201
|
Jones PP, Guo W, Chen SRW. Control of cardiac ryanodine receptor by sarcoplasmic reticulum luminal Ca 2. J Gen Physiol 2017; 149:867-875. [PMID: 28798281 PMCID: PMC5583710 DOI: 10.1085/jgp.201711805] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/25/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
Jones et al. propose that SR luminal Ca2+ regulates RyR2 activity via a luminal Ca2+ sensor distinct from the cytosolic Ca2+ sensor.
Collapse
Affiliation(s)
- Peter P Jones
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand .,HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
202
|
Sárközi S, Komáromi I, Jóna I, Almássy J. Lanthanides Report Calcium Sensor in the Vestibule of Ryanodine Receptor. Biophys J 2017; 112:2127-2137. [PMID: 28538150 DOI: 10.1016/j.bpj.2017.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/11/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Ca2+ regulates ryanodine receptor's (RyR) activity through an activating and an inhibiting Ca2+-binding site located on the cytoplasmic side of the RyR channel. Their altered sensitivity plays an important role in the pathology of malignant hyperthermia and heart failure. We used lanthanide ions (Ln3+) as probes to investigate the Ca2+ sensors of RyR, because they specifically bind to Ca2+-binding proteins and they are impermeable to the channel. Eu3+'s and Sm3+'s action was tested on single RyR1 channels reconstituted into planar lipid bilayers. When the activating binding site was saturated by 50 μM Ca2+, Ln3+ potently inhibited RyR's open probability (Kd Eu3+ = 167 ± 5 nM and Kd Sm3+ = 63 ± 3 nM), but in nominally 0 [Ca2+], low [Eu3+] activated the channel. These results suggest that Ln3+ acts as an agonist of both Ca2+-binding sites. More importantly, the voltage-dependent characteristics of Ln3+'s action led to the conclusion that the activating Ca2+ binding site is located within the electrical field of the channel (in the vestibule). This idea was tested by applying the pore blocker toxin maurocalcine on the cytoplasmic side of RyR. These experiments showed that RyR lost reactivity to changing cytosolic [Ca2+] from 50 μM to 100 nM when the toxin occupied the vestibule. These results suggest that maurocalcine mechanically prevented Ca2+ from dissociating from its binding site and support our vestibular Ca2+ sensor-model further.
Collapse
Affiliation(s)
- Sándor Sárközi
- Department of Physiology, Faculty of Medicine, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Komáromi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Jóna
- Department of Physiology, Faculty of Medicine, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
203
|
Hung A, Kuyucak S, Schroeder CI, Kaas Q. Modelling the interactions between animal venom peptides and membrane proteins. Neuropharmacology 2017; 127:20-31. [PMID: 28778835 DOI: 10.1016/j.neuropharm.2017.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022]
Abstract
The active components of animal venoms are mostly peptide toxins, which typically target ion channels and receptors of both the central and peripheral nervous system, interfering with action potential conduction and/or synaptic transmission. The high degree of sequence conservation of their molecular targets makes a range of these toxins active at human receptors. The high selectivity and potency displayed by some of these toxins have prompted their use as pharmacological tools as well as drugs or drug leads. Molecular modelling has played an essential role in increasing our molecular-level understanding of the activity and specificity of animal toxins, as well as engineering them for biotechnological and pharmaceutical applications. This review focuses on the biological insights gained from computational and experimental studies of animal venom toxins interacting with membranes and ion channels. A host of recent X-ray crystallography and electron-microscopy structures of the toxin targets has contributed to a dramatic increase in the accuracy of the molecular models of toxin binding modes greatly advancing this exciting field of study. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Andrew Hung
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
204
|
Zalk R, Marks AR. Ca 2+ Release Channels Join the 'Resolution Revolution'. Trends Biochem Sci 2017; 42:543-555. [PMID: 28499500 PMCID: PMC5875148 DOI: 10.1016/j.tibs.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/02/2017] [Accepted: 04/13/2017] [Indexed: 01/22/2023]
Abstract
Ryanodine receptors (RyRs) are calcium release channels expressed in the sarcoendoplasmic reticula of many cell types including cardiac and skeletal muscle cells. In recent years Ca2+ leak through RyRs has been implicated as a major contributor to the development of diseases including heart failure, muscle myopathies, Alzheimer's disease, and diabetes, making it an important therapeutic target. Recent mammalian RyR1 cryoelectron microscopy (cryo-EM) structures of multiple functional states have clarified longstanding questions including the architecture of the transmembrane (TM) pore and cytoplasmic domains, the location and architecture of the channel gate, ligand-binding sites, and the gating mechanism. As we advance toward complete models of RyRs this new information enables the determination of domain-domain interfaces and the location and structural effects of disease-causing RyR mutations.
Collapse
Affiliation(s)
- Ran Zalk
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
205
|
Gonano LA, Jones PP. FK506-binding proteins 12 and 12.6 (FKBPs) as regulators of cardiac Ryanodine Receptors: Insights from new functional and structural knowledge. Channels (Austin) 2017. [PMID: 28636428 DOI: 10.1080/19336950.2017.1344799] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ryanodine Receptors (RyRs) are intracellular Ca2+ channels that mediate Ca2+ flux from the sarco(endo)plasmic reticulum in many cell types. The interaction of RyRs with FK506-binding proteins (FKBPs) has been proposed as an important regulatory mechanism, where the loss of this interaction leads to channel dysfunction. In the heart, phosphorylation of RyR has been suggested to disrupt the RyR-FKBP interaction promoting altered Ca2+ signaling, heart failure and arrhythmias. However, the functional result of FKBP interaction with RyR and how this interaction is regulated remains highly controversial. Recently, high resolution structures of RyR have provided novel aspects to the ongoing debate. This review will discuss the most recent functional data in light of these new structures.
Collapse
Affiliation(s)
- Luis A Gonano
- a Department of Physiology , School of Biomedical Sciences and HeartOtago, University of Otago , Dunedin, Otago , New Zealand
| | - Peter P Jones
- a Department of Physiology , School of Biomedical Sciences and HeartOtago, University of Otago , Dunedin, Otago , New Zealand
| |
Collapse
|
206
|
Abstract
Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly underrepresented in structural databases. Recently, focused consortium efforts and advances in methodology for protein production, crystallographic analysis and cryo-EM analysis have accelerated the pace of atomic-level structure determination of membrane proteins.
Collapse
|
207
|
Xu L, Gomez AC, Pasek DA, Meissner G, Yamaguchi N. Two EF-hand motifs in ryanodine receptor calcium release channels contribute to isoform-specific regulation by calmodulin. Cell Calcium 2017; 66:62-70. [PMID: 28807150 DOI: 10.1016/j.ceca.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023]
Abstract
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1-3725 and RyR2 C-terminal aa 3692-4968 were inhibited by CaM at <1μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1-4301 and RyR2 4254-4968 was activated at <1μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726-4298 with corresponding residues from RyR2 conferred CaM inhibition at <1μM Ca2+, which suggests RyR1 aa 3726-4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081-4092 (EF1) and aa 4116-4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.
