201
|
Gopinathan L, Ratnacaram CK, Kaldis P. Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ 2011; 53:365-89. [PMID: 21630153 DOI: 10.1007/978-3-642-19065-0_16] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The identification of new members in the Cdk and cyclin families, functions for many of which are still emerging, has added new facets to the cell cycle regulatory network. With roles extending beyond the classical regulation of cell cycle progression, these new players are involved in diverse processes such as transcription, neuronal function, and ion transport. Members closely related to Cdks and cyclins such as the Speedy/RINGO proteins offer fresh insights and hope for filling in the missing gaps in our understanding of cell division. This chapter will present a broad outlook on the cell cycle and its key regulators with special emphasis on the less-studied members and their emerging roles.
Collapse
Affiliation(s)
- Lakshmi Gopinathan
- Cell Division and Cancer Laboratory (PRK), Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos #03-09, Singapore
| | | | | |
Collapse
|
202
|
Vázquez-Cedeira M, Barcia-Sanjurjo I, Sanz-García M, Barcia R, Lazo PA. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLoS One 2011; 6:e23235. [PMID: 21829721 PMCID: PMC3150407 DOI: 10.1371/journal.pone.0023235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 01/13/2023] Open
Abstract
Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31–8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31–8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer.
Collapse
Affiliation(s)
- Marta Vázquez-Cedeira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Iria Barcia-Sanjurjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Marta Sanz-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Pedro A. Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
203
|
Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 2011; 15:719-61. [PMID: 20969480 DOI: 10.1089/ars.2010.3392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Apoptosis is a highly regulated process essential for the development and homeostasis of multicellular organisms. Whereas caspases, a large family of intracellular cysteine proteases, play central roles in the execution of apoptosis, other proapoptotic and antiapoptotic regulators such as the members of the Bcl-2 family are also critically involved in the regulation of apoptosis. A large body of evidence has revealed that a number of protein kinases are among such regulators and regulate cellular sensitivity to various proapoptotic signals at multiple steps in apoptosis. However, recent progress in the analysis of these apoptosis signaling kinases demonstrates that they generally act as crucial regulators of diverse cellular responses to a wide variety of stressors, beyond their roles in apoptosis regulation. In this review, we have cataloged apoptosis signaling kinases involved in cellular stress responses on the basis of their ability to induce apoptosis and discuss their roles in stress responses with particular emphasis on health outcomes upon their dysregulation.
Collapse
Affiliation(s)
- Kohsuke Takeda
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, Strategic Approach to Drug Discovery and Development in Pharmaceutical Sciences, Global Center of Excellence Program and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
204
|
Ding Y, Huang D, Zhang Z, Smith J, Petillo D, Looyenga BD, Feenstra K, Mackeigan JP, Furge KA, Teh BT. Combined gene expression profiling and RNAi screening in clear cell renal cell carcinoma identify PLK1 and other therapeutic kinase targets. Cancer Res 2011; 71:5225-34. [PMID: 21642374 DOI: 10.1158/0008-5472.can-11-0076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, several molecularly targeted therapies have been approved for clear cell renal cell carcinoma (ccRCC), a highly aggressive cancer. Although these therapies significantly extend overall survival, nearly all patients with advanced ccRCC eventually succumb to the disease. To identify other molecular targets, we profiled gene expression in 90 ccRCC patient specimens for which tumor grade information was available. Gene set enrichment analysis indicated that cell-cycle-related genes, in particular, Polo-like kinase 1 (PLK1), were associated with disease aggressiveness. We also carried out RNAi screening to identify kinases and phosphatases that when inhibited could prevent cell proliferation. As expected, RNAi-mediated knockdown of PLK1 and other cell-cycle kinases was sufficient to suppress ccRCC cell proliferation. The association of PLK1 in both disease aggression and in vitro growth prompted us to examine the effects of a small-molecule inhibitor of PLK1, BI 2536, in ccRCC cell lines. BI 2536 inhibited the proliferation of ccRCC cell lines at concentrations required to inhibit PLK1 kinase activity, and sustained inhibition of PLK1 by BI 2536 led to dramatic regression of ccRCC xenograft tumors in vivo. Taken together, these findings highlight PLK1 as a rational therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yan Ding
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Guerreiro AS, Fattet S, Kulesza DW, Atamer A, Elsing AN, Shalaby T, Jackson SP, Schoenwaelder SM, Grotzer MA, Delattre O, Arcaro A. A sensitized RNA interference screen identifies a novel role for the PI3K p110γ isoform in medulloblastoma cell proliferation and chemoresistance. Mol Cancer Res 2011; 9:925-35. [PMID: 21652733 DOI: 10.1158/1541-7786.mcr-10-0200] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Medulloblastoma is the most common malignant brain tumor in children and is associated with a poor outcome. We were interested in gaining further insight into the potential of targeting the human kinome as a novel approach to sensitize medulloblastoma to chemotherapeutic agents. A library of small interfering RNA (siRNA) was used to downregulate the known human protein and lipid kinases in medulloblastoma cell lines. The analysis of cell proliferation, in the presence or absence of a low dose of cisplatin after siRNA transfection, identified new protein and lipid kinases involved in medulloblastoma chemoresistance. PLK1 (polo-like kinase 1) was identified as a kinase involved in proliferation in medulloblastoma cell lines. Moreover, a set of 6 genes comprising ATR, LYK5, MPP2, PIK3CG, PIK4CA, and WNK4 were identified as contributing to both cell proliferation and resistance to cisplatin treatment in medulloblastoma cells. An analysis of the expression of the 6 target genes in primary medulloblastoma tumor samples and cell lines revealed overexpression of LYK5 and PIK3CG. The results of the siRNA screen were validated by target inhibition with specific pharmacological inhibitors. A pharmacological inhibitor of p110γ (encoded by PIK3CG) impaired cell proliferation in medulloblastoma cell lines and sensitized the cells to cisplatin treatment. Together, our data show that the p110γ phosphoinositide 3-kinase isoform is a novel target for combinatorial therapies in medulloblastoma.
