201
|
Swonger JM, Liu JS, Ivey MJ, Tallquist MD. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 2016; 92:66-83. [PMID: 27342817 PMCID: PMC5079827 DOI: 10.1016/j.diff.2016.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The use of mouse genetic tools to track and manipulate fibroblasts has provided invaluable in vivo information regarding the activities of these cells. Recently, many new mouse strains have been described for the specific purpose of studying fibroblast behavior. Colorimetric reporter mice and lines expressing Cre are available for the study of fibroblasts in the organs prone to fibrosis, including heart, kidney, liver, lung, and skeletal muscle. In this review we summarize the current state of the models that have been used to define tissue resident fibroblast populations. While these complex genetic reagents provide unique insights into the process of fibrosis, they also require a thorough understanding of the caveats and limitations. Here, we discuss the specificity and efficiency of the available genetic models and briefly describe how they have been used to document the mechanisms of fibrosis.
Collapse
Affiliation(s)
- Jessica M Swonger
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jocelyn S Liu
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Malina J Ivey
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D Tallquist
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
202
|
Loss of endogenous thymosin β 4 accelerates glomerular disease. Kidney Int 2016; 90:1056-1070. [PMID: 27575556 PMCID: PMC5073078 DOI: 10.1016/j.kint.2016.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/23/2022]
Abstract
Glomerular disease is characterized by morphologic changes in podocyte cells accompanied by inflammation and fibrosis. Thymosin β4 regulates cell morphology, inflammation, and fibrosis in several organs and administration of exogenous thymosin β4 improves animal models of unilateral ureteral obstruction and diabetic nephropathy. However, the role of endogenous thymosin β4 in the kidney is unknown. We demonstrate that thymosin β4 is expressed prominently in podocytes of developing and adult mouse glomeruli. Global loss of thymosin β4 did not affect healthy glomeruli, but accelerated the severity of immune-mediated nephrotoxic nephritis with worse renal function, periglomerular inflammation, and fibrosis. Lack of thymosin β4 in nephrotoxic nephritis led to the redistribution of podocytes from the glomerular tuft toward the Bowman capsule suggesting a role for thymosin β4 in the migration of these cells. Thymosin β4 knockdown in cultured podocytes also increased migration in a wound-healing assay, accompanied by F-actin rearrangement and increased RhoA activity. We propose that endogenous thymosin β4 is a modifier of glomerular injury, likely having a protective role acting as a brake to slow disease progression.
Collapse
|
203
|
Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes. Stem Cell Reports 2016; 7:370-382. [PMID: 27569061 PMCID: PMC5032289 DOI: 10.1016/j.stemcr.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022] Open
Abstract
A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents. Zebrafish embryos may start to exit from pluripotency shortly after the oblong stage Beating cell clusters are efficiently generated from zebrafish blastomeres Beating cell clusters contain specific cardiomyocyte subtypes Induced cardiomyocytes possess normal electrophysiological features
Collapse
|
204
|
Malliaras K, Vakrou S, Kapelios CJ, Nanas JN. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification. Expert Opin Biol Ther 2016; 16:1341-1352. [PMID: 27484198 DOI: 10.1080/14712598.2016.1218846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The -once viewed as heretical- concept of the adult mammalian heart as a dynamic organ capable of endogenous regeneration has recently gained traction. However, estimated rates of myocyte turnover vary wildly and the underlying mechanisms of cardiac plasticity remain controversial. It is still unclear whether the adult mammalian heart gives birth to new myocytes through proliferation of resident myocytes, through cardiomyogenic differentiation of endogenous progenitors or through both mechanisms. AREAS COVERED In this review, the authors discuss the cellular origins of postnatal mammalian cardiomyogenesis and touch upon therapeutic strategies that could potentially amplify innate cardiac regeneration. EXPERT OPINION The adult mammalian heart harbors a limited but detectable capacity for spontaneous endogenous regeneration. During normal aging, proliferation of pre-existing cardiomyocytes is the dominant mechanism for generation of new cardiomyocytes. Following myocardial injury, myocyte proliferation increases modestly, but differentiation of endogenous progenitor cells appears to also contribute to cardiomyogenesis (although agreement on the latter point is not universal). Since cardiomyocyte deficiency underlies almost all types of heart disease, development of therapeutic strategies that amplify endogenous regeneration to a clinically-meaningful degree is of utmost importance.
Collapse
Affiliation(s)
- Konstantinos Malliaras
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - Styliani Vakrou
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - Chris J Kapelios
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| | - John N Nanas
- a 3rd Department of Cardiology , University of Athens School of Medicine , Athens , Greece
| |
Collapse
|
205
|
Abstract
Cardiac cell specification and the genetic determinants that govern this process are highly conserved among Chordates. Recent studies have established the importance of evolutionarily-conserved mechanisms in the study of congenital heart defects and disease, as well as cardiac regeneration. As a basal Chordate, the Ciona model system presents a simple scaffold that recapitulates the basic blueprint of cardiac development in Chordates. Here we will focus on the development and cellular structure of the heart of the ascidian Ciona as compared to other Chordates, principally vertebrates. Comparison of the Ciona model system to heart development in other Chordates presents great potential for dissecting the genetic mechanisms that underlie congenital heart defects and disease at the cellular level and might provide additional insight into potential pathways for therapeutic cardiac regeneration.
Collapse
|
206
|
Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development 2016; 143:729-40. [PMID: 26932668 DOI: 10.1242/dev.132910] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adult human heart does not regenerate significant amounts of lost tissue after injury. Rather than making new, functional muscle, human hearts are prone to scarring and hypertrophy, which can often lead to fatal arrhythmias and heart failure. The most-cited basis of this ineffective cardiac regeneration in mammals is the low proliferative capacity of adult cardiomyocytes. However, mammalian cardiomyocytes can avidly proliferate during fetal and neonatal development, and both adult zebrafish and neonatal mice can regenerate cardiac muscle after injury, suggesting that latent regenerative potential exists. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation throughout life, deciphering why proliferative capacity normally dissipates in adult mammals, and deriving means to boost this capacity are primary goals in cardiovascular research. Here, we review our current understanding of how cardiomyocyte proliferation is regulated during heart development and regeneration.
Collapse
Affiliation(s)
- Matthew J Foglia
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
207
|
Xiang MSW, Kikuchi K. Endogenous Mechanisms of Cardiac Regeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:67-131. [PMID: 27572127 DOI: 10.1016/bs.ircmb.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zebrafish possess a remarkable capacity for cardiac regeneration throughout their lifetime, providing a model for investigating endogenous cellular and molecular mechanisms regulating myocardial regeneration. By contrast, adult mammals have an extremely limited capacity for cardiac regeneration, contributing to mortality and morbidity from cardiac diseases such as myocardial infarction and heart failure. However, the viewpoint of the mammalian heart as a postmitotic organ was recently revised based on findings that the mammalian heart contains multiple undifferentiated cell types with cardiogenic potential as well as a robust regenerative capacity during a short period early in life. Although it occurs at an extremely low level, continuous cardiomyocyte turnover has been detected in adult mouse and human hearts, which could potentially be enhanced to restore lost myocardium in damaged human hearts. This review summarizes and discusses recent advances in the understanding of endogenous mechanisms of cardiac regeneration.