Collapse
Affiliation(s)
- Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Angela C Gomez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, United States
| | - Daniel A Pasek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, United States.
| |
Collapse
|
208
|
Mowrey DD, Xu L, Mei Y, Pasek DA, Meissner G, Dokholyan NV. Ion-pulling simulations provide insights into the mechanisms of channel opening of the skeletal muscle ryanodine receptor. J Biol Chem 2017; 292:12947-12958. [PMID: 28584051 DOI: 10.1074/jbc.m116.760199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/20/2017] [Indexed: 12/13/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) mediates Ca2+ release from the sarcoplasmic reticulum to initiate skeletal muscle contraction and is associated with muscle diseases, malignant hyperthermia, and central core disease. To better understand RyR1 channel function, we investigated the molecular mechanisms of channel gating and ion permeation. An adequate model of channel gating requires accurate, high-resolution models of both open and closed states of the channel. To this end, we generated an open-channel RyR1 model using molecular simulations to pull Ca2+ through the pore constriction site of a closed-channel RyR1 structure determined at 3.8-Å resolution. Importantly, we find that our open-channel model is consistent with the RyR1 and cardiac RyR (RyR2) open-channel structures reported while this paper was in preparation. Both our model and the published structures show similar rotation of the upper portion of the pore-lining S6 helix away from the 4-fold channel axis and twisting of Ile-4937 at the channel constriction site out of the channel pore. These motions result in a minimum open-channel pore radius of ∼3 Å formed by Gln-4933, rather than Ile-4937 in the closed-channel structure. We also present functional support for our model by mutations around the closed- and open-channel constriction sites (Gln-4933 and Ile-4937). Our results indicate that use of ion-pulling simulations produces a RyR1 open-channel model, which can provide insights into the mechanisms of channel opening complementing those from the structural data.
Collapse
Affiliation(s)
- David D Mowrey
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Le Xu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Yingwu Mei
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Daniel A Pasek
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260.
| |
Collapse
|
209
|
Zheng W, Liu Z. Investigating the inter-subunit/subdomain interactions and motions relevant to disease mutations in the N-terminal domain of ryanodine receptors by molecular dynamics simulation. Proteins 2017; 85:1633-1644. [PMID: 28508509 DOI: 10.1002/prot.25318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 11/12/2022]
Abstract
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles, and numerous disease mutations have been identified in two RyR isoforms, RyR1 in skeletal muscle and RyR2 in cardiac muscle. A deep understanding of the activation/regulation mechanisms of RyRs has been hampered by the shortage of high-resolution structures and dynamic information for this giant tetrameric complex in different functional states. Toward elucidating the molecular mechanisms of disease mutations in RyRs, we performed molecular dynamics simulation of the N-terminal domain (NTD) which is not only the best-resolved structural component of RyRs, but also a hotspot of disease mutations. First, we simulated the tetrameric NTD of wild-type RyR1 and three disease mutants (K155E, R157Q, and R164Q) that perturb the inter-subunit interfaces. Our simulations identified a dynamic network of salt bridges involving charged residues at the inter-subunit/subdomain interfaces and disease-mutation sites. By perturbing this key network, the above three mutations result in greater flexibility with the highest inter-subunit opening probability for R157Q. Next, we simulated the monomeric NTD of RyR2 in the presence or absence of a central Cl- anion which is known to stabilize the interfaces between the three NTD subdomains (A, B, and C). We found that the loss of Cl- restructures the salt-bridge network near the Cl- -binding site, leading to rotations of subdomain A/B relative to subdomain C and enhanced mobility between the subdomains. This finding supports a mechanism for disease mutations in the NTD of RyR2 via perturbation of the Cl- binding. The rich structural and dynamic information gained from this study will guide future mutational and functional studies of the NTD of RyRs. Proteins 2017; 85:1633-1644. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, New York, 14260
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital and Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
210
|
Dhindwal S, Lobo J, Cabra V, Santiago DJ, Nayak AR, Dryden K, Samsó M. A cryo-EM–based model of phosphorylation- and FKBP12.6-mediated allosterism of the cardiac ryanodine receptor. Sci Signal 2017; 10:10/480/eaai8842. [DOI: 10.1126/scisignal.aai8842] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
211
|
Structural basis for conductance through TRIC cation channels. Nat Commun 2017; 8:15103. [PMID: 28524849 PMCID: PMC5477506 DOI: 10.1038/ncomms15103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
Mammalian TRICs function as K+-permeable cation channels that provide counter ions for Ca2+ handling in intracellular stores. Here we describe the structures of two prokaryotic homologues, archaeal SaTRIC and bacterial CpTRIC, showing that TRIC channels are symmetrical trimers with transmembrane pores through each protomer. Each pore holds a string of water molecules centred at kinked helices in two inverted-repeat triple-helix bundles (THBs). The pores are locked in a closed state by a hydrogen bond network at the C terminus of the THBs, which is lost when the pores assume an open conformation. The transition between the open and close states seems to be mediated by cation binding to conserved residues along the three-fold axis. Electrophysiology and mutagenesis studies show that prokaryotic TRICs have similar functional properties to those of mammalian TRICs and implicate the three-fold axis in the allosteric regulation of the channel. Trimeric intracellular cation channels (TRICs) elicit K+ currents to counteract luminal negative potential during Ca2+ release from intracellular stores. Here the authors present structures of prokaryotic TRICs in their open and closed states, obtaining molecular insight into TRICs' function.
