201
|
Prado-Silva A, Nunes LA, Dos Santos JM, Affonso PRADM, Waldschmidt AM. Morphogenetic Alterations in Melipona quadrifasciata anthidioides (Hymenoptera: Apidae) Associated with Pesticides. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:627-632. [PMID: 29450587 DOI: 10.1007/s00244-018-0509-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/21/2018] [Indexed: 06/08/2023]
Abstract
Bees are major pollinators of both native flora and cultured crops. Nonetheless, despite their key functional role in ecosystems and agriculture, bee populations have been affected worldwide by deforestation and contamination by insecticides. Conversely, little is known about the effects of pesticides on morphogenetic development of neotropical stingless bees. We compared the fluctuating asymmetry (FA) in newly emerged bees and foragers of Melipona quadrifasciata anthidioides exposed to pesticides (experimental greenhouse and cultivated field). In addition, visitation behavior of foragers was inferred from pollen analyses and direct observation. A significant increase of FA (P < 0.001) was detected in bees from the greenhouse. Even though pesticides might affect their development, foragers seem to avoid contaminated plants whenever possible, as confirmed by pollen and visitation analyses. Consequently, the conservation of natural forests in agricultural landscapes is essential to ensure the health of colonies in stingless bees.
Collapse
Affiliation(s)
- Arlete Prado-Silva
- Universidade Estadual do Sudoeste da Bahia - UESB, Rua José Moreira Sobrinho, s/n, Jequiezinho, Jequié, BA, CEP: 45.208-091, Brazil
| | - Lorena Andrade Nunes
- Universidade Estadual do Sudoeste da Bahia - UESB, Rua José Moreira Sobrinho, s/n, Jequiezinho, Jequié, BA, CEP: 45.208-091, Brazil
| | - Jádilla Mendes Dos Santos
- Universidade Estadual do Sudoeste da Bahia - UESB, Rua José Moreira Sobrinho, s/n, Jequiezinho, Jequié, BA, CEP: 45.208-091, Brazil
| | | | - Ana Maria Waldschmidt
- Universidade Estadual do Sudoeste da Bahia - UESB, Rua José Moreira Sobrinho, s/n, Jequiezinho, Jequié, BA, CEP: 45.208-091, Brazil.
| |
Collapse
|
202
|
Zhang P, Sun H, Min L, Ren C. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:158-167. [PMID: 29414336 DOI: 10.1016/j.envpol.2018.01.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
One interest of using biochar as soil amendment is to reduce pesticide adverse effects. In this paper, the sorption and degradation of thiacloprid (THI) in a black soil amended by various biochars were systematically investigated, and the mechanisms therein were explored by analyzing the changes in soil physicochemical properties, degrading enzymes and genes and microorganism community. Biochar amendment increased THI sorption in soil, which was associated with an increase in organic carbon and surface area and a decrease in H/C. Amendments of 300-PT (pyrolyzing temperature) biochar promoted the biodegradation of THI by increasing the microbe abundance and improving nitrile hydratase (NHase) activity. In contrast, 500- and 700-PT biochar amendments inhibited biodegradation by reducing THI availability and changing NHase activity and THI-degradative nth gene abundance, and instead promoted chemical degradation mainly through elevated pH, active groups on mineral surface and generation of •OH and other free radicals. Furthermore, THI shifted the soil microbial community, stimulated the NHase activity and elevated nth gene abundance. Biochar amendments also changed soil bacterial community by modulating soil pH, dissolved organic matter and nitrogen and phosphorus levels, which further influenced THI biodegradation. Therefore, the impact of biochars on the fate of a pesticide in soil depends greatly on their type and properties, which should be comprehensively examined when applying biochar to soil.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lujuan Min
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chao Ren
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
203
|
Rapid detection of the neonicotinoid insecticide imidacloprid using a quenchbody assay. Anal Bioanal Chem 2018; 410:4219-4226. [DOI: 10.1007/s00216-018-1074-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
204
|
Moreira DR, Sinópolis Gigliolli AA, Falco JRP, Julio AHF, Volnistem EA, Chagas FD, Toledo VDAAD, Ruvolo-Takasusuki MCC. Toxicity and effects of the neonicotinoid thiamethoxam on Scaptotrigona bipunctata lepeletier, 1836 (Hymenoptera: Apidae). ENVIRONMENTAL TOXICOLOGY 2018; 33:463-475. [PMID: 29377569 DOI: 10.1002/tox.22533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
The neonicotinoid thiamethoxam is widely used in different agricultural crops, and it has a spectrum of action against insects, affecting both pests and pollinators, such as bees. In this study, the effects of exposure to sublethal concentrations of thiamethoxam on stingless bees Scaptotrigona bipunctata were evaluated. Foragers bees were exposed to the insecticide and subjected to genetic biochemical, histochemical, and morphological analyses after 24, 48, and 72 h of ingestion. Analysis of isoenzyme esterases revealed significant alterations in the relative activity of EST-4, a type II cholinesterase. Evaluation of the S. bipunctata brain revealed changes in the state of chromatin condensation according to the exposure time and concentration of neonicotinoid compared with the control. Morphological changes were observed in the midgut of this species at all concentrations and exposure times, which may interfere with various physiological processes of these insects. We can conclude that, although thiamethoxam at the concentrations evaluated did not cause high mortality, it induced concentration-dependent changes in bees by activating enzymes related with the protection for xenobiotic, internal morphology and probably these changes may lead to alterations in the activity of bees.
Collapse
Affiliation(s)
- Daiani Rodrigues Moreira
- Departament of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Paraná, Brazil
| | | | | | | | | | - Francieli das Chagas
- Departament of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Paraná, Brazil
| | | | | |
Collapse
|
205
|
Aregahegn KZ, Ezell MJ, Finlayson-Pitts BJ. Photochemistry of Solid Films of the Neonicotinoid Nitenpyram. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2760-2767. [PMID: 29345468 DOI: 10.1021/acs.est.7b06011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The environmental fates of nitenpyram (NPM), a widely used neonicotinoid insecticide, are not well-known. A thin solid film of NPM deposited on a germanium attenuated total reflectance (ATR) crystal was exposed to radiation from a low-pressure mercury lamp at 254 nm, or from broadband low pressure mercury photolysis lamps centered at 350 or 313 nm. The loss during photolysis was followed in time using FTIR. The photolysis quantum yields (ϕ), defined as the number of NPM molecules lost per photon absorbed, were determined to be (9.4 ± 1.5) × 10-4 at 350 nm, (1.0 ± 0.3) × 10-3 at 313 nm, and (1.2 ± 0.4) × 10-2 at 254 nm (±2σ). Imines, one with a carbonyl group, were detected as surface-bound products and gaseous N2O was generated in low (11%) yield. The UV-vis absorption spectra of NPM in water was different from that in acetonitrile, dichloromethane, and methanol, or in a thin solid film. The photolytic lifetime of solid NPM at a solar zenith angle at 35° is calculated to be 36 min, while that for NPM in water is 269 min, assuming that the quantum yield is the same as in the solid. Thus, there may be a significant sensitivity to the medium for photolytic degradation and the lifetime of NPM in the environment.
