PJ, Kračun D. MicroRNAs in the Regulation of NADPH Oxidases in Vascular Diabetic and Ischemic Pathologies: A Case for Alternate Inhibitory Strategies? Antioxidants (Basel) 2022; 12:70. [PMID: 36670932 PMCID: PMC9854786 DOI: 10.3390/antiox12010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since their discovery in the vasculature, different NADPH oxidase (NOX) isoforms have been associated with numerous complex vascular processes such as endothelial dysfunction, vascular inflammation, arterial remodeling, and dyslipidemia. In turn, these often underlie cardiovascular and metabolic pathologies including diabetes mellitus type II, cardiomyopathy, systemic and pulmonary hypertension and atherosclerosis. Increasing attention has been directed toward miRNA involvement in type II diabetes mellitus and its cardiovascular and metabolic co-morbidities in the search for predictive and stratifying biomarkers and therapeutic targets. Owing to the challenges of generating isoform-selective NOX inhibitors (NOXi), the development of specific NOXis suitable for therapeutic purposes has been hindered. In that vein, differential regulation of specific NOX isoforms by a particular miRNA or combina-tion thereof could at some point become a reasonable approach for therapeutic targeting under some circumstances. Whereas administration of miRNAs chronically, or even acutely, to patients poses its own set of difficulties, miRNA-mediated regulation of NOXs in the vasculature is worth surveying. In this review, a distinct focus on the role of miRNAs in the regulation of NOXs was made in the context of type II diabetes mellitus and ischemic injury models.
Collapse
Affiliation(s)
- Sean R. Wallace
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J. Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Damir Kračun
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
203
|
Carmona-Luque MD, Gonzalez-Alvarez L, Guerrero Orriach JL. Identification of miRNAs as Biomarkers of Cardiac Protection in Non-Genetically Modified Primary Human Cardiomyocytes Exposed to Halogenated Hypnotics in an In Vitro Model of Transfection and Ischemia/Reperfusion: A New Model in Translational Anesthesia. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010064. [PMID: 36676014 PMCID: PMC9865153 DOI: 10.3390/life13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Many clinical studies have identified some circulating micro-RNAs (miRNAs) as potential biomarkers with regard to the cardioprotective effects of halogenated agents administered perioperatively during myocardial conditioning procedures. However, there is a major methodological difficulty in identifying these potential miRNA targets in cardiac cells. METHODS We developed an in vitro protocol to analyze the differential expression of target miRNAs at the intracellular level in non-genetically modified primary human cardiomyocytes (HCMs) through their exposure to different hypnotic compounds (i.e., halogenated versus non-halogenated). For this purpose, we performed a validated in vitro model of "ischemia and reperfusion" with the transfection of specific miRNA mimics (MIMICs) designed to simulate naturally occurring mature miRNAs as a functional study. Afterwards, next-generation sequencing (NGS) was used to identify and quantify miRNAs and elucidate their function. The differences in miRNA expression between HCMs exposed to different hypnotic drugs, along with the prediction of functional miRNA targets, were assessed using a meticulous in-house bioinformatics pipeline in order to derive diagnostic biomarkers and possible therapeutic targets. CONCLUSION In brief, this methodological procedure was designed to investigate whether the cardioprotective effects of halogenated agents are a phenomenon mediated by either the activation or the suppression of miRNAs targeted by halogenated anesthetics.
Collapse
Affiliation(s)
- Maria Dolores Carmona-Luque
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain
- Cellular Therapy Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Laura Gonzalez-Alvarez
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Correspondence: (L.G.-A.); (J.L.G.O.)
| | - José Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
- Correspondence: (L.G.-A.); (J.L.G.O.)
| |
Collapse
|
204
|
Emerging Role of MicroRNA-30c in Neurological Disorders. Int J Mol Sci 2022; 24:ijms24010037. [PMID: 36613480 PMCID: PMC9819962 DOI: 10.3390/ijms24010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of small non-coding RNAs that negatively regulate the expression of target genes by interacting with 3' untranslated regions of target mRNAs to induce mRNA degradation and translational repression. The miR-30 family members are involved in the development of many tissues and organs and participate in the pathogenesis of human diseases. As a key member of the miR-30 family, miR-30c has been implicated in neurological disorders such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. Mechanistically, miR-30c may act as a multi-functional regulator of different pathogenic processes such as autophagy, apoptosis, endoplasmic reticulum stress, inflammation, oxidative stress, thrombosis, and neurovascular function, thereby contributing to different disease states. Here, we review and discuss the biogenesis, gene regulation, and the role and mechanisms of action of miR-30c in several neurological disorders and therapeutic potential in clinics.
Collapse
|
205
|
Epigenetics and Gut Microbiota Crosstalk: A potential Factor in Pathogenesis of Cardiovascular Disorders. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120798. [PMID: 36551003 PMCID: PMC9774431 DOI: 10.3390/bioengineering9120798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality, morbidity, and "sudden death" globally. Environmental and lifestyle factors play important roles in CVD susceptibility, but the link between environmental factors and genetics is not fully established. Epigenetic influence during CVDs is becoming more evident as its direct involvement has been reported. The discovery of epigenetic mechanisms, such as DNA methylation and histone modification, suggested that external factors could alter gene expression to modulate human health. These external factors also influence our gut microbiota (GM), which participates in multiple metabolic processes in our body. Evidence suggests a high association of GM with CVDs. Although the exact mechanism remains unclear, the influence of GM over the epigenetic mechanisms could be one potential pathway in CVD etiology. Both epigenetics and GM are dynamic processes and vary with age and environment. Changes in the composition of GM have been found to underlie the pathogenesis of metabolic diseases via modulating epigenetic changes in the form of DNA methylation, histone modifications, and regulation of non-coding RNAs. Several metabolites produced by the GM, including short-chain fatty acids, folates, biotin, and trimethylamine-N-oxide, have the potential to regulate epigenetics, apart from playing a vital role in normal physiological processes. The role of GM and epigenetics in CVDs are promising areas of research, and important insights in the field of early diagnosis and therapeutic approaches might appear soon.
Collapse
|
206
|
Krammer TL, Kollars M, Kyrle PA, Hackl M, Eichinger S, Traby L. Plasma levels of platelet-enriched microRNAs change during antiplatelet therapy in healthy subjects. Front Pharmacol 2022; 13:1078722. [PMID: 36578552 PMCID: PMC9790905 DOI: 10.3389/fphar.2022.1078722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Platelets are the main effectors of primary hemostasis but also cause thrombosis in pathological conditions. Antiplatelet drugs are the cornerstone for the prevention of adverse cardiovascular events. Monitoring the extent of platelet inhibition is essential. Currently available platelet function tests come with constraints, limiting use in antiplatelet drug development as well as in clinical routine. With this study, we aim to investigate whether plasma miRNAs might be suitable biomarkers for monitoring antiplatelet treatment. Platelet-poor plasma was obtained from a trial including 87 healthy male volunteers that either received ticagrelor (n = 44) or clopidogrel (n = 43). Blood was collected before drug intake and after 2 h, 6 h, and 24 h. We measured a panel of 11 platelet-enriched miRNAs (thrombomiRs) by RT-qPCR and selected four biomarker candidates (i.e., miR-223-3p, miR-150-5p, miR-126-3p, miR-24-3p). To further characterize those miRNAs, we performed correlation analyses with the number of extracellular vesicles and clotting time dependent on procoagulant vesicles (PPL assay). We show that platelet-enriched miRNAs in the circulation are significantly reduced upon P2Y12-mediated platelet inhibition. This effect occurred fast, reaching its peak after 2 h. Additionally, we demonstrate that higher baseline levels of thrombomiRs are linked to a stronger reduction upon antiplatelet therapy. Finally, we show that miRNAs from our panel might be the cargo of platelet-derived and procoagulant vesicles. In conclusion, we provide evidence that thrombomiR levels change within 2 h after pharmacological platelet inhibition and circulate the body within platelet-derived and procoagulant extracellular vesicles, rendering them potential biomarker candidates for the assessment of in vivo platelet function.
Collapse
Affiliation(s)
| | - Marietta Kollars
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Paul A. Kyrle
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Sabine Eichinger
- Department of Medicine I, Medical University of Vienna, Vienna, Austria,*Correspondence: Sabine Eichinger,
| | - Ludwig Traby
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
207
|
Li X, Liu X, Wei J, Bu S, Li Z, Hao Z, Zhang W, Wan J. Ultrasensitive detection of microRNAs based on click chemistry-terminal deoxynucleotidyl transferase combined with CRISPR/Cas12a. Biochimie 2022; 208:38-45. [DOI: 10.1016/j.biochi.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
|
208
|
Song W, Qiu N. MiR-495-3p depletion contributes to myocardial ischemia/reperfusion injury in cardiomyocytes by targeting TNC. Regen Ther 2022; 21:380-388. [PMID: 36161101 PMCID: PMC9478495 DOI: 10.1016/j.reth.2022.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Tenascin-C (TNC) has been found to abnormally express in myocardial ischemia/reperfusion injury (MI/RI), but its effect on cardiomyocytes apoptosis is unknown and is worthy of investigation. Methods H9C2 cells were given hypoxia/reoxygenation (H/R) treatment to obtain the replica of MI/RI in vitro. The effect of H/R on viability, apoptosis and inflammation was studied by CCK-8 assay, flow cytometry, mitochondrial membrane potential (MMP) and Ca2+ measurements as well as enzyme linked immunosorbent assay. We applied bioinformatics analysis and luciferase reporter assay to screened and validated TNC-targeting miR-495-3p which was then mechanistically investigated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. With the assistance of cell transfection, rescue assays were conducted. Results H9C2 cells showed diminished viability, accelerated apoptosis, elevated tumour necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β), and TNC overexpression in response to H/R induction, while silencing of TNC partially reversed the effect of H/R treatment on the H9C2 cells. TNC silencing reduced Ca2+ level and enhanced MMP level in the H/R-stimulated cells. MiR-495-3p targeted TNC and showed a low expression in the H/R-stimulated cells. The expression of TNC was negatively regulated by miR-495-3p. Inhibition of miR-495-3p repressed viability and MMP level, and facilitated apoptosis and levels of Ca2+, TNF-α and IL-1β in the H/R-stimulated cells. The effect of TNC silencing and miR-495-3p depletion on H/R-induced cardiomyocyte injury was mutually reversed in vitro. Conclusion MiR-495-3p targeted TNC to regulate the apoptosis and inflammation of cardiomyocytes in H/R induction, which was associated with Ca2+ overload.
