201
|
Liu H, Jia L, Yu H. Phospho-H2A and cohesin specify distinct tension-regulated Sgo1 pools at kinetochores and inner centromeres. Curr Biol 2013; 23:1927-33. [PMID: 24055156 DOI: 10.1016/j.cub.2013.07.078] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/07/2013] [Accepted: 07/25/2013] [Indexed: 12/11/2022]
Abstract
Accurate chromosome segregation requires coordination between the dissolution of sister-chromatid cohesion and the establishment of proper kinetochore-microtubule attachment. During mitosis, sister-chromatid cohesion at centromeres enables the biorientation of and tension across sister kinetochores. The complex between shugoshin and protein phosphatase 2A (Sgo1-PP2A) localizes to centromeres in mitosis, binds to cohesin in a reaction requiring Cdk-dependent phosphorylation of Sgo1, dephosphorylates cohesin-bound sororin, and protects a centromeric pool of cohesin from mitotic kinases and the cohesin inhibitor Wapl. Cleavage of centromeric cohesin by separase allows sister chromatids connected to microtubules from opposing poles to be evenly partitioned into daughter cells. The centromeric localization of Sgo1 requires histone H2A phosphorylation at T120 (H2A-pT120) by the kinase Bub1. The exact role of H2A-pT120 in Sgo1 regulation is, however, unclear. Here, we show that cohesin and H2A-pT120 specify two distinct pools of Sgo1-P2A at inner centromeres and kinetochores, respectively, in human cells. Bub1 inactivation delocalizes cohesin-Sgo1 to chromosome arms. Kinetochore tension triggers Sgo1 dephosphorylation and redistributes Sgo1 from inner centromeres to kinetochores. Incomplete Sgo1 redistribution causes chromosome nondisjunction. Our study suggests that Bub1-mediated H2A phosphorylation penetrates kinetochores and that this histone mark contributes to a tension-sensitive Sgo1-based molecular switch for chromosome segregation.
Collapse
Affiliation(s)
- Hong Liu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | | | | |
Collapse
|
202
|
Lee J. Roles of cohesin and condensin in chromosome dynamics during mammalian meiosis. J Reprod Dev 2013; 59:431-6. [PMID: 24162807 PMCID: PMC3934126 DOI: 10.1262/jrd.2013-068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 12/16/2022] Open
Abstract
Meiosis is a key step for sexual reproduction in which chromosome number is halved by two successive meiotic divisions after a single round of DNA replication. In the first meiotic division (meiosis I), homologous chromosomes pair, synapse, and recombine with their partners in prophase I. As a result, homologous chromosomes are physically connected until metaphase I and then segregated from each other at the onset of anaphase I. In the subsequent second meiotic division (meiosis II), sister chromatids are segregated. Chromosomal abnormality arising during meiosis is one of the major causes of birth defects and congenital disorders in mammals including human and domestic animals. Hence understanding of the mechanism underlying these unique chromosome behavior in meiosis is of great importance. This review focuses on the roles of cohesin and condensin, and their regulation in chromosome dynamics during mammalian meiosis.
Collapse
Affiliation(s)
- Jibak Lee
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
203
|
Hinshaw SM, Harrison SC. An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Rep 2013; 5:29-36. [PMID: 24075991 PMCID: PMC3888643 DOI: 10.1016/j.celrep.2013.08.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/21/2013] [Accepted: 08/16/2013] [Indexed: 01/12/2023] Open
Abstract
Accurate segregation of genetic material in eukaryotes relies on the kinetochore, a multiprotein complex that connects centromeric DNA with microtubules. In yeast and humans, two proteins-Mif2/CENP-C and Chl4/CNEP-N-interact with specialized centromeric nucleosomes and establish distinct but cross-connecting axes of chromatin-microtubule linkage. Proteins recruited by Chl4/CENP-N include a subset that regulates chromosome transmission fidelity. We show that Chl4 and a conserved member of this subset, Iml3, both from Saccharomyces cerevisiae, form a stable protein complex that interacts with Mif2 and Sgo1. We have determined the structures of an Iml3 homodimer and an Iml3-Chl4 heterodimer, which suggest a mechanism for regulating the assembly of this functional axis of the kinetochore. We propose that at the core centromere, the Chl4-Iml3 complex participates in recruiting factors, such as Sgo1, that influence sister chromatid cohesion and encourage sister kinetochore biorientation.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
204
|
Rudra S, Skibbens RV. Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PLoS One 2013; 8:e75435. [PMID: 24086532 PMCID: PMC3784445 DOI: 10.1371/journal.pone.0075435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
The conserved family of cohesin proteins that mediate sister chromatid cohesion requires Scc2, Scc4 for chromatin-association and Eco1/Ctf7 for conversion to a tethering competent state. A popular model, based on the notion that cohesins form huge ring-like structures, is that Scc2, Scc4 function is essential only during G1 such that sister chromatid cohesion results simply from DNA replisome passage through pre-loaded cohesin rings. In such a scenario, cohesin deposition during G1 is temporally uncoupled from Eco1-dependent establishment reactions that occur during S-phase. Chl1 DNA helicase (homolog of human ChlR1/DDX11 and BACH1/BRIP1/FANCJ helicases implicated in Fanconi anemia, breast and ovarian cancer and Warsaw Breakage Syndrome) plays a critical role in sister chromatid cohesion, however, the mechanism through which Chl1 promotes cohesion remains poorly understood. Here, we report that Chl1 promotes Scc2 loading unto DNA such that both Scc2 and cohesin enrichment to chromatin are defective in chl1 mutant cells. The results further show that both Chl1 expression and chromatin-recruitment are tightly regulated through the cell cycle, peaking during S-phase. Importantly, kinetic ChIP studies reveals that Chl1 is required for Scc2 chromatin-association specifically during S-phase, but not during G1. Despite normal chromatin enrichment of both Scc2 and cohesin during G1, chl1 mutant cells exhibit severe chromosome segregation and cohesion defects--revealing that G1-loaded cohesins is insufficient to promote cohesion. Based on these findings, we propose a new model wherein S-phase cohesin loading occurs during DNA replication and in concert with both cohesion establishment and chromatin assembly reactions--challenging the notion that DNA replication fork navigates through or around pre-loaded cohesin rings.
Collapse
Affiliation(s)
- Soumya Rudra
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
205
|
Yin FX, Li GP, Bai CL, Liu Y, Wei ZY, Liang CG, Bunch TD, Zan LS. SGO1 maintains bovine meiotic and mitotic centromeric cohesions of sister chromatids and directly affects embryo development. PLoS One 2013; 8:e73636. [PMID: 24019931 PMCID: PMC3760824 DOI: 10.1371/journal.pone.0073636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/19/2013] [Indexed: 12/19/2022] Open
Abstract
Shugoshin (SGO) is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s) in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV) to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s) of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.
Collapse
Affiliation(s)
- Feng-Xia Yin
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, China
| | - Guang-Peng Li
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, China
- * E-mail:
| | - Chun-Ling Bai
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhu-Ying Wei
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, China
| | - Cheng-Guang Liang
- The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot, China
| | - Thomas D. Bunch
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
206
|
Zamariola L, De Storme N, Tiang CL, Armstrong SJ, Franklin FCH, Geelen D. SGO1 but not SGO2 is required for maintenance of centromere cohesion in Arabidopsis thaliana meiosis. PLANT REPRODUCTION 2013; 26:197-208. [PMID: 23884434 DOI: 10.1007/s00497-013-0231-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/11/2013] [Indexed: 05/23/2023]
Abstract
Shugoshin is a protein conserved in eukaryotes and protects sister chromatid cohesion at centromeres in meiosis. In our study, we identified the homologs of SGO1 and SGO2 in Arabidopsis thaliana. We show that AtSGO1 is necessary for the maintenance of centromere cohesion in meiosis I since atsgo1 mutants display premature separation of sister chromatids starting from anaphase I. Furthermore, we show that the localization of the specific centromeric cohesin AtSYN1 is not affected in atsgo1, suggesting that SGO1 centromere cohesion maintenance is not mediated by protection of SYN1 from cleavage. Finally, we show that AtSGO2 is dispensable for both meiotic and mitotic cell progression in Arabidopsis.