Collapse
Affiliation(s)
- Kifle Z Aregahegn
- Department of Chemistry University of California Irvine Irvine , California 92697-2025 , United States
| | - Michael J Ezell
- Department of Chemistry University of California Irvine Irvine , California 92697-2025 , United States
| | - Barbara J Finlayson-Pitts
- Department of Chemistry University of California Irvine Irvine , California 92697-2025 , United States
| |
Collapse
|
206
|
Zhang P, Sun H, Ren C, Min L, Zhang H. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:812-820. [PMID: 29247944 DOI: 10.1016/j.envpol.2017.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/27/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
To elucidate the sorption affinity of biochars for neonicotinoid pesticides and the influence of biochar structure on sorption mechanisms therein, 24 biochar samples were obtained by pyrolyzing maize straw and pig manure at pyrolyzing temperatures (PTs) of 200-700 °C and by further deashing them using acids, and the sorption of three typical neonicotinoids, imidacloprid, clothianidin and thiacloprid on untreated and acid-deashed biochars were evaluated. All the biochar samples could efficiently adsorb the three neonicotinoids and multiple mechanisms were involved in sorption. With the increasing PTs, hydrophobic partition sorption increased, but had a declined contribution to the total sorption as revealed by a dual-mode model. Besides hydrophobic partition, specific interactions like cation-π electron donor acceptor (EDA) interactions (only for protonated IMI and CLO) and hydrogen bond and contributed much to the sorption on low-PT (≤500 °C) biochars, while the sorption on those high-PT (>500 °C) biochars mainly depended on pore-filling strengthened by cation-π and p/π-π EDA interactions. Thiacloprid showed stronger sorption on untreated biochars compared to imidacloprid and clothianidin, due to its greater ability to form hydrogen bond and hydrophobic interactions. Acid-deashing treatments increased the relative percentage contents of organic carbon, bulk O, aromaticity and O-containing functional groups, surface area and pore volume of biochars. The ash can bind neonicotinoids by specific interactions but played a negative role in the whole sorption on high-PT biochars by covering the inner sorption sites of organic moieties and blocking the micropores in biochars. The results acquired in the present study will help us to get deep insight in the comprehensive sorption mechanisms of polar pesticides on biochar and the effects of biochar structure.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 China
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 China.
| | - Chao Ren
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 China
| | - Lujuan Min
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 China
| | - Huiming Zhang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350 China
| |
Collapse
|
207
|
Zhang P, Ren C, Sun H, Min L. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:59-69. [PMID: 28968584 DOI: 10.1016/j.scitotenv.2017.09.097] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 05/20/2023]
Abstract
In this study, the sorption, desorption and degradation of three neonicotinoids, imidacloprid (IMI), clothianidin (CLO) and thiacloprid (THI), and their effects on microorganisms in four different agricultural soils were systematically evaluated. The sorption of neonicotinoids on the soils was generally low with distribution coefficients (Kd) up to 16.2L/kg at Ce of 0.05mg/L following the order THI>IMI≈CLO, and the sorption were mainly influenced by the soil organic carbon content. The percentage degradation rates of the pesticides in different soils ranged from 25.4% to 80.9%, all following the order THI>IMI≈CLO. All the three neonicotinoids degraded much faster under non-sterilized conditions than sterilized conditions, indicating considerable contribution of biodegradation. The total degradation or biodegradation of neonicotinoids was the fastest in the soil with the highest organic carbon content, and the neonicotinoids' bioavailability was not the primary influencing factor due to their weak sorption. The chemical degradation was mainly affected by pH and cation exchange capacity. The degradation of neonicotinoids occurred mainly via nitrate reduction, cyano hydrolysis and chloropyridinyl dechlorination. High-throughput sequencing data showed that the microbial community structure and abundance changed greatly in neonicotinoid-spiked soils as compared to the control, which might influence their degradation pathways. Some microbe families associated with the biodegradation of neoniconoids were found, which were all belonging to Proteobacteria and Actinobacteria. The degradation of neoniconoids influenced the soil nitrifying process. The present study provides valuable information for comprehensively understanding the fate of neonicotinoids in soils.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chao Ren
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Lujuan Min
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
208
|
Grass I, Bohle V, Tscharntke T, Westphal C. How plant reproductive success is determined by the interplay of antagonists and mutualists. Ecosphere 2018. [DOI: 10.1002/ecs2.2106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ingo Grass
- Agroecology, Department of Crop Sciences; University of Goettingen; Grisebachstraße 6 37077 Göttingen Germany
| | - Victoria Bohle
- Agroecology, Department of Crop Sciences; University of Goettingen; Grisebachstraße 6 37077 Göttingen Germany
| | - Teja Tscharntke
- Agroecology, Department of Crop Sciences; University of Goettingen; Grisebachstraße 6 37077 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use (CBL); University of Goettingen; Platz der Göttinger Sieben 5 37073 Göttingen Germany
| | - Catrin Westphal
- Agroecology, Department of Crop Sciences; University of Goettingen; Grisebachstraße 6 37077 Göttingen Germany
| |
Collapse
|
209
|
Piechowicz B, Mróz K, Szpyrka E, Zwolak A, Grodzicki P. Transfer of plant protection products from raspberry crops of Laszka and Seedling varieties to beehives. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:135. [PMID: 29435675 PMCID: PMC5809555 DOI: 10.1007/s10661-018-6491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Field studies were conducted to evaluate the transfer of active ingredients (AIs) of plant protection products (PPPs) to beehives. They were applied in two commodity red raspberry plantations of two varieties: Laszka (experiment 1) and Seedling (experiment 2). Samples of flowers, leaves, bees, brood, and honey were examined for the presence of chlorpyrifos, cypermethrin, difenoconazole, cyprodinil, and trifloxystrobin (experiment 1) and chlorpyrifos, boscalid, pyraclostrobin, cypermethrin, difenoconazole, and azoxystrobin (experiment 2). In experiment 1, the highest levels of trifloxystrobin were observed on the surface of flowers, (0.04 μg/flower) and for difenoconazole on the inside (0.023 μg/flower). Leaves contained only trace residues of cypermethrin and cyprodinil (0.001 μg/cm2 of leaves each) and trifloxystrobin (0.01 μg/cm2 of leaves) on the surface; inside the leaves, the highest levels of trifloxystrobin were observed (0.042 μg/cm2 of leaves). In experiment 2, boscalid was found on the surface and inside the flowers and leaves (0.063 and 0.018 μg/flower and 0.057 and 0.033 μg/cm2 of leaves, respectively). In bees, brood, and honey (experiment 1), chlorpyrifos was present in the highest quantity (7.3, 1.6, and 4.7 μg/kg, respectively). Additionally, cypermethrin and trifloxystrobin were found in bees, and trifloxystrobin was present in honey. Bees, brood, and honey from plantation 2 contained all studied AIs, with the highest levels of boscalid (28.6 μg/kg of bees, 37.0 μg/kg of brood, and 33.9 μg/kg of honey, respectively). In no case did the PPP residues in honey exceed acceptable maximum residue levels (MRLs)-from a formal and legal point of view, in terms of the used plant protection products, the analysed honey was fit for human consumption.
Collapse
Affiliation(s)
- Bartosz Piechowicz
- Faculty of Biotechnology, Department of Analytical Chemistry, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Karolina Mróz
- Faculty of Biotechnology, Department of Analytical Chemistry, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Ewa Szpyrka
- Faculty of Biotechnology, Department of Analytical Chemistry, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
- Laboratory for Research on Pesticide Residues, Institute of Plant Protection-National Research Institute, Langiewicza 28, 35-101, Rzeszów, Poland
| | - Aneta Zwolak
- Faculty of Biotechnology, Department of Analytical Chemistry, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Przemysław Grodzicki
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| |
Collapse
|
210
|
Yue M, Luo S, Liu J, Wu J. Apis cerana Is Less Sensitive to Most Neonicotinoids, Despite of Their Smaller Body Mass. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:39-42. [PMID: 29272437 DOI: 10.1093/jee/tox342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multiple stressors and interaction between them may be responsible for the decline of global pollinators. Among them, exposure to neonicotinoids has been getting more attention and has been considered as a main stressor. The Western honey bee (Apis mellifera L.) (Hymenoptera: Apidae) and Chinese indigenous honey bee (Apis cerana F.) (Hymenoptera: Apidae) are two managed honey bee species in China. These two species are widely used in beekeeping, and many wild A. cerana is widely spread in forests and contributes to the ecosystem. It is predicated that A. cerana is more sensitive to insecticides than A. mellifera due to their smaller mass. Here, we found that although the body mass of A. cerana is significantly lower than A. mellifera, the sensitivity of the two species to neonicotinoids are not associated with their body mass but depended on the chemical structure of neonicotinoids. To dinotefuran, the two species showed the similar sensitivity. To acetamiprid, A. mellifera was less sensitive than A. cerana. However, to imidacloprid and thiamethoxam, A. mellifera was more sensitive than A. cerana. These results suggested that the sensitivity of honey bees to neonicotinoids is closely associated with the structure of pesticides, but not with body mass of bees. It is also indicated that the hazards of pesticides to the different pollinators could not be inferred from one species to another.