Collapse
Affiliation(s)
- Wei Song
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), 999 Donghai Avenue, Jiaojiang District, Taizhou, Zhejiang Province, China
| | - Naiyan Qiu
- Department of Cardiology, The Fifth People's Hospital of Jinan, No. 24297 Jingshi Road, Huaiyin District, Jinan, Shandong Province, 250021, China
| |
Collapse
|
209
|
Sigutova R, Evin L, Stejskal D, Ploticova V, Svagera Z. Specific microRNAs and heart failure: time for the next step toward application? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022; 166:359-368. [PMID: 35726831 DOI: 10.5507/bp.2022.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
A number of microRNAs are involved in the pathophysiological events associated with heart disease. In this review, we discuss miR-21, miR-1, miR-23a, miR-142-5p, miR-126, miR-29, miR-195, and miR-499 because they are most often mentioned as important specific indicators of myocardial hypertrophy and fibrosis leading to heart failure. The clinical use of microRNAs as biomarkers and for therapeutic interventions in cardiovascular diseases appears highly promising. However, there remain many unresolved details regarding their specific actions in distinct pathological phenomena. The introduction of microRNAs into routine practice, as part of the cardiovascular examination panel, will require additional clinically relevant and reliable data. Thus, there remains a need for additional research in this area, as well as the optimization and standardization of laboratory procedures which could significantly shorten the determination time, and make microRNA analysis simpler and more affordable. In this review, we aim to summarize the current knowledge about selected microRNAs related to heart failure, including their potential use in diagnosis, prognosis, and treatment, and options for their laboratory determination.
Collapse
Affiliation(s)
- Radka Sigutova
- Institute of Laboratory Medicine, Department of Clinical Biochemistry, University Hospital Ostrava and Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Lukas Evin
- Department of Internal Medicine and Cardiology, Department of Cardiovascular, University Hospital Ostrava, Ostrava, Czech Republic
| | - David Stejskal
- Institute of Laboratory Medicine, Department of Clinical Biochemistry, University Hospital Ostrava and Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Vera Ploticova
- Institute of Laboratory Medicine, Department of Clinical Biochemistry, University Hospital Ostrava and Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Zdenek Svagera
- Institute of Laboratory Medicine, Department of Clinical Biochemistry, University Hospital Ostrava and Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
210
|
Klimczak-Tomaniak D, Haponiuk-Skwarlińska J, Kuch M, Pączek L. Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int J Mol Sci 2022; 23:15013. [PMID: 36499336 PMCID: PMC9736401 DOI: 10.3390/ijms232315013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Heart failure is defined as a clinical syndrome consisting of key symptoms and is due to a structural and/or functional alteration of the heart that results in increased intracardiac pressures and/or inadequate cardiac output at rest and/or during exercise. One of the key mechanisms determining myocardial dysfunction in heart failure is oxidative stress. MicroRNAs (miRNAs, miRs) are short, endogenous, conserved, single-stranded non-coding RNAs of around 21-25 nucleotides in length that act as regulators of multiple processes. A systematic review following the PRISMA guidelines was performed on the evidence on the interplay between microRNA and oxidative stress in heart failure. A search of Pubmed, Embase, Scopus, and Scopus direct databases using the following search terms: 'heart failure' AND 'oxidative stress' AND 'microRNA' or 'heart failure' AND 'oxidative stress' AND 'miRNA' was conducted and resulted in 464 articles. Out of them, 15 full text articles were eligible for inclusion in the qualitative analysis. Multiple microRNAs are involved in the processes associated with oxidative stress leading to heart failure development including mitochondrial integrity and function, antioxidant defense, iron overload, ferroptosis, and survival pathways.
Collapse
Affiliation(s)
- Dominika Klimczak-Tomaniak
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Julia Haponiuk-Skwarlińska
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Pediatric Cardiology and General Pediatrics, Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
211
|
Ren J, Guo W, Feng K, Huang T, Cai Y. Identifying MicroRNA Markers That Predict COVID-19 Severity Using Machine Learning Methods. Life (Basel) 2022; 12:1964. [PMID: 36556329 PMCID: PMC9784129 DOI: 10.3390/life12121964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Individuals with the SARS-CoV-2 infection may experience a wide range of symptoms, from being asymptomatic to having a mild fever and cough to a severe respiratory impairment that results in death. MicroRNA (miRNA), which plays a role in the antiviral effects of SARS-CoV-2 infection, has the potential to be used as a novel marker to distinguish between patients who have various COVID-19 clinical severities. In the current study, the existing blood expression profiles reported in two previous studies were combined for deep analyses. The final profiles contained 1444 miRNAs in 375 patients from six categories, which were as follows: 30 patients with mild COVID-19 symptoms, 81 patients with moderate COVID-19 symptoms, 30 non-COVID-19 patients with mild symptoms, 137 patients with severe COVID-19 symptoms, 31 non-COVID-19 patients with severe symptoms, and 66 healthy controls. An efficient computational framework containing four feature selection methods (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (DT, KNN, RF, and SVM) was designed to screen clinical miRNA markers, and a high-precision RF model with a 0.780 weighted F1 was constructed. Some miRNAs, including miR-24-3p, whose differential expression was discovered in patients with acute lung injury complications brought on by severe COVID-19, and miR-148a-3p, differentially expressed against SARS-CoV-2 structural proteins, were identified, thereby suggesting the effectiveness and accuracy of our framework. Meanwhile, we extracted classification rules based on the DT model for the quantitative representation of the role of miRNA expression in differentiating COVID-19 patients with different severities. The search for novel biomarkers that could predict the severity of the disease could aid in the clinical diagnosis of COVID-19 and in exploring the specific mechanisms of the complications caused by SARS-CoV-2 infection. Moreover, new therapeutic targets for the disease may be found.
Collapse
Affiliation(s)
- Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
212
|
Sophocleous F, De Garate E, Bigotti MG, Anwar M, Jover E, Chamorro-Jorganes A, Rajakaruna C, Mitrousi K, De Francesco V, Wilson A, Stoica S, Parry A, Benedetto U, Chivasso P, Gill F, Hamilton MCK, Bucciarelli-Ducci C, Caputo M, Emanueli C, Biglino G. A Segmental Approach from Molecular Profiling to Medical Imaging to Study Bicuspid Aortic Valve Aortopathy. Cells 2022; 11:cells11233721. [PMID: 36496981 PMCID: PMC9737804 DOI: 10.3390/cells11233721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Bicuspid aortic valve (BAV) patients develop ascending aortic (AAo) dilation. The pathogenesis of BAV aortopathy (genetic vs. haemodynamic) remains unclear. This study aims to identify regional changes around the AAo wall in BAV patients with aortopathy, integrating molecular data and clinical imaging. BAV patients with aortopathy (n = 15) were prospectively recruited to surgically collect aortic tissue and measure molecular markers across the AAo circumference. Dilated (anterior/right) vs. non-dilated (posterior/left) circumferential segments were profiled for whole-genomic microRNAs (next-generation RNA sequencing, miRCURY LNA PCR), protein content (tandem mass spectrometry), and elastin fragmentation and degeneration (histomorphometric analysis). Integrated bioinformatic analyses of RNA sequencing and proteomic datasets identified five microRNAs (miR-128-3p, miR-210-3p, miR-150-5p, miR-199b-5p, and miR-21-5p) differentially expressed across the AAo circumference. Among them, three miRNAs (miR-128-3p, miR-150-5p, and miR-199b-5p) were predicted to have an effect on eight common target genes, whose expression was dysregulated, according to proteomic analyses, and involved in the vascular-endothelial growth-factor signalling, Hippo signalling, and arachidonic acid pathways. Decreased elastic fibre levels and elastic layer thickness were observed in the dilated segments. Additionally, in a subset of patients n = 6/15, a four-dimensional cardiac magnetic resonance (CMR) scan was performed. Interestingly, an increase in wall shear stress (WSS) was observed at the anterior/right wall segments, concomitantly with the differentially expressed miRNAs and decreased elastic fibres. This study identified new miRNAs involved in the BAV aortic wall and revealed the concomitant expressional dysregulation of miRNAs, proteins, and elastic fibres on the anterior/right wall in dilated BAV patients, corresponding to regions of elevated WSS.
Collapse
Affiliation(s)
- Froso Sophocleous
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Estefania De Garate
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Maria Giulia Bigotti
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Eva Jover
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Cha Rajakaruna
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Konstantina Mitrousi
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Viola De Francesco
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Aileen Wilson
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Serban Stoica
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Andrew Parry
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Umberto Benedetto
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Pierpaolo Chivasso
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Frances Gill
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Mark C. K. Hamilton
- Department of Clinical Radiology, University Hospitals Bristol, Bristol Royal Infirmary, Bristol BS2 8EJ, UK
| | - Chiara Bucciarelli-Ducci
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
- Royal Brompton & Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Massimo Caputo
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Giovanni Biglino
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS8 1TH, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
- Correspondence: ; Tel.: +44-117-342-3287
| |
Collapse
|
213
|
Barradas M, Plaza A, Colmenarejo G, Lázaro I, Costa-Machado LF, Martín-Hernández R, Micó V, López-Aceituno JL, Herranz J, Pantoja C, Tejero H, Diaz-Ruiz A, Al-Shahrour F, Daimiel L, Loria-Kohen V, de Molina AR, Efeyan A, Serrano M, Pozo OJ, Sala-Vila A, Fernandez-Marcos PJ. Fatty acids homeostasis during fasting predicts protection from chemotherapy toxicity. Nat Commun 2022; 13:5677. [PMID: 36167809 PMCID: PMC9515185 DOI: 10.1038/s41467-022-33352-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/09/2022] [Indexed: 12/27/2022] Open
Abstract
Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs. When fasted for 24 hours before and 24 hours after administration of oxaliplatin or doxorubicin, mice show a strong protection from toxicity in several tissues. Erythrocyte membrane lipids and PBMC gene expression define two separate groups of individuals that accurately predict a differential protection from chemotherapy toxicity, with important clinical implications. Our results reveal a mechanism of fasting associated with lipid homeostasis, and provide biomarkers of fasting to predict fasting-mediated protection from chemotherapy toxicity. Fasting has been reported to protect from chemotherapy-associated toxicity. Here, the authors show that fatty acid profiles in erythrocyte membranes and gene expression from peripheral blood mononuclear cells are associated to the fasting-mediated benefits during cancer treatment in mice and patients.