Collapse
Affiliation(s)
- L Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
207
|
Wijnker E, Schnittger A. Control of the meiotic cell division program in plants. PLANT REPRODUCTION 2013; 26:143-58. [PMID: 23852379 PMCID: PMC3747318 DOI: 10.1007/s00497-013-0223-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/23/2013] [Indexed: 05/02/2023]
Abstract
While the question of why organisms reproduce sexually is still a matter of controversy, it is clear that the foundation of sexual reproduction is the formation of gametes with half the genomic DNA content of a somatic cell. This reduction in genomic content is accomplished through meiosis that, in contrast to mitosis, comprises two subsequent chromosome segregation steps without an intervening S phase. In addition, meiosis generates new allele combinations through the compilation of new sets of homologous chromosomes and the reciprocal exchange of chromatid segments between homologues. Progression through meiosis relies on many of the same, or at least homologous, cell cycle regulators that act in mitosis, e.g., cyclin-dependent kinases and the anaphase-promoting complex/cyclosome. However, these mitotic control factors are often differentially regulated in meiosis. In addition, several meiosis-specific cell cycle genes have been identified. We here review the increasing knowledge on meiotic cell cycle control in plants. Interestingly, plants appear to have relaxed cell cycle checkpoints in meiosis in comparison with animals and yeast and many cell cycle mutants are viable. This makes plants powerful models to study meiotic progression and allows unique modifications to their meiotic program to develop new plant-breeding strategies.
Collapse
Affiliation(s)
- Erik Wijnker
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
208
|
Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T. Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS One 2013; 8:e68310. [PMID: 23950867 PMCID: PMC3738567 DOI: 10.1371/journal.pone.0068310] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome), namely Triticumturgidum L. (AABB genome) and Aegilopstauschii Coss. (DD genome). An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL) analysis showed that (1) production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2) first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3) six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii's ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated that the genetic mechanisms for hybrid genome doubling could be studied based on the intrinsic natural variation that exists in the parental species.
Collapse
Affiliation(s)
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Yasuyo Ashida
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Miyuki Nitta
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Hisashi Tsujimoto
- Laboratory of Molecular Breeding, Arid Land Research Center, Tottori University, Tottori-shi, Tottori, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Taihachi Kawahara
- Laboratory of Crop Evolution, Plant Germ-plasm Institute, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, Japan
| |
Collapse
|
209
|
Potential role of meiosis proteins in melanoma chromosomal instability. J Skin Cancer 2013; 2013:190109. [PMID: 23840955 PMCID: PMC3694528 DOI: 10.1155/2013/190109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/21/2013] [Indexed: 12/05/2022] Open
Abstract
Melanomas demonstrate chromosomal instability (CIN). In fact, CIN can be used to differentiate melanoma from benign nevi. The exact molecular mechanisms that drive CIN in melanoma have yet to be fully elucidated. Cancer/testis antigens are a unique group of germ cell proteins that are found to be primarily expressed in melanoma as compared to benign nevi. The abnormal expression of these germ cell proteins, normally expected only in the testis and ovaries, in somatic cells may lead to interference with normal cellular pathways. Germ cell proteins that may be particularly critical in CIN are meiosis proteins. Here, we review pathways unique to meiosis with a focus on how the aberrant expression of meiosis proteins in normal mitotic cells “meiomitosis” could impact chromosomal instability in melanoma and other cancers.
Collapse
|
210
|
Wassmann K. Sister chromatid segregation in meiosis II: deprotection through phosphorylation. Cell Cycle 2013; 12:1352-9. [PMID: 23574717 DOI: 10.4161/cc.24600] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Meiotic divisions (meiosis I and II) are specialized cell divisions to generate haploid gametes. The first meiotic division with the separation of chromosomes is named reductional division. The second division, which takes place immediately after meiosis I without intervening S-phase, is equational, with the separation of sister chromatids, similar to mitosis. This meiotic segregation pattern requires the two-step removal of the cohesin complex holding sister chromatids together: cohesin is removed from chromosome arms that have been subjected to homologous recombination in meiosis I and from the centromere region in meiosis II. Cohesin in the centromere region is protected from removal in meiosis I, but this protection has to be removed--deprotected--for sister chromatid segregation in meiosis II. Whereas the mechanisms of cohesin protection are quite well understood, the mechanisms of deprotection have been largely unknown until recently. In this review I summarize our current knowledge on cohesin deprotection.
Collapse
|
211
|
Qi ST, Wang ZB, Ouyang YC, Zhang QH, Hu MW, Huang X, Ge Z, Guo L, Wang YP, Hou Y, Schatten H, Sun QY. Overexpression of SETβ, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocytes. J Cell Sci 2013; 126:1595-1603. [PMID: 23444375 DOI: 10.1242/jcs.116541] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chromosome segregation in mammalian oocyte meiosis is an error-prone process, and any mistake in this process may result in aneuploidy, which is the main cause of infertility, abortion and many genetic diseases. It is now well known that shugoshin and protein phosphatase 2A (PP2A) play important roles in the protection of centromeric cohesion during the first meiosis. PP2A can antagonize the phosphorylation of rec8, a member of the cohesin complex, at the centromeres and thus prevent cleavage of rec8 and so maintain the cohesion of chromatids. SETβ is a protein that physically interacts with shugoshin and inhibits PP2A activity. We thus hypothesized that SETβ might regulate cohesion protection and chromosome segregation during oocyte meiotic maturation. Here we report for the first time the expression, subcellular localization and functions of SETβ during mouse oocyte meiosis. Immunoblotting analysis showed that the expression level of SETβ was stable from the germinal vesicle stage to the MII stage of oocyte meiosis. Immunofluorescence analysis showed SETβ accumulation in the nucleus at the germinal vesicle stage, whereas it was targeted mainly to the inner centromere area and faintly localized to the interchromatid axes from germinal vesicle breakdown to MI stages. At the MII stage, SETβ still localized to the inner centromere area, but could relocalize to kinetochores in a process perhaps dependent on the tension on the centromeres. SETβ partly colocalized with PP2A at the inner centromere area. Overexpression of SETβ in mouse oocytes caused precocious separation of sister chromatids, but depletion of SETβ by RNAi showed little effects on the meiotic maturation process. Taken together, our results suggest that SETβ, even though it localizes to centromeres, might not be essential for chromosome separation during mouse oocyte meiotic maturation, although its forced overexpression causes premature chromatid separation.
Collapse
Affiliation(s)
- Shu-Tao Qi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Novel mutation predicted to disrupt SGOL1 protein function. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2013. [DOI: 10.1016/j.ejmhg.2012.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
213
|
Equilibrina I, Matsunaga S, Morimoto A, Hashimoto T, Uchiyama S, Fukui K. ASURA (PHB2) interacts with Scc1 through chromatin. Cytogenet Genome Res 2013; 139:225-33. [PMID: 23548868 DOI: 10.1159/000350004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
Sister chromatid cohesion mediated by the cohesin complex is essential for faithful chromosome segregation. Previously we reported that PHB2 (prohibitin2/ASURA), a multifunctional protein, has a role in sister chromatid cohesion. Nevertheless, how ASURA is involved in sister chromatid cohesion still remains unclear. The present co-immunoprecipitation analysis reveals that ASURA interacts with cohesin subunit Scc1 in vivo. We show that ASURA associates with chromatin in a similar manner as Scc1 throughout the cell cycle. Furthermore, our observation using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system indicates that ASURA is important for cohesin maintenance at early mitosis. We have also identified that the conserved PHB domain is responsible for chromatin targeting of ASURA. Our results suggest that the regulation of sister chromatid cohesion is mediated by ASURA binding to chromatin, where ASURA might be involved in cohesin protection through ASURA-Scc1 interactions.
Collapse
Affiliation(s)
- I Equilibrina
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
214
|
Abstract
One of the key features of meiosis is that shugoshin in complex with protein phosphatase 2A (PP2A) protects centromeric cohesin during meiosis I, but not during meiosis II. A new model suggests that a PP2A inhibitor mediates deprotection of centromeric cohesin during meiosis II.