Collapse
Affiliation(s)
- Meng Yue
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shudong Luo
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jialin Liu
- Department of Economic Animal, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, China
| | - Jie Wu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
211
|
|
212
|
Dickel F, Münch D, Amdam GV, Mappes J, Freitak D. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One 2018; 13:e0191256. [PMID: 29385177 PMCID: PMC5791986 DOI: 10.1371/journal.pone.0191256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022] Open
Abstract
Recent studies of honeybees and bumblebees have examined combinatory effects of different stressors, as insect pollinators are naturally exposed to multiple stressors. At the same time the potential influences of simultaneously occurring agricultural agents on insect pollinator health remain largely unknown. Due to different farming methods, and the drift of applied agents and manure, pollinators are most probably exposed to insecticides but also bacteria from organic fertilizers at the same time. We orally exposed honeybee workers to sub-lethal doses of the insecticide thiacloprid and two strains of the bacterium Enterococcus faecalis, which can occur in manure from farming animals. Our results show that under laboratory conditions the bees simultaneously exposed to the a bacterium and the pesticide thiacloprid thiacloprid had significant higher survival rates 11 days post exposure than the controls, which surprisingly showed the lowest survival. Bees that were exposed to diet containing thiacloprid showed decreased food intake. General antibacterial activity is increased by the insecticide and the bacteria, resulting in a higher immune response observed in treated individuals compared to control individuals. We thus propose that caloric restriction through behavioural and physiological adaptations may have mediated an improved survival and stress resistance in our tests. However, the decreased food consumption could in long-term also result in possible negative effects at colony level. Our study does not show an additive negative impact of sub-lethal insecticide and bacteria doses, when tested under laboratory conditions. In contrast, we report seemingly beneficial effects of simultaneous exposure of bees to agricultural agents, which might demonstrate a surprising biological capacity for coping with stressors, possibly through hormetic regulation.
Collapse
Affiliation(s)
- Franziska Dickel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Daniel Münch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Gro Vang Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- School of Life Sciences, Arizona State University, Tempe, United States of America
| | - Johanna Mappes
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
213
|
Baron GL, Raine NE, Brown MJF. General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc Biol Sci 2018; 284:rspb.2017.0123. [PMID: 28469019 PMCID: PMC5443941 DOI: 10.1098/rspb.2017.0123] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/11/2017] [Indexed: 02/05/2023] Open
Abstract
Bumblebees are essential pollinators of crops and wild plants, but are in decline across the globe. Neonicotinoid pesticides have been implicated as a potential driver of these declines, but most of our evidence base comes from studies of a single species. There is an urgent need to understand whether such results can be generalized across a range of species. Here, we present results of a laboratory experiment testing the impacts of field-relevant doses (1.87–5.32 ppb) of the neonicotinoid thiamethoxam on spring-caught wild queens of four bumblebee species: Bombus terrestris, B. lucorum, B. pratorum and B. pascuorum. Two weeks of exposure to the higher concentration of thiamethoxam caused a reduction in feeding in two out of four species, suggesting species-specific anti-feedant, repellency or toxicity effects. The higher level of thiamethoxam exposure resulted in a reduction in the average length of terminal oocytes in queens of all four species. In addition to providing the first evidence for general effects of neonicotinoids on ovary development in multiple species of wild bumblebee queens, the discovery of species-specific effects on feeding has significant implications for current practices and policy for pesticide risk assessment and use.
Collapse
Affiliation(s)
- Gemma L Baron
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Nigel E Raine
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK.,School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
214
|
Kapheim KM, Johnson MM. Support for the reproductive ground plan hypothesis in a solitary bee: links between sucrose response and reproductive status. Proc Biol Sci 2018; 284:rspb.2016.2406. [PMID: 28100820 DOI: 10.1098/rspb.2016.2406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/15/2016] [Indexed: 01/29/2023] Open
Abstract
In social bees, foraging behaviour is correlated with reproductive status and sucrose sensitivity via endocrine pathways. This association led to the hypothesis that division of labour in social insect societies is derived from an ancestral ground plan that functions to synchronize dietary preferences with reproductive needs in solitary insects. However, the relationship between these traits is unknown for solitary bees, which represent the ancestral state of social bees. We used the proboscis extension response assay to measure sucrose response among reproductive females of the solitary alkali bee (Nomia melanderi) as a function of acute juvenile hormone (JH) treatments and reproductive physiology. We also tested long-term effects of JH on reproductive development in newly emerged females. JH did not have short-term effects on reproductive physiology or sucrose response, but did have significant long-term effects on ovary and Dufour's gland development. Dufour's gland size, not ovary development, was a significant predictor of sucrose response. This provides support for the reproductive ground plan hypothesis, because the Dufour's gland has conserved reproductive functions in bees. Differing results from this study and honeybees suggest independent origins of division of labour may have evolved via co-option of different components of a conserved ground plan.
Collapse
Affiliation(s)
- Karen M Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Makenna M Johnson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
215
|
Exotic Eucalyptus leaves are preferred over tougher native species but affect the growth and survival of shredders in an Atlantic Forest stream (Brazil). PLoS One 2018; 13:e0190743. [PMID: 29293646 PMCID: PMC5749891 DOI: 10.1371/journal.pone.0190743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
We evaluated the effect of leaves of native and exotic tree species on the feeding activity and performance of the larvae of Triplectides gracilis, a typical caddisfly shredder in Atlantic Forest streams. Leaves of four native species that differ in chemistry and toughness (Hoffmannia dusenii, Miconia chartacea, Myrcia lineata and Styrax pohlii) and the exotic Eucalyptus globulus were used to determine food preferences and rates of consumption, production of fine particulate organic matter (FPOM), growth and survival of shredders. We hypothesized that the consumption rates of leaves of Eucalyptus and their effects on the growth and survival of shredders could be predicted by leaf chemistry and toughness. The larvae preferred to feed on soft leaves (H. dusenii and M. chartacea) independently of the content of nutrients (N and P) and secondary compounds (total phenolics). When such leaves were absent, they preferred E. globulus and did not consume the tough leaves (M. lineata and S. pohlii). In monodietary experiments, leaf consumption and FPOM production differed among the studied leaves, and the values observed for the E. globulus treatments were intermediate between the soft and tough leaves. The larvae that fed on H. dusenii and M. chartacea grew constantly over five weeks, while those that fed on E. globulus lost biomass. Larval survival was higher on leaves of H. dusenii, M. chartacea and S. pohlii than on E. globulus and M. lineata leaves. Although E. globulus was preferred over tougher leaves, long-term consumption of leaves of the exotic species may affect the abundance of T. gracilis in the studied stream. Additionally, our results suggest that leaf toughness can be a determining factor for the behavior of shredders where low-quality leaves are abundant, as in several tropical streams.