Collapse
Affiliation(s)
- Marta Barradas
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Adrián Plaza
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Iolanda Lázaro
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - Luis Filipe Costa-Machado
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Roberto Martín-Hernández
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Victor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Jesús Herranz
- Biostatistics and Bioinformatics Unit, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Cristina Pantoja
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Hector Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Alberto Diaz-Ruiz
- Nutritional Interventions Group, Precision Nutrition and Aging, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Fatima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Ana Ramirez de Molina
- Nutrition and Clinical Trials Unit, Platform GENYAL, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.,Molecular Oncology and Nutritional Genomics of Cancer Group, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Group, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute-(IMIM), Barcelona, Spain
| | - Aleix Sala-Vila
- Cardiovascular risk and nutrition, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain.,Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group-BIOPROMET, CEI UAM+CSIC, Madrid Institute for Advanced Studies-IMDEA Food, Madrid, Spain.
| |
Collapse
|
214
|
Li W, Li Y, Jiang F, Liu H. Correlation between serum levels of microRNA-21 and inflammatory factors in patients with chronic heart failure. Medicine (Baltimore) 2022; 101:e30596. [PMID: 36197244 PMCID: PMC9509079 DOI: 10.1097/md.0000000000030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As the leading cause of hospitalization and mortality worldwide, heart failure (HF) has caused significant burden on both individuals and the whole society. Thus, increasing knowledge about the phytopathology of HF is in demand for both diagnosis and treatment. Previous studies have shown that both microRNA 21 (miRNA-21) and inflammatory factors are closely related to the development of cardiac fibrosis, hypertrophy, and HF. However, whether there is any crosstalk between the 2 has not been examined. The current study evaluated the correlation between serum levels of miRNA-21 and critical inflammatory factors during the progress of chronic heart failure (CHF), providing new insights in understanding the physiopathology of CHF and identifying CHF biomarkers. In the presented study, serum level of miR-21, cardiac neurohormone, and critical inflammatory factors were measured and compared on 120 (67 male/53 female) CHF patients and 100 (58 male/42 female) health people with non-failing hearts. Echocardiography was also conducted to assess the severity of CHF. Correlations between different factors were calculated and tested for statistical significance. From our results, CHF patients showed significantly decreased serum levels of miR-21 while increased levels of inflammatory factors and cardiac neurohormone (P < .05). Levels of miR-21 negatively correlate with cardiac function while positively correlates with myocardial remodeling (P < .05). Levels of miR-21 negatively correlate with inflammation in CHF (P < .05). These findings indicate the potential crosstalk between serum miR-21 and inflammation during CHF progression, suggesting the potential of miR-21 in CHF diagnosis, severity indication, and treatment.
Collapse
Affiliation(s)
- Weiwei Li
- Emergency Department, Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Weiwei Li, Emergency Department, Second Hospital of Lanzhou University, No. 82 Cuiyingmen, Lanzhou, Gansu 730000, China (e-mail: )
| | - Yanan Li
- Emergency Department, Second Hospital of Lanzhou University, Lanzhou, China
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
215
|
Hasan MM, Murtaz SB, Islam MU, Sadeq MJ, Uddin J. Robust and efficient COVID-19 detection techniques: A machine learning approach. PLoS One 2022; 17:e0274538. [PMID: 36107971 PMCID: PMC9477266 DOI: 10.1371/journal.pone.0274538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.
Collapse
Affiliation(s)
- Md. Mahadi Hasan
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Saba Binte Murtaz
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Muhammad Usama Islam
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Muhammad Jafar Sadeq
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Jasim Uddin
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
- * E-mail:
| |
Collapse
|
216
|
Prediction of Functional Genes in Primary Varicose Great Saphenous Veins Using the lncRNA-miRNA-mRNA Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4722483. [PMID: 36118829 PMCID: PMC9477642 DOI: 10.1155/2022/4722483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) have been widely suggested to bind with the microRNA (miRNA) sites and play roles of competing endogenous RNAs (ceRNAs), which can thus affect and regulate target gene and mRNA expression. Such lncRNA-related ceRNAs are identified to exert vital parts in vascular disease. Nonetheless, it remains unknown about how the lncRNA-miRNA-mRNA network functions in the varicose great saphenous veins. Methods This study acquired the lncRNA and mRNA expression patterns from the GEO database and identifies the differentially expressed mRNAs and lncRNAs by adopting the R software “limma” package. Then, miRcode, miRDB, miRTarbase, and TargetScan were used to establish the miRNA-mRNA pairs and lncRNA-miRNA pairs. In addition, the lncRNA-miRNA-mRNA ceRNA network was constructed by using Cytoscape. Protein-protein interaction, Gene Ontology functional annotations, and Kyoto Encyclopedia of Genes and Genomes enrichment were carried out to examine the candidate hub genes, the functions of genes, and the corresponding pathways. Results In line with the preset theory, we constructed ceRNA network comprising 12 lncRNAs, 38 miRNAs, and 149 mRNAs. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the PI3K/Akt signaling pathway played a vital part in the development of varicose great saphenous veins. AC114730, AC002127, and AC073342 were significant biomarkers. At the same time, we predicted the potential miRNA, which may exert a significant influence on the varicose great saphenous veins, namely, miR-17-5p, miR-129-5p, miR-1297, miR-20b-5p, and miR-33a-3p. Conclusion By performing ceRNA network analysis, our study detects new lncRNAs, miRNAs, and mRNAs, which can be applied as underlying biomarkers of varicose great saphenous veins and as therapeutic targets for the treatment of varicose great saphenous veins.
Collapse
|
217
|
Muñoz JJAM, Dariolli R, da Silva CM, Neri EA, Valadão IC, Turaça LT, Lima VM, de Carvalho MLP, Velho MR, Sobie EA, Krieger JE. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther 2022; 13:437. [PMID: 36056380 PMCID: PMC9438174 DOI: 10.1186/s13287-022-03138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA–target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. Methods We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA–target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling.
Results We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < − 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < − 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation.
Conclusion We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03138-x.
Collapse
Affiliation(s)
- Juan J A M Muñoz
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Universidad Señor de Sipán, Chiclayo, Perú
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caio Mateus da Silva
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Iuri C Valadão
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Lauro Thiago Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Vanessa M Lima
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariana Lombardi Peres de Carvalho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariliza R Velho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
218
|
Nicoletti L, Paoletti C, Tarricone G, Andreana I, Stella B, Arpicco S, Divieto C, Mattu C, Chiono V. Lipoplexes for effective in vitro delivery of microRNAs to adult human cardiac fibroblasts for perspective direct cardiac cell reprogramming. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102589. [PMID: 35908737 DOI: 10.1016/j.nano.2022.102589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Design of nanocarriers for efficient miRNA delivery can significantly improve miRNA-based therapies. Lipoplexes based on helper lipid, dioleoyl phosphatidylethanolamine (DOPE) and cationic lipid [2-(2,3-didodecyloxypropyl)-hydroxyethyl] ammonium bromide (DE) were formulated to efficiently deliver miR-1 or a combination of four microRNAs (miRcombo) to adult human cardiac fibroblasts (AHCFs). Lipoplexes with amino-to-phosphate groups ratio of 3 (N/P 3) showed nanometric hydrodynamic size (372 nm), positive Z-potential (40 mV) and high stability under storage conditions. Compared to commercial DharmaFECT1 (DF), DE-DOPE/miRNA lipoplexes showed superior miRNA loading efficiency (99 % vs. 64 %), and faster miRNA release (99 % vs. 82 % at 48 h). DE-DOPE/miR-1 lipoplexes showed superior viability (80-100 % vs. 50 %) in AHCFs, a 2-fold higher miR-1 expression and Twinfilin-1 (TWF-1) mRNA downregulation. DE-DOPE/miRcombo lipoplexes significantly enhanced AHCFs reprogramming into induced cardiomyocytes (iCMs), as shown by increased expression of CM markers compared to DF/miRcombo.
Collapse
Affiliation(s)
- Letizia Nicoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Ilaria Andreana
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 11, 10125, Turin, Italy
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 11, 10125, Turin, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria, 11, 10125, Turin, Italy
| | - Carla Divieto
- Istituto Nazionale di Ricerca Metrologica, Division of Advanced Materials and Life Sciences, Str. delle Cacce, 91, 10135 Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
219
|
Takasu T. The Role of SGLT2 Inhibitor Ipragliflozin on Cardiac Hypertrophy and microRNA Expression Profiles in a Non-diabetic Rat Model of Cardiomyopathy. Biol Pharm Bull 2022; 45:1321-1331. [DOI: 10.1248/bpb.b22-00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
220
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
221
|
Stătescu C, Anghel L, Tudurachi BS, Leonte A, Benchea LC, Sascău RA. From Classic to Modern Prognostic Biomarkers in Patients with Acute Myocardial Infarction. Int J Mol Sci 2022; 23:9168. [PMID: 36012430 PMCID: PMC9409468 DOI: 10.3390/ijms23169168] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Despite all the important advances in its diagnosis and treatment, acute myocardial infarction (AMI) is still one of the most prominent causes of morbidity and mortality worldwide. Early identification of patients at high risk of poor outcomes through the measurement of various biomarker concentrations might contribute to more accurate risk stratification and help to guide more individualized therapeutic strategies, thus improving prognoses. The aim of this article is to provide an overview of the role and applications of cardiac biomarkers in risk stratification and prognostic assessment for patients with myocardial infarction. Although there is no ideal biomarker that can provide prognostic information for risk assessment in patients with AMI, the results obtained in recent years are promising. Several novel biomarkers related to the pathophysiological processes found in patients with myocardial infarction, such as inflammation, neurohormonal activation, myocardial stress, myocardial necrosis, cardiac remodeling and vasoactive processes, have been identified; they may bring additional value for AMI prognosis when included in multi-biomarker strategies. Furthermore, the use of artificial intelligence algorithms for risk stratification and prognostic assessment in these patients may have an extremely important role in improving outcomes.
