201
|
Terao M, Itoi S, Matsumura S, Yang L, Murota H, Katayama I. Local Glucocorticoid Activation by 11β-Hydroxysteroid Dehydrogenase 1 in Keratinocytes: The Role in Hapten-Induced Dermatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1499-510. [PMID: 27070821 DOI: 10.1016/j.ajpath.2016.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/04/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
Abstract
Over the past decade, extra-adrenal cortisol production was reported in various tissues. The enzyme that catalyzes the conversion of hormonally inactive cortisone into active cortisol in cells is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is also expressed in keratinocytes and regulates inflammation and keratinocyte proliferation. To investigate the function of 11β-HSD1 in keratinocytes during inflammation in vivo, we created keratinocyte-specific 11β-HSD1 knockout (K5-Hsd11b1-KO) mice and analyzed the inflammatory response in models of hapten-induced contact irritant dermatitis. K5-Hsd11b1-KO mice showed enhanced ear swelling in low-dose oxazolone-, 2,4,6-trinitro-1-chlorobenzene (TNCB)-, and 2,4-dinitrofluorobenzene-induced irritant dermatitis associated with increased inflammatory cell infiltration. Topical application of corticosterone dose dependently suppressed TNCB-induced ear swelling and cytokine expression. Similarly in mouse keratinocytes in vitro, corticosterone dose dependently suppressed 2,4,6-trinitrobenzenesulfonic acid-induced IL-1α and IL-1β expression. The effect of 11-dehydrocorticosterone was attenuated in TNCB-induced irritant dermatitis in K5-Hsd11b1-KO mice compared with wild-type mice. In human samples, 11β-HSD1 expression was decreased in epidermis of psoriasis vulgaris compared with healthy skin. Taken together, these data suggest that corticosterone activation by 11β-HSD1 in keratinocytes suppresses hapten-induced irritant dermatitis through suppression of expression of cytokines, such as IL-1α and IL-1β, in keratinocytes.
Collapse
Affiliation(s)
- Mika Terao
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Saori Itoi
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sayaka Matsumura
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Lingli Yang
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ichiro Katayama
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
202
|
Grandclément C, Pick H, Vogel H, Held W. NK Cells Respond to Haptens by the Activation of Calcium Permeable Plasma Membrane Channels. PLoS One 2016; 11:e0151031. [PMID: 26963818 PMCID: PMC4786276 DOI: 10.1371/journal.pone.0151031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/23/2016] [Indexed: 01/07/2023] Open
Abstract
Natural Killer (NK) cells mediate innate immunity to infected and transformed cells. Yet, NK cells can also mount hapten-specific recall responses thereby contributing to contact hypersensitivity (CHS). However, since NK cells lack antigen receptors that are used by the adaptive immune system to recognize haptens, it is not clear if NK cells respond directly to haptens and, if so, what mediates these responses. Here we show that among four haptens the two that are known to induce NK cell-dependent CHS trigger the rapid influx of extracellular Ca2+ into NK cells and lymphocyte cell lines. Thus lymphocytes can respond to haptens independent of antigen presentation and antigen receptors. We identify the Ca2+-permeable cation channel TRPC3 as a component of the lymphocyte response to one of these haptens. These data suggest that the response to the second hapten is based on a distinct mechanism, consistent with the capacity of NK cells to discriminate haptens. These findings raise the possibility that antigen-receptor independent activation of immune cells contributes to CHS.
Collapse
Affiliation(s)
- Camille Grandclément
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Epalinges, Switzerland
| | - Horst Pick
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Horst Vogel
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Werner Held
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
203
|
Natsuaki Y, Kabashima K. Inducible lymphoid clusters, iSALTs, in contact dermatitis: a new concept of acquired cutaneous immune responses. Med Mol Morphol 2016; 49:127-32. [PMID: 26941109 DOI: 10.1007/s00795-016-0137-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 11/29/2022]
Abstract
Antigen presentation to peripheral memory T cells is a key step in the prompt elicitation of acquired immune responses. In the mucosa, specific sentinel lymphoid tissues called mucosa-associated lymphoid tissue serve as antigen presentation sites. Correspondingly, the concept of skin-associated lymphoid tissue (SALT) has been proposed in the 1980s. However, the details of SALT have not been clarified so far. Recently, the live imaging analysis using two photon microscopes are developed. Here, we have identified inducible lymphoid clusters in the skin, we called it inducible SALTs (iSALTs), using a murine contact hypersensitivity model. In the elicitation phase, dendritic cells (DCs) formed clusters and interacted for several hours with effector memory T cells in the dermis. This interaction was essential for proliferation and activation of effector memory T cells in situ in an antigen dependent manner. Interestingly, DC clusters were abrogated by depletion of skin macrophages. Furthermore, IL-1 treatment induced CXCL2 production from macrophages and DC clusters were suppressed with the blockade of IL-1R or CXCR2. Taken together, this sustained conjugation between DCs and memory T cells, iSALTs, is essential for establishment of the effector phase in acquired cutaneous immunity.
Collapse
Affiliation(s)
- Yohei Natsuaki
- Department of Dermatology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan.
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
204
|
Benck CJ, Martinov T, Fife BT, Chatterjea D. Isolation of Infiltrating Leukocytes from Mouse Skin Using Enzymatic Digest and Gradient Separation. J Vis Exp 2016:e53638. [PMID: 26863129 DOI: 10.3791/53638] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dissociating murine skin into a single cell suspension is essential for downstream cellular analysis such as the characterization of infiltrating immune cells in rodent models of skin inflammation. Here, we describe a protocol for the digestion of mouse skin in a nutrient-rich solution with collagenase D, followed by separation of hematopoietic cells using a discontinuous density gradient. Cells thus obtained can be used for in vitro studies, in vivo transfer, and other downstream cellular and molecular analyses including flow cytometry. This protocol is an effective and economical alternative to expensive mechanical dissociators, specialized separation columns, and harsher trypsin- and dispase-based digestion methods, which may compromise cellular viability or density of surface proteins relevant for phenotypic characterization or cellular function. As shown here in our representative data, this protocol produced highly viable cells, contained specific immune cell subsets, and had no effect on integrity of common surface marker proteins used in flow cytometric analysis.
Collapse
Affiliation(s)
| | - Tijana Martinov
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota
| | - Brian T Fife
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota
| | | |
Collapse
|
205
|
Epstein MM, Stingl G, Brüggen MC. Antigen- bzw. Allergenpräsentation. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
206
|
Besonderheiten von Haptenen und Allergenen bei Spättypreaktionen. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
207
|
Schmidt M, Goebeler M, Martin SF. Methods to Investigate the Role of Toll-Like Receptors in Allergic Contact Dermatitis. Methods Mol Biol 2016; 1390:319-340. [PMID: 26803638 DOI: 10.1007/978-1-4939-3335-8_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Allergic contact disease is a common inflammatory skin disease resulting from hyperresponsiveness to harmless nonprotein substances such as metals, fragrances, or rubber. Recent research has highlighted a prominent role of Toll-like receptors, particularly TLR4 in contact allergen-induced innate immune activation that crucially contributes to the pathogenesis of this disease. Here we describe several methods to investigate the role of Toll-like receptors in contact allergen-induced pro-inflammatory responses. These include expansion of disease-relevant human primary cells including endothelial cells and keratinocytes and their manipulation of TLR signaling by transfection, retroviral infection and RNA interference, basic methods to induce contact hypersensitivity in mice, and protocols for adoptive transfer of hapten-stimulated dendritic cells and T cells from TLR-deficient mice to wild-type mice and vice versa wild-type mice to TLR-deficient mice in order to explore cell-specific roles of TLRs in contact hypersensitivity responses.