Collapse
|
212
|
Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol 2017; 595:3041-3051. [PMID: 28303572 PMCID: PMC5430224 DOI: 10.1113/jp272781] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3 Rs) are calcium (Ca2+ ) release channels on the endo/sarcoplasmic reticulum (ER/SR). Here we summarize the latest advances in the field, describing the recently discovered mechanistic roles of intracellular Ca2+ release channels in the regulation of mitochondrial fitness and endothelial function, providing novel therapeutic options for the treatment of heart failure, hypertension, and diabetes mellitus.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular CardiologyColumbia UniversityNew YorkNYUSA
- Department of Physiology and Cellular BiophysicsCollege of Physicians and SurgeonsColumbia University Medical CenterNew YorkNYUSA
| | - Ryutaro Nakashima
- The Wu Center for Molecular CardiologyColumbia UniversityNew YorkNYUSA
- Department of Physiology and Cellular BiophysicsCollege of Physicians and SurgeonsColumbia University Medical CenterNew YorkNYUSA
| | - Qi Yuan
- The Wu Center for Molecular CardiologyColumbia UniversityNew YorkNYUSA
- Department of Physiology and Cellular BiophysicsCollege of Physicians and SurgeonsColumbia University Medical CenterNew YorkNYUSA
| | - Andrew R. Marks
- The Wu Center for Molecular CardiologyColumbia UniversityNew YorkNYUSA
- Department of Physiology and Cellular BiophysicsCollege of Physicians and SurgeonsColumbia University Medical CenterNew YorkNYUSA
- Department of MedicineColumbia UniversityNew YorkNYUSA
| |
Collapse
|
213
|
Reddish FN, Miller CL, Gorkhali R, Yang JJ. Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases. Int J Mol Sci 2017; 18:E1024. [PMID: 28489021 PMCID: PMC5454937 DOI: 10.3390/ijms18051024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
The flow of intracellular calcium (Ca2+) is critical for the activation and regulation of important biological events that are required in living organisms. As the major Ca2+ repositories inside the cell, the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of muscle cells are central in maintaining and amplifying the intracellular Ca2+ signal. The morphology of these organelles, along with the distribution of key calcium-binding proteins (CaBPs), regulatory proteins, pumps, and receptors fundamentally impact the local and global differences in Ca2+ release kinetics. In this review, we will discuss the structural and morphological differences between the ER and SR and how they influence localized Ca2+ release, related diseases, and the need for targeted genetically encoded calcium indicators (GECIs) to study these events.
Collapse
Affiliation(s)
- Florence N Reddish
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Cassandra L Miller
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Rakshya Gorkhali
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics (CDT), Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
214
|
IP 3-mediated gating mechanism of the IP 3 receptor revealed by mutagenesis and X-ray crystallography. Proc Natl Acad Sci U S A 2017; 114:4661-4666. [PMID: 28416699 DOI: 10.1073/pnas.1701420114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is an IP3-gated ion channel that releases calcium ions (Ca2+) from the endoplasmic reticulum. The IP3-binding sites in the large cytosolic domain are distant from the Ca2+ conducting pore, and the allosteric mechanism of how IP3 opens the Ca2+ channel remains elusive. Here, we identify a long-range gating mechanism uncovered by channel mutagenesis and X-ray crystallography of the large cytosolic domain of mouse type 1 IP3R in the absence and presence of IP3 Analyses of two distinct space group crystals uncovered an IP3-dependent global translocation of the curvature α-helical domain interfacing with the cytosolic and channel domains. Mutagenesis of the IP3R channel revealed an essential role of a leaflet structure in the α-helical domain. These results suggest that the curvature α-helical domain relays IP3-controlled global conformational dynamics to the channel through the leaflet, conferring long-range allosteric coupling from IP3 binding to the Ca2+ channel.
Collapse
|
215
|
Vénien-Bryan C, Li Z, Vuillard L, Boutin JA. Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery. Acta Crystallogr F Struct Biol Commun 2017; 73:174-183. [PMID: 28368275 PMCID: PMC5379166 DOI: 10.1107/s2053230x17003740] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
The invention of the electron microscope has greatly enhanced the view scientists have of small structural details. Since its implementation, this technology has undergone considerable evolution and the resolution that can be obtained for biological objects has been extended. In addition, the latest generation of cryo-electron microscopes equipped with direct electron detectors and software for the automated collection of images, in combination with the use of advanced image-analysis methods, has dramatically improved the performance of this technique in terms of resolution. While calculating a sub-10 Å resolution structure was an accomplishment less than a decade ago, it is now common to generate structures at sub-5 Å resolution and even better. It is becoming possible to relatively quickly obtain high-resolution structures of biological molecules, in particular large ones (>500 kDa) which, in some cases, have resisted more conventional methods such as X-ray crystallography or nuclear magnetic resonance (NMR). Such newly resolved structures may, for the first time, shed light on the precise mechanisms that are essential for cellular physiological processes. The ability to attain atomic resolution may support the development of new drugs that target these proteins, allowing medicinal chemists to understand the intimacy of the relationship between their molecules and targets. In addition, recent developments in cryo-electron microscopy combined with image analysis can provide unique information on the conformational variability of macromolecular complexes. Conformational flexibility of macromolecular complexes can be investigated using cryo-electron microscopy and multiconformation reconstruction methods. However, the biochemical quality of the sample remains the major bottleneck to routine cryo-electron microscopy-based determination of structures at very high resolution.
Collapse
Affiliation(s)
- Catherine Vénien-Bryan
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, UPMC, IRD, MNHN, 4 Place Jussieu, 75005 Paris, France
| | - Zhuolun Li
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, UPMC, IRD, MNHN, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Vuillard
- Chimie des Protéines, Pôle d’Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Jean Albert Boutin
- Pôle d’Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France
| |
Collapse
|
216
|
Gaburjakova M, Gaburjakova J. Insight towards the identification of cytosolic Ca 2+ -binding sites in ryanodine receptors from skeletal and cardiac muscle. Acta Physiol (Oxf) 2017; 219:757-767. [PMID: 27543850 DOI: 10.1111/apha.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/13/2016] [Accepted: 08/12/2016] [Indexed: 11/30/2022]
Abstract
Ca2+ plays a critical role in several processes involved in skeletal and cardiac muscle contraction. One key step in cardiac excitation-contraction (E-C) coupling is the activation of the cardiac ryanodine receptor (RYR2) by cytosolic Ca2+ elevations. Although this process is not critical for skeletal E-C coupling, the activation and inhibition of the skeletal ryanodine receptor (RYR1) seem to be important for overall muscle function. The RYR1 and RYR2 channels fall within the large category of Ca2+ -binding proteins that harbour highly selective Ca2+ -binding sites to receive and translate the various Ca2+ signals into specific functional responses. However, little is known about the precise localization of these sites within the cytosolic assembly of both RYR isoforms, although several experimental lines of evidence have highlighted their EF-hand nature. EF-hand proteins share a common helix-loop-helix structural motif with highly conserved residues involved in Ca2+ coordination. The first step in predicting EF-hand positive regions is to compare the primary protein structure with the EF-hand motif by employing available bioinformatics tools. Although this simple method narrows down search regions, it does not provide solid evidence regarding which regions bind Ca2+ in both RYR isoforms. In this review, we seek to highlight the key findings and experimental approaches that should strengthen our future efforts to identify the cytosolic Ca2+ -binding sites responsible for activation and inhibition in the RYR1 channel, as much less work has been conducted on the RYR2 channel.