Collapse
Affiliation(s)
- Cristian Stătescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania
| | - Larisa Anghel
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania
| | - Bogdan-Sorin Tudurachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
| | - Andreea Leonte
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
| | - Laura-Cătălina Benchea
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
| | - Radu-Andy Sascău
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iași, Romania
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iași, Romania
| |
Collapse
|
222
|
miRNA in Ischemic Heart Disease and Its Potential as Biomarkers: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23169001. [PMID: 36012267 PMCID: PMC9409094 DOI: 10.3390/ijms23169001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease (IHD) constitutes the leading global cause of mortality and morbidity. Although significant progress has been achieved in the diagnosis, treatment, and prognosis of IHD, more robust diagnostic biomarkers and therapeutic interventions are still needed to circumvent the increasing incidence of IHD. MicroRNAs (miRNAs) are critical regulators of cardiovascular function and are involved in various facets of cardiovascular biology. While the knowledge of the role of miRNAs in IHD as diagnostic biomarkers has improved, research emphasis on how miRNAs can be effectively used for diagnosis and prognosis of IHD is crucial. This review provides an overview of the biology, therapeutic and diagnostic potential, as well as the caveats of using miRNAs in IHD based on existing research.
Collapse
|
223
|
He F, Lv X, Li X, Yao M, Li K, Deng Y. Fluorescent microspheres lateral flow assay integrated with Smartphone-based reader for multiple microRNAs detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
224
|
Zhou B, Wu N, Yan Y, Wu LL, Zhu GQ, Xiong XQ. Angiotensin II-induced miR-31-5p upregulation promotes vascular smooth muscle cell proliferation and migration. Exp Cell Res 2022; 419:113303. [DOI: 10.1016/j.yexcr.2022.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
|
225
|
Clayton ZS, Craighead DH, Darvish S, Coppock M, Ludwig KR, Brunt VE, Seals DR, Rossman MJ. Promoting healthy cardiovascular aging: emerging topics. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:43. [PMID: 36337728 PMCID: PMC9632540 DOI: 10.20517/jca.2022.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of age-related cardiovascular (CV) dysfunction increases the risk of CV disease as well as other chronic age-associated disorders, including chronic kidney disease, and Alzheimer's disease and related dementias. Major manifestations of age-associated CV dysfunction that increase disease risk are vascular dysfunction, primarily vascular endothelial dysfunction and arterial stiffening, and elevated systolic blood pressure. Declines in nitric oxide bioavailability secondary to increased oxidative stress and inflammation are established mechanisms of CV dysfunction with aging. Moreover, fundamental mechanisms of aging, termed the "hallmarks of aging" extend to the CV system and, as such, may be considered "hallmarks of CV aging". These mechanisms represent viable therapeutic targets for treating CV dysfunction with aging. Healthy lifestyle behaviors, such as regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies to prevent and/or treat age-associated CV dysfunction. Despite the well-established benefits of these strategies, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related CV dysfunction. Targeting fundamental mechanisms of CV aging with interventions such as time-efficient exercise training, food-derived molecules, termed nutraceuticals, or select synthetic pharmacological agents represents a promising approach. In the present review, we will highlight emerging topics in the field of healthy CV aging with a specific focus on how exercise, nutrition/dietary patterns, nutraceuticals and select synthetic pharmacological compounds may promote healthy CV aging, in part, by targeting the hallmarks of CV aging.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - McKinley Coppock
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
226
|
Purification, biochemical characterization and fibrinolytic potential of proteases produced by bacteria of the genus Bacillus: a systematic literature review. Arch Microbiol 2022; 204:503. [PMID: 35852634 DOI: 10.1007/s00203-022-03134-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Thrombosis is a hematological disorder characterized by the formation of intravascular thrombi, which contributes to the development of cardiovascular diseases. Fibrinolytic enzymes are proteases that promote the hydrolysis of fibrin, promoting the dissolution of thrombi, contributing to the maintenance of adequate blood flow. The characterization of new effective, safe and low-cost fibrinolytic agents is an important strategy for the prevention and treatment of thrombosis. However, the development of new fibrinolytics requires the use of complex methodologies for purification, physicochemical characterization and evaluation of the action potential and toxicity of these enzymes. In this context, microbial enzymes produced by bacteria of the Bacillus genus are promising and widely researched sources to produce new fibrinolytics, with high thrombolytic potential and reduced toxicity. Thus, this review aims to provide a current and comprehensive understanding of the different Bacillus species used for the production of fibrinolytic proteases, highlighting the purification techniques, biochemical characteristics, enzymatic activity and toxicological evaluations used.
Collapse
|
227
|
Long C, Guo R, Han R, Li K, Wan Y, Xu J, Gong X, Zhao Y, Yao X, Liu J. Effects of macrophages on the proliferation and cardiac differentiation of human induced pluripotent stem cells. Cell Commun Signal 2022; 20:108. [PMID: 35850719 PMCID: PMC9290307 DOI: 10.1186/s12964-022-00916-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
Background Macrophage phenotypes switch from proinflammatory (M1) to anti-inflammatory (M2) following myocardial injury. Implanted stem cells (e.g., induced pluripotent stem cells (iPSCs)) for cardiomyogenesis will inevitably contact the inflammatory environment at the myocardial infarction site. To understand how the macrophages affect the behavior of iPSCs, therefore, improve the therapeutic efficacy, we generated three macrophage subtypes and assessed their effects on the proliferation, cardiac differentiation, and maturation of iPSCs. Methods M0, M1, and M2 macrophages were polarized using cytokines, and their properties were confirmed by the expression of specific markers using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence. The effects of macrophages on iPSCs were studied using Transwell co-culture models. The proliferative ability of iPSCs was investigated by cell counting and CCK-8 assays. The cardiac differentiation ability of iPSCs was determined by the cardiomyocyte (CM) yield. The maturation of CM was analyzed by the expression of cardiac-specific genes using RT-qPCR, the sarcomere organization using immunofluorescence, and the mitochondrial function using oxidative respiration analysis. Results The data showed that the co-culture of iPSCs with M0, M1, or M2 macrophages significantly decreased iPSCs’ proliferative ability. M2 macrophages did not affect the CM yield during the cardiac differentiation of iPSCs. Still, they promoted the maturation of CM by improving sarcomeric structures, increasing contractile- and ion transport-associated gene expression, and enhancing mitochondrial respiration. M0 macrophages did not significantly affect the cardiomyogenesis ability of iPSCs during co-culture. In contrast, co-culture with M1 macrophages significantly reduced the cardiac differentiation and maturation of iPSCs. Conclusions M1- or M2-polarized macrophages play critical roles in the proliferation, cardiac differentiation, and maturation of iPSCs, providing knowledge to improve the outcomes of stem cell regeneration therapy. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00916-1.
Collapse
Affiliation(s)
- Canling Long
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Rui Guo
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Ruijuan Han
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Kang Li
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Yanbing Wan
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Jiqing Xu
- Cardiothoracic Surgery Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Xiaoyu Gong
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Yanqiu Zhao
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Xinhuang Yao
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
228
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Di Vito Nolfi M, Zazzeroni F, Alesse E, Tessitore A. Role of exosomal microRNAs in cancer therapy and drug resistance mechanisms: focus on hepatocellular carcinoma. Front Oncol 2022; 12:940056. [PMID: 35912267 PMCID: PMC9334682 DOI: 10.3389/fonc.2022.940056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), defined as intercellular messengers that carry their cargos between cells, are involved in several physiological and pathological processes. These small membranous vesicles are released by most cells and contain biological molecules, including nucleic acids, proteins and lipids, which can modulate signaling pathways of nearby or distant recipient cells. Exosomes, one the most characterized classes of EVs, include, among others, microRNAs (miRNAs), small non-coding RNAs able to regulate the expression of several genes at post-transcriptional level. In cancer, exosomal miRNAs have been shown to influence tumor behavior and reshape tumor microenvironment. Furthermore, their possible involvement in drug resistance mechanisms has become evident in recent years. Hepatocellular carcinoma (HCC) is the major type of liver cancer, accounting for 75-85% of all liver tumors. Although the improvement in HCC treatment approaches, low therapeutic efficacy in patients with intermediate-advanced HCC is mainly related to the development of tumor metastases, high risk of recurrence and drug resistance. Exosomes have been shown to be involved in pathogenesis and progression of HCC, as well as in drug resistance, by regulating processes such as cell proliferation, epithelial-mesenchymal transition and immune response. Herein, we summarize the current knowledge about the involvement of exosomal miRNAs in HCC therapy, highlighting their role as modulators of therapeutic response, particularly chemotherapy and immunotherapy, as well as possible therapeutic tools.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Alessandra Tessitore,
| |
Collapse
|
229
|
Yedavilli S, Singh AD, Singh D, Samal R. Nano-Messengers of the Heart: Promising Theranostic Candidates for Cardiovascular Maladies. Front Physiol 2022; 13:895322. [PMID: 35899033 PMCID: PMC9313536 DOI: 10.3389/fphys.2022.895322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Till date, cardiovascular diseases remain a leading cause of morbidity and mortality across the globe. Several commonly used treatment methods are unable to offer safety from future complications and longevity to the patients. Therefore, better and more effective treatment measures are needed. A potential cutting-edge technology comprises stem cell-derived exosomes. These nanobodies secreted by cells are intended to transfer molecular cargo to other cells for the establishment of intercellular communication and homeostasis. They carry DNA, RNA, lipids, and proteins; many of these molecules are of diagnostic and therapeutic potential. Several stem cell exosomal derivatives have been found to mimic the cardioprotective attributes of their parent stem cells, thus holding the potential to act analogous to stem cell therapies. Their translational value remains high as they have minimal immunogenicity, toxicity, and teratogenicity. The current review highlights the potential of various stem cell exosomes in cardiac repair, emphasizing the recent advancements made in the development of cell-free therapeutics, particularly as biomarkers and as carriers of therapeutic molecules. With the use of genetic engineering and biomimetics, the field of exosome research for heart treatment is expected to solve various theranostic requirements in the field paving its way to the clinics.