Collapse
Affiliation(s)
- Marc Schmidt
- Department of Dermatology, University of Würzburg, Josef-Schneider Str. 2, Würzburg, 97080, Germany.
| | - Matthias Goebeler
- Department of Dermatology, University of Würzburg, Josef-Schneider Str. 2, Würzburg, 97080, Germany
| | - Stefan F Martin
- Department of Dermatology, University Medical Center Freiburg, Hauptstraße 7, Freiburg, 79104, Germany
| |
Collapse
|
208
|
Meguro K, Nakagomi D, Suzuki K, Hosokawa J, Fukuta T, Yokota M, Maezawa Y, Suto A, Nakajima H. SOCS3 Expressed in M2 Macrophages Attenuates Contact Hypersensitivity by Suppressing MMP-12 Production. J Invest Dermatol 2015; 136:649-657. [PMID: 27015453 DOI: 10.1016/j.jid.2015.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2015] [Accepted: 11/17/2015] [Indexed: 11/18/2022]
Abstract
Numerous studies have clarified the immunological mechanisms of contact hypersensitivity (CHS). In addition, we have recently shown that M2 macrophages play key roles in the development of CHS by producing matrix metalloproteinase-12 (MMP-12). However, regulatory mechanisms of the elicitation phase in CHS remain largely unknown. To determine the roles of suppressor of cytokine signaling (SOCS) family members in M2 macrophages in the regulation of CHS, we investigated the expression of SOCS family members in M2 macrophages at the inflammatory sites of CHS. Transcriptome analysis revealed that among SOCS family members, SOCS3 was highly expressed in M2 macrophages at the site of CHS, and SOCS3 induction was reduced by IFN-? neutralization. 2,4-Dinitrofluorobenzene-induced CHS was significantly enhanced and prolonged in mice lacking SOCS3 expression in monocytes/macrophages (SOCS3(?/?) mice) compared with that in control mice. Importantly, expression of MMP-12 in M2 macrophages was significantly increased in SOCS3(?/?) mice at the site of CHS, and deletion of the MMP-12 gene reduced the exacerbated CHS in SOCS3(?/?) mice. Finally, IFN-? inhibited IL-4-induced MMP-12 expression in a SOCS3-dependent manner. Taken together, these results suggest that SOCS3 expressed in M2 macrophages is involved in the attenuation and/or resolution of CHS, presumably by suppressing MMP-12 production.
Collapse
Affiliation(s)
- Kazuyuki Meguro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daiki Nakagomi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Junichi Hosokawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadashi Fukuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaya Yokota
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Maezawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
209
|
Percutaneous exposure to high-dose hapten induces systemic immunosuppression through the inhibition of dendritic cell migration. J Dermatol Sci 2015; 81:136-40. [PMID: 26642795 DOI: 10.1016/j.jdermsci.2015.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/01/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
|
210
|
Jung SK, Choi DW, Kwon DA, Kim MJ, Seong KS, Shon DH. Oral Administration of Achyranthis radix Extract Prevents TMA-induced Allergic Contact Dermatitis by Regulating Th2 Cytokine and Chemokine Production in Vivo. Molecules 2015; 20:21584-96. [PMID: 26633349 PMCID: PMC6331862 DOI: 10.3390/molecules201219788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/16/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022] Open
Abstract
Allergic contact dermatitis (ACD) remains a major skin disease in many countries, necessitating the discovery of novel and effective anti-ACD agents. In this study, we investigated the preventive effects of Achyranthis radix extract (AcRE) on trimellitic anhydride (TMA)-induced dermatitis and the potential mechanism of action involved. Oral administration of AcRE and prednisolone (PS) significantly suppressed TMA-induced increases in ear and epidermal thickness, and IgE expression. In addition, abnormal expression of IL-1β and TNF-α protein and mRNA was also significantly attenuated by oral administration of AcRE. Treatment with AcRE also significantly suppressed TMA-induced IL-4 and IL-13 cytokines and mRNA expression in vivo. Moreover, AcRE strongly suppressed TMA-induced IL-4 and IL-5 production in draining lymph nodes, as well as OVA-induced IL-4 and IL-5 expression in primary cultured splenocytes. Interestingly, AcRE suppressed IL-4-induced STAT6 phosphorylation in both primary cultured splenocytes and HaCaT cells, and TMA-induced GATA3 mRNA expression ex vivo. AcRE also suppressed TMA-mediated CCL11 and IL-4-induced CCL26 mRNA expression and infiltration of CCR3 positive cells. The major compounds from AcRE were identified as gentisic acid (0.64 ± 0.2 μg/g dry weight of AcRE), protocatechuic acid (2.69 ± 0.1 μg/g dry weight of AcRE), 4-hydroxybenzoic acid (5.59 ± 0.3 μg/g dry weight of AcRE), caffeic acid (4.21 ± 0.1 μg/g dry weight of AcRE), and ferulic acid (14.78 ± 0.4 ± 0.3 μg/g dry weight of AcRE). Taken together, these results suggest that AcRE has potential for development as an agent to prevent and treat allergic contact dermatitis.
Collapse
Affiliation(s)
- Sung Keun Jung
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Seongnam 13539, Korea.
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea.
| | - Dae Woon Choi
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Seongnam 13539, Korea.
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea.
| | - Da-Ae Kwon
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Seongnam 13539, Korea.
| | - Min Jung Kim
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam 13539, Korea.
| | - Ki Seung Seong
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Seongnam 13539, Korea.
| | - Dong-Hwa Shon
- Research Group of Nutraceuticals for Metabolic Syndrome, Korea Food Research Institute, Seongnam 13539, Korea.
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea.
| |
Collapse
|
211
|
Integrin α E (CD103) Is Involved in Regulatory T-Cell Function in Allergic Contact Hypersensitivity. J Invest Dermatol 2015. [DOI: 10.1038/jid.2015.287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
212
|
Singleton H, Popple A, Gellatly N, Maxwell G, Williams J, Friedmann PS, Kimber I, Dearman RJ. Anti-hapten antibodies in response to skin sensitization. Contact Dermatitis 2015; 74:197-204. [PMID: 26560413 DOI: 10.1111/cod.12486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/07/2015] [Accepted: 09/21/2015] [Indexed: 02/04/2023]
Abstract
Whereas T lymphocyte (T cell) activation is the key event in the acquisition of skin sensitization and subsequent elicitation of allergic contact dermatitis, the humoral component of immune responses to organic contact allergens has received little consideration. There is evidence that, in experimental animals, topical exposure to potent contact allergens is associated with B cell activation and proliferation, and hapten-specific antibody production. However, there is very limited evidence available for anti-hapten antibody responses being induced following topical exposure of humans to contact allergens. Nevertheless, it is important to appreciate that there are almost no negative studies in which evidence for antibody production as the result of skin sensitization has been sought and not found. That is, there is absence of evidence rather than evidence of absence. Furthermore, exposure to chemical respiratory allergens, in which the skin has been implicated as a potential route of sensitization, results in anti-hapten antibody responses. It is proposed that skin sensitization to contact allergens will normally be accompanied by antibody production. The phenomenon is worthy of investigation, as anti-hapten antibodies could potentially influence and/or regulate the induction of skin sensitization. Moreover, such antibodies may provide an informative correlate of the extent to which sensitization has been acquired.