Collapse
Affiliation(s)
- Ana S Guerreiro
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Boehm JS, Hahn WC. Towards systematic functional characterization of cancer genomes. Nat Rev Genet 2011; 12:487-98. [PMID: 21681210 DOI: 10.1038/nrg3013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Whole-genome approaches to identify genetic and epigenetic alterations in cancer genomes have begun to provide new insights into the range of molecular events that occurs in human tumours. Although in some cases this knowledge immediately illuminates a path towards diagnostic or therapeutic implementation, the bewildering lists of mutations in each tumour make it clear that systematic functional approaches are also necessary to obtain a comprehensive molecular understanding of cancer. Here we review the current range of methods, assays and approaches for genome-scale interrogation of gene function in cancer. We also discuss the integration of functional-genomics approaches with the outputs from cancer genome sequencing efforts.
Collapse
Affiliation(s)
- Jesse S Boehm
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
207
|
Lu Y, Muller M, Smith D, Dutta B, Komurov K, Iadevaia S, Ruths D, Tseng JT, Yu S, Yu Q, Nakhleh L, Balazsi G, Donnelly J, Schurdak M, Morgan-Lappe S, Fesik S, Ram PT, Mills GB. Kinome siRNA-phosphoproteomic screen identifies networks regulating AKT signaling. Oncogene 2011; 30:4567-77. [PMID: 21666717 PMCID: PMC3175328 DOI: 10.1038/onc.2011.164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To identify regulators of intracellular signaling we targeted 541 kinases and kinase-related molecules with siRNAs and determined their effects on signaling with a functional proteomics reverse phase protein array (RPPA) platform assessing 42 phospho and total proteins. The kinome wide screen demonstrated a strong inverse correlation between phosphorylation of AKT and MAPK with 115 genes that when targeted by siRNAs demonstrated opposite effects on MAPK and AKT phosphorylation. Network based analysis identified the MAPK subnetwork of genes along with p70S6K and FRAP1 as the most prominent targets that increased phosphorylation of AKT, a key regulator of cell survival. The regulatory loops induced by the MAPK pathway are dependent on TSC2 but demonstrate a lesser dependence on p70S6K than the previously identified FRAP1 feedback loop. The siRNA screen also revealed novel bi-directionality in the AKT and GSK3 interaction, whereby genetic ablation of GSK3 significantly blocks AKT phosphorylation, an unexpected observation as GSK3 has only been predicted to be downstream of AKT. This method uncovered novel modulators of AKT phosphorylation and facilitated the mapping of regulatory loops.
Collapse
Affiliation(s)
- Y Lu
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Krastev DB, Slabicki M, Paszkowski-Rogacz M, Hubner NC, Junqueira M, Shevchenko A, Mann M, Neugebauer KM, Buchholz F. A systematic RNAi synthetic interaction screen reveals a link between p53 and snoRNP assembly. Nat Cell Biol 2011; 13:809-18. [PMID: 21642980 DOI: 10.1038/ncb2264] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 04/20/2011] [Indexed: 12/13/2022]
Abstract
TP53 (tumour protein 53) is one of the most frequently mutated genes in human cancer and its role during cellular transformation has been studied extensively. However, the homeostatic functions of p53 are less well understood. Here, we explore the molecular dependency network of TP53 through an RNAi-mediated synthetic interaction screen employing two HCT116 isogenic cell lines and a genome-scale endoribonuclease-prepared short interfering RNA library. We identify a variety of TP53 synthetic interactions unmasking the complex connections of p53 to cellular physiology and growth control. Molecular dissection of the TP53 synthetic interaction with UNRIP indicates an enhanced dependency of TP53-negative cells on small nucleolar ribonucleoprotein (snoRNP) assembly. This dependency is mediated by the snoRNP chaperone gene NOLC1 (also known as NOPP140), which we identify as a physiological p53 target gene. This unanticipated function of TP53 in snoRNP assembly highlights the potential of RNAi-mediated synthetic interaction screens to dissect molecular pathways of tumour suppressor genes.
Collapse
Affiliation(s)
- Dragomir B Krastev
- University of Technology Dresden, University Hospital and Medical Faculty Carl Gustav Carus, Department of Medical Systems Biology, Fetscherstraße 74, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Identification and replication of loci involved in camptothecin-induced cytotoxicity using CEPH pedigrees. PLoS One 2011; 6:e17561. [PMID: 21573211 PMCID: PMC3088663 DOI: 10.1371/journal.pone.0017561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/27/2011] [Indexed: 01/01/2023] Open
Abstract
To date, the Centre d'Etude Polymorphism Humain (CEPH) cell line model has only been used as a pharmacogenomic tool to evaluate which genes are responsible for the disparity in response to a single drug. The purpose of this study was demonstrate the model's ability to establish a specific pattern of quantitative trait loci (QTL) related to a shared mechanism for multiple structurally related drugs, the camptothecins, which are Topoisomerase 1 inhibitors. A simultaneous screen of six camptothecin analogues for in vitro sensitivity in the CEPH cell lines resulted in cytotoxicity profiles and orders of potency which were in agreement with the literature. For all camptothecins studied, heritability estimates for cytotoxic response averaged 23.1 ± 2.6%. Nonparametric linkage analysis was used to identify a relationship between genetic markers and response to the camptothecins. Ten QTLs on chromosomes 1, 3, 5, 6, 11, 12, 16 and 20 were identified as shared by all six camptothecin analogues. In a separate validation experiment, nine of the ten QTLs were replicated at the significant and suggestive levels using three additional camptothecin analogues. To further refine this list of QTLs, another validation study was undertaken and seven of the nine QTLs were independently replicated for all nine camptothecin analogues. This is the first study using the CEPH cell lines that demonstrates that a specific pattern of QTLs could be established for a class of drugs which share a mechanism of action. Moreover, it is the first study to report replication of linkage results for drug-induced cytotoxicity using this model. The QTLs, which have been identified as shared by all camptothecins and replicated across multiple datasets, are of considerable interest; they harbor genes related to the shared mechanism of action for the camptothecins, which are responsible for variation in response.