Collapse
Affiliation(s)
- M S W Xiang
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW, Australia
| | - K Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst NSW, Australia; St. Vincent's Clinical School, University of New South Wales, Kensington NSW, Australia.
| |
Collapse
|
208
|
Dauleh S, Santeramo I, Fielding C, Ward K, Herrmann A, Murray P, Wilm B. Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. PLoS One 2016; 11:e0158997. [PMID: 27403660 PMCID: PMC4942062 DOI: 10.1371/journal.pone.0158997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/24/2016] [Indexed: 12/16/2022] Open
Abstract
The human omentum has been long regarded as a healing patch, used by surgeons for its ability to immunomodulate, repair and vascularise injured tissues. A major component of the omentum are mesothelial cells, which display some of the characteristics of mesenchymal stem/stromal cells. For instance, lineage tracing studies have shown that mesothelial cells give rise to adipocytes and vascular smooth muscle cells, and human and rat mesothelial cells have been shown to differentiate into osteoblast- and adipocyte-like cells in vitro, indicating that they have considerable plasticity. However, so far, long-term cultures of mesothelial cells have not been successfully established due to early senescence. Here, we demonstrate that mesothelial cells isolated from the mouse omentum could be cultured for more than 30 passages. While epithelial markers were downregulated over passages in the mesothelial cells, their mesenchymal profile remained unchanged. Early passage mesothelial cells displayed clonogenicitiy, expressed several stem cell markers, and up to passage 5 and 13, respectively, could differentiate along the adipogenic and osteogenic lineages, demonstrating stem/progenitor characteristics and differentiation potential.
Collapse
Affiliation(s)
- Sumaya Dauleh
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ilaria Santeramo
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Claire Fielding
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kelly Ward
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Anne Herrmann
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
209
|
Furtado MB, Costa MW, Rosenthal NA. The cardiac fibroblast: Origin, identity and role in homeostasis and disease. Differentiation 2016; 92:93-101. [PMID: 27421610 DOI: 10.1016/j.diff.2016.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022]
Abstract
The mammalian heart is responsible for supplying blood to two separate circulation circuits in a parallel manner. This design provides efficient oxygenation and nutrients to the whole body through the left-sided pump, while the right-sided pump delivers blood to the pulmonary circulation for re-oxygenation. In order to achieve this demanding job, the mammalian heart evolved into a highly specialised organ comprised of working contractile cells or cardiomyocytes, a directional and insulated conduction system, capable of independently generating and conducting electric impulses that synchronises chamber contraction, valves that allow the generation of high pressure and directional blood flow into the circulation, coronary circulation, that supplies oxygenated blood for the heart muscle high metabolically active pumping role and inlet/outlet routes, as the venae cavae and pulmonary veins, aorta and pulmonary trunk. This organization highlights the complexity and compartmentalization of the heart. This review will focus on the cardiac fibroblast, a cell type until recently ignored, but that profoundly influences heart function in its various compartments. We will discuss current advances on definitions, molecular markers and function of cardiac fibroblasts in heart homeostasis and disease.
Collapse
Affiliation(s)
- Milena B Furtado
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| | - Mauro W Costa
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA; Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia; National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
210
|
Furtado MB, Nim HT, Boyd SE, Rosenthal NA. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 2016; 143:387-97. [PMID: 26839342 DOI: 10.1242/dev.120576] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the adult, tissue repair after injury is generally compromised by fibrosis, which maintains tissue integrity with scar formation but does not restore normal architecture and function. The process of regeneration is necessary to replace the scar and rebuild normal functioning tissue. Here, we address this problem in the context of heart disease, and discuss the origins and characteristics of cardiac fibroblasts, as well as the crucial role that they play in cardiac development and disease. We discuss the dual nature of cardiac fibroblasts, which can lead to scarring, pathological remodelling and functional deficit, but can also promote heart function in some contexts. Finally, we review current and proposed approaches whereby regeneration could be fostered by interventions that limit scar formation.
Collapse
Affiliation(s)
- Milena B Furtado
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Nadia A Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
211
|
Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov 2016; 15:620-638. [PMID: 27339799 DOI: 10.1038/nrd.2016.89] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of the functions of cardiac fibroblasts has moved beyond their roles in heart structure and extracellular matrix generation and now includes their contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts also have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development.
Collapse
|
212
|
Oh H, Ito H, Sano S. Challenges to success in heart failure: Cardiac cell therapies in patients with heart diseases. J Cardiol 2016; 68:361-367. [PMID: 27341741 DOI: 10.1016/j.jjcc.2016.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
Abstract
Heart failure remains the leading cause of death worldwide, and is a burgeoning problem in public health due to the limited capacity of postnatal hearts to self-renew. The pathophysiological changes in injured hearts can sometimes be manifested as scar formation or myocardial degradation, rather than supplemental muscle regeneration to replenish lost tissue during the healing processes. Stem cell therapies have been investigated as a possible treatment approach for children and adults with potentially fatal cardiovascular disease that does not respond to current medical therapies. Although the heart is one of the least regenerative organs in mammals, discoveries made during the past few decades have improved our understanding of cardiac development and resident stem/progenitor pools, which may be lineage-restricted subpopulations during the post-neonatal stage of cardiac morphogenesis. Recently, investigation has specifically focused on factors that activate either endogenous progenitor cells or preexisting cardiomyocytes, to regenerate cardiovascular cells and replace the damaged heart tissues. The discovery of induced pluripotent stem cells has advanced our technological capability to direct cardiac reprogramming by essential factors that are crucial for heart field completion in each stage. Cardiac tissue engineering technology has recently shown progress in generating myocardial tissue on human native cardiac extracellular matrix scaffolds. This review summarizes recent advances in the field of cardiac cell therapies with an emphasis on cellular mechanisms, such as bone marrow stem cells and cardiac progenitor cells, which show the high potential for success in preclinical and clinical meta-analysis studies. Expanding our current understanding of mechanisms of self-renewal in the neonatal mammalian heart may lead to the development of novel cardiovascular regenerative medicines for pediatric heart diseases.
Collapse
Affiliation(s)
- Hidemasa Oh
- Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan.
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shunji Sano
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
213
|
Vascular Development and Regeneration in the Mammalian Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3020023. [PMID: 29367569 PMCID: PMC5715682 DOI: 10.3390/jcdd3020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases including coronary artery disease are the leading cause of death worldwide. Unraveling the developmental origin of coronary vessels could offer important therapeutic implications for treatment of cardiovascular diseases. The recent identification of the endocardial source of coronary vessels reveals a heterogeneous origin of coronary arteries in the adult heart. In this review, we will highlight recent advances in finding the sources of coronary vessels in the mammalian heart from lineage-tracing models as well as differentiation studies using pluripotent stem cells. Moreover, we will also discuss how we induce neovascularization in the damaged heart through transient yet highly efficient expression of VEGF-modified mRNAs as a potentially therapeutic delivery platform.
Collapse
|
214
|
Ebert AD, Diecke S, Chen IY, Wu JC. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Mol Med 2016; 7:1090-103. [PMID: 26183451 PMCID: PMC4568945 DOI: 10.15252/emmm.201504395] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options.
Collapse
Affiliation(s)
- Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max Delbrück Center, Berlin, Germany Berlin Institute of Health, Berlin, Germany
| | - Ian Y Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
215
|
Abstract
Treatment with thymosin beta 4 (Tβ4) reduces infarct volume and preserves cardiac function in preclinical models of cardiac ischemic injury. These effects stem in part from decreased infarct size, but additional benefits are likely due to specific antifibrotic and proangiogenic activities. Injected or transgenic Tβ4 increase blood vessel growth in large and small animal models, consistent with Tβ4 converting hibernating myocardium to an actively contractile state following ischemia. Tβ4 and its degradation products have antifibrotic effects in in vitro assays and in animal models of fibrosis not related to cardiac injury. This large number of pleiotropic effects results from Tβ4's many interactions with cellular signaling pathways, particularly indirect regulation of cellular motility and movement via the SRF-MRTF-G-actin transcriptional pathway. Variation in effects and effect sizes in animal models may potentially be due to variable distribution of Tβ4. Preclinical studies of PK/PD relationships and a reliable pharmacodynamic biomarker would facilitate clinical development of Tβ4.