Collapse
|
216
|
Wood SC, Kozii IV, Koziy RV, Epp T, Simko E. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees. PLoS One 2018; 13:e0190517. [PMID: 29293609 PMCID: PMC5749814 DOI: 10.1371/journal.pone.0190517] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/15/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Thiamethoxam, clothianidin, and imidacloprid are the most commonly used neonicotinoid insecticides on the Canadian prairies. There is widespread contamination of nectar and pollen with neonicotinoids, at concentrations which are sublethal for honey bees (Apis mellifera Linnaeus). OBJECTIVE We compared the effects of chronic, sublethal exposure to the three most commonly used neonicotinoids on honey bee colonies established from New Zealand packaged bees using colony weight gain, brood area, and population size as measures of colony performance. METHODS From May 7 to July 29, 2016 (12 weeks), sixty-eight colonies received weekly feedings of sugar syrup and pollen patties containing 0 nM, 20 nM (median environmental dose), or 80 nM (high environmental dose) of one of three neonicotinoids (thiamethoxam, clothianidin, and imidacloprid). Colonies were weighed at three-week intervals. Brood area and population size were determined from digital images of colonies at week 12. Statistical analyses were performed by ANOVA and mixed models. RESULTS There was a significant negative effect (-30%, p<0.01) on colony weight gain (honey production) after 9 and 12 weeks of exposure to 80 nM of thiamethoxam, clothianidin, or imidacloprid and on bee cluster size (-21%, p<0.05) after 12 weeks. Analysis of brood area and number of adult bees lacked adequate (>80%) statistical power to detect an effect. CONCLUSIONS Chronic exposure of honey bees to high environmental doses of neonicotinoids has negative effects on honey production. Brood area appears to be less sensitive to detect sublethal effects of neonicotinoids.
Collapse
Affiliation(s)
- Sarah C. Wood
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ivanna V. Kozii
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Roman V. Koziy
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tasha Epp
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elemir Simko
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
217
|
Coulon M, Schurr F, Martel AC, Cougoule N, Bégaud A, Mangoni P, Dalmon A, Alaux C, Le Conte Y, Thiéry R, Ribière-Chabert M, Dubois E. Metabolisation of thiamethoxam (a neonicotinoid pesticide) and interaction with the Chronic bee paralysis virus in honeybees. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 144:10-18. [PMID: 29463403 DOI: 10.1016/j.pestbp.2017.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 06/08/2023]
Abstract
Pathogens and pesticides are likely to co-occur in honeybee hives, but much remains to be investigated regarding their potential interactions. Here, we first investigated the metabolisation kinetics of thiamethoxam in chronically fed honeybees. We show that thiamethoxam, at a dose of 0.25ng/bee/day, is quickly and effectively metabolised into clothianidin, throughout a 20day exposure period. Using a similar chronic exposure to pesticide, we then studied, in a separate experiment, the impact of thiamethoxam and Chronic bee paralysis virus (CBPV) co-exposure in honeybees. The honeybees were exposed to the virus by contact, mimicking the natural transmission route in the hive. We demonstrate that a high dose of thiamethoxam (5.0ng/bee/day) can cause a synergistic increase in mortality in co-exposed honeybees after 8 to 10days of exposure, with no increase in viral loads. At a lower dose (2.5ng/bee/day), there was no synergistic increase of mortality, but viral loads were significantly higher in naturally dead honeybees, compared with sacrificed honeybees exposed to the same conditions. These results show that the interactions between pathogens and pesticides in honeybees can be complex: increasing pesticide doses may not necessarily be linked to a rise in viral loads, suggesting that honeybee tolerance to the viral infection might change with pesticide exposure.
Collapse
Affiliation(s)
- M Coulon
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France; INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France.
| | - F Schurr
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A-C Martel
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - N Cougoule
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A Bégaud
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - P Mangoni
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - A Dalmon
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - C Alaux
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - Y Le Conte
- INRA PACA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France
| | - R Thiéry
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - M Ribière-Chabert
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France
| | - E Dubois
- ANSES Sophia Antipolis, Unit of Honeybee Pathology, 105, Route des Chappes, 06902 Sophia-Antipolis, France.
| |
Collapse
|
218
|
Robertson BA, Keddy-Hector IA, Shrestha SD, Silverberg LY, Woolner CE, Hetterich I, Horváth G. Susceptibility to ecological traps is similar among closely related taxa but sensitive to spatial isolation. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
219
|
Tosi S, Nieh JC, Sgolastra F, Cabbri R, Medrzycki P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc Biol Sci 2017; 284:20171711. [PMID: 29263280 PMCID: PMC5745400 DOI: 10.1098/rspb.2017.1711] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023] Open
Abstract
The honey bee is a major pollinator whose health is of global concern. Declines in bee health are related to multiple factors, including resource quality and pesticide contamination. Intensive agricultural areas with crop monocultures potentially reduce the quality and quantity of available nutrients and expose bee foragers to pesticides. However, there is, to date, no evidence for synergistic effects between pesticides and nutritional stress in animals. The neonicotinoids clothianidin (CLO) and thiamethoxam (TMX) are common systemic pesticides that are used worldwide and found in nectar and pollen. We therefore tested if nutritional stress (limited access to nectar and access to nectar with low-sugar concentrations) and sublethal, field-realistic acute exposures to two neonicotinoids (CLO and TMX at 1/5 and 1/25 of LD50) could alter bee survival, food consumption and haemolymph sugar levels. Bee survival was synergistically reduced by the combination of poor nutrition and pesticide exposure (-50%). Nutritional and pesticide stressors reduced also food consumption (-48%) and haemolymph levels of glucose (-60%) and trehalose (-27%). Our results provide the first demonstration that field-realistic nutritional stress and pesticide exposure can synergistically interact and cause significant harm to animal survival. These findings have implications for current pesticide risk assessment and pollinator protection.
Collapse
Affiliation(s)
- Simone Tosi
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California, San Diego, 9500 Gilman Drive, MC0116, La Jolla, CA 92093-0116, USA
- Department of Agricultural Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - James C Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California, San Diego, 9500 Gilman Drive, MC0116, La Jolla, CA 92093-0116, USA
| | - Fabio Sgolastra
- Department of Agricultural Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 42, 40127 Bologna, Italy
| | - Riccardo Cabbri
- Agriculture and Environment Research Centre, Council for Agricultural Research and Economics, Via di Saliceto 80, 40128 Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia (BO), Italy
| | - Piotr Medrzycki
- Agriculture and Environment Research Centre, Council for Agricultural Research and Economics, Via di Saliceto 80, 40128 Bologna, Italy
| |
Collapse
|
220
|
Liao LH, Wu WY, Berenbaum MR. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci Rep 2017; 7:15924. [PMID: 29162843 PMCID: PMC5698444 DOI: 10.1038/s41598-017-15066-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
While the natural foods of the western honey bee (Apis mellifera) contain diverse phytochemicals, in contemporary agroecosystems honey bees also encounter pesticides as floral tissue contaminants. Whereas some ubiquitous phytochemicals in bee foods up-regulate detoxification and immunity genes, thereby benefiting nestmates, many agrochemical pesticides adversely affect bee health even at sublethal levels. How honey bees assess xenobiotic risk to nestmates as they forage is poorly understood. Accordingly, we tested nine phytochemicals ubiquitous in nectar, pollen, or propolis, as well as five synthetic xenobiotics that frequently contaminate hives—two herbicides (atrazine and glyphosate) and three fungicides (boscalid, chlorothalonil, and prochloraz). In semi-field free-flight experiments, bees were offered a choice between paired sugar water feeders amended with either a xenobiotic or solvent only (control). Among the phytochemicals, foragers consistently preferred quercetin at all five concentrations tested, as evidenced by both visitation frequency and consumption rates. This preference may reflect the long evolutionary association between honey bees and floral tissues. Of pesticides eliciting a response, bees displayed a preference at specific concentrations for glyphosate and chlorothalonil. This paradoxical preference may account for the frequency with which these pesticides occur as hive contaminants and suggests that they present a greater risk factor for honey bee health than previously suspected.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-3795, USA
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-3795, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-3795, USA.
| |
Collapse
|
221
|
Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L. Sci Rep 2017; 7:15943. [PMID: 29162882 PMCID: PMC5698328 DOI: 10.1038/s41598-017-16245-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022] Open
Abstract
A sublethal concentration of imidacloprid can cause chronic toxicity in bees and can impact the behavior of honey bees. The nectar- and water-collecting, and climbing abilities of bees are crucial to the survival of the bees and the execution of responsibilities in bee colonies. Besides behavioral impact, data on the molecular mechanisms underlying the toxicity of imidacloprid, especially by the way of RNA-seq at the transcriptomic level, are limited. We treated Apis mellifera L. with sublethal concentrations of imidacloprid (0.1, 1 and 10 ppb) and determined the effect on behaviors and the transcriptomic changes. The sublethal concentrations of imidacloprid had a limited impact on the survival and syrup consumption of bees, but caused a significant increase in water consumption. Moreover, the climbing ability was significantly impaired by 10 ppb imidacloprid at 8 d. In the RNA-seq analysis, gene ontology (GO) term enrichment indicated a significant down-regulation of muscle-related genes, which might contribute to the impairment in climbing ability of bees. The enriched GO terms were attributed to the up-regulated ribosomal protein genes. Considering the ribosomal and extra-ribosomal functions of the ribosomal proteins, we hypothesized that imidacloprid also causes cell dysfunction. Our findings further enhance the understanding of imidacloprid sublethal toxicity.