Collapse
|
210
|
Abstract
High-throughput tools for nucleic acid characterization now provide the means to conduct comprehensive analyses of all somatic alterations in the cancer genomes. Both large-scale and focused efforts have identified new targets of translational potential. The deluge of information that emerges from these genome-scale investigations has stimulated a parallel development of new analytical frameworks and tools. The complexity of somatic genomic alterations in cancer genomes also requires the development of robust methods for the interrogation of the function of genes identified by these genomics efforts. Here we provide an overview of the current state of cancer genomics, appraise the current portals and tools for accessing and analyzing cancer genomic data, and discuss emerging approaches to exploring the functions of somatically altered genes in cancer.
Collapse
Affiliation(s)
- Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
211
|
Pereira SR, Vasconcelos VM, Antunes A. The phosphoprotein phosphatase family of Ser/Thr phosphatases as principal targets of naturally occurring toxins. Crit Rev Toxicol 2011; 41:83-110. [PMID: 21288162 DOI: 10.3109/10408444.2010.515564] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phosphoprotein phosphatases (PPPs) constitute one of three otherwise unrelated families of enzymes that specialize in removing the phosphate group from phosphorylated serine and threonine residues. The involvement of PPP enzymes in the regulation of processes such as gene expression, DNA replication, morphogenesis, synaptic transmission, glycogen metabolism, and apoptosis has underscored their potential as targets for the treatment of a variety of conditions such as cancer, diabetes, or Alzheimer's disease. Interestingly, PPP enzymes also constitute the physiological target of multiple naturally occurring toxins, including microcystins from cyanobacteria and cantharidin from beetles. This review is devoted to the PPP family of enzymes--with a focus on the human PPPs--and the naturally occurring toxins that are known to potently impair their activity. The interaction of the toxins with the enzymes is evaluated in atomic detail to obtain insight on two complementary aspects: (1) which specific structural differences within the similarly folded catalytic core of the PPP enzymes explain their diverse sensitivities to toxin inhibition and (2) which structural features presented by the various toxins account for the differential inhibitory potency towards each PPP. These analyses take advantage of numerous site-directed mutagenesis studies, structure-activity evaluations, and recent crystallographic structures of PPPs bound to different toxins.
Collapse
Affiliation(s)
- Susana R Pereira
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal.
| | | | | |
Collapse
|
212
|
Cain EL, Braun SE, Beeser A. Characterization of a human cell line stably over-expressing the candidate oncogene, dual specificity phosphatase 12. PLoS One 2011; 6:e18677. [PMID: 21556130 PMCID: PMC3080379 DOI: 10.1371/journal.pone.0018677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/15/2011] [Indexed: 12/29/2022] Open
Abstract
Background Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the “driver” gene(s) within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21–1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6) and the dual specificity phosphatase 12 (dusp12). While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized. Methodology/Principal Findings To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1) which is implicated in metastasis. Significance Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted.
Collapse
Affiliation(s)
- Erica L. Cain
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Sterling E. Braun
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Alexander Beeser
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
213
|
Wong VCL, Chen H, Ko JMY, Chan KW, Chan YP, Law S, Chua D, Kwong DLW, Lung HL, Srivastava G, Tang JCO, Tsao SW, Zabarovsky ER, Stanbridge EJ, Lung ML. Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype. Int J Cancer 2011; 130:83-95. [DOI: 10.1002/ijc.25970] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/30/2010] [Indexed: 01/08/2023]
|
214
|
Seyhan AA, Varadarajan U, Choe S, Liu Y, McGraw J, Woods M, Murray S, Eckert A, Liu W, Ryan TE. A genome-wide RNAi screen identifies novel targets of neratinib sensitivity leading to neratinib and paclitaxel combination drug treatments. MOLECULAR BIOSYSTEMS 2011; 7:1974-89. [PMID: 21487605 DOI: 10.1039/c0mb00294a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ErbB2 is frequently activated in tumors, and influences a wide array of cellular functions, including proliferation, apoptosis, cell motility and adhesion. HKI-272 (neratinib) is a small molecule pan-kinase inhibitor of the ErbB family of receptor tyrosine kinases, and shows strong antiproliferative activity in ErbB2-overexpressing breast cancer cells. We undertook a genome-wide pooled lentiviral RNAi screen to identify synthetic lethal or enhancer (synthetic modulator screen) genes that interact with neratinib in a human breast cancer cell line (SKBR-3). These genes upon knockdown would modulate cell viability in the presence of subeffective concentrations of neratinib. We discovered a diverse set of genes whose depletion selectively impaired or enhanced the viability of SKBR-3 cells in the presence of neratinib. We observed diverse pathways including EGFR, hypoxia, cAMP, and protein ubiquitination that, when co-treated with RNAi and neratinib, resulted in arrest of cell proliferation. Examining the changes of these genes and their protein products also led to a rationale for clinically relevant drug combination treatments. Treatment of cells with either paclitaxel or cytarabine in combination with neratinib resulted in a strong antiproliferative effect. The identification of novel mediators of cellular response to neratinib and the development of potential drug combination treatments have expanded our understanding of neratinib's mode-of-action for the development of more effective therapeutic regimens. Notably, our findings support a paclitaxel and neratinib phase III clinical trial in breast cancer patients.