Collapse
Affiliation(s)
- G T Pipes
- Cardiovascular Drug Discovery, Discovery Biology Research & Development, Bristol-Myers Squibb, Pennington, NJ, United States.
| | - J Yang
- Cardiovascular Drug Discovery, Discovery Biology Research & Development, Bristol-Myers Squibb, Pennington, NJ, United States
| |
Collapse
|
216
|
Actin-Induced Structure in the Beta-Thymosin Family of Intrinsically Disordered Proteins. VITAMINS AND HORMONES 2016; 102:55-71. [PMID: 27450730 DOI: 10.1016/bs.vh.2016.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thymosin β4 (Tβ4) is a 43-amino acid signature motif peptide that defines the beta-thymosin (βT) family of proteins. βTs are intrinsically unstructured in their free states and undergo disorder-to-order transitions in carrying out their biological functions. This property poses challenges in determining their 3D structures, mainly favoring structural studies on the complexes formed between βTs and their interaction partners. One of the βTs' primary binding partners is monomeric actin, a major component of the cytoskeleton in eukaryotic cells. Tβ4's role in this system is to maintain the highly concentrated pool of monomeric actin that can be accessed through profilin by actin filament nucleating machineries. Here, we give an account of the structures of βTs that have been illuminated by nuclear magnetic resonance (NMR) and X-ray crystallography. NMR has been the method of choice for probing regions that have intrinsic conformational preference within the largely disordered βTs in their native states in solution. X-ray crystallography has demonstrated at atomic detail how βTs interact with actin. Detailed analysis of these structures highlights the disorder-to-order transition of Tβ4 in binding to actin and its isoform specificity.
Collapse
|
217
|
Differentiation-Associated MicroRNA Alterations in Mouse Heart-Derived Sca-1(+)CD31(-) and Sca-1(+)CD31(+) Cells. Stem Cells Int 2016; 2016:9586751. [PMID: 27298624 PMCID: PMC4889861 DOI: 10.1155/2016/9586751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/02/2016] [Accepted: 03/20/2016] [Indexed: 12/02/2022] Open
Abstract
Cardiac resident stem/progenitor cells (CSC/CPCs) are critical to the cellular and functional integrity of the heart because they maintain myocardial cell homeostasis. Several populations of CSC/CPCs have been identified based on expression of different stem cell-associated antigens. Sca-1+ cells in the cardiac tissue may be the most common CSC/CPCs. However, they are a heterogeneous cell population and, in transplants, clinicians might transplant more endothelial cells, cardiomyocytes, or other cells than stem cells. The purposes of this study were to (1) isolate CSC/CPCs with Lin−CD45−Sca-1+CD31− and Lin−CD45−Sca-1+CD31+ surface antigens using flow-activated cell sorting; (2) investigate their differentiation potential; and (3) determine the molecular basis for differences in stemness characteristics between cell subtypes. The results indicated that mouse heart-derived Sca-1+CD31− cells were multipotent and retained the ability to differentiate into different cardiac cell lineages, but Sca-1+CD31+ cells did not. Integrated analysis of microRNA and mRNA expression indicated that 20 microRNAs and 49 mRNAs were inversely associated with Sca-1+CD31− and Sca-1+CD31+ subtype stemness characteristics. In particular, mmu-miR-322-5p had more targeted and inversely associated genes and transcription factors and might have higher potential for CSC/CPCs differentiation.
Collapse
|
218
|
Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, Leor J, Perrino C, Schulz R, Ytrehus K, Landmesser U, Mummery CL, Janssens S, Willerson J, Eschenhagen T, Ferdinandy P, Sluijter JPG. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J 2016; 37:1789-98. [PMID: 27055812 DOI: 10.1093/eurheartj/ehw113] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/01/2016] [Indexed: 12/27/2022] Open
Abstract
Despite improvements in modern cardiovascular therapy, the morbidity and mortality of ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and worldwide. Patients with IHD may benefit from therapies that would accelerate natural processes of postnatal collateral vessel formation and/or muscle regeneration. Here, we discuss the use of cells in the context of heart repair, and the most relevant results and current limitations from clinical trials using cell-based therapies to treat IHD and HF. We identify and discuss promising potential new therapeutic strategies that include ex vivo cell-mediated gene therapy, the use of biomaterials and cell-free therapies aimed at increasing the success rates of therapy for IHD and HF. The overall aim of this Position Paper of the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to improve the therapeutic application of cell-based therapies for cardiac regeneration and repair.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, 'G. d'Annunzio' University - Chieti, Chieti, Italy Texas Heart Institute, Houston, USA
| | - Linda W Van Laake
- Hubrecht Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Sandrine Lecour
- MRC Cape Heart Unit, Hatter Cardiovascular Research Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Leor
- Neufeld Cardiac Research Institute, Tel-Aviv University, Tel Aviv-Yafo, Israel Tamman Cardiovascular Research Institute, Sheba Medical Center, Tel HaShomer, Israel Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel Hashomer, Israel
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig Giessen University of Giessen, Gießen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ulf Landmesser
- Department of Cardiology, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | - Stefan Janssens
- Department of Cardiovascular Sciences, Clinical Cardiology, KU Leuven, Leuven, Belgium
| | - James Willerson
- Department of Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary Pharmahungary Group, Szeged, Hungary
| | | |
Collapse
|
219
|
Cao J, Poss KD. Explant culture of adult zebrafish hearts for epicardial regeneration studies. Nat Protoc 2016; 11:872-81. [PMID: 27055096 DOI: 10.1038/nprot.2016.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here we describe how to culture adult zebrafish hearts as explants and study the regeneration of epicardial tissue ex vivo, as a means to identify therapeutic targets for heart disease. Uninjured or injured adult hearts are excised, washed and cultured in an incubator with gentle agitation. Heart explants can be prepared within 2 h, and they can be maintained in culture for 30 d or longer. If explants are prepared from appropriate transgenic lines, dynamic behaviors of epicardial cells can be monitored by live imaging using stereofluorescence microscopy. We also describe ex vivo procedures for genetic ablation of the epicardium, cell proliferation assays, tissue grafts and bead grafts. Basic cell culture and surgical skills are required to carry out this protocol. Unlike existing protocols for culturing isolated zebrafish epicardial cells on matrices, procedures described here maintain epicardial cells on an intact cardiac surface, thereby better supporting in vivo cell behaviors. Our protocols complement and extend in vivo studies of heart regeneration.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
220
|
Ding Z, Temme S, Quast C, Friebe D, Jacoby C, Zanger K, Bidmon HJ, Grapentin C, Schubert R, Flögel U, Schrader J. Epicardium-Derived Cells Formed After Myocardial Injury Display Phagocytic Activity Permitting In Vivo Labeling and Tracking. Stem Cells Transl Med 2016; 5:639-50. [PMID: 27057005 DOI: 10.5966/sctm.2015-0159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Epicardium-derived cells (EPDCs) cover the heart surface and can function as a source of both progenitor cells and trophic factors for cardiac repair. Currently, EPDCs cannot be conveniently labeled in vivo to permit imaging and cell tracking. EPDCs formed after myocardial infarction (MI) preferentially take up a perfluorocarbon-containing nanoemulsion (PFC-NE; 130 ± 32 nm) injected 3 days after injury, as measured by (19)F-magnetic resonance imaging ((19)F-MRI). Flow cytometry, immune electron microscopy, and green fluorescent protein (GFP)-transgenic rats (only immune cells, but not epicardial cells, are GFP(+)) demonstrated that PFC-containing EPDCs are nonhematopoietic (CD45(-)/CD11b(-)) but stain positive for markers of mesenchymal stem cells such as platelet-derived growth factor receptor α (PDGFR-α) CD73, CD105, and CD90. When rhodamine-coupled PFC-NE was used, we found that ρ(+) vessel-like structures formed within the infarcted myocardium, comprising approximately 10% of all large vessels positive for smooth muscle actin (SM-actin). The epicardial cell layer, positive for Wilms' tumor 1 (WT-1), PDGFR-α, or KI-67, was shown to be well capillarized (293 ± 78 capillaries per mm(2)), including fenestrated endothelium. Freshly isolated EPDCs were positive for WT-1, GATA-4, KI-67, and FLK-1 (75%), PDGFR-α (50%), and SM-actin (28%) and also exhibited a high capacity for nanoparticle and cell debris uptake. This study demonstrates that EPDCs formed after MI display strong endocytic activity to take up i.v.-injected labeled nanoemulsions. This feature permitted in vivo labeling and tracking of EPDCs, demonstrating their role in myo- and vasculogenesis. The newly discovered endocytic activity permits in vivo imaging of EPDCs with (19)F-MRI and may be used for the liposomal delivery of substances to further study their reparative potential. SIGNIFICANCE The present study reports that epicardium-derived cells (EPDCs) formed after myocardial infarction can specifically endocytose nanoparticles in vivo and in vitro. This novel feature permitted in vivo targeting of EPDCs with either a perfluorocarbon-containing or rhodamine-conjugated nanoemulsion to track migration and fate decision of EPDC with (19)F-magnetic resonance imaging and fluorescence microscopy. The liposomal nanoemulsions used in the present study may be useful in the future as a nanomedical device for the delivery of substances to direct cell fate of EPDCs.