Collapse
Affiliation(s)
- M. Gaburjakova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - J. Gaburjakova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava Slovak Republic
| |
Collapse
|
217
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
218
|
Klingler W, Pfenninger E. [Pharmacogenetics in anesthesia and intensive care medicine : Clinical and legal challenges exemplified by malignant hyperthermia]. Anaesthesist 2017; 65:380-90. [PMID: 27142362 DOI: 10.1007/s00101-016-0167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pharmacotherapy is a key component of anesthesiology and intensive care medicine. The individual genetic profile influences not only the effect of pharmaceuticals but can also completely alter the mode of action. New technologies for genetic screening (e.g. next generation sequencing) and increasing knowledge of molecular pathways foster the disclosure of pharmacogenetic syndromes, which are classified as rare diseases. Taking into account the high genetic variability in humans and over 8000 known rare diseases, up to 20 % of the population may be affected. In summary, rare diseases are not rare. Most pharmacogenetic syndromes lead to a weakening or loss of pharmacological action. In contrast, malignant hyperthermia (MH), which is the most relevant pharmacogenetic syndrome for anesthesia, is characterized by a pharmacologically induced overactivation of calcium metabolism in skeletal muscle. Volatile anesthetic agents and succinylcholine trigger life-threatening hypermetabolic crises. Emergency treatment is based on inhibition of the calcium release channel of the sarcoplasmic reticulum by dantrolene. After an adverse pharmacological event patients must be informed and a clarification consultation must be carried out during which the hereditory character of MH is explained. The patient should be referred to a specialist MH center where a predisposition can be diagnosed by the functional in vitro contracture test from a muscle biopsy. Additional molecular genetic investigations can yield mutations in the genes for calcium-regulating proteins in skeletal muscle, e.g. ryanodine receptor 1 (RyR1) and calcium voltage-gated channel subunit alpha 1S (CACNA1S). Currently, an association to MH has only been shown for 35 mutations out of more than 400 known and probably hundreds of unknown genetic variations. Furthermore, MH predisposition is not excluded by negative mutation screening. For anesthesiological patient safety it is crucial to identify individuals at risk and warn genetic relatives; however, the legal requirements of the Patients Rights Act and the Human Genetic Examination Act must be strictly adhered to. Specific features of insurance and employment law must be respected under consideration of the Human Genetic Examination Act.
Collapse
Affiliation(s)
- W Klingler
- Abteilung Neuroanästhesie, Universität Ulm im Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Str. 2, 89312, Günzburg, Deutschland.
| | - E Pfenninger
- Abteilung Neuroanästhesie, Universität Ulm im Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Str. 2, 89312, Günzburg, Deutschland
| |
Collapse
|
219
|
Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct 2017; 222:2017-2029. [PMID: 28280934 PMCID: PMC5504258 DOI: 10.1007/s00429-017-1383-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022]
Abstract
Data collected on astrocytes’ physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.
Collapse
Affiliation(s)
- Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Elena Dossi
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
220
|
Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IJL, Gronenborn AM, Polenova T, Zhang P. CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations. J Phys Chem B 2017; 121:3853-3863. [PMID: 28181439 DOI: 10.1021/acs.jpcb.6b13105] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Single particle cryoEM has emerged as a powerful method for structure determination of proteins and complexes, complementing X-ray crystallography and NMR spectroscopy. Yet, for many systems, the resolution of cryoEM density map has been limited to 4-6 Å, which only allows for resolving bulky amino acids side chains, thus hindering accurate model building from the density map. On the other hand, experimental chemical shifts (CS) from solution and solid state MAS NMR spectra provide atomic level data for each amino acid within a molecule or a complex; however, structure determination of large complexes and assemblies based on NMR data alone remains challenging. Here, we present a novel integrated strategy to combine the highly complementary experimental data from cryoEM and NMR computationally by molecular dynamics simulations to derive an atomistic model, which is not attainable by either approach alone. We use the HIV-1 capsid protein (CA) C-terminal domain as well as the large capsid assembly to demonstrate the feasibility of this approach, termed NMR CS-biased cryoEM structure refinement.
Collapse
Affiliation(s)
- Juan R Perilla
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Guangjin Hou
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - In-Ja L Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Tatyana Polenova
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN, U.K.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus , Didcot OX11 0DE, U.K
| |
Collapse
|
221
|
Merino F, Raunser S. Kryo-Elektronenmikroskopie als Methode für die strukturbasierte Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Felipe Merino
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| | - Stefan Raunser
- Strukturelle Biochemie; Max-Planck-Institut für Molekulare Physiologie; 44227 Dortmund Deutschland
| |
Collapse
|
222
|
Merino F, Raunser S. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Angew Chem Int Ed Engl 2017; 56:2846-2860. [PMID: 27860084 DOI: 10.1002/anie.201608432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/15/2022]
Abstract
For decades, X-ray crystallography and NMR have been the most important techniques for studying the atomic structure of macromolecules. However, as a result of size, instability, low yield, and other factors, many macromolecules are difficult to crystallize or unsuitable for NMR studies. Electron cryo-microscopy (cryo-EM) does not depend on crystals and has therefore been the method of choice for many macromolecular complexes that cannot be crystallized, but atomic resolution has mostly been beyond its reach. A new generation of detectors that are capable of sensing directly the incident electrons has recently revolutionized the field, with structures of macromolecules now routinely being solved to near-atomic resolution. In this review, we summarize some of the most recent examples of high-resolution cryo-EM structures. We put particular emphasis on proteins with pharmacological relevance that have traditionally been inaccessible to crystallography. Furthermore, we discuss examples where interactions with small molecules have been fully characterized at atomic resolution. Finally, we stress the current limits of cryo-EM, and methodological issues related to its usage as a tool for drug development.
Collapse
Affiliation(s)
- Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| |
Collapse
|
223
|
Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil 2017; 38:37-45. [PMID: 28653141 PMCID: PMC5813681 DOI: 10.1007/s10974-017-9470-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) release from intracellular stores plays a key role in the regulation of skeletal muscle contraction. The type 1 ryanodine receptors (RyR1) is the major Ca2+ release channel on the sarcoplasmic reticulum (SR) of myocytes in skeletal muscle and is required for excitation-contraction (E-C) coupling. This article explores the role of RyR1 in skeletal muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Daniel R Lewis
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Andrew R Marks
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
224
|
Regulation of Calcium Homeostasis by ER Redox: A Close-Up of the ER/Mitochondria Connection. J Mol Biol 2017; 429:620-632. [PMID: 28137421 DOI: 10.1016/j.jmb.2017.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/17/2023]
Abstract
Calcium signaling plays an important role in cell survival by influencing mitochondria-related processes such as energy production and apoptosis. The endoplasmic reticulum (ER) is the main storage compartment for cell calcium (Ca2+; ~60-500μM), and the Ca2+ released by the ER has a prompt effect on the homeostasis of the juxtaposed mitochondria. Recent findings have highlighted a close connection between ER redox and Ca2+ signaling that is mediated by Ca2+-handling proteins. This paper describes the redox-regulated mediators and mechanisms that orchestrate Ca2+ signals from the ER to mitochondria.