Collapse
Affiliation(s)
- Attila A Seyhan
- Systems Biology, Global Biotherapeutics, Pfizer Inc., 87 Cambridgepark Drive, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Razidlo GL, Katafiasz D, Taylor GS. Myotubularin regulates Akt-dependent survival signaling via phosphatidylinositol 3-phosphate. J Biol Chem 2011; 286:20005-19. [PMID: 21478156 DOI: 10.1074/jbc.m110.197749] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotubularin is a 3-phosphoinositide phosphatase that is mutated in X-linked myotubular myopathy, a severe neonatal disorder in which skeletal muscle development and/or regeneration is impaired. In this report we provide evidence that siRNA-mediated silencing of myotubularin expression markedly inhibits growth factor-stimulated Akt phosphorylation, leading to activation of caspase-dependent pro-apoptotic signaling in HeLa cells and primary human skeletal muscle myotubes. Myotubularin silencing also inhibits Akt-dependent signaling through the mammalian target of rapamycin complex 1 as assessed by p70 S6-kinase and 4E-BP1 phosphorylation. Similarly, phosphorylation of FoxO transcription factors is also significantly reduced in myotubularin-deficient cells. Our data further suggest that inhibition of Akt activation and downstream survival signaling in myotubularin-deficient cells is caused by accumulation of the MTMR substrate lipid phosphatidylinositol 3-phosphate generated from the type II phosphatidylinositol 3-kinase PIK3C2B. Our findings are significant because they suggest that myotubularin regulates Akt activation via a cellular pool of phosphatidylinositol 3-phosphate that is distinct from that generated by the type III phosphatidylinositol 3-kinase hVps34. Because impaired Akt signaling has been tightly linked to skeletal muscle atrophy, we hypothesize that loss of Akt-dependent growth/survival cues due to impaired myotubularin function may be a critical factor underlying the severe skeletal muscle atrophy characteristic of muscle fibers in patients with X-linked myotubular myopathy.
Collapse
Affiliation(s)
- Gina L Razidlo
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | |
Collapse
|
216
|
Barna G, Mihalik R, Timár B, Tömböl J, Csende Z, Sebestyén A, Bödör C, Csernus B, Reiniger L, Peták I, Matolcsy A. ROR1 expression is not a unique marker of CLL. Hematol Oncol 2011; 29:17-21. [DOI: 10.1002/hon.948] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
217
|
Combining functional genomics and chemical biology to identify targets of bioactive compounds. Curr Opin Chem Biol 2011; 15:66-78. [DOI: 10.1016/j.cbpa.2010.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 01/08/2023]
|
218
|
Brognard J, Hunter T. Protein kinase signaling networks in cancer. Curr Opin Genet Dev 2011; 21:4-11. [PMID: 21123047 PMCID: PMC3038181 DOI: 10.1016/j.gde.2010.10.012] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/26/2010] [Accepted: 10/31/2010] [Indexed: 12/23/2022]
Abstract
Protein kinases orchestrate the activation of signaling cascades in response to extracellular and intracellular stimuli to control cell growth, proliferation, and survival. The complexity of numerous intracellular signaling pathways is highlighted by the number of kinases encoded by the human genome (539) and the plethora of phosphorylation sites identified in phosphoproteomic studies. Perturbation of these signaling networks by mutations or abnormal protein expression underlies the cause of many diseases including cancer. Recent RNAi screens and cancer genomic sequencing studies have revealed that many more kinases than anticipated contribute to tumorigenesis and are potential targets for inhibitor drug development intervention. This review will highlight recent insights into known pathways essential for tumorigenesis and discuss exciting new pathways for therapeutic intervention.
Collapse
Affiliation(s)
- John Brognard
- Signalling Networks in Cancer Group, Cancer Research UK, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| | - Tony Hunter
- Molecular and Cellular Biology Laboratory, The Salk Institute, La Jolla, California
| |
Collapse
|
219
|
MK-STYX, a catalytically inactive phosphatase regulating mitochondrially dependent apoptosis. Mol Cell Biol 2011; 31:1357-68. [PMID: 21262771 DOI: 10.1128/mcb.00788-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evasion of apoptosis is a significant problem affecting an array of cancers. In order to identify novel regulators of apoptosis, we performed an RNA interference (RNAi) screen against all kinases and phosphatases in the human genome. We identified MK-STYX (STYXL1), a catalytically inactive phosphatase with homology to the mitogen-activated protein kinase (MAPK) phosphatases. Despite this homology, MK-STYX knockdown does not significantly regulate MAPK signaling in response to growth factors or apoptotic stimuli. Rather, RNAi-mediated knockdown of MK-STYX inhibits cells from undergoing apoptosis induced by cellular stressors activating mitochondrion-dependent apoptosis. This MK-STYX phenotype mimics the loss of Bax and Bak, two potent guardians of mitochondrial apoptotic potential. Similar to loss of both Bax and Bak, cells without MK-STYX expression are unable to release cytochrome c. Proapoptotic members of the BCL-2 family (Bax, Bid, and Bim) are unable to trigger cytochrome c release in MK-STYX-depleted cells, placing the apoptotic deficiency at the level of mitochondrial outer membrane permeabilization (MOMP). MK-STYX was found to localize to the mitochondria but is neither released from the mitochondria upon apoptotic stress nor proximal to the machinery currently known to control MOMP, indicating that MK-STYX regulates MOMP using a distinct mechanism.