Collapse
Affiliation(s)
- Zhaoping Ding
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Sebastian Temme
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Christine Quast
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Daniela Friebe
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Christoph Jacoby
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Klaus Zanger
- Center of Anatomy and Brain Research, Department of Anatomy I, Heinrich Heine University, Duesseldorf, Germany
| | - Hans-Jürgen Bidmon
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich Heine University, Duesseldorf, Germany
| | - Christoph Grapentin
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg, Germany
| | - Ulrich Flögel
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
221
|
Developmental origin of postnatal cardiomyogenic progenitor cells. Future Sci OA 2016; 2:FSO120. [PMID: 28031967 PMCID: PMC5138010 DOI: 10.4155/fsoa-2016-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/08/2016] [Indexed: 12/29/2022] Open
Abstract
Aim: To trace the cell origin of the cells involved in postnatal cardiomyogenesis. Materials & methods: Nkx2.5 enhancer-eGFP (Nkx2.5 enh-eGFP) mice were used to test the cardiomyogenic potential of Nkx2.5 enhancer-expressing cells. By analyzing Cre excision of activated Nkx2.5-eGFP+ cells from different lineage-Cre/Nkx2.5 enh-eGFP/ROSA26 reporter mice, we traced the developmental origin of Nkx2.5 enhancer-expressing cells. Results: Nkx2.5 enhancer-expressing cells could differentiate into striated cardiomyocytes both in vitro and in vivo. Nkx2.5-eGFP+ cells increased remarkably after experimental myocardial infarction (MI). The post-MI Nkx2.5-eGFP+ cells originated from the embryonic epicardial cells, not from the pre-existing cardiomyocytes, endothelial cells, cardiac neural crest cells or perinatal/postnatal epicardial cells. Conclusion: Postnatal Nkx2.5 enhancer-expressing cells are cardiomyogenic progenitor cells and originate from embryonic epicardium-derived cells. Lay abstract: Recent studies report that postnatal mammalian hearts undergo cardiomyocyte refreshment; however, evidence is lacking for the cell origin of the cells involved in postnatal cardiomyogenesis. In this study, we confirmed that Nkx2.5 cardiac progenitor cells existed in the postnatal mouse heart and could differentiate into striated cardiomyocytes both in vitro and in vivo. The developmental origin of these postnatal Nkx2.5 cardiac progenitor cells are from the embryonic epicardial cells.
Collapse
|
222
|
Esipov RS, Makarov DA, Stepanenko VN, Miroshnikov AI. Development of the intein-mediated method for production of recombinant thymosin β4 from the acetylated in vivo fusion protein. J Biotechnol 2016; 228:73-81. [PMID: 27015974 DOI: 10.1016/j.jbiotec.2016.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 10/22/2022]
Abstract
Thymosin β4 is a 43 amino acid long peptide with an acetylated N-terminal serin that has a high potential as a remedy for healing ulcers, wounds and burns. Although protein biosynthesis offers attractive opportunities in terms of a large-scale production, currently thymosin β4 is mainly produced by chemical synthesis. The problems that hinder the successful commercialization of the biotechnological approach are associated with the small peptides expression and N-terminal acetylation. This work presents an innovative biotechnological method for thymosin β4 production that employs the peptide acetylation in vivo. A genetically engineered construct was created, where the Tβ4 coding sequence fused with the intein Mxe GyrA sequence and chitin-binding domain was combined with the acetyltransferase coding sequence to form a polycistronic construct under a stringent control of T7 promoter. This plasmid construct provided for the expression of the Tβ4-intein fusion protein. In the process of the post-translational modification in vivo formyl methionine was completely removed from the target peptide N-terminus and followed by the Tβ4 precursor N-terminal acetylation. The use of the intein-mediated expression system made it possible to extract thymosin β4 in only 2 chromatographic runs. The method is straightforward to implement and scale up.
Collapse
Affiliation(s)
- Roman S Esipov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russian Federation.
| | - Dmitry A Makarov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russian Federation.
| | - Vasily N Stepanenko
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russian Federation.
| | - Anatoly I Miroshnikov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russian Federation.
| |
Collapse
|
223
|
Liu Q, Zhang H, Tian X, He L, Huang X, Tan Z, Yan Y, Evans SM, Wythe JD, Zhou B. Smooth muscle origin of postnatal 2nd CVP is pre-determined in early embryo. Biochem Biophys Res Commun 2016; 471:430-6. [PMID: 26902114 PMCID: PMC5555742 DOI: 10.1016/j.bbrc.2016.02.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/15/2016] [Indexed: 02/02/2023]
Abstract
Recent identification of the neonatal 2nd coronary vascular population (2nd CVP) suggests that a subset of these vessels form de novo and mature in the inner myocardial wall of the postnatal heart. However, the origin of smooth muscle cells (SMCs) in the postnatal 2nd CVP remains undetermined. Using a tamoxifen-inducible Wt1-CreER driver and a Rosa26-RFP reporter line, we traced the lineage of epicardial cells to determine if they contribute to SMCs of the 2nd CVP. Late embryonic and postnatal induction of Wt1-CreER activity demonstrated that at these stages Wt1-labeled epicardium does not significantly migrate into the myocardium to form SMCs. However, following tamoxifen treatment at an early embryonic stage (E10.5), we detected Wt1 descendants (epicardium-derived cells, or EPDCs) in the outer myocardial wall at E17.5. When the 2nd CVP forms and remodels at postnatal stage, these early labeled EDPCs re-migrate deep into the inner myocardial wall and contribute to 2nd CVP-SMCs in the adult heart. Our findings reveal that SMCs in the postnatal 2nd CVP are pre-specified as EPDCs from the earliest wave of epicardial cell migration. Rather than the re-activation and migration of epicardial cells at later stages, these resident EPDCs mobilize and contribute to smooth muscle of the 2nd CVP during postnatal development.