Collapse
|
215
|
Chatterjee A, Zakian S, Hu XW, Singleton MR. Structural insights into the regulation of cohesion establishment by Wpl1. EMBO J 2013; 32:677-87. [PMID: 23395900 PMCID: PMC3590988 DOI: 10.1038/emboj.2013.16] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/10/2013] [Indexed: 11/08/2022] Open
Abstract
Correct segregation of duplicated chromosomes to daughter cells during mitosis requires the action of the cohesin complex. This tripartite ring-shaped molecule is involved in holding replicated sister chromatids together from S phase until anaphase onset. Establishment of stable cohesion involves acetylation of the Smc3 component of cohesin during replication by the Eco1 acetyltransferase. This has been proposed to antagonise the activity of another member of the cohesin complex, Wpl1. Here, we describe the X-ray structure of the conserved Wapl domain, and demonstrate that it binds the ATPase head of the Smc3 protein. We present data that suggest that Wpl1 may be involved in regulating the ATPase activity of cohesin, and that this may be subject to the acetylation state of Smc3. In addition, we present a structure of the Wapl domain bound to a functionally relevant segment of the Smc3 ATPase.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Macromolecular Structure and Function Laboratory, Cancer Research UK, London Research Institute, London, UK
| | - Silva Zakian
- Macromolecular Structure and Function Laboratory, Cancer Research UK, London Research Institute, London, UK
| | - Xiao-Wen Hu
- Macromolecular Structure and Function Laboratory, Cancer Research UK, London Research Institute, London, UK
| | - Martin R Singleton
- Macromolecular Structure and Function Laboratory, Cancer Research UK, London Research Institute, London, UK
| |
Collapse
|
216
|
Schvarzstein M, Pattabiraman D, Bembenek JN, Villeneuve AM. Meiotic HORMA domain proteins prevent untimely centriole disengagement during Caenorhabditis elegans spermatocyte meiosis. Proc Natl Acad Sci U S A 2013; 110:E898-907. [PMID: 23401519 PMCID: PMC3593872 DOI: 10.1073/pnas.1213888110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In many species where oocytes lack centrosomes, sperm contribute both genetic material and centriole(s) to the zygote. Correct centriole organization during male meiosis is critical to guarantee a normal bipolar mitotic spindle in the zygote. During Caenorhabditis elegans male meiosis, centrioles normally undergo two rounds of duplication, resulting in haploid sperm each containing a single tightly engaged centriole pair. Here we identify an unanticipated role for C. elegans HORMA (Hop1/Rev7/Mad2) domain proteins HTP-1/2 and HIM-3 in regulating centriole disengagement during spermatocyte meiosis. In him-3 and htp-1 htp-2 mutants, centrioles separate inappropriately during meiosis II, resulting in spermatids with disengaged centrioles. Moreover, extra centrosomes are detected in a subset of zygotes. Together, these data implicate HIM-3 and HTP-1/2 in preventing centriole disengagement during meiosis II. We showed previously that HTP-1/2 prevents premature loss of sister chromatid cohesion during the meiotic divisions by inhibiting removal of meiotic cohesin complexes containing the REC-8 subunit. Worms lacking REC-8, or expressing a mutant separase protein with elevated local concentration at centrosomes and in sperm, likewise exhibit inappropriate centriole separation during spermatocyte meiosis. These observations are consistent with HIM-3 and HTP-1/2 preventing centriole disengagement by inhibiting separase-dependent cohesin removal. Our data suggest that the same specialized meiotic mechanisms that function to prevent premature release of sister chromatid cohesion during meiosis I in C. elegans also function to inhibit centriole separation at meiosis II, thereby ensuring that the zygote inherits the appropriate complement of chromosomes and centrioles.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Divya Pattabiraman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37916
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305; and
| |
Collapse
|
217
|
Howard-Till RA, Lukaszewicz A, Novatchkova M, Loidl J. A single cohesin complex performs mitotic and meiotic functions in the protist tetrahymena. PLoS Genet 2013; 9:e1003418. [PMID: 23555314 PMCID: PMC3610610 DOI: 10.1371/journal.pgen.1003418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
The cohesion of sister chromatids in the interval between chromosome replication and anaphase is important for preventing the precocious separation, and hence nondisjunction, of chromatids. Cohesion is accomplished by a ring-shaped protein complex, cohesin; and its release at anaphase occurs when separase cleaves the complex's α-kleisin subunit. Cohesin has additional roles in facilitating DNA damage repair from the sister chromatid and in regulating gene expression. We tested the universality of the present model of cohesion by studying cohesin in the evolutionarily distant protist Tetrahymena thermophila. Localization of tagged cohesin components Smc1p and Rec8p (the α-kleisin) showed that cohesin is abundant in mitotic and meiotic nuclei. RNAi knockdown experiments demonstrated that cohesin is crucial for normal chromosome segregation and meiotic DSB repair. Unexpectedly, cohesin does not detach from chromosome arms in anaphase, yet chromosome segregation depends on the activity of separase (Esp1p). When Esp1p is depleted by RNAi, chromosomes become polytenic as they undergo multiple rounds of replication, but fail to separate. The cohesion of such bundles of numerous chromatids suggests that chromatids may be connected by factors in addition to topological linkage by cohesin rings. Although cohesin is not detected in transcriptionally active somatic nuclei, its loss causes a slight defect in their amitotic division. Notably, Tetrahymena uses a single version of α-kleisin for both mitosis and meiosis. Therefore, we propose that the differentiation of mitotic and meiotic cohesins found in most other model systems is not due to the need of a specialized meiotic cohesin, but due to additional roles of mitotic cohesin.
Collapse
Affiliation(s)
- Rachel A. Howard-Till
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Agnieszka Lukaszewicz
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
218
|
Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:150-62. [PMID: 23466868 DOI: 10.1016/j.bbamcr.2013.02.028] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/07/2013] [Accepted: 02/22/2013] [Indexed: 01/21/2023]
Abstract
Two families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely and precise ubiquitin-proteasome-dependent degradation of key cell cycle proteins: the SCF (Skp1/Cul1/F-box protein) complex and the APC/C (anaphase promoting complex or cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle, APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates exit from mitosis (APC/C(Cdc20)) and establishes a stable G1 phase (APC/C(Cdh1)). Upon DNA damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint activation. Mechanistic insight into these processes has significantly improved over the last ten years, largely due to a better understanding of APC/C and the functional characterization of multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle and discuss potential clinical implications of SCF and APC/C functions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany.
| | | | | |
Collapse
|
219
|
Lui DY, Colaiácovo MP. Meiotic development in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:133-70. [PMID: 22872477 DOI: 10.1007/978-1-4614-4015-4_6] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans has become a powerful experimental organism with which to study meiotic processes that promote the accurate segregation of chromosomes during the generation of haploid gametes. Haploid reproductive cells are produced through one round of chromosome replication followed by two -successive cell divisions. Characteristic meiotic chromosome structure and dynamics are largely conserved in C. elegans. Chromosomes adopt a meiosis-specific structure by loading cohesin proteins, assembling axial elements, and acquiring chromatin marks. Homologous chromosomes pair and form physical connections though synapsis and recombination. Synaptonemal complex and crossover formation allow for the homologs to stably associate prior to remodeling that facilitates their segregation. This chapter will cover conserved meiotic processes as well as highlight aspects of meiosis that are unique to C. elegans.
Collapse
Affiliation(s)
- Doris Y Lui
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
220
|
Vagnarelli P. Chromatin reorganization through mitosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:179-224. [PMID: 23582205 DOI: 10.1016/b978-0-12-410523-2.00006-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome condensation is one of the major chromatin-remodeling events that occur during cell division. The changes in chromatin compaction and higher-order structure organization are essential requisites for ensuring a faithful transmission of the replicated genome to daughter cells. Although the observation of mitotic chromosome condensation has fascinated Scientists for a century, we are still far away from understanding how the process works from a molecular point of view. In this chapter, I will analyze our current understanding of chromatin condensation during mitosis with particular attention to the major molecular players that trigger and maintain this particular chromatin conformation. However, within the chromosome, not all regions of the chromatin are organized in the same manner. I will address separately the structure and functions of particular chromatin domains such as the centromere. Finally, the transition of the chromatin through mitosis represents just an interlude for gene expression between two cell cycles. How the transcriptional information that governs cell linage identity is transmitted from mother to daughter represents a big and interesting question. I will present how cells take care of the aspect ensuring that mitotic chromosome condensation and the block of transcription does not wipe out the cell identity.