Collapse
|
222
|
Honey bees dance faster for pollen that complements colony essential fatty acid deficiency. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2394-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
223
|
Robertson BA, Ostfeld RS, Keesing F. Trojan Females and Judas Goats: Evolutionary Traps as Tools in Wildlife Management. Bioscience 2017. [DOI: 10.1093/biosci/bix116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
224
|
Affiliation(s)
- Christopher N. Connolly
- School of Medicine and Centre for Environmental Change and Human Resilience (CECHR) University of Dundee, Scotland DD1 9SY, UK
| |
Collapse
|
225
|
Mitchell EAD, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A. A worldwide survey of neonicotinoids in honey. Science 2017; 358:109-111. [DOI: 10.1126/science.aan3684] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/06/2017] [Indexed: 01/04/2023]
Abstract
Growing evidence for global pollinator decline is causing concern for biodiversity conservation and ecosystem services maintenance. Neonicotinoid pesticides have been identified or suspected as a key factor responsible for this decline. We assessed the global exposure of pollinators to neonicotinoids by analyzing 198 honey samples from across the world. We found at least one of five tested compounds (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) in 75% of all samples, 45% of samples contained two or more of these compounds, and 10% contained four or five. Our results confirm the exposure of bees to neonicotinoids in their food throughout the world. The coexistence of neonicotinoids and other pesticides may increase harm to pollinators. However, the concentrations detected are below the maximum residue level authorized for human consumption (average ± standard error for positive samples: 1.8 ± 0.56 nanograms per gram).
Collapse
|
226
|
Moreira AAG, De Lima-Neto P, Caetano EWS, Barroso-Neto IL, Freire VN. The vibrational properties of the bee-killer imidacloprid insecticide: A molecular description. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:245-255. [PMID: 28582726 DOI: 10.1016/j.saa.2017.05.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/03/2017] [Accepted: 05/23/2017] [Indexed: 05/14/2023]
Abstract
The chemical imidacloprid belongs to the neonicotinoids insecticide class, widely used for insect pest control mainly for crop protection. However, imidacloprid is a non-selective agrochemical to the insects and it is able to kill the most important pollinators, the bees. The high toxicity of imidacloprid requires controlled release and continuous monitoring. For this purpose, high performance liquid chromatography (HPLC) is usually employed; infrared and Raman spectroscopy, however, are simple and viable techniques that can be adapted to portable devices for field application. In this communication, state-of-the-art quantum level simulations were used to predict the infrared and Raman spectra of the most stable conformer of imidacloprid. Four molecular geometries were investigated in vacuum and solvated within the Density Functional Theory (DFT) approach employing the hybrid meta functional M06-2X and the hybrid functional B3LYP. The M062X/PCM model proved to be the best to predict structural features, while the values of harmonic vibrational frequencies were predicted more accurately using the B3LYP functional.
Collapse
Affiliation(s)
- Antônio A G Moreira
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900 Fortaleza, CE, Brazil.
| | - Pedro De Lima-Neto
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900 Fortaleza, CE, Brazil
| | - Ewerton W S Caetano
- Instituto de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE, Brazil
| | - Ito L Barroso-Neto
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440-900 Fortaleza, CE, Brazil
| | - Valder N Freire
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, CE, Brazil
| |
Collapse
|
227
|
Tavares DA, Dussaubat C, Kretzschmar A, Carvalho SM, Silva-Zacarin ECM, Malaspina O, Bérail G, Brunet JL, Belzunces LP. Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:386-393. [PMID: 28618362 DOI: 10.1016/j.envpol.2017.05.092] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/μL, 0.001 ng/μL and 1.44 ng/μL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages of the honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Collapse
Affiliation(s)
- Daiana Antonia Tavares
- UNESP, Universidade Estadual Paulista, Departamento de Biologia, Rio Claro, São Paulo, Brazil.
| | - Claudia Dussaubat
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 Abeilles & Environnement, Avignon, France
| | | | | | | | - Osmar Malaspina
- UNESP, Universidade Estadual Paulista, Departamento de Biologia, Rio Claro, São Paulo, Brazil
| | - Géraldine Bérail
- INRA, Laboratoire de L'Environnement et de L'Alimentation de La Vendée, La Roche sur Yon, France
| | - Jean-Luc Brunet
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 Abeilles & Environnement, Avignon, France
| | - Luc P Belzunces
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 Abeilles & Environnement, Avignon, France.
| |
Collapse
|
228
|
Baron GL, Jansen VAA, Brown MJF, Raine NE. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat Ecol Evol 2017; 1:1308-1316. [PMID: 29046553 PMCID: PMC6485633 DOI: 10.1038/s41559-017-0260-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/30/2017] [Indexed: 02/01/2023]
Abstract
Pollinators are in global decline and agricultural pesticides are a potential driver of this. Recent studies have suggested that pesticides may significantly impact bumblebee colonies-an important and declining group of pollinators. Here, we show that colony-founding queens, a critical yet vulnerable stage of the bumblebee lifecycle, are less likely to initiate a colony after exposure to thiamethoxam, a neonicotinoid insecticide. Bombus terrestris queens were exposed to field-relevant levels of thiamethoxam and two natural stressors: the parasite Crithidia bombi and varying hibernation durations. Exposure to thiamethoxam caused a 26% reduction in the proportion of queens that laid eggs, and advanced the timing of colony initiation, although we did not detect impacts of any experimental treatment on the ability of queens to produce adult offspring during the 14-week experimental period. As expected from previous studies, the hibernation duration also had an impact on egg laying, but there was no significant interaction with insecticide treatment. Modelling the impacts of a 26% reduction in colony founding on population dynamics dramatically increased the likelihood of population extinction. This shows that neonicotinoids can affect this critical stage in the bumblebee lifecycle and may have significant impacts on population dynamics.
Collapse
Affiliation(s)
- Gemma L Baron
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Vincent A A Jansen
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| | - Nigel E Raine
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
229
|
Woodard SH. Bumble bee ecophysiology: integrating the changing environment and the organism. CURRENT OPINION IN INSECT SCIENCE 2017; 22:101-108. [PMID: 28805631 DOI: 10.1016/j.cois.2017.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
Bumble bees are among the most ecologically and economically important pollinators worldwide, yet many of their populations are being threatened by a suite of interrelated, human-mediated environmental changes. Here, I discuss recent progress in our understanding of bumble bee ecophysiology, including advances related to thermal biology in light of global warming; nutritional biology in the context of declining food resources; and the capacity for bumble bees to exhibit physiological plasticity or adaptations to novel or extreme environments, with reference to their evolutionary history and current biogeography.