Collapse
Affiliation(s)
- Qiaozhen Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Tian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingjuan He
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiuzhen Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhen Tan
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Yan Yan
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sylvia M Evans
- Skaggs School of Pharmacy, Department of Medicine, Department of Pharmacology, UCSD, La Jolla, CA, 92093, USA
| | - Joshua D Wythe
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
224
|
Mizutani M, Wu JC, Nusse R. Fibrosis of the Neonatal Mouse Heart After Cryoinjury Is Accompanied by Wnt Signaling Activation and Epicardial-to-Mesenchymal Transition. J Am Heart Assoc 2016; 5:e002457. [PMID: 27068625 PMCID: PMC4943236 DOI: 10.1161/jaha.115.002457] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The adult mammalian heart responds to cardiac injury by formation of persistent fibrotic scar that eventually leads to heart failure. In contrast, the neonatal mammalian heart reacts to injury by the development of transient fibrotic tissue that is eventually replaced by regenerated cardiomyocytes. How fibrosis occurs in the neonatal mammalian heart remains unknown. To start elucidating the molecular underpinnings of neonatal cardiac fibrosis, we investigated Wnt signaling in the neonatal heart after cryoinjury. Methods and Results Using expression of the Wnt target gene Axin2 as an indicator of Wnt/β‐catenin signaling activation, we discovered that epicardial cells in the ventricles are responsive to Wnt in the uninjured neonatal heart. Lineage‐tracing studies of these Wnt‐responsive epicardial cells showed that they undergo epithelial‐to‐mesenchymal transition and infiltrate into the subepicardial space and exhibit fibroblast phenotypes after injury. In addition, we showed that—similar to adult ischemic injury—neonatal cryoinjury results in activation of Wnt signaling in cardiac fibroblasts near injured areas. Furthermore, through in situ hybridization of all 19 Wnt ligands in injured neonatal hearts, we observed upregulation of Wnt ligands (Wnt2b, Wnt5a, and Wnt9a) that had not been implicated in the adult cardiac injury response. Conclusions These results demonstrate that cryoinjury in neonatal heart leads to the formation of fibrotic tissue that involves Wnt‐responsive epicardial cells undergoing epithelial‐to‐mesenchymal transition to give rise to fibroblasts and activation of Wnt signaling in resident cardiac fibroblasts.
Collapse
Affiliation(s)
- Makiko Mizutani
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Roeland Nusse
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA Howard Hughes Medical Institute, Stanford University, Stanford, CA
| |
Collapse
|
225
|
Feric NT, Radisic M. Strategies and Challenges to Myocardial Replacement Therapy. Stem Cells Transl Med 2016; 5:410-6. [PMID: 26933042 PMCID: PMC4798743 DOI: 10.5966/sctm.2015-0288] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cardiac cell-based regenerative therapies include application of a cell suspension and the implantation of an in vitro engineered tissue construct to the damaged area of the heart. Both strategies have their advantages and challenges. This review discusses the current state of the art in myocardial regeneration, the challenges to success, and the future direction of the field. Cardiovascular diseases account for the majority of deaths globally and are a significant drain on economic resources. Although heart transplants and left-ventricle assist devices are the solution for some, the best chance for many patients who suffer because of a myocardial infarction, heart failure, or a congenital heart disease may be cell-based regenerative therapies. Such therapies can be divided into two categories: the application of a cell suspension and the implantation of an in vitro engineered tissue construct to the damaged area of the heart. Both strategies have their advantages and challenges, and in this review, we discuss the current state of the art in myocardial regeneration, the challenges to success, and the future direction of the field.
Collapse
Affiliation(s)
- Nicole T Feric
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
226
|
Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease. Biochem Pharmacol 2016; 113:1-11. [PMID: 26903387 DOI: 10.1016/j.bcp.2016.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Abstract
Adult stem cells continue to promise opportunities to repair damaged cardiac tissue. However, precisely how adult stem cells accomplish cardiac repair, especially after ischemic damage, remains controversial. It has been postulated that the clinical benefit of adult stem cells for cardiovascular disease results from the release of cytokines and growth factors by the transplanted cells. Studies in animal models of myocardial infarction have reported that such paracrine factors released from transplanted adult stem cells contribute to improved cardiac function by several processes. These include promoting neovascularization of damaged tissue, reducing inflammation, reducing fibrosis and scar formation, as well as protecting cardiomyocytes from apoptosis. In addition, these factors might also stimulate endogenous repair by activating cardiac stem cells. Interestingly, stem cells discovered to be resident in the heart appear to be functionally superior to extra-cardiac adult stem cells when transplanted for cardiac repair and regeneration. In this review, we discuss the therapeutic potential of cardiac stem cells and how the proteins secreted from these cells might be harnessed to promote repair and regeneration of damaged cardiac tissue. We also highlight how recent controversies about the efficacy of adult stem cells in clinical trials of ischemic heart disease have not dampened enthusiasm for the application of cardiac stem cells and their paracrine factors for cardiac repair: the latter have proved superior to the mesenchymal stem cells used in most clinical trials in the past, some of which appear to have been conducted with sub-optimal rigor.
Collapse
|
227
|
Krainock M, Toubat O, Danopoulos S, Beckham A, Warburton D, Kim R. Epicardial Epithelial-to-Mesenchymal Transition in Heart Development and Disease. J Clin Med 2016; 5:jcm5020027. [PMID: 26907357 PMCID: PMC4773783 DOI: 10.3390/jcm5020027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 01/07/2023] Open
Abstract
The epicardium is an epithelial monolayer that plays a central role in heart development and the myocardial response to injury. Recent developments in our understanding of epicardial cell biology have revealed this layer to be a dynamic participant in fundamental processes underlying the development of the embryonic ventricles, the coronary vasculature, and the cardiac valves. Likewise, recent data have identified the epicardium as an important contributor to reparative and regenerative processes in the injured myocardium. These essential functions of the epicardium rely on both non-cell autonomous and cell-autonomous mechanisms, with the latter featuring the process of epicardial Epithelial-to-Mesenchymal Transition (EMT). This review will focus on the induction and regulation of epicardial EMT, as it pertains to both cardiogenesis and the response of the myocardium to injury.
Collapse
Affiliation(s)
- Michael Krainock
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - Omar Toubat
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - Soula Danopoulos
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - Allison Beckham
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - David Warburton
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| | - Richard Kim
- Division of Cardiothoracic Surgery, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
228
|
Macrophage precursor cells from the left atrial appendage of the heart spontaneously reprogram into a C-kit+/CD45- stem cell-like phenotype. Int J Cardiol 2016; 209:296-306. [PMID: 26913371 DOI: 10.1016/j.ijcard.2016.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/21/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The developmental origin of the c-kit expressing progenitor cell pool in the adult heart has remained elusive. Recently, it has been discovered that the injured heart is enriched with c-kit(+) cells, which also express the hematopoietic marker CD45. METHODS AND RESULTS In this study, we characterize the phenotype and transcriptome of the c-kit+/CD45+/CD11b+/Flk-1+/Sca-1±(B-type) cell population, originating from the left atrial appendage. These cells are defined as cardiac macrophage progenitors. We also demonstrate that the CD45+ progenitor cell population activates heart development, neural crest and pluripotency-associated pathways in vitro, in conjunction with CD45 down-regulation, and acquire a c-kit+/CD45-/CD11b-/Flk-1-/Sca-1+ (A-type) phenotype through cell fusion and asymmetric division. This putative spontaneous reprogramming evolves into a highly proliferative, partially myogenic phenotype (C-type). CONCLUSIONS Our data suggests that A-type cells and cardiac macrophage precursor cells (B-type) have a common lineage origin, possibly resolving some current conundrums in the field of cardiac regeneration.