Collapse
Affiliation(s)
- Paola Vagnarelli
- Heinz Wolff Building, Brunel University, Uxbridge, United Kingdom.
| |
Collapse
|
221
|
Abstract
Sister chromatid cohesion depends on cohesin, a tripartite complex that forms ring structures to hold sister chromatids together in mitosis and meiosis. Meiocytes feature a multiplicity of distinct cohesin proteins and complexes, some meiosis specific, which serve additional functions such as supporting synapsis of two pairs of sister chromatids and determining the loop-axis architecture of prophase I chromosomes. Despite considerable new insights gained in the past few years into the localization and function of some cohesin proteins, and the recent identification of yet another meiosis-specific cohesin subunit, a plethora of open questions remains, which concern not only fundamental germ cell biology but also the consequences of cohesin impairment for human reproductive health.
Collapse
Affiliation(s)
- François McNicoll
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
222
|
Miller MP, Unal E, Brar GA, Amon A. Meiosis I chromosome segregation is established through regulation of microtubule-kinetochore interactions. eLife 2012; 1:e00117. [PMID: 23275833 PMCID: PMC3525924 DOI: 10.7554/elife.00117] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/18/2012] [Indexed: 11/13/2022] Open
Abstract
During meiosis, a single round of DNA replication is followed by two consecutive rounds of nuclear divisions called meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate, while sister chromatids remain together. Determining how this unusual chromosome segregation behavior is established is central to understanding germ cell development. Here we show that preventing microtubule-kinetochore interactions during premeiotic S phase and prophase I is essential for establishing the meiosis I chromosome segregation pattern. Premature interactions of kinetochores with microtubules transform meiosis I into a mitosis-like division by disrupting two key meiosis I events: coorientation of sister kinetochores and protection of centromeric cohesin removal from chromosomes. Furthermore we find that restricting outer kinetochore assembly contributes to preventing premature engagement of microtubules with kinetochores. We propose that inhibition of microtubule-kinetochore interactions during premeiotic S phase and prophase I is central to establishing the unique meiosis I chromosome segregation pattern.DOI:http://dx.doi.org/10.7554/eLife.00117.001.
Collapse
Affiliation(s)
- Matthew P Miller
- Department of Biology , Massachusetts Institute of Technology , Cambridge , United States
| | | | | | | |
Collapse
|
223
|
Wang M, Tang D, Luo Q, Jin Y, Shen Y, Wang K, Cheng Z. BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. THE PLANT CELL 2012; 24:4961-73. [PMID: 23243128 PMCID: PMC3556969 DOI: 10.1105/tpc.112.105874] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/11/2012] [Accepted: 11/26/2012] [Indexed: 05/19/2023]
Abstract
Bub1 (for budding uninhibited by benzimidazole 1), one of the main spindle checkpoint kinases, acts as a kinetochore scaffold for assembling other checkpoint proteins. Here, we identify a plant Bub1-related kinase 1 (BRK1) in rice (Oryza sativa). The brk1 mutants are sterile due to the precocious separation of sister chromatids at the onset of anaphase I. The centromeric recruitment of SHUGOSHIN1 and phosphorylation of histone H2A at Thr-134 (H2A-pT134) depend on BRK1. Although the homologs can faithfully separate from each other at the end of meiosis I, the uncorrected merotelic attachment of paired sister kinetochores at the early stage of metaphase I in brk1 reduces the tension across homologous kinetochores, causes the metaphase I spindle to be aberrantly shaped, and subsequently affects the synchronicity of homolog separation at the onset of anaphase I. In addition, the phosphorylation of inner centromeric histone H3 at Ser-10 (H3-pS10) during diakinesis depends on BRK1. Therefore, we speculate that BRK1 may be required for normal localization of Aurora kinase before the onset of metaphase I, which is responsible for correcting the merotelic attachment.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Luo
- College of Plant Protection,Yunnan Agricultural University, Kunming 650201, China
| | - Yi Jin
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kejian Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
224
|
Yang J, Ikezoe T, Nishioka C, Yokoyama A. A novel treatment strategy targeting shugoshin 1 in hematological malignancies. Leuk Res 2012; 37:76-82. [PMID: 23102702 DOI: 10.1016/j.leukres.2012.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Shugoshin 1 (SGOL1), a centromeric protein, plays an important role in mitosis. This study explored the levels of SGOL1 in hematological malignancies and found that SGOL1 was aberrantly expressed in various human leukemia cell lines (n=10, e.g., HL60, U937, MOLM-13, K562, EOL-1, etc.) and freshly isolated leukemia cells from individuals with acute myelogenous leukemia (AML, n=43, p<0.001) compared with bone marrow mononuclear cells isolated from healthy volunteers (n=9), as measured by real-time RT-PCR. Forced expression of SGOL1 in hematopoietic stem/progenitor cells (HSPCs) significantly increased colony numbers for CFU-M and CFU-GM compared with control vector transduced infected HSPCs, suggesting that SGOL1 might act as an oncogene in hematopoietic cells. In addition, we found that repression of SGOL1 by small interfering RNA (siRNA) slowed the proliferation of NB4, EOL-1 and U937 cells compared with the control siRNA transfected cells, in parallel with the appearance of precocious dissociation of centromeric cohesion and separation of sister chromatids in these cells. Furthermore, we found that repression of SGOL1 by siRNA accumulated EOL-1 and U937 cells in the G2/M phase of the cell cycle, in conjunction with up-regulation of the spindle checkpoint protein BubR1, followed by apoptosis via caspase pathways. Thus, SGOL1 might be a promising molecular target for treating individuals with AML.
Collapse
Affiliation(s)
- Jing Yang
- Department of Hematology and Respiratory Medicine, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | | | | | | |
Collapse
|
225
|
Kerr GW, Sarkar S, Arumugam P. How to halve ploidy: lessons from budding yeast meiosis. Cell Mol Life Sci 2012; 69:3037-51. [PMID: 22481439 PMCID: PMC11114884 DOI: 10.1007/s00018-012-0974-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 11/26/2022]
Abstract
Maintenance of ploidy in sexually reproducing organisms requires a specialized form of cell division called meiosis that generates genetically diverse haploid gametes from diploid germ cells. Meiotic cells halve their ploidy by undergoing two rounds of nuclear division (meiosis I and II) after a single round of DNA replication. Research in Saccharomyces cerevisiae (budding yeast) has shown that four major deviations from the mitotic cell cycle during meiosis are essential for halving ploidy. The deviations are (1) formation of a link between homologous chromosomes by crossover, (2) monopolar attachment of sister kinetochores during meiosis I, (3) protection of centromeric cohesion during meiosis I, and (4) suppression of DNA replication following exit from meiosis I. In this review we present the current understanding of the above four processes in budding yeast and examine the possible conservation of molecular mechanisms from yeast to humans.