Collapse
Affiliation(s)
- Helen Singleton
- Department of Toxicology, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Amy Popple
- Department of Toxicology, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Nichola Gellatly
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Bedford, MK44 1LQ, UK
| | - Gavin Maxwell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Bedford, MK44 1LQ, UK
| | | | - Peter S Friedmann
- Division of Infection, Inflammation & Immunity, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ian Kimber
- Department of Toxicology, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Rebecca J Dearman
- Department of Toxicology, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
213
|
Aquaporin-9-expressing neutrophils are required for the establishment of contact hypersensitivity. Sci Rep 2015; 5:15319. [PMID: 26489517 PMCID: PMC4614820 DOI: 10.1038/srep15319] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
Aquaporin-9 (AQP9), a water/glycerol channel protein, is expressed in several immune cells including neutrophils; however, its role in immune response remains unknown. Here we show the involvement of AQP9 in hapten-induced contact hypersensitivity (CHS), as a murine model of skin allergic contact dermatitis, using AQP9 knockout (AQP9−/−) mice. First, the CHS response to hapten dinitrofluorobenzene (DNFB) was impaired in AQP9−/− mice compared with wild-type (WT) mice. Adoptive transfer of sensitized AQP9−/− draining lymph node (dLN) cells into WT recipients resulted in a reduced CHS response, indicating impaired sensitization in AQP9−/− mice. Second, administration of WT neutrophils into AQP9−/− mice during sensitization rescued the impaired CHS response. Neutrophil recruitment to dLNs upon hapten application was attenuated by AQP9 deficiency. Coincidentally, AQP9−/− neutrophils showed a reduced CC-chemokine receptor 7 (CCR7) ligand-induced migration efficacy, which was attributed to the attenuated recruitment of neutrophils to dLNs. Furthermore, we found that neutrophil deficiency, observed in AQP9−/− or neutrophil-depleted mice, decreased IL-17A production by dLN cells, which might be responsible for T cell activation during a subsequent CHS response. Taken together, these findings suggest that AQP9 is required for the development of sensitization during cutaneous acquired immune responses via regulating neutrophil function.
Collapse
|
214
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
215
|
Sawada Y, Honda T, Hanakawa S, Nakamizo S, Murata T, Ueharaguchi-Tanada Y, Ono S, Amano W, Nakajima S, Egawa G, Tanizaki H, Otsuka A, Kitoh A, Dainichi T, Ogawa N, Kobayashi Y, Yokomizo T, Arita M, Nakamura M, Miyachi Y, Kabashima K. Resolvin E1 inhibits dendritic cell migration in the skin and attenuates contact hypersensitivity responses. ACTA ACUST UNITED AC 2015; 212:1921-30. [PMID: 26438363 PMCID: PMC4612099 DOI: 10.1084/jem.20150381] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
Abstract
Resolvin E1 (RvE1) is a lipid mediator derived from ω3 polyunsaturated fatty acids that exerts potent antiinflammatory roles in several murine models. The antiinflammatory mechanism of RvE1 in acquired immune responses has been attributed to attenuation of cytokine production by dendritic cells (DCs). In this study, we newly investigated the effect of RvE1 on DC motility using two-photon microscopy in a contact hypersensitivity (CHS) model and found that RvE1 impaired DC motility in the skin. In addition, RvE1 attenuated T cell priming in the draining lymph nodes and effector T cell activation in the skin, which led to the reduced skin inflammation in CHS. In contrast, leukotriene B4 (LTB4) induced actin filament reorganization in DCs and increased DC motility by activating Cdc42 and Rac1 via BLT1, which was abrogated by RvE1. Collectively, our results suggest that RvE1 attenuates cutaneous acquired immune responses by inhibiting cutaneous DC motility, possibly through LTB4-BLT1 signaling blockade.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tetsuya Honda
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Hanakawa
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Nakamizo
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Teruasa Murata
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuri Ueharaguchi-Tanada
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sachiko Ono
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wataru Amano
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Saeko Nakajima
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gyohei Egawa
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Tanizaki
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Atsushi Otsuka
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akihiko Kitoh
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Teruki Dainichi
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Narihito Ogawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuichi Kobayashi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Makoto Arita
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Graduate School of Medical Life Science, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yoshiki Miyachi
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenji Kabashima
- Department of Dermatology and Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
216
|
Ono S, Kabashima K. Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). ALLERGO JOURNAL 2015. [DOI: 10.1007/s15007-015-0911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
217
|
Bernardi AI, Andersson A, Stubelius A, Grahnemo L, Carlsten H, Islander U. Selective estrogen receptor modulators in T cell development and T cell dependent inflammation. Immunobiology 2015; 220:1122-8. [DOI: 10.1016/j.imbio.2015.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/26/2015] [Accepted: 05/01/2015] [Indexed: 12/26/2022]
|
218
|
Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). ACTA ACUST UNITED AC 2015; 24:170-179. [PMID: 27069837 PMCID: PMC4792357 DOI: 10.1007/s40629-015-0065-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 12/22/2022]
Abstract
The skin is equipped with serial barriers that provide rapid and efficient protection against external intruders. Beneath the epidermal physical barriers of the stratum corneum and the tight junctions, the integrated immune systems in both the epidermis and the dermis act in a coordinated manner to protect the host. This “immunological” barrier is composed of various cells, including skin-resident cells, such as keratinocytes, dendritic cells, tissue-resident macrophages, resident memory T cells, mast cells, and innate lymphoid cells. Additionally, infiltrating memory T cells, monocytes, neutrophils, basophils, and eosinophils are recruited in support of the host immunity. In addition to discussing the role of each of these cellular populations, we describe the concept of skin associated lymphoid tissue (SALT), which reminds us that the skin is an important component of the lymphatic system. We further describe the newly discovered phenomenon of multiple cell gathering under skin inflammation, which can be referred to as inducible SALT (iSALT). iSALT contributes to our understanding of SALT by highlighting the importance of direct cell-cell interaction in skin immunity.