Collapse
|
229
|
Affiliation(s)
- Mo Li
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| | - Juan Carlos Izpisua Belmonte
- From the Gene Expression Laboratory, the Salk Institute for Biological Studies, La Jolla, CA (M.L., J.C.I.B.); and Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, Murcia, Spain (M.L.)
| |
Collapse
|
230
|
Epicardial infarct repair with bioinductive extracellular matrix promotes vasculogenesis and myocardial recovery. J Heart Lung Transplant 2016; 35:661-70. [PMID: 26987597 DOI: 10.1016/j.healun.2016.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/15/2015] [Accepted: 01/10/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Infarcted myocardium can remodel after successful reperfusion, resulting in left ventricular dilation and heart failure. Epicardial infarct repair (EIR) using a bioinductive extracellular matrix (ECM) biomaterial is a novel surgical approach to promote endogenous myocardial repair and functional recovery after myocardial infarction. Using a pre-clinical porcine model of coronary ischemia-reperfusion, we assessed the effects of EIR on regional functional recovery, safety, and possible mechanisms of benefit. METHODS An ECM biomaterial (CorMatrix ECM) was applied to the epicardium after 75 minutes of coronary ischemia in a porcine model. Following ischemia-reperfusion injury, animals were randomly assigned in 2:1 fashion to EIR (n = 8) or sham treatment (n = 4). Serial cardiac magnetic resonance imaging was performed on normal (n = 4) and study animals at baseline (1 week) and 6 weeks after treatment. Myocardial function and tissue characteristics were assessed. RESULTS Functional myocardial recovery was significantly increased by EIR compared with sham treatment (change in regional myocardial contraction at 6 weeks, 28.6 ± 14.0% vs 4.2 ± 13.5% wall thickening, p < 0.05). Animals receiving EIR had reduced adhesions compared with animals receiving sham treatment (1.44 ± 0.51 vs 3.08 ± 0.89, p < 0.05). Myocardial fibrosis was not increased, and EIR did not cause myocardial constriction, as left ventricular compliance by passive pressure distention at matched volumes was similar between groups (13.9 ± 4.0 mm Hg in EIR group vs 16.0 ± 5.2 mm Hg in sham group, p = 0.61). Animals receiving EIR showed evidence of vasculogenesis in the region of functional recovery. CONCLUSIONS In addition to the beneficial effects of successful reperfusion, EIR using a bioinductive ECM enhances myocardial repair and functional recovery. Clinical translation of EIR early after myocardial infarction as an adjunct to surgical revascularization may be warranted in the future.
Collapse
|
231
|
Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide? Stem Cells Int 2016; 2016:5961342. [PMID: 26880973 PMCID: PMC4735943 DOI: 10.1155/2016/5961342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
The discovery that stem cells isolated from different organs have the ability to differentiate into mature beating cardiomyocytes has fostered considerable interest in developing cellular regenerative therapies to treat cardiac diseases associated with the loss of viable myocardium. Clinical studies evaluating the potential of stem cells (from heart, blood, bone marrow, skeletal muscle, and fat) to regenerate the myocardium and improve its functional status indicated that although the method appeared generally safe, its overall efficacy has remained modest. Several issues raised by these studies were notably related to the nature and number of injected cells, as well as the route and timing of their administration, to cite only a few. Besides the direct administration of cardiac precursor cells, a distinct approach to cardiac regeneration could be based upon the stimulation of the heart's natural ability to regenerate, using pharmacological approaches. Indeed, differentiation and/or proliferation of cardiac precursor cells is controlled by various endogenous mediators, such as growth factors and cytokines, which could thus be used as pharmacological agents to promote regeneration. To illustrate such approach, we present recent results showing that the exogenous administration of the natriuretic peptide BNP triggers “endogenous” cardiac regeneration, following experimental myocardial infarction.
Collapse
|
232
|
Wang J, Poss KD. Methodologies for Inducing Cardiac Injury and Assaying Regeneration in Adult Zebrafish. Methods Mol Biol 2016; 1451:225-35. [PMID: 27464811 DOI: 10.1007/978-1-4939-3771-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The zebrafish has emerged as an important model organism for understanding the cellular and molecular mechanisms of tissue regeneration. Adult zebrafish efficiently replace cardiac muscle after partial resection of their ventricle, or after transgenic ablation of cardiomyocytes. Here, we describe methodology for inducing these injuries and assaying indicators of regeneration.
Collapse
Affiliation(s)
- Jinhu Wang
- Department of Cell Biology, Duke University Medical Center, 466 Nanaline Duke Building, Box 3709, Durham, NC, 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, 466 Nanaline Duke Building, Box 3709, Durham, NC, 27710, USA.
| |
Collapse
|
233
|
Fang M, Xiang FL, Braitsch CM, Yutzey KE. Epicardium-derived fibroblasts in heart development and disease. J Mol Cell Cardiol 2015; 91:23-7. [PMID: 26718723 DOI: 10.1016/j.yjmcc.2015.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 12/16/2022]
Abstract
The majority of cardiac fibroblasts in a mature mammalian heart are derived from the epicardium during prenatal development and reactivate developmental programs during the progression of fibrotic disease. In addition, epicardial activation, proliferation, and fibrosis occur with ischemic, but not hypertensive injury. Here we review cellular and molecular mechanisms that control epicardium-derived cell lineages during development and disease with a focus on cardiac fibroblasts. This article is part of a special issue entitled "Fibrosis and Myocardial Remodeling".
Collapse
Affiliation(s)
- Ming Fang
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7020, Cincinnati, OH 45229, USA
| | - Fu-Li Xiang
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7020, Cincinnati, OH 45229, USA
| | - Caitlin M Braitsch
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7020, Cincinnati, OH 45229, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, ML 7020, Cincinnati, OH 45229, USA.
| |
Collapse
|
234
|
Abstract
Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.
Collapse
|
235
|
The roadmap of WT1 protein expression in the human fetal heart. J Mol Cell Cardiol 2015; 90:139-45. [PMID: 26686990 DOI: 10.1016/j.yjmcc.2015.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/19/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022]
Abstract
The transcription factor Wilms' Tumor-1 (WT1) is essential for cardiac development. Deletion of Wt1 in mice results in disturbed epicardial and myocardial formation and lack of cardiac vasculature, causing embryonic lethality. Little is known about the role of WT1 in the human fetal heart. Therefore, as a first step, we analyzed the expression pattern of WT1 protein during human cardiac development from week 4 till week 20. WT1 expression was apparent in epicardial, endothelial and endocardial cells in a spatiotemporal manner. The expression of WT1 follows a pattern starting at the epicardium and extending towards the lumen of the heart, with differences in timing and expression levels between the atria and ventricles. The expression of WT1 in cardiac arterial endothelial cells reduces in time, whereas WT1 expression in the endothelial cells of cardiac veins and capillaries remains present at all stages studied. This study provides for the first time a detailed description of the expression of WT1 protein during human cardiac development, which indicates an important role for WT1 also in human cardiogenesis.
Collapse
|
236
|
Cao J, Navis A, Cox BD, Dickson AL, Gemberling M, Karra R, Bagnat M, Poss KD. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration. Development 2015; 143:232-43. [PMID: 26657776 DOI: 10.1242/dev.130534] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023]
Abstract
In contrast to mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of cardiomyocytes spared from damage. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. Although it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. Here, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin 1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Adam Navis
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ben D Cox
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew Gemberling
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ravi Karra
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
237
|
Xie Y, Ibrahim A, Cheng K, Wu Z, Liang W, Malliaras K, Sun B, Liu W, Shen D, Cheol Cho H, Li T, Lu L, Lu G, Marbán E. Importance of cell-cell contact in the therapeutic benefits of cardiosphere-derived cells. Stem Cells 2015; 32:2397-406. [PMID: 24802280 DOI: 10.1002/stem.1736] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 03/19/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
Abstract
Cardiosphere-derived cells (CDCs) effect therapeutic regeneration after myocardial infarction (MI) both in animal models and in humans. Here, we test the hypothesis that cell-cell contact plays a role in mediating the observed therapeutic benefits of CDCs, above and beyond conventional paracrine effects. Human CDCs or vehicle were injected into immunodeficient (SCID) mouse hearts during acute MI. CDC transplantation augmented the proportion of cycling (Ki67(+) ) cardiomyocytes and improved ventricular function. CDC-conditioned media only modestly augmented the percentage of Ki67(+) cardiomyocytes (>control but <CDCs), but did not improve pump function. When neonatal rat ventricular myocytes (NRVMs) were cocultured with human CDCs in vitro, the percentage of cycling NRVMs (Ki67(+) or BrdU(+) nuclei) increased relative to solitary NRVM culture. To further dissect the relative contributions of soluble factors versus contact-dependent mechanisms, we compared CDCs grown with NRVMs in a transwell contact-free system versus admixed coculture. The percentage of cycling NRVMs was higher in admixed coculture than in the contact-free system. Pretreatment with inhibitors of MEK and PI3K, or with β1 integrin neutralizing antibody, blocked the ability of CDCs to promote myocyte cycling. While conditioned media are not inert, direct apposition of CDCs to cardiomyocytes produces greater enhancement of cardiomyocyte proliferation in vitro and in vivo, and improves function post-MI. Intact cardiomyocyte β1 integrin signaling is necessary for the contact-dependent cardioproliferative effects of CDCs.