Collapse
Affiliation(s)
- Gary William Kerr
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | |
Collapse
|
226
|
Tzur YB, Egydio de Carvalho C, Nadarajan S, Van Bostelen I, Gu Y, Chu DS, Cheeseman IM, Colaiácovo MP. LAB-1 targets PP1 and restricts Aurora B kinase upon entrance into meiosis to promote sister chromatid cohesion. PLoS Biol 2012; 10:e1001378. [PMID: 22927794 PMCID: PMC3424243 DOI: 10.1371/journal.pbio.1001378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
At the onset of the first meiotic division, the protein LAB-1 recruits the PP1 phosphatase to cohesion complexes, preventing Aurora B kinase from targeting cohesins for degradation prematurely and thereby ensuring proper progression of meiotic events in C. elegans. Successful execution of the meiotic program depends on the timely establishment and removal of sister chromatid cohesion. LAB-1 has been proposed to act in the latter by preventing the premature removal of the meiosis-specific cohesin REC-8 at metaphase I in C. elegans, yet the mechanism and scope of LAB-1 function remained unknown. Here we identify an unexpected earlier role for LAB-1 in promoting the establishment of sister chromatid cohesion in prophase I. LAB-1 and REC-8 are both required for the chromosomal association of the cohesin complex subunit SMC-3. Depletion of lab-1 results in partial loss of sister chromatid cohesion in rec-8 and coh-4 coh-3 mutants and further enhanced chromatid dissociation in worms where all three kleisins are mutated. Moreover, lab-1 depletion results in increased Aurora B kinase (AIR-2) signals in early prophase I nuclei, coupled with a parallel decrease in signals for the PP1 homolog, GSP-2. Finally, LAB-1 directly interacts with GSP-1 and GSP-2. We propose that LAB-1 targets the PP1 homologs to the chromatin at the onset of meiosis I, thereby antagonizing AIR-2 and cooperating with the cohesin complex to promote sister chromatid association and normal progression of the meiotic program. A critical step for achieving successful cell division is the regulation of how the cohesin complexes that bind sister chromatids are initially deposited, then maintained, and finally removed to allow the chromatids to separate into daughter cells. This is particularly challenging during meiosis, when the sister chromatids must remain partially connected to each other through the first division. In organisms that have a single focal centromere on each chromosome, such as mammals and flies, cohesin is protected through the first meiotic division by the protein Shugoshin, which binds the PP2A phosphatase. PP2A counteracts phosphorylation by the Aurora B kinase; if certain cohesins are phosphorylated by Aurora B they become targeted for removal, which allows the chromatids to separate. In the nematode C. elegans, the chromosomes lack a localized centromere and the predicted Shugoshin homolog is not required for protection of cohesins; instead, this function is executed in metaphase of the first meiotic division by the protein LAB-1. But it is not completely understood what leads to the deposition of cohesin prior to entry into meiosis and to its maintenance throughout early meiosis I. In this study, we show that LAB-1 is also required for the loading and maintenance of the cohesin complex. LAB-1 ensures that the chromatids are not separated prematurely, and thus enables the proper progression of events through prophase I of meiosis. We propose that LAB-1 may act at the onset of meiosis in a manner akin to Shugoshin, by recruiting the PP1 phosphatase to counteract Aurora B kinase, thereby ensuring sister chromatid cohesion.
Collapse
Affiliation(s)
- Yonatan B. Tzur
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Saravanapriah Nadarajan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ivo Van Bostelen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yanjie Gu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
227
|
Abstract
Mitosis is tightly regulated and any errors in this process often lead to aneuploidy, genomic instability, and tumorigenesis. Deregulation of mitotic kinases is significantly associated with improper cell division and aneuploidy. Because of their importance during mitosis and the relevance to cancer, mitotic kinase signaling has been extensively studied over the past few decades and, as a result, several mitotic kinase inhibitors have been developed. Despite promising preclinical results, targeting mitotic kinases for cancer therapy faces numerous challenges, including safety and patient selection issues. Therefore, there is an urgent need to better understand the molecular mechanisms underlying mitotic kinase signaling and its interactive network. Increasing evidence suggests that tumor suppressor p53 functions at the center of the mitotic kinase signaling network. In response to mitotic spindle damage, multiple mitotic kinases phosphorylate p53 to either activate or deactivate p53-mediated signaling. p53 can also regulate the expression and function of mitotic kinases, suggesting the existence of a network of mutual regulation, which can be positive or negative, between mitotic kinases and p53 signaling. Therefore, deciphering this regulatory network will provide knowledge to overcome current limitations of targeting mitotic kinases and further improve the results of targeted therapy.
Collapse
|
228
|
Yao Y, Dai W. Shugoshins function as a guardian for chromosomal stability in nuclear division. Cell Cycle 2012; 11:2631-42. [PMID: 22732496 PMCID: PMC3850027 DOI: 10.4161/cc.20633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.
Collapse
Affiliation(s)
- Yixin Yao
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| | - Wei Dai
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| |
Collapse
|
229
|
Gutiérrez-Caballero C, Cebollero LR, Pendás AM. Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet 2012; 28:351-60. [PMID: 22542109 DOI: 10.1016/j.tig.2012.03.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 11/20/2022]
Abstract
Sister chromatids are held together by a protein complex named cohesin. Shugoshin proteins protect cohesin from cleavage by separase during meiosis I in eukaryotes and from phosphorylation-mediated removal during mitosis in vertebrates. This protection is crucial for chromosome segregation during mitosis and meiosis. Mechanistically, shugoshins shield cohesin by forming a complex with the phosphatase PP2A, which dephosphorylates cohesin, leading to its retention at centromeres during the onset of meiotic anaphase and vertebrate mitotic prophase I. In addition to this canonical function, shugoshins have evolved novel, species-specific cellular functions, the mechanisms of which remain a subject of intense debate, but are likely to involve spatio-temporally coordinated interactions with the chromosome passenger complex, the spindle checkpoint and the anaphase promoting complex. Here, we compare and contrast these remarkable features of shugoshins in model organisms and humans.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Caballero
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
230
|
Yuan L, Yang X, Ellis JL, Fisher NM, Makaroff CA. The Arabidopsis SYN3 cohesin protein is important for early meiotic events. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:147-60. [PMID: 22381039 DOI: 10.1111/j.1365-313x.2012.04979.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
α-Kleisins are core components of meiotic and mitotic cohesin complexes. Arabidopsis contains four genes that encode α-kleisin proteins: SYN1, SYN2, SYN3 and SYN4. SYN1, a REC8 ortholog, is essential for meiosis, while SYN2 and SYN4 appear to be SCC1 orthologs and function in mitosis. SYN3 is essential for megagametogenesis and is enriched in the nucleolus of meiotic and mitotic cells. In this study the role of SYN3 during meiosis was investigated by characterization of plants that express SYN3-RNAi constructs from either meiotic DMC1, native SYN3, or inducible PX7 promoters. Reduction of SYN3 caused defects in homologous chromosome synapsis and synaptonemal complex (SC) formation during male and female meiosis. Consistent with this observation, relatively little signal for the SC component ZYP1 was detected on the chromosomes of SYN3-RNAi plants. ZYP1 transcript levels were relatively normal, but several transcripts for genes that encode proteins involved in meiotic recombination were altered, which suggested that a reduction in SYN3 may inhibit meiotic progression by alteration of meiotic gene expression.
Collapse
Affiliation(s)
- Li Yuan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
231
|
Jessberger R. Age-related aneuploidy through cohesion exhaustion. EMBO Rep 2012; 13:539-46. [PMID: 22565322 PMCID: PMC3367239 DOI: 10.1038/embor.2012.54] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/29/2012] [Indexed: 11/08/2022] Open
Abstract
The trend of women to become pregnant when older than in previous generations poses a paramount medical problem, for oocytes are particularly prone to chromosome missegregation, and aneuploidy increases with age. Recent data strongly suggest that as oocyte age increases sister chromatid cohesion is weakened or lost. Cohesin deterioration seems to contribute significantly to age-dependent aneuploidy, as discussed in this review.
Collapse
Affiliation(s)
- Rolf Jessberger
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fiedlerstrasse 42, 01326 Dresden, Germany.
| |
Collapse
|
232
|
Watanabe Y. Geometry and force behind kinetochore orientation: lessons from meiosis. Nat Rev Mol Cell Biol 2012; 13:370-82. [PMID: 22588367 DOI: 10.1038/nrm3349] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During mitosis, replicated chromosomes (sister chromatids) become attached at the kinetochore by spindle microtubules emanating from opposite poles and segregate equationally. In the first division of meiosis, however, sister chromatids become attached from the same pole and co-segregate, whereas homologous chromosomes connected by chiasmata segregate to opposite poles. Disorder in this specialized chromosome attachment in meiosis is the leading cause of miscarriage in humans. Recent studies have elucidated the molecular mechanisms determining chromosome orientation, and consequently segregation, in meiosis. Comparative studies of meiosis and mitosis have led to the general principle that kinetochore geometry and tension exerted by microtubules synergistically generate chromosome orientation.