Collapse
|
225
|
Zhang K, Sun W, Huang L, Zhu K, Pei F, Zhu L, Wang Q, Lu Y, Zhang H, Jin H, Zhang LH, Zhang L, Yue J. Identifying Glyceraldehyde 3-Phosphate Dehydrogenase as a Cyclic Adenosine Diphosphoribose Binding Protein by Photoaffinity Protein-Ligand Labeling Approach. J Am Chem Soc 2017; 139:156-170. [PMID: 27936653 DOI: 10.1021/jacs.6b08088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cyclic adenosine diphosphoribose (cADPR), an endogenous nucleotide derived from nicotinamide adenine dinucleotide (NAD+), mobilizes Ca2+ release from endoplasmic reticulum (ER) via ryanodine receptors (RyRs), yet the bridging protein(s) between cADPR and RyRs remain(s) unknown. Here we synthesized a novel photoaffinity labeling (PAL) cADPR agonist, PAL-cIDPRE, and subsequently applied it to purify its binding proteins in human Jurkat T cells. We identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cADPR binding protein(s), characterized the binding affinity between cADPR and GAPDH in vitro by surface plasmon resonance (SPR) assay, and mapped cADPR's binding sites in GAPDH. We further demonstrated that cADPR induces the transient interaction between GAPDH and RyRs in vivo and that GAPDH knockdown abolished cADPR-induced Ca2+ release. However, GAPDH did not catalyze cADPR into any other known or novel compound(s). In summary, our data clearly indicate that GAPDH is the long-sought-after cADPR binding protein and is required for cADPR-mediated Ca2+ mobilization from ER via RyRs.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Wei Sun
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen 518052, China
| | - Lihong Huang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Kaiyuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Fen Pei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Longchao Zhu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Qian Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Yingying Lu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| | - Hongmin Zhang
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen 518052, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Li-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong, China
| |
Collapse
|
226
|
Efremov RG, Gatsogiannis C, Raunser S. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM. Methods Enzymol 2017; 594:1-30. [DOI: 10.1016/bs.mie.2017.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
227
|
Fahrner M, Schindl R, Muik M, Derler I, Romanin C. The STIM-Orai Pathway: The Interactions Between STIM and Orai. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:59-81. [PMID: 28900909 DOI: 10.1007/978-3-319-57732-6_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A primary Ca2+ entry pathway in non-excitable cells is established by the Ca2+ release-activated Ca2+ channels. Their two limiting molecular components include the Ca2+-sensor protein STIM1 located in the endoplasmic reticulum and the Orai channel in the plasma membrane. STIM1 senses the luminal Ca2+ content, and store depletion induces its oligomerization into puncta-like structures, thereby triggering coupling to as well as activation of Orai channels. A C-terminal STIM1 domain is assumed to couple to both C- and N-terminal, cytosolic strands of Orai, accomplishing gating of the channel. Here we highlight the inter- and intramolecular steps of the STIM1-Orai signaling cascade together with critical sites of the pore structure that accomplishes Ca2+ permeation.
Collapse
Affiliation(s)
- Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria.
| | - Rainer Schindl
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria
| | - Martin Muik
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, 4020, Linz, Austria.
| |
Collapse
|
228
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
229
|
Van Petegem F. Ligand binding to Ryanodine Receptors revealed through cryo-electron microscopy. Cell Calcium 2017; 61:50-52. [DOI: 10.1016/j.ceca.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
230
|
The Plasma Membrane Calcium Pump (PMCA): Regulation of Cytosolic Ca2+, Genetic Diversities and Its Role in Sub-plasma Membrane Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:3-21. [DOI: 10.1007/978-3-319-55858-5_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
231
|
des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, Hendrickson WA, Marks AR, Frank J. Structural Basis for Gating and Activation of RyR1. Cell 2016; 167:145-157.e17. [PMID: 27662087 DOI: 10.1016/j.cell.2016.08.075] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca(2+)) release channel required for skeletal muscle contraction. Here, we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca(2+), ATP, and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca(2+) alone induces conformational changes in the cytoplasmic assembly ("priming"), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement, and deformation of the S4-S5 linker and conformational changes in the pseudo-voltage-sensor domain.
Collapse
Affiliation(s)
- Amédée des Georges
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ran Zalk
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Kendall J Condon
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Robert A Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
232
|
Bannister RA, Sheridan DC, Beam KG. Distinct Components of Retrograde Ca(V)1.1-RyR1 Coupling Revealed by a Lethal Mutation in RyR1. Biophys J 2016; 110:912-21. [PMID: 26910427 DOI: 10.1016/j.bpj.2015.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/24/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
The molecular basis for excitation-contraction coupling in skeletal muscle is generally thought to involve conformational coupling between the L-type voltage-gated Ca(2+) channel (CaV1.1) and the type 1 ryanodine receptor (RyR1). This coupling is bidirectional; in addition to the orthograde signal from CaV1.1 to RyR1 that triggers Ca(2+) release from the sarcoplasmic reticulum, retrograde signaling from RyR1 to CaV1.1 results in increased amplitude and slowed activation kinetics of macroscopic L-type Ca(2+) current. Orthograde coupling was previously shown to be ablated by a glycine for glutamate substitution at RyR1 position 4242. In this study, we investigated whether the RyR1-E4242G mutation affects retrograde coupling. L-type current in myotubes homozygous for RyR1-E4242G was substantially reduced in amplitude (∼80%) relative to that observed in myotubes from normal control (wild-type and/or heterozygous) myotubes. Analysis of intramembrane gating charge movements and ionic tail current amplitudes indicated that the reduction in current amplitude during step depolarizations was a consequence of both decreased CaV1.1 membrane expression (∼50%) and reduced channel Po (∼55%). In contrast, activation kinetics of the L-type current in RyR1-E4242G myotubes resembled those of normal myotubes, unlike dyspedic (RyR1 null) myotubes in which the L-type currents have markedly accelerated activation kinetics. Exogenous expression of wild-type RyR1 partially restored L-type current density. From these observations, we conclude that mutating residue E4242 affects RyR1 structures critical for retrograde communication with CaV1.1. Moreover, we propose that retrograde coupling has two distinct and separable components that are dependent on different structural elements of RyR1.