Collapse
|
220
|
Lindquist RA, Ottina KA, Wheeler DB, Hsu PP, Thoreen CC, Guertin DA, Ali SM, Sengupta S, Shaul YD, Lamprecht MR, Madden KL, Papallo AR, Jones TR, Sabatini DM, Carpenter AE. Genome-scale RNAi on living-cell microarrays identifies novel regulators of Drosophila melanogaster TORC1-S6K pathway signaling. Genome Res 2011; 21:433-46. [PMID: 21239477 DOI: 10.1101/gr.111492.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls cell growth in response to nutrient availability and growth factors. TORC1 signaling is hyperactive in cancer, and regulators of TORC1 signaling may represent therapeutic targets for human diseases. To identify novel regulators of TORC1 signaling, we performed a genome-scale RNA interference screen on microarrays of Drosophila melanogaster cells expressing human RPS6, a TORC1 effector whose phosphorylated form we detected by immunofluorescence. Our screen revealed that the TORC1-S6K-RPS6 signaling axis is regulated by many subcellular components, including the Class I vesicle coat (COPI), the spliceosome, the proteasome, the nuclear pore, and the translation initiation machinery. Using additional RNAi reagents, we confirmed 70 novel genes as significant on-target regulators of RPS6 phosphorylation, and we characterized them with extensive secondary assays probing various arms of the TORC1 pathways, identifying functional relationships among those genes. We conclude that cell-based microarrays are a useful platform for genome-scale and secondary screening in Drosophila, revealing regulators that may represent drug targets for cancers and other diseases of deregulated TORC1 signaling.
Collapse
Affiliation(s)
- Robert A Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Petermann A, Haase D, Wetzel A, Balavenkatraman KK, Tenev T, Gührs KH, Friedrich S, Nakamura M, Mawrin C, Böhmer FD. Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility. Brain Pathol 2010; 21:405-18. [PMID: 21091576 DOI: 10.1111/j.1750-3639.2010.00464.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DEP-1/PTPRJ is a transmembrane protein-tyrosine phosphatase which has been proposed as a suppressor of epithelial tumors. We have found loss of heterozygosity (LOH) of the PTPRJ gene and loss of DEP-1 protein expression in a subset of human meningiomas. RNAi-mediated suppression of DEP-1 in DEP-1 positive meningioma cell lines caused enhanced motility and colony formation in semi-solid media. Cells devoid of DEP-1 exhibited enhanced signaling of endogenous platelet-derived growth factor (PDGF) receptors, and reduced paxillin phosphorylation upon seeding. Moreover, DEP-1 loss caused diminished adhesion to different matrices, and impaired cell spreading. DEP-1-deficient meningioma cells exhibited invasive growth in an orthotopic xenotransplantation model in nude mice, indicating that elevated motility translates into a biological phenotype in vivo. We propose that negative regulation of PDGF receptor signaling and positive regulation of adhesion signaling by DEP-1 cooperate in inhibition of meningioma cell motility, and possibly tumor invasiveness. These phenotypes of DEP-1 loss reveal functions of DEP-1 in adherent cells, and may be more generally relevant for tumorigenesis.
Collapse
Affiliation(s)
- Astrid Petermann
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Cancer and neurodegeneration are often thought of as disease mechanisms at opposite ends of a spectrum; one due to enhanced resistance to cell death and the other due to premature cell death. There is now accumulating evidence to link these two disparate processes. An increasing number of genetic studies add weight to epidemiological evidence suggesting that sufferers of a neurodegenerative disorder have a reduced incidence for most cancers, but an increased risk for other cancers. Many of the genes associated with either cancer and/or neurodegeneration play a central role in cell cycle control, DNA repair, and kinase signalling. However, the links between these two families of diseases remain to be proven. In this review, we discuss recent and sometimes as yet incomplete genetic discoveries that highlight the overlap of molecular pathways implicated in cancer and neurodegeneration.
Collapse
|
223
|
Murata H, Sakaguchi M, Jin Y, Sakaguchi Y, Futami JI, Yamada H, Kataoka K, Huh NH. A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem 2010; 286:7182-9. [PMID: 21177249 DOI: 10.1074/jbc.m110.179390] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that dysfunction of mitochondria is a common feature of Parkinson disease. Functional loss of a familial Parkinson disease-linked gene, BRPK/PINK1 (PINK1), results in deterioration of mitochondrial functions and eventual neuronal cell death. A mitochondrial chaperone protein has been shown to be a substrate of PINK1 kinase activity. In this study, we demonstrated that PINK1 has another action point in the cytoplasm. Phosphorylation of Akt at Ser-473 was enhanced by overexpression of PINK1, and the Akt activation was crucial for protection of SH-SY5Y cells from various cytotoxic agents, including oxidative stress. Enhanced Akt phosphorylation was not due to activation of phosphatidylinositol 3-kinase but due to activation of mammalian target of rapamycin complex 2 (mTORC2) by PINK1. Rictor, a specific component of mTORC2, was phosphorylated by overexpression of PINK1. Furthermore, overexpression of PINK1 enhanced cell motility. These results indicate that PINK1 exerts its cytoprotective function not only in mitochondria but also in the cytoplasm through activation of mTORC2.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Lyashenko N, Weissenböck M, Sharir A, Erben RG, Minami Y, Hartmann C. Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded. Dev Dyn 2010; 239:2266-77. [PMID: 20593419 DOI: 10.1002/dvdy.22362] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ror1 is a member of the Ror-family receptor tyrosine kinases. Ror1 is broadly expressed in various tissues and organs during mouse embryonic development. However, so far little is known about its function. The closely related family member Ror2 was shown to play a crucial role in skeletogenesis and has been shown to act as a co-receptor for Wnt5a mediating non-canonical Wnt-signaling. Previously, it has been shown that during embryonic development Ror1 acts in part redundantly with Ror2 in the skeletal and cardiovascular systems. In this study, we report that loss of the orphan receptor Ror1 results in a variety of phenotypic defects within the skeletal and urogenital systems and that Ror1 mutant mice display a postnatal growth retardation phenotype.