Collapse
Affiliation(s)
- S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
230
|
Czerwinski MA, Sadd BM. Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:273-283. [DOI: 10.1002/jez.2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023]
Affiliation(s)
| | - Ben Michael Sadd
- School of Biological Sciences; Illinois State University; Normal Illinois
| |
Collapse
|
231
|
Barlow SE, Wright GA, Ma C, Barberis M, Farrell IW, Marr EC, Brankin A, Pavlik BM, Stevenson PC. Distasteful Nectar Deters Floral Robbery. Curr Biol 2017; 27:2552-2558.e3. [DOI: 10.1016/j.cub.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/23/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
232
|
Robertson BA, Campbell DR, Durovich C, Hetterich I, Les J, Horváth G. The interface of ecological novelty and behavioral context in the formation of ecological traps. Behav Ecol 2017. [DOI: 10.1093/beheco/arx081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
233
|
Abbo PM, Kawasaki JK, Hamilton M, Cook SC, DeGrandi-Hoffman G, Li WF, Liu J, Chen YP. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera. INSECT SCIENCE 2017; 24:467-477. [PMID: 26990560 DOI: 10.1111/1744-7917.12335] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 05/21/2023]
Abstract
There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.
Collapse
Affiliation(s)
- Pendo M Abbo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | - Joshua K Kawasaki
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, USA
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Steven C Cook
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Wen Feng Li
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Liu
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
234
|
Woodard SH, Jha S. Wild bee nutritional ecology: predicting pollinator population dynamics, movement, and services from floral resources. CURRENT OPINION IN INSECT SCIENCE 2017; 21:83-90. [PMID: 28822494 DOI: 10.1016/j.cois.2017.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Pollination services are inherently shaped by floral resource availability, through the mediation of pollinator population dynamics and the influence on energetically costly processes, such as foraging. Here, we review recent insights that have improved our mechanistic understanding of how floral resources shape bee populations and pollination services. Our scope includes advances in our understanding of how individual bees and their populations are shaped by nutrient availability; investigations into how contemporary floral resource landscapes influence foraging; and new insights into how these relationships are indirectly impacted by biotic and abiotic factors across communities and landscapes. Throughout our review, we take a mechanistic, multi-scalar approach that highlights the complexity of interactions between floral resources and bees, across space and time.
Collapse
Affiliation(s)
- S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Shalene Jha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78782, USA
| |
Collapse
|
235
|
Baracchi D, Marples A, Jenkins AJ, Leitch AR, Chittka L. Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Sci Rep 2017; 7:1951. [PMID: 28512323 PMCID: PMC5434031 DOI: 10.1038/s41598-017-01980-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 04/06/2017] [Indexed: 01/19/2023] Open
Abstract
Many plants defend themselves against herbivores by chemical deterrents in their tissues and the presence of such substances in floral nectar means that pollinators often encounter them when foraging. The effect of such substances on the foraging behaviour of pollinators is poorly understood. Using artificial flowers in tightly-controlled laboratory settings, we examined the effects of the alkaloid nicotine on bumblebee foraging performance. We found that bumblebees confronted simultaneously with two equally rewarded nicotine-containing and nicotine-free flower types are deterred only by unnaturally high nicotine concentrations. This deterrence disappears or even turns into attraction at lower nectar-relevant concentrations. The alkaloid has profound effects on learning in a dose-dependent manner. At a high natural dose, bees learn the colour of a nicotine-containing flower type more swiftly than a flower type with the same caloric value but without nicotine. Furthermore, after experiencing flowers containing nicotine in any tested concentration, increasing numbers of bumblebees stay more faithful to these flowers, even if they become a suboptimal choice in terms of reward. These results demonstrate that alkaloids enhance pollinator flower constancy, opening new perspectives in co-evolutionary process between plants and pollinators.
Collapse
Affiliation(s)
- D Baracchi
- Queen Mary University of London, Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK.
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse cedex 09, France.
| | - A Marples
- University College London, Department of Genetics, Evolution and Environment, Faculty of Life Sciences, Gower Street, London, WC1E 6BT, UK
| | - A J Jenkins
- Queen Mary University of London, Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - A R Leitch
- Queen Mary University of London, Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - L Chittka
- Queen Mary University of London, Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
236
|
Tosi S, Burgio G, Nieh JC. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci Rep 2017; 7:1201. [PMID: 28446783 PMCID: PMC5430654 DOI: 10.1038/s41598-017-01361-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/29/2017] [Indexed: 01/15/2023] Open
Abstract
Pesticides can pose environmental risks, and a common neonicotinoid pesticide, thiamethoxam, decreases homing success in honey bees. Neonicotinoids can alter bee navigation, but we present the first evidence that neonicotinoid exposure alone can impair the physical ability of bees to fly. We tested the effects of acute or chronic exposure to thiamethoxam on the flight ability of foragers in flight mills. Within 1 h of consuming a single sublethal dose (1.34 ng/bee), foragers showed excitation and significantly increased flight duration (+78%) and distance (+72%). Chronic exposure significantly decreased flight duration (-54%), distance (-56%), and average velocity (-7%) after either one or two days of continuous exposure that resulted in bees ingesting field-relevant thiamethoxam doses of 1.96-2.90 ng/bee/day. These results provide the first demonstration that acute or chronic exposure to a neonicotinoid alone can significantly alter bee flight. Such exposure may impair foraging and homing, which are vital to normal colony function and ecosystem services.
Collapse
Affiliation(s)
- Simone Tosi
- Alma Mater Studiorum, University of Bologna, Department of Agricultural Sciences, Viale Fanin 42, 40127, Bologna, Italy.
- Council for Agricultural Research and Economics, Honey Bee and Silkworm Research Unit, Via di Saliceto 80, 40128, Bologna, Italy.
- University of California, San Diego, Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, 9500 Gilman Drive, MC0116, La Jolla, CA, 92093-0116, San Diego, USA.
| | - Giovanni Burgio
- Alma Mater Studiorum, University of Bologna, Department of Agricultural Sciences, Viale Fanin 42, 40127, Bologna, Italy
| | - James C Nieh
- University of California, San Diego, Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, 9500 Gilman Drive, MC0116, La Jolla, CA, 92093-0116, San Diego, USA
| |
Collapse
|
237
|
A sublethal dose of a neonicotinoid insecticide disrupts visual processing and collision avoidance behaviour in Locusta migratoria. Sci Rep 2017; 7:936. [PMID: 28428563 PMCID: PMC5430526 DOI: 10.1038/s41598-017-01039-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 11/27/2022] Open
Abstract
Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.
Collapse
|
238
|
Simcock NK, Wakeling LA, Ford D, Wright GA. Effects of age and nutritional state on the expression of gustatory receptors in the honeybee (Apis mellifera). PLoS One 2017; 12:e0175158. [PMID: 28403157 PMCID: PMC5389653 DOI: 10.1371/journal.pone.0175158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/21/2017] [Indexed: 12/25/2022] Open
Abstract
Gustatory receptors (Grs) expressed in insect taste neurons signal the presence of carbohydrates, sugar alcohols, CO2, bitter compounds and oviposition stimulants. The honeybee (Apis mellifera) has one of the smallest Gr gene sets (12 Gr genes) of any insect whose genome has been sequenced. Honeybees live in eusocial colonies with a division of labour and perform age-dependent behavioural tasks, primarily food collection. Here, we used RT-qPCR to quantify Gr mRNA in honeybees at two ages (newly-emerged and foraging-age adults) to examine the relationship between age-related physiology and expression of Gr genes. We measured the Gr mRNAs in the taste organs and also the brain and gut. The mRNA of all Gr genes was detected in all tissues analysed but showed plasticity in relative expression across tissues and in relation to age. Overall, Gr gene expression was higher in the taste organs than in the internal tissues but did not show an overall age-dependent difference. In contrast Gr gene expression in brain was generally higher in foragers, which may indicate greater reliance on internal nutrient sensing. Expression of the candidate sugar receptors AmGr1, AmGr2 and AmGr3 in forager brain was affected by the types of sugars bees fed on. The levels of expression in the brain were greater for AmGr1 but lower for AmGr2 and AmGr3 when bees were fed with glucose and fructose compared with sucrose. Additionally, AmGr3 mRNA was increased in starved bees compared to bees provided ad libitum sucrose. Thus, expression of these Grs in forager brain reflects both the satiety state of the bee (AmGr3) and the type of sugar on which the bee has fed.