Collapse
Affiliation(s)
- Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.
| |
Collapse
|
233
|
Seitan VC, Merkenschlager M. Cohesin and chromatin organisation. Curr Opin Genet Dev 2012; 22:93-100. [PMID: 22155130 DOI: 10.1016/j.gde.2011.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/10/2011] [Indexed: 01/20/2023]
Abstract
Cohesin defines the topology of chromosomes in mitosis and meiosis by holding sister chromatids together; more recently a role for cohesin in chromatin organisation and gene expression in interphase has emerged.
Collapse
Affiliation(s)
- Vlad C Seitan
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.
| | | |
Collapse
|
234
|
Rivera T, Ghenoiu C, Rodríguez-Corsino M, Mochida S, Funabiki H, Losada A. Xenopus Shugoshin 2 regulates the spindle assembly pathway mediated by the chromosomal passenger complex. EMBO J 2012; 31:1467-79. [PMID: 22274615 PMCID: PMC3321187 DOI: 10.1038/emboj.2012.4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/22/2011] [Indexed: 12/13/2022] Open
Abstract
Shugoshins (Sgo) are conserved proteins that act as protectors of centromeric cohesion and as sensors of tension for the machinery that eliminates improper kinetochore-microtubule attachments. Most vertebrates contain two Sgo proteins, but their specific functions are not always clear. Xenopus laevis Sgo1, XSgo1, protects centromeric cohesin from the prophase dissociation pathway. Here, we report the identification of XSgo2 and show that it does not regulate cohesion. Instead, we find that it participates in bipolar spindle assembly. Both Sgo proteins interact physically with the Chromosomal Passenger Complex (CPC) containing Aurora B, a key regulator of mitosis, but the functional consequences of such interaction are distinct. XSgo1 is required for proper localization of the CPC while XSgo2 positively contributes to its activation and the subsequent phosphorylation of at least one key substrate for bipolar spindle assembly, the microtubule depolymerizing kinesin MCAK (Mitotic Centromere-Associated Kinesin). Thus, the two Xenopus Sgo proteins have non-overlapping functions in chromosome segregation. Our results further suggest that this functional specificity could rely on the association of XSgo1 and XSgo2 with different regulatory subunits of the PP2A complex.
Collapse
Affiliation(s)
- Teresa Rivera
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Ghenoiu
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology, Weill Cornell Graduate School of Biomedical Sciences, Cornell Medical School, New York, NY, USA
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Satoru Mochida
- Cell Cycle Control Group, Kumamoto University, Kumamoto City, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
235
|
Funaya C, Samarasinghe S, Pruggnaller S, Ohta M, Connolly Y, Müller J, Murakami H, Grallert A, Yamamoto M, Smith D, Antony C, Tanaka K. Transient structure associated with the spindle pole body directs meiotic microtubule reorganization in S. pombe. Curr Biol 2012; 22:562-74. [PMID: 22425159 PMCID: PMC3382715 DOI: 10.1016/j.cub.2012.02.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/10/2012] [Accepted: 02/17/2012] [Indexed: 02/06/2023]
Abstract
Background Vigorous chromosome movements driven by cytoskeletal assemblies are a widely conserved feature of sexual differentiation to facilitate meiotic recombination. In fission yeast, this process involves the dramatic conversion of arrays of cytoplasmic microtubules (MTs), generated from multiple MT organizing centers (MTOCs), into a single radial MT (rMT) array associated with the spindle pole body (SPB), the major MTOC during meiotic prophase. The rMT is then dissolved upon the onset of meiosis I when a bipolar spindle emerges to conduct chromosome segregation. Structural features and molecular mechanisms that govern these dynamic MT rearrangements are poorly understood. Results Electron tomography of the SPBs showed that the rMT emanates from a newly recognized amorphous structure, which we term the rMTOC. The rMTOC, which resides at the cytoplasmic side of the SPB, is highly enriched in γ-tubulin reminiscent of the pericentriolar material of higher eukaryotic centrosomes. Formation of the rMTOC depends on Hrs1/Mcp6, a meiosis-specific SPB component that is located at the rMTOC. At the onset of meiosis I, Hrs1/Mcp6 is subject to strict downregulation by both proteasome-dependent degradation and phosphorylation leading to complete inactivation of the rMTOC. This ensures rMT dissolution and bipolar spindle formation. Conclusions Our study reveals the molecular basis for the transient generation of a novel MTOC, which triggers a program of MT rearrangement that is required for meiotic differentiation.
Collapse
Affiliation(s)
- Charlotta Funaya
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AMM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1838-50. [PMID: 22366765 DOI: 10.1016/j.bbadis.2012.02.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 12/29/2022]
Abstract
Spermatogenesis is a complex developmental process that ultimately generates mature spermatozoa. This process involves a phase of proliferative expansion, meiosis, and cytodifferentiation. Mouse models have been widely used to study spermatogenesis and have revealed many genes and molecular mechanisms that are crucial in this process. Although meiosis is generally considered as the most crucial phase of spermatogenesis, mouse models have shown that pre-meiotic and post-meiotic phases are equally important. Using knowledge generated from mouse models and in vitro studies, the current review provides an overview of the molecular control of rodent spermatogenesis. Finally, we briefly relate this knowledge to fertility problems in humans and discuss implications for future research. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
Collapse
Affiliation(s)
- Sabrina Z Jan
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
237
|
Yang F, Huang Y, Dai W. Sumoylated BubR1 plays an important role in chromosome segregation and mitotic timing. Cell Cycle 2012; 11:797-806. [PMID: 22374677 PMCID: PMC3318109 DOI: 10.4161/cc.11.4.19307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 11/19/2022] Open
Abstract
BubR1 is an important component of the spindle assembly checkpoint, and deregulated BubR1 functions frequently result in chromosomal instability and malignant transformation. We recently demonstrated that BubR1 was modified by sumoylation, and that lysine 250 (K250) functions as the crucial site for this modification. BubR1 sumoylation was neither required for its activation nor for binding to kinetochores. However, ectopically expressed sumoylation-deficient BubR1 mutants were retained on the kintochores even after apparent chromosome congression. The kinetochore retention of the sumoylation-deficient mutant of BubR1 caused an anaphase delay coupled with premature sister chromatid separation. Moreover, BubR1 interacted with unphosphorylated Sgo1, and its sumoylation facilitated the interaction. BubR1 sumoylation was inversely associated with its acetylation during mitotic progression. Trichostatin A, a protein deacetylase inhibitor, significantly compromised BubR1 sumoylation. Combined, these results reveal that BubR1 sumoylation plays an important role in its timely removal from the kinetochores and the checkpoint inactivation, thus allowing normal anaphase entry and chromosome segregation.
Collapse
Affiliation(s)
- Feikun Yang
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| | - Ying Huang
- Department of Pathophysiology; Shanghai Jiaotong University School of Medicine; Shanghai, China
| | - Wei Dai
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| |
Collapse
|
238
|
Krenn V, Wehenkel A, Li X, Santaguida S, Musacchio A. Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. ACTA ACUST UNITED AC 2012; 196:451-67. [PMID: 22331848 PMCID: PMC3283998 DOI: 10.1083/jcb.201110013] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The function of the essential checkpoint kinases Bub1 and BubR1 requires their recruitment to mitotic kinetochores. Kinetochore recruitment of Bub1 and BubR1 is proposed to rely on the interaction of the tetratricopeptide repeats (TPRs) of Bub1 and BubR1 with two KI motifs in the outer kinetochore protein Knl1. We determined the crystal structure of the Bub1 TPRs in complex with the cognate Knl1 KI motif and compared it with the structure of the equivalent BubR1TPR-KI motif complex. The interaction developed along the convex surface of the TPR assembly. Point mutations on this surface impaired the interaction of Bub1 and BubR1 with Knl1 in vitro and in vivo but did not cause significant displacement of Bub1 and BubR1 from kinetochores. Conversely, a 62-residue segment of Bub1 that includes a binding domain for the checkpoint protein Bub3 and is C terminal to the TPRs was necessary and largely sufficient for kinetochore recruitment of Bub1. These results shed light on the determinants of kinetochore recruitment of Bub1.