Collapse
Affiliation(s)
- Sneha Yedavilli
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | | | - Damini Singh
- Environmental Pollution Analysis Lab, Bhiwadi, India
| | - Rasmita Samal
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
- *Correspondence: Rasmita Samal,
| |
Collapse
|
230
|
Lipid nanocapsules for intracellular delivery of microRNA: a first step towards intervertebral disc degeneration therapy. Int J Pharm 2022; 624:121941. [PMID: 35781028 DOI: 10.1016/j.ijpharm.2022.121941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022]
Abstract
Approximately 40% of cases of lower back pain are caused by disc degeneration disease (DDD). It is well established that microRNA (miR) dysregulation is a key player in various diseases, and its impact on DDD has recently been highlighted. RNAi (miR in particular) is increasingly being considered as a novel therapeutic tool. However, free miR is degraded rapidly in vivo, and its protection is thus a prerequisite. Nanoparticular platforms, such as lipid nanocapsules (LNC), could be specifically adapted for miR delivery, allowing the transfer and release of miR in the cell cytoplasm. The objective of the current study was to formulate and characterize miR-loaded LNC to establish their in vitro potential (cell internalization, bioactivity) as well as to determine the safety and feasibility of in situ intervertebral disc (IVD) injection of miR LNC in a healthy sheep model. Using a miR library, miR-155 was clearly identified as being involved in the DDD process and was selected for further assessment. miR-155-loaded LNC (miR-155 LNC) were successfully formulated using a phase inversion process, with the addition of lipoplexes in the cooling step. Following purification, miR-155 LNC were fully characterized, and the optimized formulation had an average diameter of 75 nm, a polydispersity index below 0.1, and a positive zeta potential. By fluorescence spectroscopy, an encapsulation efficiency (EE) of 75.6% and a drug loading (DL) of 0.6% were obtained, corresponding to a sufficient amount of miR per mL of LNC to potentially have a biological effect. The sustained release of miR-155 from LNC was demonstrated compared with free miR-155: only 22% was released after 2 h and 58% after 24 h. miR-155 protection against endonuclease degradation by LNC was confirmed by gel electrophoresis, a sine qua non condition for it to be administered in vivo. Cell viability assays were performed on human adipose stromal cells (hASCs) and ovine Nucleus pulposus cells (oNP), and a cytotoxicity of less than 30% was obtained at the considered concentrations. Additionally, miR-155 LNC cell internalization was demonstrated by flow cytometry and confocal imaging. Moreover, downregulation of total ERK1/2 in hASCs and oNP cells, after miR-155 LNC treatment, was demonstrated by Western blot and quantitative reverse-transcription PCR (qRT-PCR), thus confirming maintenance of its bioactivity after formulation and internalization. Finally, the feasibility and safety of miR-155 LNC in situ injection (compared to control groups: blank LNC and sham condition) was demonstrated in healthy sheep by imaging (MRI and T2wsi measurement) and histology (Boos' scoring) analysis. T2wsi was measured, and no significant difference was observed three months after the injection between the different conditions. No histological impact was observed, with no significant difference in Boos' scoring between the different conditions. All these results suggest LNC may be a potent strategy for the encapsulation and delivery of miR (particularly miR-155) and can be considered as a first step towards IVD regenerative medicine.
Collapse
|
231
|
Rheumatoid arthritis fibroblast-like synoviocytes maintain tumor-like biological characteristics through ciRS-7-dependent regulation of miR-7. Mol Biol Rep 2022; 49:8473-8483. [PMID: 35752700 DOI: 10.1007/s11033-022-07666-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Altered phenotype of Fibroblast-like synoviocyte(FLS) is an important cause of the pathogenesis and progression of rheumatoid arthritis(RA), but the specific mechanism causing this change has not yet been fully explained. The exact mechanism by which the biological properties of FLS change in RA is still unclear. microRNAs (miRNAs) have been shown to affect changes in the biological properties of RA-FLS, but the critical miRNAs remain to be discovered. Thus, we first used miRNA microarray and WGCNA to confirm the RA-FLS miRNA landscape and establish their biological functions via network analyses at the system level, as well as to provide a platform for modulating the overall phenotypic effects of RA-FLS. METHODS We enrolled a total of 3 patients with RA and 3 healthy participants, constructed a network analysis of via miRNA microarray and RNA-sequencing. Furthermore, the coexpression analyses of miR-7 and ciRS-7 were verified by siRNA transfection, overexpression and qPCR analyses. Finally, we evaluated the effects of adjusting the expression levels of miR-7 and ciRS-7 on RA-FLS, respectively. RESULTS We identified distinct miRNA features in RA-FLS, including miR-7, which was significantly lower expressed. Furthermore, we discovered the negative regulatory relationship between ciRS-7 and miR-7 in RA-FLS. Finally, we overexpressed miR-7 in RA-FLS and discovered that miR-7 inhibited RA-FLS hyperproliferation, migration, invasion, and apoptosis, whereas ciRS-7 overexpression reversed these effects. CONCLUSIONS The results indicate that the dysregulation of miR-7 in FLS may be involved in the pathological processes of RA and that ciRS-7 induced the suppression of tumor-like biological characters of RA-FLS via modulation of miR-7. These findings help us understand the essential roles of a regulatory interaction between ciRS-7 and miR-7 mediating disease activity of RA, and will facilitate to develop potential intervention target for RA.
Collapse
|
232
|
Abdallah HY, Hassan R, Fareed A, Abdelgawad M, Mostafa SA, Mohammed EAM. Identification of a circulating microRNAs biomarker panel for non-invasive diagnosis of coronary artery disease: case-control study. BMC Cardiovasc Disord 2022; 22:286. [PMID: 35751015 PMCID: PMC9233383 DOI: 10.1186/s12872-022-02711-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 12/07/2022] Open
Abstract
Background Circulating microRNAs (miRNAs) are considered a hot spot of research that can be employed for monitoring and/or diagnostic purposes in coronary artery disease (CAD). Since different disease features might be reflected on altered profiles or plasma miRNAs concentrations, a combination of miRNAs can provide more reliable non-invasive biomarkers for CAD. Subjects and methods We investigated a panel of 14-miRNAs selected using bioinformatics databases and current literature searching for miRNAs involved in CAD using quantitative real-time PCR technique in 73 CAD patients compared to 73 controls followed by function and pathway enrichment analysis for the 14-miRNAs. Results Our results revealed three out of the 14 circulating miRNAs understudy; miRNAs miR133a, miR155 and miR208a were downregulated. While 11 miRNAs were up-regulated in a descending order from highest fold change to lowest: miR-182, miR-145, miR-21, miR-126, miR-200b, miR-146A, miR-205, miR-135b, miR-196b, miR-140b and, miR-223. The ROC curve analysis indicated that miR-145, miR-182, miR-133a and, miR-205 were excellent biomarkers with the highest AUCs as biomarkers in CAD. All miRNAs under study except miR-208 revealed a statistically significant relation with dyslipidemia. MiR-126 and miR-155 showed significance with BMI grade, while only miR-133a showed significance with the obese patients in general. MiR-135b and miR-140b showed a significant correlation with the Wall Motion Severity Index. Pathway enrichment analysis for the miRNAS understudy revealed pathways relevant to the fatty acid biosynthesis, ECM-receptor interaction, proteoglycans in cancer, and adherens junction. Conclusion The results of this study identified a differentially expressed circulating miRNAs signature that can discriminate CAD patients from normal subjects. These results provide new insights into the significant role of miRNAs expression associated with CAD pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02711-9.
Collapse
Affiliation(s)
- Hoda Y Abdallah
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt. .,Center of Excellence in Molecular & Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Ranya Hassan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ahmed Fareed
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Abdel-Moemen Mohammed
- Medical Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.,Center of Excellence in Molecular & Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
233
|
Zhou D, Xu X, Liu Y, Liu H, Cheng X, Gu Y, Xu Y, Zhu L. MiR-195-5p facilitates the proliferation, migration, and invasion of human trophoblast cells by targeting FGF2. J Obstet Gynaecol Res 2022; 48:2122-2133. [PMID: 35716001 DOI: 10.1111/jog.15298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Preeclampsia (PE), the most significant adverse exposure to cardiovascular risk during pregnancy, is one of the three major factors contributing to maternal and fetal mortality and the leading cause of preterm birth. Recently, various miRNAs have been reported to participate in PE occurrence and development. Nevertheless, the regulatory impact of miR-195-5p in PE is still indistinct. METHODS Quantitative realtime-PCR (qRT-PCR), western blot, and fluorescence in situ hybridization (FISH) assay were performed to examine miR-195-5p and FGF2 expressions in PE serum samples or HTR-8/SVneo and TEV-1 cells. CCK8, flow cytometry, wound scratch, and transwell assays were conducted to determine cell viability, cycle, apoptosis, migration, and invasion. Dual-luciferase reporter assay unveiled the relationship between miR-195-5p and FGF2. Migration-related and invasion-related protein expressions were measured by western blot assay. RESULTS miR-195-5p was prominently downregulated while FGF2 was increased in serum samples from PE patients and hypoxia-treated human trophoblast cells. FGF2 was predicted as a downstream target of miR-195-5p and targeted association was verified by dual-luciferase reporter assay. Functional experiments elaborated that miR-195-5p could facilitate trophoblast cell proliferation and metastasis but hinder cell cycle and apoptosis. Inversely, overexpressing of FGF2 could reverse the effects of miR-195-5p on trophoblast cell growth. DISCUSSION miR-195-5p was decreased in PE serum samples and cell lines, serving as a potential biomarker in protecting PE exacerbation by targeting FGF2.