Collapse
|
219
|
Rocha-Perugini V, González-Granado JM. Nuclear envelope lamin-A as a coordinator of T cell activation. Nucleus 2015; 5:396-401. [PMID: 25482193 PMCID: PMC4164483 DOI: 10.4161/nucl.36361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nuclear lamins A/C control several critical cellular functions, e.g., chromatin organization, gene transcription, DNA replication, DNA damage responses, cell cycle progression, cell differentiation, and cell polarization during migration. However, few studies have addressed the role of lamins A/C in the control of the functions of immune cells. Recently, we have demonstrated that lamins A/C are induced in T cells upon antigen recognition. Lamins A/C enhance T cell responses by coupling the plasma membrane to the nucleus via the linker of nucleoskeleton and cytoskeleton (LINC) complex and the actin cytoskeleton. Here, we discuss the possible physiological relevance and functional context of lamin A/C in T cell activation and propose a model in which lamins A/C are key modulators of immune cell functions.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- a Servicio de Inmunología; Hospital Universitario de la Princesa; Instituto de Investigación Sanitaria de la Princesa; Madrid, Spain
| | | |
Collapse
|
220
|
Park HJ. Ethanol extract of Cordyceps militaris grown on germinated soybeans inhibits 2, 4-dinitrophenolfluorobenzene-induced allergic contact dermatitis. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
221
|
Ho KK, Campbell KL, Lavergne SN. Contact dermatitis: a comparative and translational review of the literature. Vet Dermatol 2015; 26:314-27, e66-7. [DOI: 10.1111/vde.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Karen K. Ho
- Veterinary Clinical Medicine; College of Veterinary Medicine; University of Illinois; 1008 W Hazelwood Dr Urbana IL 61802 USA
| | - Karen L. Campbell
- Veterinary Clinical Medicine; College of Veterinary Medicine; University of Illinois; 1008 W Hazelwood Dr Urbana IL 61802 USA
| | - Sidonie N. Lavergne
- Comparative Biosciences; College of Veterinary Medicine; University of Illinois; 2001 South Lincoln Av Urbana IL 61802 USA
| |
Collapse
|
222
|
Schmidt M, Goebeler M. Zur Immunologie von Metallallergien. J Dtsch Dermatol Ges 2015. [DOI: 10.1111/ddg.110_12673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marc Schmidt
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg; Deutschland
| | - Matthias Goebeler
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Würzburg; Deutschland
| |
Collapse
|
223
|
Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat Med 2015; 21:688-97. [PMID: 26121195 DOI: 10.1038/nm.3883] [Citation(s) in RCA: 399] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
Over the past decade, it has become clear that there is an important subset of memory T cells that resides in tissues-tissue-resident memory T (TRM) cells. There is an emerging understanding that TRM cells have a role in human tissue-specific immune and inflammatory diseases. Furthermore, the nature of the molecular signals that maintain TRM cells in tissues is the subject of much investigation. In addition, whereas it is logical for TRM cells to be located in barrier tissues at interfaces with the environment, these cells have also been found in brain, kidney, joint and other non-barrier tissues in humans and mice. Given the biology and behavior of these cells, it is likely that they have a role in chronic relapsing and remitting diseases of both barrier and non-barrier tissues. In this Review we discuss recent insights into the biology of TRM cells with a particular focus on their roles in disease, both proven and putative.
Collapse
Affiliation(s)
- Chang Ook Park
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
224
|
Jeon YD, Kee JY, Kim DS, Han YH, Kim SH, Kim SJ, Um JY, Hong SH. Effects of Ixeris dentata water extract and caffeic acid on allergic inflammation in vivo and in vitro. Altern Ther Health Med 2015; 15:196. [PMID: 26104582 PMCID: PMC4479232 DOI: 10.1186/s12906-015-0700-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/29/2015] [Indexed: 01/08/2023]
Abstract
Background Ixeris dentata Nakai has been used for the treatment of mithridatism, calculous, indigestion, pneumonia, hepatitis, and tumors in Korea, China, and Japan. However, the effect of a water extract of Ixeris dentata (ID) and its molecular mechanism on allergic inflammation has not been elucidated. In this study, we attempted to evaluate the effects of ID and its major compound caffeic acid on allergic inflammation in vivo and in vitro. Methods ID was applied to 2, 4-dinitrofluorobenzene (DNFB)-induced atopic dermatitis (AD)-like skin lesion mice and immune cell infiltration, cytokine production, and the activation of mitogen-activated protein kinases (MAPKs) were investigated. Moreover, the effect of ID on compound 48/80-induced anaphylactic shock was investigated in a mouse model. The human keratinocyte cell line (HaCaT cells) and human mast cells (HMC-1) were treated with ID or caffeic acid to investigate the effects on the production of chemokines and proinflammatory cytokines and on the activation of MAPKs. Results ID inhibited the serum levels of IgE and interleukin (IL)-1β in DNFB-induced AD-like skin lesion mouse models and suppressed anaphylactic shock in the mouse models. ID and caffeic acid inhibited the production of chemokines and adhesion molecules in HaCaT cells. In addition, ID reduced the release of tumor necrosis factor-α and IL-8 via the inhibition of MAPKs phosphorylation in HMC-1 cells. Conclusions These results suggest that ID is a potential therapeutic agent for allergic inflammatory diseases, including dermatitis.
Collapse
|
225
|
Abstract
Allergic contact hypersensitivity to metal allergens is a common health concern worldwide, greatly impacting affected individuals with regard to both quality of life and their ability to work. With an estimated 15-20 % of the Western population hypersensitive to at least one metal allergen, sensitization rates for metallic haptens by far outnumber those reported for other common triggers of allergic contact dermatitis such as fragrances and rubber. Unfortunately, the prevalence of metal-induced hypersensitivity remains high despite extensive legislative efforts to ban/reduce the content of allergy-causing metals in recreational and occupational products. Recently, much progress has been made regarding the perception mechanisms underlying the inflammatory responses to this unique group of contact allergens. This review summarizes recent advances in our understanding of this enigmatic disease. Particular emphasis is put on the mechanisms of innate immune activation and T cell activation by common metal allergens such as nickel, cobalt, palladium, and chromate.
Collapse
Affiliation(s)
- Marc Schmidt
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Germany
| |
Collapse
|
226
|
Høgsberg T, Thomsen BM, Serup J. Histopathology and immune histochemistry of red tattoo reactions. Interface dermatitis is the lead pathology, with increase in T-lymphocytes and Langerhans cells suggesting an allergic pathomechanism. Skin Res Technol 2015; 21:449-58. [PMID: 26031754 DOI: 10.1111/srt.12213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The majority of tattoo reactions are affiliated to red pigmented areas and often suspected to be allergic in nature. A sizeable series of biopsies of such reactions has not previously been performed. The aim of this study was to type and grade epidermal and dermal changes in tattoo reactions to red/red nuances by microscopy and immunochemistry relevant for the assessment of a possible allergic pathomechanism. METHODS Skin biopsies were taken from red tattoo reactions, graded by conventional microscopy and stained for T and B-lymphocytes, Langerhans cells, macrophages and tumour necrosis factor (TNF)-α. RESULTS The study included 19 biopsies from 19 patients. The culprit colours were red/pink (n = 15) and purple/bordeaux (n = 4). Interface dermatitis was clearly the lead pathology found in 78% of samples, overlapped with granulomatous (in 32%) and pseudolymphomatous reaction patterns (in 32%). Epidermal hyperkeratosis (in 89%) was common as was leakage of red pigment across the dermo-epidermal junction, with transepidermal elimination (in 28%). The dermal cellular infiltration was dominated by T-lymphocytes (in 100%), Langerhans cells (in 95%) and macrophages (in 100%). TNF-α was common. CONCLUSION The predominant histological pattern of chronic tattoo reactions in red/red nuances is interface dermatitis. T-lymphocytes and Langerhans cells are increased suggesting an allergic pathomechanism. TNF-α may contribute to reactions. In many cases, overlapping reactive patterns were identified.