Collapse
Affiliation(s)
- Veronica Krenn
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | | | | | | | | |
Collapse
|
239
|
Yamada HY, Yao Y, Wang X, Zhang Y, Huang Y, Dai W, Rao CV. Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis. Cell Cycle 2012; 11:479-88. [PMID: 22262168 PMCID: PMC3315092 DOI: 10.4161/cc.11.3.18994] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
Chromosome instability (CIN) is found in 85% of colorectal cancers. Defects in mitotic processes are implicated in high CIN and may be critical events in colorectal tumorigenesis. Shugoshin-1 (SGO1) aids in the maintenance of chromosome cohesion and prevents premature chromosome separation and CIN. In addition, integrity of the centrosome may be compromised due to the deficiency of Cohesin and Sgo1 through the disengagement of centrioles. We report here the generation and characterization of SGO1-mutant mice and show that haploinsufficiency of SGO1 leads to enhanced colonic tumorigenesis. Complete disruption of SGO1 results in embryonic lethality, whereas SGO1+/- mice are viable and fertile. Haploinsufficiency of SGO1 results in genomic instability manifested as missegregation of chromosomes and formation of extra centrosomal foci in both murine embryonic fibroblasts and adult bone marrow cells. Enhanced CIN observed in SGO1-deficient mice resulted in an increase in formation of aberrant crypt foci (ACF) and accelerated development of tumors after exposure to azoxymethane (AOM), a colon carcinogen. Together, these results suggest that haploinsufficiency of SGO1 causes enhanced CIN, colonic preneoplastic lesions and tumorigenesis in mice. SGO1 is essential for the suppression of CIN and tumor formation.
Collapse
Affiliation(s)
- Hiroshi Y Yamada
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| | - Yixin Yao
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Xiaoxing Wang
- Dana-Farber Cancer Institute; Harvard Medical School; Boston, MA USA
| | - Yuting Zhang
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| | - Ying Huang
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Wei Dai
- Department of Environmental Medicine; New York University School of Medicine; Tuxedo, NY USA
| | - Chinthalapally V Rao
- Center for Chemoprevention and Cancer Drug Development; Department of Medicine; Medical Oncology Section; University of Oklahoma Health Sciences Center; PCS Oklahoma Cancer Center; Oklahoma City, OK USA
| |
Collapse
|
240
|
The spread of a transposon insertion in Rec8 is associated with obligate asexuality in Daphnia. Proc Natl Acad Sci U S A 2012; 109:858-63. [PMID: 22215604 DOI: 10.1073/pnas.1119667109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although transitions from sexual to asexual reproduction are thought to have important evolutionary consequences, little is known about the mechanistic underpinnings of these changes. The cyclical parthenogen Daphnia pulex is a powerful model in which to address these issues because female-limited meiosis suppression can be transmitted to sexual individuals via males, providing the opportunity for genetic dissection of the trait. A previous study identified genomic regions differentiating obligately asexual females from their sexual counterparts, and a candidate gene within one such region, encoding the meiotic cohesin Rec8, is the subject of this investigation. The D. pulex genome contains three Rec8 loci, all of which are quite polymorphic. However, at one of the loci, all obligately asexual clones carry an allele containing an identical upstream insertion of a transposable element as well as a frameshift mutation, both of which are completely absent from sexual lineages. The low level of variation within the insertion allele across all asexual lineages suggests that this element may be in the process of spreading through the species, and abrogation or modification of Rec8 function is possibly responsible for converting meiotically reproducing lineages into obligate asexuals.
Collapse
|
241
|
Barr FA, Elliott PR, Gruneberg U. Protein phosphatases and the regulation of mitosis. J Cell Sci 2011; 124:2323-34. [PMID: 21709074 DOI: 10.1242/jcs.087106] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dynamic control of protein phosphorylation is necessary for the regulation of many cellular processes, including mitosis and cytokinesis. Indeed, although the central role of protein kinases is widely appreciated and intensely studied, the importance of protein phosphatases is often overlooked. Recent studies, however, have highlighted the considerable role of protein phosphatases in both the spatial and temporal control of protein kinase activity, and the modulation of substrate phosphorylation. Here, we will focus on recent advances in our understanding of phosphatase structure, and the importance of phosphatase function in the control of mitotic spindle formation, chromosome architecture and cohesion, and cell division.
Collapse
Affiliation(s)
- Francis A Barr
- University of Liverpool, Cancer Research Centre, 200 London Road, Liverpool L3 9TA, UK.
| | | | | |
Collapse
|
242
|
Sun SC, Kim NH. Spindle assembly checkpoint and its regulators in meiosis. Hum Reprod Update 2011; 18:60-72. [DOI: 10.1093/humupd/dmr044] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
243
|
Kahyo T, Iwaizumi M, Shinmura K, Matsuura S, Nakamura T, Watanabe Y, Yamada H, Sugimura H. A novel tumor-derived SGOL1 variant causes abnormal mitosis and unstable chromatid cohesion. Oncogene 2011; 30:4453-4463. [PMID: 21532624 DOI: 10.1038/onc.2011.152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 03/26/2011] [Accepted: 03/26/2011] [Indexed: 12/17/2022]
Abstract
Mitosis is the most conspicuous cell cycle phase, because it is the phase in which the dynamic physical distributions of cellular components into the two daughter cells occur. The separation of sister chromatids is especially important during mitosis, because of the extreme accuracy required for distribution to the next generation of cells. Shugoshin-like 1 (SGOL1) is a key protein in protecting sister chromatids from precocious separation. We have reported finding that chromosome instability is more likely in SGOL1-downregulated colorectal cancers, but it is still unknown whether there is an association between cancer and SGOL1 transcript variation. Here, we identified a novel SGOL1 variant, SGOL1-P1, in human colon cancer. The SGOL1-P1 transcript contains an exon-skip of exon 3 that results in a stop codon occurring within exon 4. Overexpression of SGOL1-P1 in HCT116 cells resulted in an increased number of cells with aberrant chromosome alignment, precociously separated chromatids and delayed mitotic progression, occasionally followed by inaccurate distribution of the chromosomes. These phenotypes, observed when SGOL1-P1 was present, were also observed very frequently in SGOL1-knockdown cells. Furthermore, the overexpression of SGOL1-P1 inhibited the localization of endogenous SGOL1 and cohesin subunit RAD21/SCC1 to the centromere. These results suggest that SGOL1-P1 may function as a negative factor to native SGOL1, and that abundant expression of SGOL1-P1 may be responsible for chromosomal instability.
Collapse
Affiliation(s)
- T Kahyo
- First Department of Pathology, Hamamatsu University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Baudrimont A, Penkner A, Woglar A, Mamnun YM, Hulek M, Struck C, Schnabel R, Loidl J, Jantsch V. A new thermosensitive smc-3 allele reveals involvement of cohesin in homologous recombination in C. elegans. PLoS One 2011; 6:e24799. [PMID: 21957461 PMCID: PMC3177864 DOI: 10.1371/journal.pone.0024799] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/17/2011] [Indexed: 11/25/2022] Open
Abstract
The cohesin complex is required for the cohesion of sister chromatids and for correct segregation during mitosis and meiosis. Crossover recombination, together with cohesion, is essential for the disjunction of homologous chromosomes during the first meiotic division. Cohesin has been implicated in facilitating recombinational repair of DNA lesions via the sister chromatid. Here, we made use of a new temperature-sensitive mutation in the Caenorhabditis elegans SMC-3 protein to study the role of cohesin in the repair of DNA double-strand breaks (DSBs) and hence in meiotic crossing over. We report that attenuation of cohesin was associated with extensive SPO-11-dependent chromosome fragmentation, which is representative of unrepaired DSBs. We also found that attenuated cohesin likely increased the number of DSBs and eliminated the need of MRE-11 and RAD-50 for DSB formation in C. elegans, which suggests a role for the MRN complex in making cohesin-loaded chromatin susceptible to meiotic DSBs. Notably, in spite of largely intact sister chromatid cohesion, backup DSB repair via the sister chromatid was mostly impaired. We also found that weakened cohesins affected mitotic repair of DSBs by homologous recombination, whereas NHEJ repair was not affected. Our data suggest that recombinational DNA repair makes higher demands on cohesins than does chromosome segregation.