Collapse
|
225
|
Molecular biology and anticancer drug discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010. [PMID: 21075327 DOI: 10.1016/b978-0-12-385071-3.00002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The profound impact of molecular biology on the philosophy of how one should seek new cancer therapeutics cannot be overstated. It has enabled the discovery of unique drugs as well as the identification of new drug targets and biomarkers and the creation of powerful animal models. Nevertheless, the process of cancer drug discovery remains inherently complex and inefficient. This is partially a consequence of the requirement of any successful therapy to show differential effects toward tumor cells relative to nonmalignant cells. The goal of this chapter is to outline the impact of molecular biology on modern approaches to anticancer drug discovery and to highlight the continuing challenges.
Collapse
|
226
|
Bagnyukova TV, Serebriiskii IG, Zhou Y, Hopper-Borge EA, Golemis EA, Astsaturov I. Chemotherapy and signaling: How can targeted therapies supercharge cytotoxic agents? Cancer Biol Ther 2010; 10:839-53. [PMID: 20935499 PMCID: PMC3012138 DOI: 10.4161/cbt.10.9.13738] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 08/02/2010] [Indexed: 12/19/2022] Open
Abstract
In recent years, oncologists have begun to conclude that chemotherapy has reached a plateau of efficacy as a primary treatment modality, even if toxicity can be effectively controlled. Emerging specific inhibitors of signaling and metabolic pathways (i.e., targeted agents) contrast with traditional chemotherapy drugs in that the latter primarily interfere with the DNA biosynthesis and the cell replication machinery. In an attempt to improve on the efficacy, combination of targeted drugs with conventional chemotherapeutics has become a routine way of testing multiple new agents in early phase clinical trials. This review discusses the recent advances including integrative systematic biology and RNAi approaches to counteract the chemotherapy resistance and to buttress the selectivity, efficacy and personalization of anti-cancer drug therapy.
Collapse
|
227
|
RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis 2010; 4:e850. [PMID: 20976050 PMCID: PMC2957409 DOI: 10.1371/journal.pntd.0000850] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/16/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The possible emergence of resistance to the only available drug for schistosomiasis spurs drug discovery that has been recently incentivized by the availability of improved transcriptome and genome sequence information. Transient RNAi has emerged as a straightforward and important technique to interrogate that information through decreased or loss of gene function and identify potential drug targets. To date, RNAi studies in schistosome stages infecting humans have focused on single (or up to 3) genes of interest. Therefore, in the context of standardizing larger RNAi screens, data are limited on the extent of possible off-targeting effects, gene-to-gene variability in RNAi efficiency and the operational capabilities and limits of RNAi. METHODOLOGY/PRINCIPAL FINDINGS We investigated in vitro the sensitivity and selectivity of RNAi using double-stranded (ds)RNA (approximately 500 bp) designed to target 11 Schistosoma mansoni genes that are expressed in different tissues; the gut, tegument and otherwise. Among the genes investigated were 5 that had been previously predicted to be essential for parasite survival. We employed mechanically transformed schistosomula that are relevant to parasitism in humans, amenable to screen automation and easier to obtain in greater numbers than adult parasites. The operational parameters investigated included defined culture media for optimal parasite maintenance, transfection strategy, time- and dose-dependency of RNAi, and dosing limits. Of 7 defined culture media tested, Basch Medium 169 was optimal for parasite maintenance. RNAi was best achieved by co-incubating parasites and dsRNA (standardized to 30 µg/ml for 6 days); electroporation provided no added benefit. RNAi, including interference of more than one transcript, was selective to the gene target(s) within the pools of transcripts representative of each tissue. Concentrations of dsRNA above 90 µg/ml were directly toxic. RNAi efficiency was transcript-dependent (from 40 to >75% knockdown relative to controls) and this may have contributed to the lack of obvious phenotypes observed, even after prolonged incubations of 3 weeks. Within minutes of their mechanical preparation from cercariae, schistosomula accumulated fluorescent macromolecules in the gut indicating that the gut is an important route through which RNAi is expedited in the developing parasite. CONCLUSIONS Transient RNAi operates gene-selectively in S. mansoni newly transformed schistosomula yet the sensitivity of individual gene targets varies. These findings and the operational parameters defined will facilitate larger RNAi screens.
Collapse
|
228
|
Shahmoradgoli M, Mannherz O, Engel F, Heck S, Krämer A, Seiffert M, Pscherer A, Lichter P. Antiapoptotic function of charged multivesicular body protein 5: a potentially relevant gene in acute myeloid leukemia. Int J Cancer 2010; 128:2865-71. [PMID: 20734392 DOI: 10.1002/ijc.25632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/12/2010] [Indexed: 12/22/2022]
Abstract
In recent years, RNA interference (RNAi) has been widely used to uncover gene function or pathway context of novel genes. In our study, we describe a short-hairpin RNA-based RNAi screening of a set of functionally uncharacterized human genes for their possible capability to inhibit apoptosis. We thereby identified a new antiapoptotic function for CHMP5 (charged multivesicular body protein 5), which was confirmed by overexpression and rescue assays. Furthermore, caspase assays showed that CHMP5 silencing induced caspase cascade activation mainly through extrinsic apoptosis pathway. Based on genome-wide expression array profiling, a possible regulatory role of CHMP5 on apoptosis-associated genes and different signaling pathways including nuclear factor kappa B was revealed. In addition, we found significantly higher CHMP5 mRNA levels in acute myeloid leukemia patients. This observation together with the antiapoptotic feature of CHMP5 suggests a possible oncogenic function for this gene in leukemogenesis.