Collapse
Affiliation(s)
- Dachun Zhou
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Xiaoying Xu
- Department of Gynaecology and Obstetrics, Haian People's Hospital, Haian, Jiangsu Province, China
| | - Yuanlin Liu
- Department of Gynaecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Haiyun Liu
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Xiaoyan Cheng
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Yannan Gu
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Yuanyuan Xu
- Department of Ultrasound, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| | - Lingling Zhu
- Department of Gynaecology and Obstetrics, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu Province, China
| |
Collapse
|
234
|
Wang X, Wu C. Tanshinone IIA improves cardiac function via regulating miR-499-5p dependent angiogenesis in myocardial ischemic mice. Microvasc Res 2022; 143:104399. [PMID: 35697130 DOI: 10.1016/j.mvr.2022.104399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIMS Myocardial ischemia-reperfusion injury leads to aggravated cardiac remodeling and heart failure. After myocardial infarction (MI), angiogenesis plays a vital role in the repair and regeneration of tissue. The purpose of the current study was to determine the effect of Tanshinone IIA (Tan IIA) on angiogenesis and elucidate its related mechanism. METHODS The C57BL/6 mice MI model was established to evaluate the therapeutic effect of Tan IIA in vivo. MicroRNA (miRNA) microarray and bioinformatics analysis were performed to determine the differential expressions of miRNAs after Tan IIA administration. Cell proliferation, migration, and angiogenesis capacity were detected by EdU, Transwell, and Tube formation assay in vitro, respectively. The relationship between miR-499-5p (miR-499) and paired phosphate and tension homolog deleted on chromosome ten (PTEN) was confirmed by using a Dual-luciferase reporter assay. RESULTS Our results showed that Tan IIA administration improved cardiac function after MI by activating angiogenesis. Further miRNA microarray and bioinformatics analysis revealed that miR-499 was significantly down-regulated, while PTEN was remarkably upregulated after Tan IIA administration post-MI. In addition, we found that miR-499 knock-down effectively promotes cell proliferation, migration, and tube formation ability of HUVECs. Dual-luciferase reporter assay demonstrated that PTEN contains a direct binding site for miR-499-5p. CONCLUSION Tan IIA improves cardiac function post-MI by inducing angiogenesis. In terms of the mechanism, Tan IIA promotes therapeutic angiogenesis by regulating miR-499-5p/PTEN signaling pathway.
Collapse
Affiliation(s)
- Xian Wang
- Department of Cardiology, Huaian Medical District, General Hospital of Eastern Theater Command, No. 100 Jiankang East Road, Qingjiangpu District, Huaian City, Jiangsu Province, China
| | - Changwei Wu
- Department of Cardiology, Huaian Medical District, General Hospital of Eastern Theater Command, No. 100 Jiankang East Road, Qingjiangpu District, Huaian City, Jiangsu Province, China.
| |
Collapse
|
235
|
Correlation between decreased plasma miR-29a and vascular endothelial injury induced by hyperlipidemia. Herz 2022:10.1007/s00059-022-05121-x. [PMID: 35674773 DOI: 10.1007/s00059-022-05121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Hyperlipidemia is a major risk factor for vascular endothelial injury and atherosclerosis leading to cardiovascular diseases. Early diagnosis of vascular endothelial injury is important for the prevention and prognosis of cardiovascular diseases. This study aimed to investigate sensitive circulating microRNA (miRNA) as a potential diagnostic biomarker of vascular endothelial injury in a hyperlipidemic rat model. METHODS The miRNA expression profile was detected by miRNA microarray. The hyperlipidemic rat model was established by intraperitoneal injection of vitamin D3 combined with a high-fat diet. Plasma miRNA levels were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS No significant difference was found in the types of highly expressed miRNAs between human umbilical artery endothelial cells (HUAEC) and human umbilical vein endothelial cells (HUVEC). A total of 10 highly expressed miRNAs in endothelial cells were selected as candidate miRNAs, including miR-21, miR-126, let-7a, miR-23a, miR-221, miR-125b, miR-26a, miR-29a, miR-16, and miR-100. The plasma levels of let-7a, miR-126, miR-21, and miR-26a were significantly elevated in hyperlipidemic rats at 30 and 50 days after modeling, while the plasma level of miR-29a was significantly decreased. No significant change was found in the plasma levels of miR-125b, miR-23a, miR-221, miR-100, and miR-16. Interestingly, a significant reduction in plasma miR-29 level was detected as early as 20 days after modeling, which was earlier than for soluble intercellular adhesion molecule‑1 (sICAM-1). CONCLUSION The plasma levels of endothelial cell-enriched miRNAs were correlated with vascular endothelial injury induced by hyperlipidemia. miR-29a might serve as a potential early diagnostic biomarker of endothelial injury-related diseases.
Collapse
|
236
|
Matveeva NA, Baulina NM, Kiselev IS, Titov BV, Favorova OO. MiRNA miR-375 as a Multifunctional Regulator of the Cardiovascular System. Mol Biol 2022. [DOI: 10.1134/s0026893322020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
237
|
Schröder-Heurich B, Büder T, Meyer N, Vu TH, Richter K, Ramachandran D, Brodowski L, von Kaisenberg CS, von Versen-Höynck F. Downregulation of miR-1270 mediates endothelial progenitor cell function in preeclampsia: Role for ATM in the Src/VE-cadherin axis. FASEB J 2022; 36:e22379. [PMID: 35648632 DOI: 10.1096/fj.202200040rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Preeclampsia, a pregnancy-related hypertensive disorder, is associated with endothelial dysfunction and increased cardiovascular risk of the offspring in adulthood. In preeclampsia, endothelial colony-forming cells (ECFC) are reduced in number and function. Recently, we have shown that miR-1270, which is involved in cancer in vitro proliferation, migration, and tumor progression, is downregulated in fetal ECFC from preeclamptic pregnancies. We now hypothesize that miR-1270 dysregulation contributes to vascular endothelial dysfunction occurring after preeclampsia via ATM (ataxia telangiectasia mutated) overexpression, the key kinase of DNA damage repair. Here, we show that miR-1270 silencing in normal ECFC and downregulation in preeclamptic ECFC are accompanied by an increase in the expression levels of ATM. Furthermore, ATM activation correlates with upregulated tyrosine kinase Src leading to phosphorylation and internalization of VE-cadherin (vascular endothelial-cadherin) which subsequently compromises endothelial barrier permeability and morphodynamic cell parameters. Treatment with specific ATM inhibitors reveals a novel role of ATM upstream of tyrosine kinase Src activation. Subsequently, Src phosphorylation and internalization of VE-cadherin compromise endothelial barrier permeability. Our findings suggest that downregulation of miR-1270 contributes to impaired ECFC function via the associated ATM overexpression, which further identifies ATM as a novel and critical factor for ECFC defects in preeclampsia. Our study provides new insights into the understanding of ECFC impairment associated with cardiovascular risk in preeclamptic offspring and identifies potential novel therapeutic targets.
Collapse
Affiliation(s)
| | - Tim Büder
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Nadia Meyer
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Thu Huong Vu
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany.,Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Katja Richter
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany
| | | | - Lars Brodowski
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | | | - Frauke von Versen-Höynck
- Gynecology Research Unit, Hannover Medical School, Hannover, Germany.,Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
238
|
Zhang Q, Wang Z, Zhang Z, Zhu L, Yang X. Analysis of microarray-identified genes and MicroRNAs associated with Trifluridine resistance in colorectal cancer. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2080280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Qiqi Zhang
- Department of Integrated Chinese and Western Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, People’s Republic of China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Zhenghua Zhang
- Department of Clinical Oncology, Jing’An District Centre Hospital of Shanghai, Huashan Hospital Fudan University Jing’An Branch, Shanghai, People’s Republic of China
| | - Lifei Zhu
- Cancer Center, Shanghai Jiaotong University Affiliated First People’s Hospital, Shanghai, People’s Republic of China
| | - Xijing Yang
- Department of Biotherapy, The Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
239
|
Ruiz M, González S, Bonnet C, Deng SX. Extracellular miR-6723-5p could serve as a biomarker of limbal epithelial stem/progenitor cell population. Biomark Res 2022; 10:36. [PMID: 35642012 PMCID: PMC9153202 DOI: 10.1186/s40364-022-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dysfunction or loss of limbal stem cells can result in limbal stem cell deficiency (LSCD), a disease that cause corneal opacity, pain, and loss of vision. Cultivated limbal epithelial transplantation (CLET) can be used to restore stem cell niche homeostasis and replenish the progenitor pool. Transplantation has been reported with high success rate, but there is an unmet need of prognostic markers that correlate with clinical outcomes. To date, the progenitor content in the graft is the only parameter that has been retrospectively linked to success. METHODS In this study, we investigate extracellular micro RNAs (miRNAs) associated with stem/progenitor cells in cultivated limbal epithelial cells (cLECs). Using micro RNA sequencing and linear regression modelling, we identify a miRNA signature in cultures containing high proportion of stem/progenitor cells. We then develop a robust RNA extraction workflow from culture media to confirm a positive miRNA correlation with stem/progenitor cell proportion. RESULTS miR-6723-5p is associated with cultures containing high proportion of stem/progenitor cells, and is detected in the basal layer of corneal epithelium. CONCLUSIONS These results indicate that miR-6723-5p could potentially serve as a stem/progenitor cell marker in cLECs.