Collapse
Affiliation(s)
- T Høgsberg
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen NV, Denmark
| | - B M Thomsen
- Department of Pathology, Bispebjerg University Hospital, Copenhagen NV, Denmark
| | - J Serup
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen NV, Denmark
| |
Collapse
|
227
|
Yamashita-Kanemaru Y, Takahashi Y, Wang Y, Tahara-Hanaoka S, Honda SI, Bernhardt G, Shibuya A, Shibuya K. CD155 (PVR/Necl5) Mediates a Costimulatory Signal in CD4+ T Cells and Regulates Allergic Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5644-53. [DOI: 10.4049/jimmunol.1401942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
|
228
|
Common clonal origin of central and resident memory T cells following skin immunization. Nat Med 2015; 21:647-53. [PMID: 25962122 DOI: 10.1038/nm.3860] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/14/2015] [Indexed: 12/14/2022]
Abstract
Central memory T (TCM) cells in lymph nodes (LNs) and resident memory T (TRM) cells in peripheral tissues have distinct roles in protective immunity. Both are generated after primary infections, but their clonal origins have been unclear. To address this question, we immunized mice through the skin with a protein antigen, a chemical hapten, or a non-replicating poxvirus. We then analyzed antigen-activated T cells from different tissues using high-throughput sequencing (HTS) of the gene encoding the T cell receptor (TCR) β-chain (Trb, also known as Tcrb) using CDR3 sequences to simultaneously track thousands of unique T cells. For every abundant TRM cell clone generated in the skin, an abundant TCM cell clone bearing the identical TCR was present in the LNs. Thus, antigen-reactive skin TRM and LN TCM cell clones were derived from a common naive T cell precursor after skin immunization, generating overlapping TCR repertoires. Although they bore the same TCR, TRM cells mediated rapid contact hypersensitivity responses, whereas TCM cells mediated delayed and attenuated responses. Studies in human subjects confirmed the generation of skin TRM cells in allergic contact dermatitis. Thus, immunization through skin simultaneously generates skin TRM and LN TCM cells in similar numbers from the same naive T cells.
Collapse
|
229
|
Ono S, Kabashima K. Proposal of inducible skin-associated lymphoid tissue (iSALT). Exp Dermatol 2015; 24:630-1. [DOI: 10.1111/exd.12716] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Sachiko Ono
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| |
Collapse
|
230
|
Weintraub GS, Lai IN, Kim CN. Review of allergic contact dermatitis: Scratching the surface. World J Dermatol 2015; 4:95-102. [DOI: 10.5314/wjd.v4.i2.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/28/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Contact dermatitis-including allergic contact dermatitis (ACD)-n and results in over four million lost work days per year in the United States alone. ACD is a classic example of a type IV delayed hypersensitivity reaction, and represents a significant burden on the health system, economy, and patient quality of life. Thorough history taking, clinical examination, histologic evaluation, and patch testing are keys to diagnosing contact dermatitis. Patch testing, especially with comprehensive and customized panels based on the patient’s exposure history, is particularly useful in identifying potential allergens in the case of allergic contact dermatitis. ACD management requires a combination of direct medical intervention, patient education, and appropriate environmental modification to prevent exposure to offending allergens in the home or workplace. Continuing advances in the study of ACD has led to an increased understanding of the disease processes, new methods for diagnosis, and improved management. This article reviews ACD-aiming to connect recent investigational data with the current clinical understanding of disease pathophysiology, diagnostic techniques, and management strategies.
Collapse
|
231
|
Paradigm shifts in mast cell and basophil biology and function: an emerging view of immune regulation in health and disease. Methods Mol Biol 2015; 1192:3-31. [PMID: 25149480 DOI: 10.1007/978-1-4939-1173-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological role of the mast cell and basophil has for many years remained enigmatic. In this chapter we briefly summarize some of the more recent studies that shed new light on the role of mast cells and basophils in health and disease. What we gain from these studies is a new appreciation for mast cells and basophils as sentinels in host defense and a further understanding that dysregulation of mast cell and basophil function can be a component of various diseases other than allergies. Perhaps, the most important insight reaped from this work is the increasing awareness that mast cells and basophils can function as immunoregulatory cells that modulate the immune response in health and disease. Collectively, the recent knowledge provides new challenges and opportunities towards the development of novel therapeutic strategies to augment host protection and modify disease through manipulation of mast cell and basophil function.
Collapse
|
232
|
Oral administration of paeoniflorin attenuates allergic contact dermatitis by inhibiting dendritic cell migration and Th1 and Th17 differentiation in a mouse model. Int Immunopharmacol 2015; 25:432-9. [DOI: 10.1016/j.intimp.2015.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 11/19/2022]
|
233
|
Nakamizo S, Egawa G, Tomura M, Sakai S, Tsuchiya S, Kitoh A, Honda T, Otsuka A, Nakajima S, Dainichi T, Tanizaki H, Mitsuyama M, Sugimoto Y, Kawai K, Yoshikai Y, Miyachi Y, Kabashima K. Dermal Vγ4 + γδ T Cells Possess a Migratory Potency to the Draining Lymph Nodes and Modulate CD8 + T-Cell Activity through TNF-α Production. J Invest Dermatol 2015; 135:1007-1015. [DOI: 10.1038/jid.2014.516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
|
234
|
Weighardt H, Förster I. Bcl-3 puts the brakes on contact hypersensitivity. Eur J Immunol 2015; 45:971-4. [PMID: 25707546 DOI: 10.1002/eji.201545524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/09/2022]
Abstract
B-cell lymphoma (Bcl)-3 is a nonclassical member of the IκB protein family known to interact with transcriptionally inactive NF-κB1 and NF-κB2 homodimers to modulate gene expression. Besides its action as an oncoprotein, Bcl-3 has been shown to have both proinflammatory and anti-inflammatory functions depending on the cell-type affected. In this issue of the European Journal of Immunology, Tassi et al. [Eur. J. Immunol. 2015. 45: 1059-1068] report that Bcl-3 inhibits the production of the proinflammatory chemokines CXCL9 and CXCL10 in keratinocytes, thereby restricting the influx of CD8(+) effector T cells in a mouse model of allergic contact dermatitis. In addition, mice with a global deficiency of Bcl-3 show enhanced ear swelling responses in the late phase of contact hypersensitivity responses. Besides keratinocytes, other radioresistant cell types appear to also utilize Bcl-3 to dampen the inflammatory response. This Commentary will discuss the evidence supporting Bcl-3 as a critical player in limiting inflammation during the later stages of contact hypersensitivity.