Collapse
Affiliation(s)
- Yucai Xie
- Cedars-Sinai Heart Institute, Los Angeles, California, USA; Department of Cardiology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Liu Y, Dong Z, Liu H, Zhu J, Liu F, Chen G. Transition of mesothelial cell to fibroblast in peritoneal dialysis: EMT, stem cell or bystander? Perit Dial Int 2015; 35:14-25. [PMID: 25700459 DOI: 10.3747/pdi.2014.00188] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long-term peritoneal dialysis (PD) can lead to fibrotic changes in the peritoneum, characterized by loss of mesothelial cells (MCs) and thickening of the submesothelial area with an accumulation of collagen and myofibroblasts. The origin of myofibroblasts is a central question in peritoneal fibrosis that remains unanswered at present. Numerous clinical and experimental studies have suggested that MCs, through epithelial-mesenchymal transition (EMT), contribute to the pool of peritoneal myofibroblasts. However, recent work has placed significant doubts on the paradigm of EMT in organ fibrogenesis (in the kidney particularly), highlighting the need to reconsider the role of EMT in the generation of myofibroblasts in peritoneal fibrosis. In particular, selective cell isolation and lineage-tracing experiments have suggested the existence of progenitor cells in the peritoneum, which are able to switch to fibroblast-like cells when stimulated by the local environment. These findings highlight the plastic nature of MCs and its contribution to peritoneal fibrogenesis. In this review, we summarize the key findings and caveats of EMT in organ fibrogenesis, with a focus on PD-related peritoneal fibrosis, and discuss the potential of peritoneal MCs as a source of myofibroblasts.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Hong Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Jiefu Zhu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Fuyou Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
239
|
Clunie‐O'Connor C, Smits AM, Antoniades C, Russell AJ, Yellon DM, Goumans M, Riley PR. The Derivation of Primary Human Epicardium‐Derived Cells. ACTA ACUST UNITED AC 2015; 35:2C.5.1-2C.5.12. [DOI: 10.1002/9780470151808.sc02c05s35] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caitlin Clunie‐O'Connor
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford United Kingdom
- Department of Chemistry, Chemistry Research Laboratory Oxford United Kingdom
- These authors contributed equally to this study
| | - Anke M. Smits
- Department of Molecular Cell Biology, Leiden University Medical Centre Leiden The Netherlands
- These authors contributed equally to this study
| | - Charalambos Antoniades
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital Oxford United Kingdom
| | - Angela J. Russell
- Department of Chemistry, Chemistry Research Laboratory Oxford United Kingdom
- Department of Pharmacology, University of Oxford Oxford United Kingdom
| | - Derek M. Yellon
- The Hatter Cardiovascular Institute, University College London United Kingdom
| | - Marie‐José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Centre Leiden The Netherlands
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford United Kingdom
| |
Collapse
|
240
|
Valiente-Alandi I, Albo-Castellanos C, Herrero D, Arza E, Garcia-Gomez M, Segovia JC, Capecchi M, Bernad A. Cardiac Bmi1(+) cells contribute to myocardial renewal in the murine adult heart. Stem Cell Res Ther 2015; 6:205. [PMID: 26503423 PMCID: PMC4620653 DOI: 10.1186/s13287-015-0196-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/15/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction The mammalian adult heart maintains a continuous, low cardiomyocyte turnover rate throughout life. Although many cardiac stem cell populations have been studied, the natural source for homeostatic repair has not yet been defined. The Polycomb protein BMI1 is the most representative marker of mouse adult stem cell systems. We have evaluated the relevance and role of cardiac Bmi1+ cells in cardiac physiological homeostasis. Methods Bmi1CreER/+;Rosa26YFP/+ (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction, yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmi1+ cells. These cells and their progeny were tracked by FACS, immunofluorescence and RT-qPCR techniques from 5 days to 1 year. Results FACS analysis of non-cardiomyocyte compartment from TM-induced Bmi1-YFP mice showed a Bmi1+-expressing cardiac progenitor cell (Bmi1-CPC: B-CPC) population, SCA-1 antigen-positive (95.9 ± 0.4 %) that expresses some stemness-associated genes. B-CPC were also able to differentiate in vitro to the three main cardiac lineages. Pulse-chase analysis showed that B-CPC remained quite stable for extended periods (up to 1 year), which suggests that this Bmi1+ population contains cardiac progenitors with substantial self-maintenance potential. Specific immunostaining of Bmi1-YFP hearts serial sections 5 days post-TM induction indicated broad distribution of B-CPC, which were detected in variably sized clusters, although no YFP+ cardiomyocytes (CM) were detected at this time. Between 2 to 12 months after TM induction, YFP+ CM were clearly identified (3 ± 0.6 % to 6.7 ± 1.3 %) by immunohistochemistry of serial sections and by flow cytometry of total freshly isolated CM. B-CPC also contributed to endothelial and smooth muscle (SM) lineages in vivo. Conclusions High Bmi1 expression identifies a non-cardiomyocyte resident cardiac population (B-CPC) that contributes to the main lineages of the heart in vitro and in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0196-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iñigo Valiente-Alandi
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain. .,The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Carmen Albo-Castellanos
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain. .,Vivebiotech, San Sebastian, Spain.
| | - Diego Herrero
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain. .,Immunology and Oncology Department, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain.
| | - Elvira Arza
- Microscopy Unit, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain.
| | - Maria Garcia-Gomez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain.
| | - José C Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain. .,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain.
| | - Mario Capecchi
- Howard Hughes Medical Institute University of Utah, Salt Lake City, UT, USA.
| | - Antonio Bernad
- Cardiovascular Development and Repair Department, Spanish National Cardiovascular Research Center (CNIC), Madrid, Spain. .,Immunology and Oncology Department, Spanish National Center for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
241
|
Finan A, Richard S. Stimulating endogenous cardiac repair. Front Cell Dev Biol 2015; 3:57. [PMID: 26484341 PMCID: PMC4586501 DOI: 10.3389/fcell.2015.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/08/2015] [Indexed: 01/10/2023] Open
Abstract
The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration, a combination of these approaches could ameliorate the overall repair process to incorporate the participation of multiple cellular players.
Collapse
Affiliation(s)
- Amanda Finan
- Centre National de la Recherche Scientifique United Medical Resource 9214, Institut National de la Santé et de la Recherche Médicale U1046, Physiology and Experimental Medicine of the Heart and Muscles, University of Montpellier Montpellier, France
| | - Sylvain Richard
- Centre National de la Recherche Scientifique United Medical Resource 9214, Institut National de la Santé et de la Recherche Médicale U1046, Physiology and Experimental Medicine of the Heart and Muscles, University of Montpellier Montpellier, France
| |
Collapse
|
242
|
Risebro CA, Vieira JM, Klotz L, Riley PR. Characterisation of the human embryonic and foetal epicardium during heart development. Development 2015; 142:3630-6. [PMID: 26395486 DOI: 10.1242/dev.127621] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
The epicardium is essential for mammalian heart development. At present, our understanding of the timing and morphogenetic events leading to the formation of the human epicardium has essentially been extrapolated from model organisms. Here, we studied primary tissue samples to characterise human epicardium development. We reveal that the epicardium begins to envelop the myocardial surface at Carnegie stage (CS) 11 and this process is completed by CS15, earlier than previously inferred from avian studies. Contrary to prevailing dogma, the formed human epicardium is not a simple squamous epithelium and we reveal evidence of more complex structure, including novel spatial differences aligned to the developing chambers. Specifically, the ventricular, but not atrial, epicardium exhibited areas of expanded epithelium, preferential cell alignment and spindle-like morphology. Likewise, we reveal distinct properties ex vivo, such that ventricular cells spontaneously differentiate and lose epicardial identity, whereas atrial-derived cells remained 'epithelial-like'. These data provide insight into the developing human epicardium that may contribute to our understanding of congenital heart disease and have implications for the development of strategies for endogenous cell-based cardiac repair.