Collapse
Affiliation(s)
- Roger A Bannister
- Cardiology Division, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - David C Sheridan
- Department of Biology and Earth Science, Otterbein University, Westerville, Ohio
| | - Kurt G Beam
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
233
|
Abstract
Mechanotransduction is one of the processes by which cells sense and convert mechanical stimuli into biological signals. Experimental data from various species have revealed crucial roles for mechanotransduction in organ development and a plethora of physiological activities. Piezo proteins have recently been identified as the long-sought-after mechanically activated cation channels in eukaryotes. The architecture of mouse Piezo1 (mPiezo1) channel determined by cryoelectron microscopic single-particle analysis at medium resolution yielded important insights into the mechanical force sensing mechanism. mPiezo1 is found to form a trimeric propeller-like structure with the extracellular domains resembling three distal blades and a central cap. The transmembrane region consists of a central pore module that likely determines the ion-conducting properties of mPiezo1, and three peripheral wings formed by arrays of paired transmembrane helices. Compared with the central pore module, the three distal blades display considerably larger flexibility. In the intracellular region, three long beam-like domains (∼80Å in length) support the whole transmembrane region and connect the mobile peripheral regions to the central pore module. This unique design suggests that the trimeric mPiezo1 may mechanistically function in similar principles as how propellers sense and transduce force to control the ion conductivity. This review summarizes the current knowledge on the structure and proposes possible gating mechanisms of mPiezo1.
Collapse
|
234
|
Witherspoon JW, Meilleur KG. Review of RyR1 pathway and associated pathomechanisms. Acta Neuropathol Commun 2016; 4:121. [PMID: 27855725 PMCID: PMC5114830 DOI: 10.1186/s40478-016-0392-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/02/2016] [Indexed: 02/04/2023] Open
Abstract
Ryanodine receptor isoform-1 (RyR1) is a major calcium channel in skeletal muscle important for excitation-contraction coupling. Mutations in the RYR1 gene yield RyR1 protein dysfunction that manifests clinically as RYR1-related congenital myopathies (RYR1-RM) and/or malignant hyperthermia susceptibility (MHS). Individuals with RYR1-RM and/or MHS exhibit varying symptoms and severity. The symptoms impair quality of life and put patients at risk for early mortality, yet the cause of varying severity is not well understood. Currently, there is no Food and Drug Administration (FDA) approved treatment for RYR1-RM. Discovery of effective treatments is therefore critical, requiring knowledge of the RyR1 pathway. The purpose of this review is to compile work published to date on the RyR1 pathway and to implicate potential regions as targets for treatment. The RyR1 pathway is comprised of protein-protein interactions, protein-ligand interactions, and post-translational modifications, creating an activation/regulatory macromolecular complex. Given the complexity of this pathway, we divided these interactions and modifications into six regulatory groups. Three of several RyR1 interacting proteins, FK506-binding protein 12 (FKBP12), triadin, and calmodulin, were identified as playing important roles across all groups and may serve as promising target sites for treatment. Also, variability in disease severity may be influenced by prolongation or hyperactivity of post-translational modifications resulting from RyR1 dysfunction.
Collapse
|
235
|
Mak DOD, Foskett JK. Ryanodine receptor resolution revolution: Implications for InsP 3 receptors? Cell Calcium 2016; 61:53-56. [PMID: 27836217 DOI: 10.1016/j.ceca.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Don-On Daniel Mak
- Departments of Physiology, Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104-6085, United States.
| | - J Kevin Foskett
- Departments of Physiology, Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104-6085, United States; Cell and Developmental Biology, Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104-6085, United States.
| |
Collapse
|
236
|
Sun B, Guo W, Tian X, Yao J, Zhang L, Wang R, Chen SRW. The Cytoplasmic Region of Inner Helix S6 Is an Important Determinant of Cardiac Ryanodine Receptor Channel Gating. J Biol Chem 2016; 291:26024-26034. [PMID: 27789712 DOI: 10.1074/jbc.m116.758821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/18/2016] [Indexed: 11/06/2022] Open
Abstract
The ryanodine receptor (RyR) channel pore is formed by four S6 inner helices, with its intracellular gate located at the S6 helix bundle crossing region. The cytoplasmic region of the extended S6 helix is held by the U motif of the central domain and is thought to control the opening and closing of the S6 helix bundle. However, the functional significance of the S6 cytoplasmic region in channel gating is unknown. Here we assessed the role of the S6 cytoplasmic region in the function of cardiac RyR (RyR2) via structure-guided site-directed mutagenesis. We mutated each residue in the S6 cytoplasmic region of the mouse RyR2 (4876QQEQVKEDM4884) and characterized their functional impact. We found that mutations Q4876A, V4880A, K4881A, and M4884A, located mainly on one side of the S6 helix that faces the U motif, enhanced basal channel activity and the sensitivity to Ca2+ or caffeine activation, whereas mutations Q4877A, E4878A, Q4879A, and D4883A, located largely on the opposite side of S6, suppressed channel activity. Furthermore, V4880A, a cardiac arrhythmia-associated mutation, markedly enhanced the frequency of spontaneous openings and the sensitivity to cytosolic and luminal Ca2+ activation of single RyR2 channels. V4880A also increased the propensity and reduced the threshold for arrhythmogenic spontaneous Ca2+ release in HEK293 cells. Collectively, our data suggest that interactions between the cytoplasmic region of S6 and the U motif of RyR2 are important for stabilizing the closed state of the channel. Mutations in the S6/U motif domain interface likely destabilize the closed state of RyR2, resulting in enhanced basal channel activity and sensitivity to activation and increased propensity for spontaneous Ca2+ release and cardiac arrhythmias.
Collapse
Affiliation(s)
- Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xixi Tian
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinjing Yao
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Lin Zhang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
237
|
Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Sun M, Espina N, Madison-Antenucci S, Tong L, Frank J. Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM. Protein Sci 2016; 26:82-92. [PMID: 27750394 DOI: 10.1002/pro.3068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/06/2022]
Abstract
With the advance of new instruments and algorithms, and the accumulation of experience over decades, single-particle cryo-EM has become a pivotal part of structural biology. Recently, we determined the structure of a eukaryotic ribosome at 2.5 Å for the large subunit. The ribosome was derived from Trypanosoma cruzi, the protozoan pathogen of Chagas disease. The high-resolution density map allowed us to discern a large number of unprecedented details including rRNA modifications, water molecules, and ions such as Mg2+ and Zn2+ . In this paper, we focus on the procedures for data collection, image processing, and modeling, with particular emphasis on factors that contributed to the attainment of high resolution. The methods described here are readily applicable to other macromolecules for high-resolution reconstruction by single-particle cryo-EM.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| | - Cristina Gutierrez-Vargas
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Jia Wei
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Robert A Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| | - Ming Sun
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Noel Espina
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, 12201
| | - Susan Madison-Antenucci
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, 12201
| | - Liang Tong
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032.,Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032.,Department of Biological Sciences, Columbia University, New York, New York, 10027
| |
Collapse
|
238
|
Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves-Cintrón M, Navedo MF. Calcium Channels in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:49-87. [PMID: 28212803 DOI: 10.1016/bs.apha.2016.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium (Ca2+) plays a central role in excitation, contraction, transcription, and proliferation of vascular smooth muscle cells (VSMs). Precise regulation of intracellular Ca2+ concentration ([Ca2+]i) is crucial for proper physiological VSM function. Studies over the last several decades have revealed that VSMs express a variety of Ca2+-permeable channels that orchestrate a dynamic, yet finely tuned regulation of [Ca2+]i. In this review, we discuss the major Ca2+-permeable channels expressed in VSM and their contribution to vascular physiology and pathology.