Collapse
Affiliation(s)
- Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; IUF Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
235
|
Fu RH, Tsai CW, Tsai RT, Liu SP, Chan TM, Ho YC, Lin HL, Chen YM, Hung HS, Chiu SC, Tsai CH, Wang YC, Shyu WC, Lin SZ. Irisflorentin Modifies Properties of Mouse Bone Marrow-Derived Dendritic Cells and Reduces the Allergic Contact Hypersensitivity Responses. Cell Transplant 2015; 24:573-88. [PMID: 25654487 DOI: 10.3727/096368915x687002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irisflorentin is an isoflavone component derived from the roots of Belamcanda chinensis (L.) DC. In traditional Chinese medicine, this herb has pharmacological properties to treat inflammatory disorders. Dendritic cells (DCs) are crucial modulators for the development of optimal T-cell immunity and maintenance of tolerance. Aberrant activation of DCs can induce harmful immune responses, and so agents that effectively improve DC properties have great clinical value. We herein investigated the effects of irisflorentin on lipopolysaccharide (LPS)-stimulated maturation of mouse bone marrow-derived DCs in vitro and in the contact hypersensitivity response (CHSR) in vivo. Our results demonstrated that treatment with up to 40 μM irisflorentin does not cause cellular toxicity. Irisflorentin significantly lessened the proinflammatory cytokine production (tumor necrosis factor-α, interleukin-6, and interleukin-12p70) by LPS-stimulated DCs. Irisflorentin also inhibited the expression of LPS-induced major histocompatibility complex class II and costimulatory molecules (CD40 and CD86) on LPS-stimulated DCs. In addition, irisflorentin diminished LPS-stimulated DC-elicited allogeneic T-cell proliferation. Furthermore, irisflorentin significantly interfered with LPS-induced activation of IκB kinase, c-Jun N-terminal kinase, and p38, as well as the nuclear translocation of NF-κB p65. Subsequently, treatment with irisflorentin obviously weakened 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity. These findings suggest new insights into the role of irisflorentin as an immunotherapeutic adjuvant through its capability to modulate the properties of DCs.
Collapse
Affiliation(s)
- Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, Asia University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Rong-Tzong Tsai
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Tzu-Min Chan
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| | - Yu-Chen Ho
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Hsin-Lien Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Yue-Mi Chen
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Huey-Shan Hung
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University, Taichung, Taiwan
| | - Yu-Chi Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin, Taiwan
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| |
Collapse
|
236
|
Nunomura S, Ohtsubo-Yoshioka M, Okayama Y, Terui T, Ra C. FcRγpromotes contact hypersensitivity to oxazolone without affecting the contact sensitisation process in B6 mice. Exp Dermatol 2015; 24:204-8. [DOI: 10.1111/exd.12622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Satoshi Nunomura
- Department of Dermatology; Nihon University School of Medicine; Tokyo Japan
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | | | - Yoshimichi Okayama
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - Tadashi Terui
- Department of Dermatology; Nihon University School of Medicine; Tokyo Japan
| | - Chisei Ra
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
- Asahi Hospital; Chiba Japan
- Department of Microbiology; Nihon University School of Medicine; Tokyo Japan
| |
Collapse
|
237
|
Tassi I, Rikhi N, Claudio E, Wang H, Tang W, Ha HL, Saret S, Kaplan DH, Siebenlist U. The NF-κB regulator Bcl-3 modulates inflammation during contact hypersensitivity reactions in radioresistant cells. Eur J Immunol 2015; 45:1059-1068. [PMID: 25616060 DOI: 10.1002/eji.201444994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
Abstract
Bcl-3 is an atypical member of the IκB family. Bcl-3 functions as a cofactor of p50/NF-κB1 or p52/NF-κB2 homodimers in nuclei, where it modulates NF-κB-regulated transcription in a context-dependent way. Bcl-3 has tumorigenic potential, is critical in host defense of pathogens, and has been reported to ameliorate or exacerbate inflammation, depending on disease model. However, cell-specific functions of Bcl-3 remain largely unknown. Here, we explored the role of Bcl-3 in a contact hypersensitivity (CHS) mouse model, which depends on the interplay between keratinocytes and immune cells. Bcl-3-deficient mice exhibited an exacerbated and prolonged CHS response to oxazolone. Increased inflammation correlated with higher production of chemokines CXCL2, CXCL9, and CXCL10, and consequently increased recruitment of neutrophils and CD8(+) T cells. BM chimera experiments indicated that the ability of Bcl-3 to reduce the CHS response depended on Bcl-3 activity in radioresistant cells. Specific ablation of Bcl-3 in keratinocytes resulted in increased production of CXCL9 and CXCL10 and sustained recruitment of specifically CD8(+) T cells. These findings identify Bcl-3 as a critical player during the later stage of the CHS reaction to limit inflammation via actions in radioresistant cells, including keratinocytes.
Collapse
Affiliation(s)
- Ilaria Tassi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nimisha Rikhi
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Estefania Claudio
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hongshan Wang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wanhu Tang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hye-Lin Ha
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sun Saret
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel H Kaplan
- Department of Dermatology, University of Minnesota, Minneapolis, MN, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
238
|
Otsuka A, Kabashima K. Mast cells and basophils in cutaneous immune responses. Allergy 2015; 70:131-40. [PMID: 25250718 DOI: 10.1111/all.12526] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 12/19/2022]
Abstract
Mast cells and basophils share some functions in common and are generally associated with T helper 2 (Th2) immune responses, but taking basophils as surrogate cells for mast cell research or vice versa for several decades is problematic. Thus far, their in vitro functions have been well studied, but their in vivo functions remained poorly understood. New research tools for their functional analysis in vivo have revealed previously unrecognized roles for mast cells and basophils in several skin disorders. Newly developed mast cell-deficient mice provided evidence that mast cells initiate contact hypersensitivity via activating dendritic cells. In addition, studies using basophil-deficient mice have revealed that basophils were responsible for cutaneous Th2 skewing to haptens and peptide antigens but not to protein antigens. Moreover, human basophils infiltrate different skin lesions and have been implicated in the pathogenesis of skin diseases ranging from atopic dermatitis to autoimmune diseases. In this review, we will discuss the recent advances related to mast cells and basophils in human and murine cutaneous immune responses.
Collapse
Affiliation(s)
- A. Otsuka
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - K. Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- PRESTO; Japan Science and Technology Agency; Kawaguchi Saitama Japan
| |
Collapse
|
239
|
Leiferman KM. Eosinophils and itch: Partners in crime or strange bedfellows? J Allergy Clin Immunol 2015; 135:488-90. [DOI: 10.1016/j.jaci.2014.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
240
|
Luo Y, Cai X, Liu S, Wang S, Nold-Petry CA, Nold MF, Bufler P, Norris D, Dinarello CA, Fujita M. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells. Proc Natl Acad Sci U S A 2014; 111:15178-83. [PMID: 25294929 PMCID: PMC4210310 DOI: 10.1073/pnas.1416714111] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IL-1 family member IL-37 limits innate inflammation in models of colitis and LPS-induced shock, but a role in adaptive immunity remains unknown. Here, we studied mice expressing human IL-37b isoform (IL-37tg) subjected to skin contact hypersensitivity (CHS) to dinitrofluorobenzene. CHS challenge to the hapten was significantly decreased in IL-37tg mice compared with wild-type (WT) mice (-61%; P < 0.001 at 48 h). Skin dendritic cells (DCs) were present and migrated to lymph nodes after antigen uptake in IL-37tg mice. When hapten-sensitized DCs were adoptively transferred to WT mice, antigen challenge was greatly impaired in mice receiving DCs from IL-37tg mice compared with those receiving DCs from WT mice (-60%; P < 0.01 at 48 h). In DCs isolated from IL-37tg mice, LPS-induced increase of MHC II and costimulatory molecule CD40 was reduced by 51 and 31%, respectively. In these DCs, release of IL-1β, IL-6, and IL-12 was reduced whereas IL-10 secretion increased (37%). Consistent with these findings, DCs from IL-37tg mice exhibited a lower ability to stimulate syngeneic and allogeneic naive T cells as well as antigen-specific T cells and displayed enhanced induction of T regulatory (Treg) cells (86%; P < 0.001) in vitro. Histological analysis of CHS skin in mice receiving hapten-sensitized DCs from IL-37tg mice revealed a marked reduction in CD8(+) T cells (-74%) but an increase in Treg cells (2.6-fold). Together, these findings reveal that DCs expressing IL-37 are tolerogenic, thereby impairing activation of effector T-cell responses and inducing Treg cells. IL-37 thus emerges as an inhibitor of adaptive immunity.