Collapse
Affiliation(s)
- M. Ruiz
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| | - S. González
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| | - C. Bonnet
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
- Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014 Paris, France
| | - S. X. Deng
- Cornea Division, Stein Eye Institute, University of California, 100 Stein Plaza, Los Angeles, CA 90095 USA
| |
Collapse
|
240
|
Keshavarz R, Aghaee-Bakhtiari SH, Pakzad P, Banach M, Sahebkar A. Evaluation of miRNA-27a/b expression in patients with familial hypercholesterolemia. Arch Med Sci 2022; 20:1314-1320. [PMID: 39439685 PMCID: PMC11493071 DOI: 10.5114/aoms/150500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 10/25/2024] Open
Abstract
Introduction We aimed to evaluate the serum level of miRNA-27 expression in patients with familial hypercholesterolemia (FH). Material and methods miRNA-27a/b levels in serum were compared between 39 patients with heterozygous FH (HeFH = 20) and homozygous FH (HoFH = 19), and 20 healthy subjects (control group). The expression level of miRNA-27a/b was measured using real-time PCR. Results miRNA-27a/b expression in heFH patients (fold change: 2.21 ±0.69, p = 0.001) and in the subgroup of hoFH (fold change: 3 ±1.19, p = 0.001) was significantly higher compared to healthy people. In the comparison between HoFH and HeFH, the HoFH group had a significantly higher level of miRNA-27a/b expression (FC: 1.84 ±1.19, p = 0.009). Conclusions We observed higher miRNA-27a/b expression in patients with FH than in healthy individuals. In comparison with HoFH and HeFH groups, the former had a higher expression level of miRNA-27a/b, which indicates the potential of miRNA-27a/b as a candidate marker for the severity of disease in individuals with FH.
Collapse
Affiliation(s)
- Reihaneh Keshavarz
- Department of Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Parviz Pakzad
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
241
|
Treerattrakoon K, Roeksrungruang P, Dharakul T, Japrung D, Faulds K, Graham D, Bamrungsap S. Detection of a miRNA biomarker for cancer diagnosis using SERS tags and magnetic separation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1938-1945. [PMID: 35441184 DOI: 10.1039/d2ay00210h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Detection of miR-29a, a biomarker of cancers, using SERS tags and magnetic separation is described. The assay was designed to detect the miR-29a sequence by taking the complementary sequence and splitting it into a capture and detection probe. The SERS tags comprised the highly Raman active molecule 4-mercaptobenzoic acid (4-MBA) and DNA detection probes assembled onto the surface of gold nanorods (AuNRs) through the self-assembly process. The capture DNA conjugated magnetic nanoparticles (MNPs) were applied as capture probes. The detection was based on the hybridisation and sandwich complex formation. The resultant hybridisation-dependent complexes were recovered and enriched from the samples by magnetic separation. The enriched solution containing target miRNA hybridised with capture probes were dropped on a foil-covered slide to form a droplet for SERS analysis. A characteristic spectrum of 4-MBA was observed to indicate the presence of the miR-29a in the samples. The sensitivity of the assay is examined by measuring the SERS signal of the samples containing different concentrations of the miR-29a. The SERS intensity appears to increase with the concentration of miR-29a. The limit of detection (LOD) was found to be 10 pM without any amplification process. In addition, the selectivity and feasibility of the assay in complex media are evaluated with the non-target miRNAs comprising different sequences from the target miR-29a. The system was capable of detecting the target miR-29a specifically with high selectivity. These results suggest that this solution-based SERS platform has a significant capability for simple, sensitive, and selective miR-29a analysis.
Collapse
Affiliation(s)
- Kiatnida Treerattrakoon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Pimporn Roeksrungruang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Tararaj Dharakul
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Deanpen Japrung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, UK
| | - Suwussa Bamrungsap
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| |
Collapse
|
242
|
Ikeuchi Y, Ochi H, Motoda C, Tokuyama T, Okubo Y, Okamura S, Miyauchi S, Miyamoto S, Uotani Y, Onohara Y, Nakashima M, Akiyama R, Tahara H, Chayama K, Kihara Y, Nakano Y. Plasma MicroRNAs as noninvasive diagnostic biomarkers in patients with Brugada syndrome. PLoS One 2022; 17:e0261390. [PMID: 35617207 PMCID: PMC9135283 DOI: 10.1371/journal.pone.0261390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Brugada syndrome (BrS) can be diagnosed by a type 1 BrS tracing in a 12-lead electrocardiogram (ECG). However, there are daily variations in the ECGs of BrS patients, which presents a challenge when diagnosing BrS. Although many susceptibility genes have been identified, the SCN5A gene is reportedly the main causative gene of BrS. However, most patients do not have an evidence of genetic predisposition to develop BrS. In addition, the diagnosis and risk stratification for ventricular fibrillation (VF) in patients with BrS presents some problems. Meanwhile, circulating micro RNAs (miRNAs) have drawn increased attention as potential biomarkers of various diseases. We hypothesize that circulating miRNAs may be potential diagnostic biomarkers for BrS. METHODS We enrolled 70 Japanese BrS patients and 34 controls for the screening cohort. A total of 2,555 miRNA sequences were detected using the 3D-Gene miRNAs labeling kit and 3D-Gene Human miRNAs Oligo Chip. We compared the expression of the miRNAs between the BrS patients and the controls. We validated whether the miRNA were significantly up- or downregulated in the screening cohort using RT-PCR. We also enrolled 72 Japanese BrS patients and 56 controls to replicate these miRNAs. RESULTS Eight miRNAs (hsa-miR-223-3p, hsa-miR-22-3p, hsa-miR-221-3p, hsa-miR-4485-5p, hsa-miR-550a-5p, hsa-miR-423-3p, hsa-miR-23a-3p, and hsa-miR-30d-5p) were downregulated, and one miRNA (hsa-miR-873-3p) was upregulated by more than 3-fold in BrS patients. The multivariate logistic regression analysis determined that hsa-miR-423-3p, hsa-miR-223-3p, and hsa-miR-23a-3p were independently associated with BrS (P < 0.0001). The AUC based on cross validation was 0.871 with a sensitivity and specificity of 83.5% and 81.1%, respectively. CONCLUSIONS The plasma miRNAs are potential noninvasive biomarkers of BrS, and the constructed logistic model was useful for discriminating BrS.
Collapse
Affiliation(s)
- Yoshihiro Ikeuchi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hidenori Ochi
- Department of Health Management, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Chikaaki Motoda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takehito Tokuyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yousaku Okubo
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Sho Okamura
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Syunsuke Miyauchi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shogo Miyamoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukimi Uotani
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuko Onohara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mika Nakashima
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Rie Akiyama
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
243
|
Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy. Mol Neurobiol 2022; 59:4730-4746. [DOI: 10.1007/s12035-022-02878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
244
|
Sonawane AR, Aikawa E, Aikawa M. Connections for Matters of the Heart: Network Medicine in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:873582. [PMID: 35665246 PMCID: PMC9160390 DOI: 10.3389/fcvm.2022.873582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 01/18/2023] Open
Abstract
Cardiovascular diseases (CVD) are diverse disorders affecting the heart and vasculature in millions of people worldwide. Like other fields, CVD research has benefitted from the deluge of multiomics biomedical data. Current CVD research focuses on disease etiologies and mechanisms, identifying disease biomarkers, developing appropriate therapies and drugs, and stratifying patients into correct disease endotypes. Systems biology offers an alternative to traditional reductionist approaches and provides impetus for a comprehensive outlook toward diseases. As a focus area, network medicine specifically aids the translational aspect of in silico research. This review discusses the approach of network medicine and its application to CVD research.
Collapse
Affiliation(s)
- Abhijeet Rajendra Sonawane
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
245
|
Zhang X, Zai L, Tao Z, Wu D, Lin M, Wan J. miR-145-5p affects autophagy by targeting CaMKIIδ in atherosclerosis. Int J Cardiol 2022; 360:68-75. [PMID: 35597494 DOI: 10.1016/j.ijcard.2022.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive inflammatory disease involving many cells. miR-145-5p mediates the biological phenotypes of human aortic vascular smooth muscle cells (HAVSMCs) and influences the progression of AS, but the potential mechanism needs further study. METHODS Total RNA was extracted from patient plasma and arteries to determine the expression of miR-145-5p. The CaMKIIδ pathway and genes were predicted as the target of miR-145-5p by bioinformatics approaches. The interaction between miR-145-5p and CaMKIIδ was confirmed by RT-qPCR and Dual Luciferase Reporter Assay System. Western blot analysis, immunofluorescence staining, transmission electron microscopy (TEM) and protein tracing on HAVSMCs transduced with mCherry-GFP-LC3 lentiviral vectors to determine the mechanism by which miR-145-5p affects the atherosclerotic disease process. RESULTS The expression of miR-145-5p was downregulated in blood and arteries specimens of patients with coronary stenosis. Correspondingly, CaMKIIδ was upregulated and miR-145-5p was downregulated in hypoxic HAVSMCs. CaMKIIδ was predicted and confirmed as a downstream target of miR-145-5p. In addition, CaMKIIδ induced the upregulation of autophagy-related proteins by activating the AMPK/mTOR/ULK1 signalling pathway. Moreover, we confirmed that miR-145-5p inhibits CaMKIIδ expression by binding to a specific sequence in the CaMKIIδ 3' UTR and affects autophagy. Crucially, CaMKIIδ was promoted by the downregulation of miR-145-5p and then activating autophagy in HAVSMCs through the AMPK/mTOR/ULK1 signalling pathway to affect the AS progress. CONCLUSIONS miR-145-5p regulates CaMKIIδ, leading to altered autophagy in HAVSMCs. This alteration plays an important role in AS progression.