Collapse
Affiliation(s)
- D Ghosh
- University of California, Davis, CA, United States
| | - A U Syed
- University of California, Davis, CA, United States
| | - M P Prada
- University of California, Davis, CA, United States
| | - M A Nystoriak
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - L F Santana
- University of California, Davis, CA, United States
| | | | - M F Navedo
- University of California, Davis, CA, United States.
| |
Collapse
|
239
|
Bannister RA. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling. ACTA ACUST UNITED AC 2016; 219:175-82. [PMID: 26792328 DOI: 10.1242/jeb.124123] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In skeletal muscle, excitation-contraction (EC) coupling relies on the transmission of an intermolecular signal from the voltage-sensing regions of the L-type Ca(2+) channel (Ca(V)1.1) in the plasma membrane to the channel pore of the type 1 ryanodine receptor (RyR1) nearly 10 nm away in the membrane of the sarcoplasmic reticulum (SR). Even though the roles of Ca(V)1.1 and RyR1 as voltage sensor and SR Ca(2+) release channel, respectively, have been established for nearly 25 years, the mechanism underlying communication between these two channels remains undefined. In the course of this article, I will review current viewpoints on this topic with particular emphasis on recent studies.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Medicine-Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, 12700 East 19th Avenue, Room 8006, B-139, Aurora, CO 80045, USA
| |
Collapse
|
240
|
Samsó M. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Protein Sci 2016; 26:52-68. [PMID: 27671094 DOI: 10.1002/pro.3052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023]
Abstract
Signal transduction by the ryanodine receptor (RyR) is essential in many excitable cells including all striated contractile cells and some types of neurons. While its transmembrane domain is a classic tetrameric, six-transmembrane cation channel, the cytoplasmic domain is uniquely large and complex, hosting a multiplicity of specialized domains. The overall outline and substructure readily recognizable by electron microscopy make RyR a geometrically well-behaved specimen. Hence, for the last two decades, the 3D structural study of the RyR has tracked closely the technological advances in electron microscopy, cryo-electron microscopy (cryoEM), and computerized 3D reconstruction. This review summarizes the progress in the structural determination of RyR by cryoEM and, bearing in mind the leap in resolution provided by the recent implementation of direct electron detection, analyzes the first near-atomic structures of RyR. These reveal a complex orchestration of domains controlling the channel's function, and help to understand how this could break down as a consequence of disease-causing mutations.
Collapse
Affiliation(s)
- Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
241
|
Casida JE, Durkin KA. Pesticide Chemical Research in Toxicology: Lessons from Nature. Chem Res Toxicol 2016; 30:94-104. [DOI: 10.1021/acs.chemrestox.6b00303] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- John E. Casida
- Environmental Chemistry and Toxicology Laboratory, Department of
Environmental Science, Policy, and Management, University of California, Berkeley 94720, United States
| | - Kathleen A. Durkin
- Molecular Graphics and Computational Facility, College of Chemistry, University of California, Berkeley 94720, United States
| |
Collapse
|
242
|
Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. While the revolution will not be crystallized, biochemistry reigns supreme. Protein Sci 2016; 26:69-81. [PMID: 27673321 DOI: 10.1002/pro.3054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Single-particle cryo-electron microscopy (EM) is currently gaining attention for the ability to calculate structures that reach sub-5 Å resolutions; however, the technique is more than just an alternative approach to X-ray crystallography. Molecular machines work via dynamic conformational changes, making structural flexibility the hallmark of function. While the dynamic regions in molecules are essential, they are also the most challenging to structurally characterize. Single-particle EM has the distinct advantage of being able to directly visualize purified molecules without the formation of ordered arrays of molecules locked into identical conformations. Additionally, structures determined using single-particle EM can span resolution ranges from very low- to atomic-levels (>30-1.8 Å), sometimes even in the same structure. The ability to accommodate various resolutions gives single-particle EM the unique capacity to structurally characterize dynamic regions of biological molecules, thereby contributing essential structural information needed for the development of molecular models that explain function. Further, many important molecular machines are intrinsically dynamic and compositionally heterogeneous. Structures of these complexes may never reach sub-5 Å resolutions due to this flexibility required for function. Thus, the biochemical quality of the sample, as well as, the calculation and interpretation of low- to mid-resolution cryo-EM structures (30-8 Å) remains critical for generating insights into the architecture of many challenging biological samples that cannot be visualized using alternative techniques.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Elad Binshtein
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Amanda L Erwin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Kathleen F Mittendorf
- Vanderbilt-Ingram Cancer Center Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
243
|
LeMaster DM, Hernandez G. Conformational Dynamics in FKBP Domains: Relevance to Molecular Signaling and Drug Design. Curr Mol Pharmacol 2016; 9:5-26. [PMID: 25986571 DOI: 10.2174/1874467208666150519113146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/25/2015] [Accepted: 05/17/2015] [Indexed: 01/05/2023]
Abstract
Among the 22 FKBP domains in the human genome, FKBP12.6 and the first FKBP domains (FK1) of FKBP51 and FKBP52 are evolutionarily and structurally most similar to the archetypical FKBP12. As such, the development of inhibitors with selectivity among these four FKBP domains poses a significant challenge for structure-based design. The pleiotropic effects of these FKBP domains in a range of signaling processes such as the regulation of ryanodine receptor calcium channels by FKBP12 and FKBP12.6 and steroid receptor regulation by the FK1 domains of FKBP51 and FKBP52 amply justify the efforts to develop selective therapies. In contrast to their close structural similarities, these four FKBP domains exhibit a substantial diversity in their conformational flexibility. A number of distinct conformational transitions have been characterized for FKBP12 spanning timeframes from 20 s to 10 ns and in each case these dynamics have been shown to markedly differ from the conformational behavior for one or more of the other three FKBP domains. Protein flexibilitybased inhibitor design could draw upon the transitions that are significantly populated in only one of the targeted proteins. Both the similarities and differences among these four proteins valuably inform the understanding of how dynamical effects propagate across the FKBP domains as well as potentially how such intramolecular transitions might couple to the larger scale transitions that are central to the signaling complexes in which these FKBP domains function.