Collapse
Affiliation(s)
- Antoine Baudrimont
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Alexandra Penkner
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Alexander Woglar
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Yasmine M. Mamnun
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Margot Hulek
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Cathrin Struck
- Department of Genetics, Technical University of Braunschweig, Braunschweig, Germany
| | - Ralf Schnabel
- Department of Genetics, Technical University of Braunschweig, Braunschweig, Germany
| | - Josef Loidl
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Verena Jantsch
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
245
|
Foley EA, Maldonado M, Kapoor TM. Formation of stable attachments between kinetochores and microtubules depends on the B56-PP2A phosphatase. Nat Cell Biol 2011; 13:1265-71. [PMID: 21874008 PMCID: PMC3186838 DOI: 10.1038/ncb2327] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/25/2011] [Indexed: 12/18/2022]
Abstract
Error-free chromosome segregation depends on the precise regulation of phosphorylation to stabilize kinetochore-microtubule attachments (K-fibres) on sister chromatids that have attached to opposite spindle poles (bi-oriented). In many instances, phosphorylation correlates with K-fibre destabilization. Consistent with this, multiple kinases, including Aurora B and Plk1, are enriched at kinetochores of mal-oriented chromosomes when compared with bi-oriented chromosomes, which have stable attachments. Paradoxically, however, these kinases also target to prometaphase chromosomes that have not yet established spindle attachments and it is therefore unclear how kinetochore-microtubule interactions can be stabilized when kinase levels are high. Here we show that the generation of stable K-fibres depends on the B56-PP2A phosphatase, which is enriched at centromeres/kinetochores of unattached chromosomes. When B56-PP2A is depleted, K-fibres are destabilized and chromosomes fail to align at the spindle equator. Strikingly, B56-PP2A depletion increases the level of phosphorylation of Aurora B and Plk1 kinetochore substrates as well as Plk1 recruitment to kinetochores. Consistent with increased substrate phosphorylation, we find that chemical inhibition of Aurora or Plk1 restores K-fibres in B56-PP2A-depleted cells. Our findings reveal that PP2A, an essential tumour suppressor, tunes the balance of phosphorylation to promote chromosome-spindle interactions during cell division.
Collapse
Affiliation(s)
- Emily A Foley
- Laboratory of Chemistry and Cell Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
246
|
Inoue A, Hyle J, Lechner MS, Lahti JM. Mammalian ChlR1 has a role in heterochromatin organization. Exp Cell Res 2011; 317:2522-35. [PMID: 21854770 DOI: 10.1016/j.yexcr.2011.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/18/2011] [Accepted: 08/03/2011] [Indexed: 11/16/2022]
Abstract
The ChlR1 DNA helicase, encoded by DDX11 gene, which is responsible for Warsaw breakage syndrome (WABS), has a role in sister-chromatid cohesion. In this study, we show that human ChlR1 deficient cells exhibit abnormal heterochromatin organization. While constitutive heterochromatin is discretely localized at perinuclear and perinucleolar regions in control HeLa cells, ChlR1-depleted cells showed dispersed localization of constitutive heterochromatin accompanied by disrupted centromere clustering. Cells isolated from Ddx11(-/-) embryos also exhibited diffuse localization of centromeres and heterochromatin foci. Similar abnormalities were found in HeLa cells depleted of combinations of HP1α and HP1β. Immunofluorescence and chromatin immunoprecipitation showed a decreased level of HP1α at pericentric regions in ChlR1-depleted cells. Trimethyl-histone H3 at lysine 9 (H3K9-me3) was also modestly decreased at pericentric sequences. The abnormality in pericentric heterochromatin was further supported by decreased DNA methylation within major satellite repeats of Ddx11(-/-) embryos. Furthermore, micrococcal nuclease (MNase) assay revealed a decreased chromatin density at the telomeres. These data suggest that in addition to a role in sister-chromatid cohesion, ChlR1 is also involved in the proper formation of heterochromatin, which in turn contributes to global nuclear organization and pleiotropic effects.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|
247
|
Zou H. The sister bonding of duplicated chromosomes. Semin Cell Dev Biol 2011; 22:566-71. [PMID: 21497666 PMCID: PMC3142318 DOI: 10.1016/j.semcdb.2011.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/23/2011] [Accepted: 03/30/2011] [Indexed: 11/21/2022]
Abstract
Sister chromatid cohesion and separation are two fundamental chromosome dynamics that are essential to equal chromosome segregation during cell proliferation. In this review, I will discuss the major steps that regulate these dynamics during mitosis, with an emphasis on vertebrate cells. The implications of these machineries outside of sister chromatid cohesion and separation are also discussed.
Collapse
Affiliation(s)
- Hui Zou
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75252-9148, United States.
| |
Collapse
|
248
|
Fang X, Zhang P. Aneuploidy and tumorigenesis. Semin Cell Dev Biol 2011; 22:595-601. [PMID: 21392584 PMCID: PMC3651908 DOI: 10.1016/j.semcdb.2011.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 12/20/2022]
Abstract
Aneuploidy is a prominent phenotype of cancer. It refers to deviations from the normal number of chromosomes in a cell, as a result of whole-chromosome loss or gain. In most cases, aneuploidy is caused by mitotic errors due to defects in the mechanisms that have evolved to ensure faithful chromosome segregation, such as the spindle assembly checkpoint (SAC). The observation that SAC-deficient mice are tumor prone demonstrates that this checkpoint is important in suppressing tumor formation and suggests that aneuploidy can induce tumorigenesis. In this review, we will summarize our current knowledge about the cause of aneuploidy and discuss the cellular response to aneuploidy in the context of tumorigenesis.
Collapse
Affiliation(s)
- Xiao Fang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
249
|
Kim S, Yu H. Mutual regulation between the spindle checkpoint and APC/C. Semin Cell Dev Biol 2011; 22:551-8. [PMID: 21439394 PMCID: PMC3225258 DOI: 10.1016/j.semcdb.2011.03.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/16/2011] [Indexed: 11/21/2022]
Abstract
Accurate chromosome segregation during mitosis is critical for maintaining genomic stability. The spindle checkpoint is a cellular surveillance system that ensures the fidelity of chromosome segregation. In response to sister chromatids not properly captured by spindle microtubules, the spindle checkpoint interferes with the functions of Cdc20, the mitotic activator of the anaphase-promoting complex or cyclosome (APC/C), thereby blocking APC/C-mediated degradation of securin and cyclin B to delay anaphase onset. This review summarizes the recent progress on the mechanisms by which checkpoint proteins inhibit APC/C, the conformational and enzymatic activation of checkpoint proteins, and the emerging roles of APC/C-dependent ubiquitination in checkpoint inactivation.
Collapse
Affiliation(s)
- Soonjoung Kim
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| |
Collapse
|
250
|
Wang M, Tang D, Wang K, Shen Y, Qin B, Miao C, Li M, Cheng Z. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:583-594. [PMID: 21615569 DOI: 10.1111/j.1365-313x.2011.04615.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shugoshin is a conserved protein in eukaryotes that protects the centromeric cohesin of sister chromatids from cleavage by separase during meiosis. In this study, we identify the rice (Oryza sativa, 2n=2x=24) homolog of ZmSGO1 in maize (Zea mays), named OsSGO1. During both mitosis and meiosis, OsSGO1 is recruited from nucleoli onto centromeres at the onset of prophase. In the Tos17-insertional Ossgo1-1 mutant, centromeres of sister chromatids separate precociously from each other from metaphase I, which causes unequal chromosome segregation during meiosis II. Moreover, the release of OsSGO1 from nucleoli is completely blocked in Ossgo1-1, which leads to the absence of OsSGO1 in centromeric regions after the onset of mitosis and meiosis. Furthermore, the timely assembly and maintenance of synaptonemal complexes during early prophase I are affected in Ossgo1 mutants. Finally, we found that the centromeric localization of OsSGO1 depends on OsAM1, not other meiotic proteins such as OsREC8, PAIR2, OsMER3, or ZEP1.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|