Collapse
Affiliation(s)
- Xinxin Zhang
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Ling Zai
- Wuhan Medical Emergency Center, No. 288 Machang Road, Wuhan, Hubei 430024, PR China
| | - Ziqi Tao
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Daiqian Wu
- Wuhan University, No. 185 Donghu Road, Wuhan, Hubei 430072, PR China
| | - Mingying Lin
- Hainan General Hospital of Hainan Medical University, No. 19 Xiuhua Road, Haikou, Hainan, PR China.
| | - Jing Wan
- Wuhan University Zhongnan Hospital, No. 169 Donghu Road, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
246
|
MicroRNA expression biomarkers of chronic venous disease. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Chronic venous disease (CVD) is a common disease caused by hemodynamic disorders of the venous circulation in the lower extremities. The clinical image of this disease is complex and includes such signs as telangiectases, varicose veins, leg edema and skin changes, usually accompanied with ache, pain, tightness, heaviness, swelling and muscle cramps of legs. Venous ulcers develop in the advanced stages of the disease and lead to significant impairment of patient abilities and reduction of the quality of life. CVD is diagnosed based on physical and image examinations, and main treatment options include compression therapy, invasive treatments like endovenous ablation and foam sclerotherapy, as well as pharmacotherapy. Currently, there is no biochemical and molecular biomarkers utilized in diagnosis or treatment of CVD. With regard to this situation, one of the most investigated fields for identification of disease biomarkers is microRNA (miRNA). These constitute a pool of small, non-coding RNAs that play crucial roles in maintaining cellular homeostasis through posttranscriptional regulation of genes expression. Dysregulations of miRNA expression profiles have been found in patients with various diseases, and this situation provides information about potential miRNA signatures involved in pathophysiology. In this review, the studies focused on investigations of miRNA expression patterns in patients with CVD were collected. The performed literature analysis provides contemporary knowledge in the field of miRNA-dependent mechanisms involved in the etiopathogenesis of CVD and shows gaps that need to be filled in further studies.
Collapse
|
247
|
Chang WT, Lin YW, Huang PS, Lin YC, Tseng SY, Chao TH, Chen ZC, Shih JY, Hong CS. Deletion of MicroRNA-21 Impairs Neovascularization Following Limb Ischemia: From Bedside to Bench. Front Cardiovasc Med 2022; 9:826478. [PMID: 35557515 PMCID: PMC9086398 DOI: 10.3389/fcvm.2022.826478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
With an increasing prevalence, peripheral arterial disease (PAD), cause by atherosclerosis is a new threat to public health beyond coronary artery disease and involves aberrant vascular endothelial cell proliferation and angiogenesis. The degree of vascular remodeling is influenced by the processes described. MicroRNA-21 (miR-21) has been found to play a critical role in cellular functions, including angiogenesis. Nevertheless, the effect of miR-21 on endothelial cells in response to hypoxia is largely unknown. Using wild-type C57BL/6J and miR-21–/– mice, we compared the capability of angiogenesis in response to hindlimb hypoxic/ischemia. In an in vitro study, we further studied whether overexpression of miR-21 mitigates hypoxia-induced apoptosis and impaired angiogenesis. Also, we prospectively collected the sera of patients with limb ischemia and followed the clinical information, including major adverse limb events (MALEs). Using laser Doppler perfusion imaging and CD31 staining, compared with miR-21–/– mice, wild-type mice expressed a significantly higher capability of angiogenesis and less apoptosis following 28 days of hindlimb hypoxic/ischemic surgery. In our in vitro study, after 24 h of hypoxia, proliferation, migration, and tube formation were significantly impaired in cells treated with the miR-21 inhibitor but rescued by the miR-21 mimic. Mechanistically, by suppressing PTEN/PI3K/AKT, miR-21 promoted angiogenesis and suppressed apoptosis in endothelial cells post hypoxia. In patients with limb ischemia, the high expression of circulating miR-21 was associated with less subsequent MALE. Collectively, miR-21 could be a biomarker associated with the endogenous ability of angiogenesis and reflect subsequent MALE in patients. Additionally, abolishing miR-21 impairs angiogenesis and promotes apoptosis post limb ischemia. Further studies are required to elucidate the clinical applications of miR-21.
Collapse
Affiliation(s)
- Wei-Ting Chang
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,College of Medicine, Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Lin
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Po-Sen Huang
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - You-Cheng Lin
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shih-Ya Tseng
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Zhih-Cherng Chen
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jhih-Yuan Shih
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chon-Seng Hong
- Division of Cardiology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
248
|
Alves MT, da Conceição IMCA, de Oliveira AN, Oliveira HHM, Soares CE, de Paula Sabino A, Silva LM, Simões R, Luizon MR, Gomes KB. microRNA miR-133a as a Biomarker for Doxorubicin-Induced Cardiotoxicity in Women with Breast Cancer: A Signaling Pathway Investigation. Cardiovasc Toxicol 2022; 22:655-662. [PMID: 35524907 DOI: 10.1007/s12012-022-09748-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Cardiovascular toxicity is the main adverse effect of Doxorubicin (DOX) in cancer patients. microRNAs (miRNAs) are promising biomarkers to identify cardiac injury induced by DOX in breast cancer patients during the subclinical phase. Using RT-qPCR, we compared the expression of circulating miR-208a5p, miR-133a, miR-499a5p, miR-15a, miR-133b, and miR-49a3p in serum samples from DOX-induced cardiotoxicity (case) compared to the non-cardiotoxicity group (control). To further explore the potential roles of these circulating miRNA in cardiotoxicity, we searched the miRTarBase for experimentally validated miRNA-target interactions and performed a functional enrichment analysis based on those interactions. miR-133a was significantly upregulated in case compared to control group. The most relevant pathway regulated by miR-133a was ErbB2 signaling, whose main genes involved are EGFR, ERBB2, and RHOA, which are possibly downregulated by miR133a. The other miRNAs did not show significant differential expression when compared on both groups. The data suggest that miR-133a is associated with DOX-based cardiotoxicity during chemotherapy in breast cancer patients through ErbB2 signaling pathway. Moreover, miR-133a may be a future marker of DOX-induced cardiotoxicity in women with breast cancer.
Collapse
Affiliation(s)
- Michelle Teodoro Alves
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Cintia Esteves Soares
- Fundação Hospitalar Do Estado de Minas Gerais (FHEMIG), Belo Horizonte, Minas Gerais, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | | - Ricardo Simões
- Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas eToxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil.
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
249
|
Oh JH, Kim GB, Seok H. Implication of microRNA as a potential biomarker of myocarditis. Clin Exp Pediatr 2022; 65:230-238. [PMID: 35240034 PMCID: PMC9082251 DOI: 10.3345/cep.2021.01802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/29/2022] [Indexed: 12/15/2022] Open
Abstract
Myocarditis was previously attributed to an epidemic viral infection. Additional harmful reagents, in addition to viruses, play a role in its etiology. Coronavirus disease 2019 (COVID-19) vaccine-induced myocarditis has recently been described, drawing attention to vaccine-induced myocarditis in children and adolescents. Its pathology is based on a series of complex immune responses, including initial innate immune responses in response to viral entry, adaptive immune responses leading to the development of antigen-specific antibodies, and autoimmune responses to cellular injury caused by cardiomyocyte rupture that releases antigens. Chronic inflammation and fibrosis in the myocardium eventually result in cardiac failure. Recent advancements in molecular biology have remarkably increased our understanding of myocarditis. In particular, microRNAs (miRNAs) are a hot topic in terms of the role of new biomarkers and the pathophysiology of myocarditis. Myocarditis has been linked with microRNA-221/222 (miR-221/222), miR-155, miR-10a*, and miR-590. Despite the lack of clinical trials of miRNA intervention in myocarditis yet, multiple clinical trials of miRNAs in other cardiac diseases have been aggressively conducted to help pave the way for future research, which is bolstered by the success of recently U.S. Food and Drug Administration-approved small-RNA medications. This review presents basic information and recent research that focuses on myocarditis and related miRNAs as a potential novel biomarker and the therapeutics.
Collapse
Affiliation(s)
- Jin-Hee Oh
- Department of Pediatrics, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gi Beom Kim
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
250
|
Mir M, Mir R, Alghamdi MA, Alsayed B, Elfaki I, Al Bshabshe A, Farooq R, Alhujaily M, Alharthi M, Alamri MM, Al‑Shahrani A. Differential impact of the angiotensin‑converting enzyme‑2 (ACE2 rs4343 G>A) and miR‑196a2 rs11614913 C>T gene alterations in COVID‑19 disease severity and mortality. Exp Ther Med 2022; 23:418. [PMID: 35601073 PMCID: PMC9117950 DOI: 10.3892/etm.2022.11345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The recent coronavirus outbreak from Wuhan China in late 2019 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in a global pandemic of coronavirus-19 disease (COVID-19). Understating the underlying mechanism of the pathogenesis of coronavirus infection is important not only because it will help in accurate diagnosis and treatment of the infection but also in the production of effective vaccines. The infection begins when SARS-CoV-2 enters the cells through binding of its envelope glycoprotein to angiotensin-converting enzyme2 (ACE2). Gene variations of ACE2 and microRNA (miR)-196 are associated with viral infection and other diseases. The present study investigated the association of the ACE2 rs4343 G>A and miR-196a2 rs11614913 C>T gene polymorphisms with severity and mortality of COVID-19 using amplification refractory mutation system PCR in 117 COVID-19 patients and 103 healthy controls from three regions of Saudi Arabia. The results showed that ACE2 rs4343 GA genotype was associated with severity of COVID-19 (OR=2.10, P-value 0.0028) and ACE2 rs4343 GA was associated with increased mortality with OR=3.44, P-value 0.0028. A strong correlation between the ACE2 rs4343 G>A genotype distribution among COVID-19 patients was reported with respect to their comorbid conditions including sex (P<0.023), coronary artery disease (P<0.0001), oxygen saturation <60 mm Hg (P<0.0009) and antiviral therapy (0.003). The results also showed that the CT genotype and T allele of the miR-196a2 rs11614913 C>T were associated with decreased risk to COVID-19 with OR=0.76, P=0.006 and OR=0.54, P=0.005, respectively. These results need to be validated with future molecular genetic studies in a larger sample size and different populations.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Basic Medical Sciences (Biochemistry), College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashid Mir
- Prince Fahd Bin Sultan Research chair, Department of MLT, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mushabab Ayed Alghamdi
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Badr Alsayed
- Department of Internal Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ali Al Bshabshe
- Department of Internal Medicine/Critical Care, College of Medicine King Khalid University, Abha 61421, Saudi Arabia
| | - Rabia Farooq
- Department of Basic Medical Sciences (Biochemistry), College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Alharthi
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad Alamri
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Al‑Shahrani
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|