Collapse
Affiliation(s)
| | - Griselda Hernandez
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York, 12201, USA; Department of Biomedical Sciences, School of Public Health, University at Albany - SUNY, Empire State Plaza, Albany, New York, 12201, USA.
| |
Collapse
|
244
|
Unambiguous observation of blocked states reveals altered, blocker-induced, cardiac ryanodine receptor gating. Sci Rep 2016; 6:34452. [PMID: 27703263 PMCID: PMC5050499 DOI: 10.1038/srep34452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/12/2016] [Indexed: 11/08/2022] Open
Abstract
The flow of ions through membrane channels is precisely regulated by gates. The architecture and function of these elements have been studied extensively, shedding light on the mechanisms underlying gating. Recent investigations have focused on ion occupancy of the channel’s selectivity filter and its ability to alter gating, with most studies involving prokaryotic K+ channels. Some studies used large quaternary ammonium blocker molecules to examine the effects of altered ionic flux on gating. However, the absence of blocking events that are visibly distinct from closing events in K+ channels makes unambiguous interpretation of data from single channel recordings difficult. In this study, the large K+ conductance of the RyR2 channel permits direct observation of blocking events as distinct subconductance states and for the first time demonstrates the differential effects of blocker molecules on channel gating. This experimental platform provides valuable insights into mechanisms of blocker-induced modulation of ion channel gating.
Collapse
|
245
|
Unravelling biological macromolecules with cryo-electron microscopy. Nature 2016; 537:339-46. [PMID: 27629640 DOI: 10.1038/nature19948] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
Abstract
Knowledge of the three-dimensional structures of proteins and other biological macromolecules often aids understanding of how they perform complicated tasks in the cell. Because many such tasks involve the cleavage or formation of chemical bonds, structural characterization at the atomic level is most useful. Developments in the electron microscopy of frozen hydrated samples (cryo-electron microscopy) are providing unprecedented opportunities for the structural characterization of biological macromolecules. This is resulting in a wave of information about processes in the cell that were impossible to characterize with existing techniques in structural biology.
Collapse
|
246
|
Abstract
Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death.
Collapse
Affiliation(s)
- Ernesto Carafoli
- From the Venetian Institute of Molecular Medicine, University of Padova, 35131 Padova, Italy and
| | - Joachim Krebs
- the Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
247
|
Raffaello A, Mammucari C, Gherardi G, Rizzuto R. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem Sci 2016; 41:1035-1049. [PMID: 27692849 DOI: 10.1016/j.tibs.2016.09.001] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/29/2022]
Abstract
In recent years, rapid discoveries have been made relating to Ca2+ handling at specific organelles that have important implications for whole-cell Ca2+ homeostasis. In particular, the structures of the endoplasmic reticulum (ER) Ca2+ channels revealed by electron cryomicroscopy (cryo-EM), continuous updates on the structure, regulation, and role of the mitochondrial calcium uniporter (MCU) complex, and the analysis of lysosomal Ca2+ signaling are milestones on the route towards a deeper comprehension of the complexity of global Ca2+ signaling. In this review we summarize recent discoveries on the regulation of interorganellar Ca2+ homeostasis and its role in pathophysiology.
Collapse
Affiliation(s)
- Anna Raffaello
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Neuroscience Institute, National Research Council, 35131 Padua, Italy.
| |
Collapse
|
248
|
Peng W, Shen H, Wu J, Guo W, Pan X, Wang R, Chen SRW, Yan N. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 2016; 354:science.aah5324. [PMID: 27708056 DOI: 10.1126/science.aah5324] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/14/2016] [Indexed: 01/10/2023]
Abstract
RyR2 is a high-conductance intracellular calcium (Ca2+) channel that controls the release of Ca2+ from the sarco(endo)plasmic reticulum of a variety of cells. Here, we report the structures of RyR2 from porcine heart in both the open and closed states at near-atomic resolutions determined using single-particle electron cryomicroscopy. Structural comparison reveals a breathing motion of the overall cytoplasmic region resulted from the interdomain movements of amino-terminal domains (NTDs), Helical domains, and Handle domains, whereas almost no intradomain shifts are observed in these armadillo repeats-containing domains. Outward rotations of the Central domains, which integrate the conformational changes of the cytoplasmic region, lead to the dilation of the cytoplasmic gate through coupled motions. Our structural and mutational characterizations provide important insights into the gating and disease mechanism of RyRs.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Huaizong Shen
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianping Wu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenting Guo
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Ruiwu Wang
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - S R Wayne Chen
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1.
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
249
|
Murayama T, Kurebayashi N, Ogawa H, Yamazawa T, Oyamada H, Suzuki J, Kanemaru K, Oguchi K, Iino M, Sakurai T. Genotype-Phenotype Correlations of Malignant Hyperthermia and Central Core Disease Mutations in the Central Region of the RYR1 Channel. Hum Mutat 2016; 37:1231-1241. [PMID: 27586648 DOI: 10.1002/humu.23072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, Jikei University School of Medicine, Tokyo, Japan
| | - Hideto Oyamada
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Junji Suzuki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuji Oguchi
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | - Masamitsu Iino
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
250
|
Boutin JA, Li Z, Vuillard L, Vénien-Bryan C. [Cryo-microscopy, an alternative to the X-ray crystallography?]. Med Sci (Paris) 2016; 32:758-67. [PMID: 27615185 DOI: 10.1051/medsci/20163208025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent technological advances have revolutionized the field of structural biologists. Specifically, dramatic progress related to the development of new electron microscopes and image capture (direct electron detection camera) and the provision of new image analysis software has led to a breakthrough in terms of resolution attained using cryo-electron transmission microscopy. It is thus possible to calculate relatively quickly high-resolution structures of biological molecules whom structural study still resists to more conventional methods such as X-ray diffraction or nuclear magnetic resonance (NMR). These structures thus obtained may also bring complementary structural information to those already described by other methods. Some of these new structures resolved through cryo-electron microscopy revealed for the first time the precise operation of essential mechanisms necessary for the good physiological process of a cell. The ability to solve these structures at atomic resolution detail is essential for the development of new drugs that target these proteins of therapeutic interest. Thanks to these advanced techniques that we summarize in this revew, biological and medical issues have now become accessible, whereas this approach was inconceivable only five yeras ago. ‡.
Collapse
Affiliation(s)
- Jean A Boutin
- Pôle d'expertise Biotechnologie, Chimie et Biologie, Institut de Recherches Servier, 125, chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Zhuolun Li
- Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR 7590, CNRS, UPMC, IRD, MNHN, 75005 Paris, France
| | - Laurent Vuillard
- Pôle d'expertise Biotechnologie, Chimie et Biologie, Institut de Recherches Servier, 125, chemin de Ronde, 78290 Croissy-sur-Seine, France
| | - Catherine Vénien-Bryan
- Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR 7590, CNRS, UPMC, IRD, MNHN, 75005 Paris, France
| |
Collapse
|