Collapse
Affiliation(s)
- Maria Shahmoradgoli
- Department of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Chamousset D, De Wever V, Moorhead GB, Chen Y, Boisvert FM, Lamond AI, Trinkle-Mulcahy L. RRP1B targets PP1 to mammalian cell nucleoli and is associated with Pre-60S ribosomal subunits. Mol Biol Cell 2010; 21:4212-26. [PMID: 20926688 PMCID: PMC2993749 DOI: 10.1091/mbc.e10-04-0287] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A pool of protein phosphatase 1 (PP1) accumulates within nucleoli and accounts for a large fraction of the serine/threonine protein phosphatase activity in this subnuclear structure. Using a combination of fluorescence imaging with quantitative proteomics, we mapped the subnuclear localization of the three mammalian PP1 isoforms stably expressed as GFP-fusions in live cells and identified RRP1B as a novel nucleolar targeting subunit that shows a specificity for PP1β and PP1γ. RRP1B, one of two mammalian orthologues of the yeast Rrp1p protein, shows an RNAse-dependent localization to the granular component of the nucleolus and distributes in a similar manner throughout the cell cycle to proteins involved in later steps of rRNA processing. Quantitative proteomic analysis of complexes containing both RRP1B and PP1γ revealed enrichment of an overlapping subset of large (60S) ribosomal subunit proteins and pre-60S nonribosomal proteins involved in mid-late processing. Targeting of PP1 to this complex by RRP1B in mammalian cells is likely to contribute to modulation of ribosome biogenesis by mechanisms involving reversible phosphorylation events, thus playing a role in the rapid transduction of cellular signals that call for regulation of ribosome production in response to cellular stress and/or changes in growth conditions.
Collapse
Affiliation(s)
- Delphine Chamousset
- Department of Cellular and Molecular Biology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
230
|
Wierda WG, Chiorazzi N, Dearden C, Brown JR, Montserrat E, Shpall E, Stilgenbauer S, Muneer S, Grever M. Chronic lymphocytic leukemia: new concepts for future therapy. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2010; 10:369-78. [PMID: 21030350 DOI: 10.3816/clml.2010.n.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over the past several years, we have witnessed rapid advances in our understanding of the biology and treatment of chronic lymphocytic leukemia (CLL). New prognostic factors have been characterized that help identify patients at high risk of rapid disease progression, refractoriness to treatment, and short overall survival (OS). These advances have led to a significant paradigm shift in the management of CLL. Novel therapeutic strategies, including combinations of monoclonal antibodies with conventional chemotherapy, have dramatically improved response rates, remission duration, and recently, OS. However, these benefits do not appear to extend to certain patient subsets, especially those with unfavorable clinical or cytogenetic risk factors. The majority of patients with CLL will invariably relapse following first-line therapy and can acquire high-risk genetic abnormalities. Repeated treatment leads to eventual therapeutic refractoriness and shortened survival compared with age-matched healthy individuals. Several novel agents and strategies, including next-generation anti-CD20 monoclonal antibodies, the alkylating agent bendamustine, the immunomodulatory agent lenalidomide, the cyclin-dependent kinase inhibitor flavopiridol, and small-molecule Bcl2 inhibitors, are currently under clinical investigation as novel agents that will hopefully improve treatment outcomes for CLL. Though allogeneic stem cell transplantation offers curative potential, it also presents clinical challenges in terms of patient appropriateness, donor availability, and timing. The merits and challenges of incorporating these treatment modalities into the treatment algorithm for patients with CLL, as discussed by a panel of experts in CLL, are outlined in this article.
Collapse
Affiliation(s)
- William G Wierda
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Qin B, Cheng K. Silencing of the IKKε gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Res 2010; 12:R74. [PMID: 20863366 PMCID: PMC3096963 DOI: 10.1186/bcr2644] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 09/23/2010] [Indexed: 12/20/2022] Open
Abstract
Introduction IκB kinase ε (IKKε) is a member of the IKK family that plays an important role in the activation of NF-κB. Overexpressed in more than 30% of breast cancers, IKKε has been recently identified as a potential breast cancer oncogene. The purpose of the present study is to examine the therapeutic potential of IKKε siRNA on human breast cancer cells. Methods Eight siRNAs targeting different regions of the IKKε mRNA were designed, and the silencing effect was screened by quantitative real-time RT-PCR. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth (via soft agar assay), cell cycle arrest, apoptosis (via annexing binding), NF-κB basal level, and NF-κB-related gene expressions upon the IKKε silencing. Results Silencing of IKKε in human breast cancer cells resulted in a decrease of focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of IKKε suppressed cell proliferation. Cell cycle assay showed that the anti-proliferation effect of IKKε siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by downregulation of cyclin D1. Furthermore, we demonstrated that silencing of IKKε inhibited the NF-κB basal activity as well as the Bcl-2 expression. Significant apoptosis was not observed in breast cancer cells upon the silencing of IKKε. The present study provided the first evidence that silencing IKKε using synthetic siRNA can inhibit the invasiveness properties and proliferation of breast cancer cells. Conclusions Our results suggested that silencing IKKε using synthetic siRNA may offer a novel therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Bin Qin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 64108, USA
| | | |
Collapse
|
232
|
Kajihara R, Fukushige S, Shioda N, Tanabe K, Fukunaga K, Inui S. CaMKII phosphorylates serine 10 of p27 and confers apoptosis resistance to HeLa cells. Biochem Biophys Res Commun 2010; 401:350-5. [PMID: 20851109 DOI: 10.1016/j.bbrc.2010.09.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/13/2010] [Indexed: 01/12/2023]
Abstract
Protein phosphatase (PP) 6 is a serine threonine phosphatase which belongs to the PP2A subfamily of protein phosphatases. PP6 has been implicated in the control of apoptosis. A dominant negative form PP6 (DN-PP6) mutant cDNA was prepared and transfected into HeLa cells to investigate the regulation of apoptosis. HeLa cells expressing DN-PP6 showed increased resistance to apoptosis induced by TNF and cycloheximide. CaMKII phosphorylation and the expression of p27 were increased in DN-PP6 transfectants. Transient expression or activation of CaMKII increased the expression of p27. Furthermore, CaMKII phosphorylated serine 10 of p27, which induces the translocation of p27 from nucleus to cytoplasm and increases the stability of p27. Overexpression of wild type but not the S10A mutant p27 cDNA increased the expression of Bcl-xL and conferred apoptosis resistance to HeLa cells. These results indicated that PP6 and CaMKII regulated apoptosis by controlling the expression level of p27.