Collapse
Affiliation(s)
- Nicola K. Simcock
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Luisa A. Wakeling
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dianne Ford
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Geraldine A. Wright
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
239
|
Benton R. The neurobiology of gustation in insect disease vectors: progress and potential. CURRENT OPINION IN INSECT SCIENCE 2017; 20:19-27. [PMID: 28602232 DOI: 10.1016/j.cois.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/06/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
For insect vectors of human diseases, mealtimes are a key moment of infection. Understanding how and when such species decide on what to feed is both an interesting problem in sensory neurobiology and a source of information for intervention of these behaviors to control spread of infectious agents. Here I review the current knowledge of the molecular and cellular mechanisms of gustation in insect disease vectors, covering blood-feeders as well as scavengers that spread pathogens indirectly. I also consider how these behaviors are modulated over short and long timescales, and describe efforts to artificially modulate them. Though a relatively nascent field, gustatory neurobiology in insect vectors has much promise for future fundamental discoveries and practical applications.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
240
|
Yasuda M, Sakamoto Y, Goka K, Nagamitsu T, Taki H. Insecticide Susceptibility in Asian Honey Bees (Apis cerana (Hymenoptera: Apidae)) and Implications for Wild Honey Bees in Asia. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:447-452. [PMID: 28334064 DOI: 10.1093/jee/tox032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 05/07/2023]
Abstract
To conserve local biodiversity and ensure the provision of pollination services, it is essential to understand the impact of pesticides on wild honey bees. Most studies that have investigated the effects of pesticides on honey bees have focused on the European honey bee (Apis mellifera (Hymenoptera: Apidae)), which is commonly domesticated worldwide. However, the Asian honey bee (Apis cerana) is widely distributed throughout Asia, and toxicity data are lacking for this species. This study aimed to fill this important knowledge gap. In this study, we determined the acute contact toxicity in A. cerana to various pesticides, including neonicotinoids, fipronil, organophosphorus, synthetic pyrethroids, carbamate, and anthranilic diamide. Based on the test duration of 48 h of contact LD50 tests, A. cerana was most sensitive to dinotefuran (0.0014 μg/bee), followed by thiamethoxam (0.0024 μg/bee) and fipronil (0.0025 μg/bee). Dinotefuran is used extensively in Asia, thereby potentially creating a substantial hazard. More generally, A. cerana was approximately one order of magnitude more sensitive than was A. mellifera to most of the pesticides evaluated. The results of our study suggest that neonicotinoid pesticides should not be considered as a single group that acts uniformly on all honey bees, and that more careful management strategies are required to conserve A. cerana populations than A. mellifera.
Collapse
Affiliation(s)
- Mika Yasuda
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba 305-8687, Japan (; )
| | - Yoshiko Sakamoto
- National Institute for Environmental Studies (NIES), Tsukuba 305-8506, Japan
| | - Koichi Goka
- National Institute for Environmental Studies (NIES), Tsukuba 305-8506, Japan
| | - Teruyoshi Nagamitsu
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Sapporo 062-8516, Japan
| | - Hisatomo Taki
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba 305-8687, Japan (; )
| |
Collapse
|
241
|
Vijver MG, Hunting ER, Nederstigt TAP, Tamis WLM, van den Brink PJ, van Bodegom PM. Postregistration monitoring of pesticides is urgently required to protect ecosystems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:860-865. [PMID: 28370291 DOI: 10.1002/etc.3721] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/28/2016] [Accepted: 12/20/2016] [Indexed: 05/26/2023]
Abstract
Current admission policies for pesticides follow a controlled experimental tiered risk assessment approach, giving results that are difficult to extrapolate to a real-world situation. Later analyses of compounds such as DDT and neonicotinoid pesticides clearly show that the actual chemical impacts frequently affect many more components of an ecosystem than a priori suggested by risk assessment. Therefore, to manage the actual risks for ecosystems imposed by manufactured compounds, it is proposed that current admission policies for chemicals be enriched by using postregistration monitoring. Such monitoring is essential to identify unexpected direct and indirect impacts on organisms by accounting for multiple propagation routes and exposures. Implementation of postregistration monitoring could build on existing monitoring networks. This approach would tackle the current policy impasse of compartment-based regulations versus exposure-based regulations, and, more importantly, would provide a safety lock for risk assessment across compartments and more likely ensure the protection of our natural environment. Environ Toxicol Chem 2017;36:860-865. © 2017 SETAC.
Collapse
Affiliation(s)
- Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Ellard R Hunting
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Tom A P Nederstigt
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Wil L M Tamis
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Paul J van den Brink
- Alterra, Wageningen University and Research Center, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| |
Collapse
|
242
|
Glavan G, Milivojević T, Božič J, Sepčić K, Drobne D. Feeding Preference and Sub-chronic Effects of ZnO Nanomaterials in Honey Bees (Apis mellifera carnica). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:471-480. [PMID: 28271210 DOI: 10.1007/s00244-017-0385-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
The extensive production of zinc oxide (ZnO) nanomaterials (NMs) may result in high environmental zinc burdens. Honeybees need to have special concern due to their crucial role in pollination. Our previous study indicated that low concentrations of ZnO NMs, corresponding to 0.8 mg Zn/mL, have a neurotoxic potential for honeybees after a 10-day oral exposure. Present study was designed to investigate the effect of a short, dietary exposure of honeybees to ZnO NMs at concentrations 0.8-8 mg Zn/mL on consumption rate, food preference, and two enzymatic biomarkers-a stress-related glutathione S-transferase (GST) and the neurotoxicity biomarker acetylcholinesterase (AChE). Consumption rate showed a tendency toward a decrease feeding with the increasing concentrations of ZnO NMs. None of Zn NMs concentrations caused alterations in mortality rate and in the activities of brain GST and AChE. To investigate if there is an avoidance response against Zn presence in food, 24-h two-choice tests were performed with control sucrose diet versus sucrose suspensions with different concentrations of ZnO NMs added. We demonstrated that honeybees prefer ZnO NMs ZnO NMs containing suspensions, even at highest Zn concentrations tested, compared with the control diet. This indicates that they might be able to perceive the presence of ZnO NMs in sucrose solution. Because honeybees feed frequently the preference towards ZnO NMs might have a high impact on their survival when exposed to these NMs.
Collapse
Affiliation(s)
- Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia.
| | - Tamara Milivojević
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Janko Božič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1000, Slovenia
| |
Collapse
|
243
|
Brodschneider R, Libor A, Kupelwieser V, Crailsheim K. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution. PLoS One 2017; 12:e0174684. [PMID: 28355267 PMCID: PMC5371368 DOI: 10.1371/journal.pone.0174684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/12/2017] [Indexed: 12/20/2022] Open
Abstract
We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera) under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis). Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80%) intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5) or 45% (20:20) of the initial sugar solution. Imidacloprid at its median lethal dose (LD50) in the sugar solution reduced this post-feeding food transmission to 27% (20:20). Our results show that differences in food intake exist within caged bees that may lead to differential exposure that can influence the interpretation of toxicity tests.
Collapse
Affiliation(s)
| | - Anika Libor
- Institute of Zoology, University of Graz, Graz, Austria
| | | | | |
Collapse
|
244
|
Aregahegn KZ, Shemesh D, Gerber RB, Finlayson-Pitts BJ. Photochemistry of Thin Solid Films of the Neonicotinoid Imidacloprid on Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2660-2668. [PMID: 27989110 DOI: 10.1021/acs.est.6b04842] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Imidacloprid (IMD) is the most widely used neonicotinoid insecticide found on environmental surfaces and in water. Analysis of surface-bound IMD photolysis products was performed using attenuated total reflectance Fourier transfer infrared (ATR-FTIR) analysis, electrospray ionization (ESI-MS), direct analysis in real time mass spectrometry (DART-MS), and transmission FTIR for gas-phase products. Photolysis quantum yields (ϕ) for loss of IMD were determined to be (1.6 ± 0.6) × 10-3 (1s) at 305 nm and (8.5 ± 2.1) × 10-3 (1s) at 254 nm. The major product is the imidacloprid urea derivative (IMD-UR, 84% yield), with smaller amounts of the desnitro-imidacloprid (DN-IMD, 16% yield) product, and gaseous nitrous oxide (N2O). Theoretical calculations show that the first step of the main mechanism is the photodissociation of NO2, which then recombines with the ground electronic state of IMD radical to form IMD-UR and N2O in a thermally driven process. The photolytic lifetime of IMD at a solar zenith angle of 35° is calculated to be 16 h, indicating the significant reaction of IMD over the course of a day. Desnitro-imidacloprid has been identified by others as having increased binding to target receptors compared to IMD, suggesting that photolysis on environmental surfaces increases toxicity.