Collapse
Affiliation(s)
- Catherine A Risebro
- UCL-Institute of Child Health, Molecular Medicine Unit, 30 Guilford Street, London WC1N 1EH, UK
| | - Joaquim Miguel Vieira
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3PT, UK
| | - Linda Klotz
- UCL-Institute of Child Health, Molecular Medicine Unit, 30 Guilford Street, London WC1N 1EH, UK
| | - Paul R Riley
- UCL-Institute of Child Health, Molecular Medicine Unit, 30 Guilford Street, London WC1N 1EH, UK University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
243
|
|
244
|
Laiva AL, Venugopal JR, Navaneethan B, Karuppuswamy P, Ramakrishna S. Biomimetic approaches for cell implantation to the restoration of infarcted myocardium. Nanomedicine (Lond) 2015; 10:2907-30. [PMID: 26371367 DOI: 10.2217/nnm.15.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Compelling evidences accumulated over the years have proven stem cells as a promising source for regenerative medicine. However, the inadequacy with the design of delivery modalities has prolonged the research in realizing an ideal cell-based approach for the regeneration of infarcted myocardium. Currently, some modest improvements in cardiac function have been documented in clinical trials with stem cell treatments, although regenerating a fully functional myocardium remains a dream for cardiac surgeons. This review provides an overview on the significance of stem cell therapy, the current attempts to resolve the drawbacks with the cell implantation approach and the various stratagems adopted with electrospun hybrid nanofibers for implementation in myocardial regenerative therapy.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576.,Amity Institute of Nanotechnology, Amity University, Noida, UP, India
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Balchandar Navaneethan
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Priyadharsini Karuppuswamy
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| |
Collapse
|
245
|
Bulatovic I, Månsson-Broberg A, Sylvén C, Grinnemo KH. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart. Best Pract Res Clin Obstet Gynaecol 2015; 31:58-68. [PMID: 26421632 DOI: 10.1016/j.bpobgyn.2015.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/31/2015] [Indexed: 12/28/2022]
Abstract
The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.
Collapse
Affiliation(s)
- Ivana Bulatovic
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Division of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Agneta Månsson-Broberg
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Sylvén
- Department of Medicine, Division of Cardiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Diseases of Aging (CDA) at Vaccine and Gene Therapy Institute (VGTI), Port St Lucie, FL, USA
| |
Collapse
|
246
|
Affiliation(s)
- Dennis Schade
- Department
of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse
6, 44227 Dortmund, Germany
| | - Alleyn T. Plowright
- Department
of Medicinal Chemistry, Cardiovascular and Metabolic Diseases Innovative
Medicines, AstraZeneca, Pepparedsleden 1, Mölndal, 43183, Sweden
| |
Collapse
|
247
|
Affiliation(s)
- Michael D Schneider
- British Heart Foundation Centre of Regenerative Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew H Baker
- British Heart Foundation Centre of Regenerative Medicine, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Paul Riley
- Oxbridge BHF Centre of Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
248
|
Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, Qiu Z, Xie X. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res 2015; 25:1013-24. [PMID: 26292833 PMCID: PMC4559819 DOI: 10.1038/cr.2015.99] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022] Open
Abstract
The direct conversion, or transdifferentiation, of non-cardiac cells into cardiomyocytes by forced expression of transcription factors and microRNAs provides promising approaches for cardiac regeneration. However, genetic manipulations raise safety concerns and are thus not desirable in most clinical applications. The discovery of full chemically induced pluripotent stem cells suggest the possibility of replacing transcription factors with chemical cocktails. Here, we report the generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts using only chemical cocktails. These chemical-induced cardiomyocyte-like cells (CiCMs) express cardiomyocyte-specific markers, exhibit sarcomeric organization, and possess typical cardiac calcium flux and electrophysiological features. Genetic lineage tracing confirms the fibroblast origin of these CiCMs. Further studies show the generation of CiCMs passes through a cardiac progenitor stage instead of a pluripotent stage. Bypassing the use of viral-derived factors, this proof of concept study lays a foundation for in vivo cardiac transdifferentiation with pharmacological agents and possibly safer treatment of heart failure.
Collapse
Affiliation(s)
- Yanbin Fu
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chenwen Huang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinxiu Xu
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haifeng Gu
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youqiong Ye
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zilong Qiu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Xie
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
249
|
An S, Chen Y, Gao C, Qin B, Du X, Meng F, Qi Y. Inactivation of INK4a and ARF induces myocardial proliferation and improves cardiac repair following ischemia‑reperfusion. Mol Med Rep 2015; 12:5911-6. [PMID: 26239104 DOI: 10.3892/mmr.2015.4133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/10/2015] [Indexed: 11/05/2022] Open
Abstract
The growth of the heart during mammalian embryonic development is primarily dependent on an increase in the number of cardiomyocytes (CM). However, shortly following birth, CMs cease proliferating and further growth of the myocardium is achieved via hypertrophic expansion of the existing CM population. The cyclin-dependent kinase inhibitor 2A (Cdkn2a) locus encodes overlapping genes for two tumor suppressor proteins, p16INK4a and p19 alternative reading frame (ARF). To determine whether decreased Cdkn2a gene expression results in improved cardiac regeneration in vitro and in vivo following cardiac injury, the proliferation of CMs isolated from Cdkn2a knockout (KO) and wild‑type (WT) mice in vitro and in vivo were evaluated following generation of ischemia reperfusion (IR) injury. The KO mice demonstrated enhanced CM proliferation not only in vitro, but also in vivo. Furthermore, heart function was improved and scar size was decreased in the KO mice compared with that of the WT mice. The results also indicated that microRNA (miR)‑1 and miR‑195 expression levels associated with cell proliferation were reduced following IR injury in KO mice compared with those of WT mice. These results suggested that the inactivation of INK4a and ARF stimulated CM proliferation and promoted cardiac repair.
Collapse
Affiliation(s)
- Songtao An
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yan Chen
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Chuanyu Gao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Bingyu Qin
- Department of Anesthesia, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Xianhui Du
- Department of Anesthesia, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Fanmin Meng
- Department of Anesthesia, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yanyan Qi
- Department of Anesthesia, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
250
|
Hatzistergos KE, Paulino EC, Dulce RA, Takeuchi LM, Bellio MA, Kulandavelu S, Cao Y, Balkan W, Kanashiro-Takeuchi RM, Hare JM. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction. J Am Heart Assoc 2015; 4:JAHA.115.001974. [PMID: 26178404 PMCID: PMC4608081 DOI: 10.1161/jaha.115.001974] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target.
Collapse
Affiliation(s)
- Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Ellena C Paulino
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| | - Shathiyah Kulandavelu
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Yenong Cao
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.)
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.)
| | - Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami, FL (K.E.H., E.C.P., R.A.D., L.M.T., M.A.B., S.K., Y.C., W.B., R.M.K.T., J.M.H.) Department of Medicine, University of Miami Miller School of Medicine, Miami, FL (W.B., J.M.H.) Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL (M.A.B., R.M.K.T., J.M.H.)
| |
Collapse
|