Collapse
Affiliation(s)
| | - Xiangna Cai
- Departments of Dermatology and Department of Plastic and Reconstruct Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou City 515041, People's Republic of China
| | | | - Sen Wang
- Departments of Dermatology and Department of Plastic and Reconstruct Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou City 515041, People's Republic of China
| | - Claudia A Nold-Petry
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Melbourne, VIC 3800, Australia
| | - Marcel F Nold
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Melbourne, VIC 3800, Australia
| | - Philip Bufler
- Children's Hospital, Ludwig-Maximilians University, 80539 Munich, Germany; and
| | - David Norris
- Departments of Dermatology and Denver Veterans Affairs Medical Center, Denver, CO 80220
| | | | - Mayumi Fujita
- Departments of Dermatology and Denver Veterans Affairs Medical Center, Denver, CO 80220
| |
Collapse
|
241
|
Demehri S, Cunningham TJ, Hurst EA, Schaffer A, Sheinbein DM, Yokoyama WM. Chronic allergic contact dermatitis promotes skin cancer. J Clin Invest 2014; 124:5037-41. [PMID: 25295539 DOI: 10.1172/jci77843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Allergic contact dermatitis (ACD) is well recognized as an adverse event associated with implantable medical devices that contain allergenic materials like nickel; however, other cutaneous consequences of chronic exposure to allergens in implanted devices are not well understood. Here, we present a clinical case of Marjolin's ulcer, an invasive squamous cell carcinoma (SCC) that developed in response to chronic ACD caused by an orthopedic implant. We used a standard murine model of contact hypersensitivity to determine whether chronic ACD promotes skin carcinogenesis. Chronic application of 1-fluoro-2,4-dinitrobenzene (DNFB) to carcinogen-treated skin led to the development of papillomas and aggressive SCC. DNFB-driven chronic ACD was marked by type 2 inflammation, which mediated skin carcinogenesis, as mice unable to mount an inflammatory response were less likely to develop skin tumors. Importantly, we found similar tumor-promoting inflammation surrounding the SCC in our patient. Our findings demonstrate that chronic ACD caused by constant exposure to an allergen can promote tumorigenesis at skin sites with preexisting cancer-initiated cells. Moreover, our results suggest that patients with implantable devices placed in close proximity to the skin should be monitored for ACD and highlight the importance of patch testing prior to the placement of such devices.
Collapse
|
242
|
|
243
|
Natsuaki Y, Egawa G, Nakamizo S, Ono S, Hanakawa S, Okada T, Kusuba N, Otsuka A, Kitoh A, Honda T, Nakajima S, Tsuchiya S, Sugimoto Y, Ishii KJ, Tsutsui H, Yagita H, Iwakura Y, Kubo M, Ng LG, Hashimoto T, Fuentes J, Guttman-Yassky E, Miyachi Y, Kabashima K. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat Immunol 2014; 15:1064-9. [DOI: 10.1038/ni.2992] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
|
244
|
Toll-like receptor 3 increases allergic and irritant contact dermatitis. J Invest Dermatol 2014; 135:411-417. [PMID: 25229251 DOI: 10.1038/jid.2014.402] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022]
Abstract
There is increasing recognition of the role of Toll-like receptor 3 (TLR3) in noninfectious inflammatory diseases, but the function of TLR3 in inflammatory skin diseases is unclear. We investigated the functions of TLR3 in allergic and irritant contact dermatitis (ICD). The contact hypersensitivity (CHS) response was lower in Toll-like receptor 3 knockout (Tlr3 KO) mice, and was greater in TLR3 transgenic (Tg) mice than in wild-type (WT) mice after challenge with 2,4,6-trinitro-1-chlorobenzene. Adoptive transfer of immunized lymph node cells from Tlr3 KO mice induced CHS in WT recipients. In contrast, adoptive transfer of those from WT mice did not fully induce CHS in Tlr3 KO recipients. The ICD reaction following croton oil application was lower in Tlr3 KO mice, and was greater in TLR3 Tg mice than in WT mice. Maturation, migration, and antigen presentation of dendritic cells and proliferation of lymphocytes between WT mice and Tlr3 KO mice were comparable. These results show that TLR3 enhances antigen-independent skin inflammation in the elicitation phase of allergic contact dermatitis and in ICD.
Collapse
|
245
|
Nomura T, Kabashima K, Miyachi Y. The panoply of αβT cells in the skin. J Dermatol Sci 2014; 76:3-9. [PMID: 25190363 DOI: 10.1016/j.jdermsci.2014.07.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/16/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022]
Abstract
Skin protects body from continual attack by microbial pathogens and environmental factors. Such barrier function of skin is achieved by multiple components including immune system, which is mainly regulated by lymphocytes. T lymphocytes (T cells) that express T cell receptor (TCR) α and β chains (αβT cells) control the strength and the type of immune response. CD4T cell population consists of helper T (Th) cell-subsets and immunosuppressive regulatory T (Treg) cells. Th1 cells produce IFN-γ and protect against intracellular pathogens. Th2 cells produce IL-4 family cytokines and participate in allergic skin diseases, including atopic dermatitis (AD). Th17 cells secrete IL-17, recruit granulocytes to fight against extracellular microorganisms, and play a role in psoriasis and AD. Th22 cells produce IL-22 that activates epithelial cells and mediates acanthosis in psoriasis and AD. On the other hand, Foxp3+ Treg cells attenuate immune responses partly via TGF-β or IL-10. Tissue resident memory T (Trm) cells in the skin-most of which are epidermal CD8T cells-constitute the first line of the defense against repeated infections. CD8 T cells are also engaged in psoriasis, lichen planus, and drug eruptions. Skin harbors innate-like αβT cells such as natural killer T (NKT) cells as well, whose function is not fully revealed. Understanding these αβT cells helps to comprehend skin diseases.