Collapse
Affiliation(s)
- Kifle Z Aregahegn
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Dorit Shemesh
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University , Jerusalem 91904, Israel
| | - R Benny Gerber
- Department of Chemistry, University of California , Irvine, California 92697, United States
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University , Jerusalem 91904, Israel
| | | |
Collapse
|
245
|
Andersson MN, Newcomb RD. Pest Control Compounds Targeting Insect Chemoreceptors: Another Silent Spring? Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
246
|
Chen M, He Y, Yang Y, Huang L, Zhang H, Ye Q, Wang H. Non-stereoselective transformation of the chiral insecticide cycloxaprid in aerobic soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:667-674. [PMID: 27847184 DOI: 10.1016/j.scitotenv.2016.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Cycloxaprid (CYC) is one of the most effective neonicotinoid insecticides and is proposed to be a replacement of imidacloprid that has caused concerns over non-targeted resistance and ecological toxicity worldwide. The present study was performed with the 14C-labeled racemic CYC and its two enantiomers in aerobic soil. Racemic CYC and the enantiomers 1S2R-CYC and 1R2S-CYC underwent non-stereoselective degradation in the three soils tested. During the incubation period, CYC was transformed into three achiral degradation products which displayed varying degradation kinetics dependent upon soil properties. The soil properties were found to significantly influence the CYC metabolite profiles. The fastest degradation occurred in loamy soil, whereas the slowest reactions occurred in acidic clay soil. The primary transformation of CYC included cleavage of the oxabridged seven-member ring and CN between chloropyridinylmethyl and imidazalidine ring, carboxylation of the alkene group, and hydroxylation of imidazolidine ring. The results shed light on understanding of CYC degradation and provided useful information for applications and environmental assessments of chiral pesticides.
Collapse
Affiliation(s)
- Min Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China
| | - Yupeng He
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China
| | - Yatian Yang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China
| | - Lei Huang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China
| | - Hanxue Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
247
|
Klein S, Cabirol A, Devaud JM, Barron AB, Lihoreau M. Why Bees Are So Vulnerable to Environmental Stressors. Trends Ecol Evol 2017; 32:268-278. [PMID: 28111032 DOI: 10.1016/j.tree.2016.12.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Bee populations are declining in the industrialized world, raising concerns for the sustainable pollination of crops. Pesticides, pollutants, parasites, diseases, and malnutrition have all been linked to this problem. We consider here neurobiological, ecological, and evolutionary reasons why bees are particularly vulnerable to these environmental stressors. Central-place foraging on flowers demands advanced capacities of learning, memory, and navigation. However, even at low intensity levels, many stressors damage the bee brain, disrupting key cognitive functions needed for effective foraging, with dramatic consequences for brood development and colony survival. We discuss how understanding the relationships between the actions of stressors on the nervous system, individual cognitive impairments, and colony decline can inform constructive interventions to sustain bee populations.
Collapse
Affiliation(s)
- Simon Klein
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research(CNRS), University Paul Sabatier(UPS), Toulouse, France; Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amélie Cabirol
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research(CNRS), University Paul Sabatier(UPS), Toulouse, France; Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jean-Marc Devaud
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research(CNRS), University Paul Sabatier(UPS), Toulouse, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mathieu Lihoreau
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research(CNRS), University Paul Sabatier(UPS), Toulouse, France.
| |
Collapse
|
248
|
Rabhi KK, Deisig N, Demondion E, Le Corre J, Robert G, Tricoire-Leignel H, Lucas P, Gadenne C, Anton S. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect. Proc Biol Sci 2017; 283:rspb.2015.2987. [PMID: 26842577 DOI: 10.1098/rspb.2015.2987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes.
Collapse
Affiliation(s)
- Kaouther K Rabhi
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42, rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Nina Deisig
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 1392, Département d'Ecologie Sensorielle, INRA, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Elodie Demondion
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 1392, Département d'Ecologie Sensorielle, INRA, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Julie Le Corre
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42, rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Guillaume Robert
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42, rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Hélène Tricoire-Leignel
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42, rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Philippe Lucas
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 1392, Département d'Ecologie Sensorielle, INRA, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Christophe Gadenne
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42, rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Sylvia Anton
- Neuroéthologie-RCIM, INRA-Université d'Angers, UPRES EA 2647 USC INRA 1330, 42, rue Georges Morel, 49071 Beaucouzé Cedex, France
| |
Collapse
|
249
|
Heimbach F, Schmuck R, Grünewald B, Campbell P, Sappington K, Steeger T, Davies LP. The Challenge: Assessment of risks posed by systemic insecticides to hymenopteran pollinators: New perception when we move from laboratory via (semi-)field to landscape scale testing? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:17-24. [PMID: 28024104 DOI: 10.1002/etc.3631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 02/28/2016] [Accepted: 02/28/2016] [Indexed: 06/06/2023]
Affiliation(s)
| | | | - Bernd Grünewald
- Institut für Bienenkunde Oberursel, Polytechnische Gesellschaft, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Peter Campbell
- Syngenta Jealotts Hill, Bracknell, Berkshire, United Kingdom
| | - Keith Sappington
- US Environmental Protection Agency, Office of Pesticide Programs, Washington DC
| | - Thomas Steeger
- US Environmental Protection Agency, Office of Pesticide Programs, Washington DC
| | - Les P Davies
- Office of the Chief Scientist, Australian Pesticides and Veterinary Medicines Authority, Canberra, ACT, Australia
| |
Collapse
|
250
|
Christen V, Bachofer S, Fent K. Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1264-1270. [PMID: 27839993 DOI: 10.1016/j.envpol.2016.10.105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Among the many factors responsible for the decline of bee populations are plant protection products such as neonicotinoids. In general, bees are exposed to not only one but mixtures of such chemicals. At environmental realistic concentrations neonicotinoids may display negative effects on the immune system, foraging activity, learning and memory formation of bees. Neonicotinoids induce alterations of gene transcripts such as nicotinic acetylcholine receptor (nAChR) subunits, vitellogenin, genes of the immune system and genes linked to memory formation. While previous studies focused on individual compounds, the effect of neonicotinoid mixtures in bees is poorly known. Here we investigated the effects of neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam as single compounds, and binary mixtures thereof in honeybees. We determined transcriptional changes of nAChR subunits and vitellogenin in the brain of experimentally exposed honeybees after exposure up to 72 h. Exposure concentrations were selected on the basis of lowest effect concentrations of the single compounds. Transcriptional induction of nAChRs and vitellogenin was strongest for thiamethoxam, and weakest for acetamiprid. To a large extent, binary mixtures did not show additive transcriptional inductions but they were less than additive. Our data suggest that the joint transcriptional activity of neonicotinoids cannot be explained by concentration addition. The in vivo effects are not only governed by agonistic interaction with nAChRs alone, but are more complex as a result of interactions with other pathways as well. Further studies are needed to investigate the physiological joint effects of mixtures of neonicotinoids and other plant protection products on bees to better understand their joint effects.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Sara Bachofer
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; University Basel, Department of Pharmaceutical Sciences, Institute of Molecular and System Toxicology, CH-4056 Basel, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|