Collapse
Affiliation(s)
- Takashi Nomura
- Ijinkai Takeda General Hospital, Fushimi-ku, Kyoto, Japan; Department of Dermatology, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | - Yoshiki Miyachi
- Department of Dermatology, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
246
|
Gonçalo M, Martins J, Silva A, Neves B, Figueiredo A, Cruz T, Lopes C. Systemic drugs inducing non-immediate cutaneous adverse reactions and contact sensitizers evoke similar responses in THP-1 cells. J Appl Toxicol 2014; 35:398-406. [PMID: 25091725 DOI: 10.1002/jat.3033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Contact sensitizers induce phenotypic and functional changes in dendritic cells (DC) that enhance their antigen-presenting capacity and, ultimately, modulate the T cell response. To evaluate if there is a similar effect of drugs causing T-cell-mediated cutaneous adverse drug reactions (CADR), we studied the in vitro effect of drugs on THP-1 cells, a cell line widely used to evaluate the early molecular and cellular events triggered by contact sensitizers. The effect of allopurinol, oxypurinol, ampicillin, amoxicillin, carbamazepine and sodium valproate, at EC30 concentrations, was evaluated on p38 MAPK activation, by Western Blot, and on the expression of genes coding for DC maturation markers, pro-inflammatory cytokine/chemokines and hemeoxygenase 1 (HMOX1), by real-time RT-PCR. Results were compared with lipopolysaccharide (LPS), a DC maturation stimulus, and the strong contact sensitizer, 1-fluoro-2,4-dinitrobenzene (DNFB). All drugs studied significantly upregulated HMOX1 gene transcription and all, except the anticonvulsants, also upregulated IL8. Allopurinol and oxypurinol showed the most intense effect, in a magnitude similar to DNFB and superior to betalactams. Transcription of CD40, IL12B and CXCL10 genes by drugs was more irregular. Moreover, like DNFB, all drugs activated p38 MAPK, although significantly only for oxypurinol. Like contact sensitizers, drugs that cause non-immediate CADR activate THP-1 cells in vitro, using different signalling pathways and affecting gene transcription with an intensity that may reflect the frequency and severity of the CADR they cause. Direct activation of antigen-presenting DC by systemic drugs may be an important early step in the pathophysiology of non-immediate CADR.
Collapse
Affiliation(s)
- Margarida Gonçalo
- Department of Dermatology, University Hospital and Faculty of Medicine, University of Coimbra, 3000-075, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
247
|
Nakajima S, Kitoh A, Egawa G, Natsuaki Y, Nakamizo S, Moniaga CS, Otsuka A, Honda T, Hanakawa S, Amano W, Iwakura Y, Nakae S, Kubo M, Miyachi Y, Kabashima K. IL-17A as an Inducer for Th2 Immune Responses in Murine Atopic Dermatitis Models. J Invest Dermatol 2014; 134:2122-2130. [DOI: 10.1038/jid.2014.51] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 12/03/2013] [Accepted: 12/24/2013] [Indexed: 12/12/2022]
|
248
|
Dhingra N, Shemer A, Correa da Rosa J, Rozenblit M, Fuentes-Duculan J, Gittler JK, Finney R, Czarnowicki T, Zheng X, Xu H, Estrada YD, Cardinale I, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E. Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J Allergy Clin Immunol 2014; 134:362-72. [DOI: 10.1016/j.jaci.2014.03.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 01/08/2023]
|
249
|
Yoshiki R, Kabashima K, Honda T, Nakamizo S, Sawada Y, Sugita K, Yoshioka H, Ohmori S, Malissen B, Tokura Y, Nakamura M. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing γδ T cells. J Invest Dermatol 2014; 134:1912-1921. [PMID: 24569709 DOI: 10.1038/jid.2014.98] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/26/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Abstract
Psoriasis is a common chronic inflammatory skin disease that involves dysregulated interplay between immune cells and keratinocytes. Recently, it has been reported that IL-23 induces CCR6+ γδ T cells, which have the pivotal role in psoriasis-like skin inflammation in mice of producing IL-17A and IL-22. Langerhans cells (LCs) are a subset of dendritic cells that reside in the epidermis and regulate immune responses. The role of LCs has been extensively investigated in contact hypersensitivity, but their role in psoriasis remains to be clarified. In this study, we focused on Th17-related factors and assessed the role of LCs and γδ T cells in the development of psoriasis using a mouse psoriasis model triggered by topical application of imiquimod (IMQ). LC depletion by means of diphtheria toxin (DT) in Langerin DT receptor-knocked-in mice suppressed hyperkeratosis, parakeratosis, and ear swelling in the IMQ-treated regions. In addition, LC-depleted mice showed decreased levels of Th17-related cytokines in IMQ-treated skin lesions. Moreover, the IMQ-treated skin of LC-depleted mice showed a decreased number of IL-17A-producing CCR6+ γδ T cells. These results suggest that LCs are required for the development of psoriasis-like lesions induced by IMQ in mice.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Aminoquinolines/pharmacology
- Animals
- Dermatitis, Contact/immunology
- Disease Models, Animal
- Imiquimod
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-23 Subunit p19/genetics
- Interleukin-23 Subunit p19/immunology
- Interleukin-23 Subunit p19/metabolism
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/metabolism
- Langerhans Cells/cytology
- Langerhans Cells/immunology
- Langerhans Cells/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred C57BL
- Organ Culture Techniques
- Psoriasis/chemically induced
- Psoriasis/immunology
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CCR6/immunology
- Receptors, CCR6/metabolism
- Skin/cytology
- Skin/immunology
- Transplantation Chimera/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Ryutaro Yoshiki
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | - Tetsuya Honda
- Department of Dermatology, Kyoto University, Kyoto, Japan
| | | | - Yu Sawada
- Department of Dermatology, Kyoto University, Kyoto, Japan
| | - Kazunari Sugita
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Haruna Yoshioka
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shun Ohmori
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale U631, Centre National de la Recherche Scientifique UMR6102, Université de la Méditerrannée, Marseille, France
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Motonobu Nakamura
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
250
|
Hendel A, Hsu I, Granville DJ. Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability. J Transl Med 2014; 94:716-25. [PMID: 24791744 PMCID: PMC4074428 DOI: 10.1038/labinvest.2014.62] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 12/22/2022] Open
Abstract
The formation of unstable, leaky neovessels underlies the pathogenesis of many chronic inflammatory diseases. Granzyme B (GZMB) is an immune-derived serine protease that accumulates in the extracellular matrix (ECM) during chronic inflammation and is capable of cleaving fibronectin (FN). Vascular endothelial growth factor (VEGF) is a potent vascular permeabilizing agent that is sequestered in the ECM through its interaction with FN. As GZMB levels are elevated in chronic inflammatory diseases that are associated with increased vascular permeability, the role of GZMB in the regulation of VEGF bioavailability and vascular permeability were assessed. GZMB was added to either VEGF bound to FN or VEGF bound to endothelial cell (EC)-derived ECM. Supernatants containing released VEGF were assessed to determine VEGF activity by treating EC and evaluating VEGF receptor-2 (VEGFR2) phosphorylation. GZMB released VEGF from both FN and from EC-derived matrix, whereas GZMB inhibition prevented FN cleavage and VEGF release. GZMB-mediated VEGF release resulted in significant phosphorylation of VEGFR2. The role of GZMB-mediated VEGF release in altering vascular permeability was also assessed in vivo using Miles/Evans blue permeability assay. GZMB induced a significant VEGF-dependent increase in vascular permeability in vivo that was reduced in the presence of an anti-VEGF-neutralizing antibody. Inflammatory-mediated vascular leakage was also assessed in GZMB-KO mice using a delayed-type hypersensitivity model. GZMB-KO mice exhibited reduced microvascular leakage compared with C57\B6 controls. GZMB increases vascular permeability in part through the proteolytic release of ECM-sequestered VEGF, leading to VEGFR2 activation and increased vascular permeability in vivo. These findings present a novel role for GZMB as a modulator of vascular response during chronic inflammation.
Collapse
Affiliation(s)
- Alon Hendel
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ivy Hsu
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David J. Granville
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada,Corresponding author: David J. Granville, Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia. Rm 166, Burrard Building, 1081 Burrard Street, Vancouver, BC. V6Z 1Y6, Canada. Phone: (604) 806-9267, Fax: (604) 806-9274,
| |
Collapse
|