Collapse
Affiliation(s)
- Ryutaro Kajihara
- Department of Immunology and Hematology, Division of Health Sciences, Faculty of Life Sciences, Kumamoto University, Japan
| | | | | | | | | | | |
Collapse
|
233
|
Uckun FM, Qazi S. Bruton's tyrosine kinase as a molecular target in treatment of leukemias and lymphomas as well as inflammatory disorders and autoimmunity. Expert Opin Ther Pat 2010; 20:1457-70. [DOI: 10.1517/13543776.2010.517750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
234
|
Mahajan K, Challa S, Coppola D, Lawrence H, Luo Y, Gevariya H, Zhu W, Chen YA, Lawrence NJ, Mahajan NP. Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. Prostate 2010; 70:1274-85. [PMID: 20623637 PMCID: PMC3953126 DOI: 10.1002/pros.21163] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Androgen receptor (AR) plays a critical role in the progression of both androgen-dependent and androgen-independent prostate cancer (AIPC). Ligand-independent activation of AR in AIPC or castration resistant prostate cancer (CRPC) is often associated with poor prognosis. Recently, tyrosine kinase Ack1 has been shown to regulate AR activity by phosphorylating it at tyrosine 267 and this event was shown to be critical for AIPC growth. However, whether a small molecule inhibitor that can mitigate Ack1 activation is sufficient to abrogate AR activity on AR regulated promoters in androgen-depleted environment is not known. METHODS We have generated two key resources, antibodies that specifically recognize pTyr267-AR and synthesized a small molecule inhibitor of Ack1, 4-amino-5,6-biaryl-furo[2,3-d]pyrimidine (named here as AIM-100) to test whether AIM-100 modulates ligand-independent AR activity and inhibits prostate cell growth. RESULTS Prostate tissue microarray analysis indicates that Ack1 Tyr284 phosphorylation correlates positively with disease progression and negatively with the survival of prostate cancer patients. Interestingly, neither pTyr267-AR expression nor its transcriptional activation was affected by anti-androgens in activated Ack1 expressing or EGF stimulated prostate cells. However, the Ack1 inhibitor, AIM-100, not only inhibited Ack1 activation but also able to suppress pTyr267-AR phosphorylation, binding of AR to PSA, NKX3.1, and TMPRSS2 promoters, and inhibit AR transcription activity. CONCLUSION Ack1 Tyr284 phosphorylation is prognostic of progression of prostate cancer and inhibitors of Ack1 activity could be novel therapeutic agents to treat AIPC.
Collapse
Affiliation(s)
- Kiran Mahajan
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Sridevi Challa
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Domenico Coppola
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Harshani Lawrence
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
- HighThroughput Screening and Chemistry Core, Moffitt Cancer Center, Tampa, Florida
| | - Yunting Luo
- HighThroughput Screening and Chemistry Core, Moffitt Cancer Center, Tampa, Florida
| | - Harsukh Gevariya
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
| | - Weiwei Zhu
- Department of Biostatistics, Moffitt Cancer Center, Tampa, Florida
| | - Y. Ann Chen
- Department of Biostatistics, Moffitt Cancer Center, Tampa, Florida
| | | | - Nupam P. Mahajan
- Drug Discovery Department, Moffitt Cancer Center, Tampa, Florida
- Correspondence to: Nupam P. Mahajan, Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA.
| |
Collapse
|
235
|
Arora S, Bisanz KM, Peralta LA, Basu GD, Choudhary A, Tibes R, Azorsa DO. RNAi screening of the kinome identifies modulators of cisplatin response in ovarian cancer cells. Gynecol Oncol 2010; 118:220-7. [PMID: 20722101 DOI: 10.1016/j.ygyno.2010.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ovarian cancer retains a poor prognosis among the female gynaecological malignancies. It constitutes about 3% of all malignancies in women and accounts for 5% of all female cancer related deaths. A standard treatment is cytoreductive surgery followed by adjuvant chemotherapy, and re-treatment with platinum based chemotherapy at the time of relapse. In order to improve cisplatin response in ovarian cancer cells, we utilized a high-throughput RNAi screening to identify kinase modulators. METHODS A high-throughput RNAi screen was performed using a siRNA library targeting 572 kinases to identify potentiators of cisplatin response in the ovarian cancer cell line SKOV3. RESULTS RNAi screening identified at least 55 siRNAs that potentiated the growth inhibitory effects of cisplatin in SKOV3 cells. Inhibition of ATR and CHK1 resulted in the greatest modulation of cisplatin response. Drug dose response of cisplatin in the presence of siRNA validated the effects of these target genes. To show that the siRNA data could be successfully translated into potential therapeutic strategies, CHK1 was further targeted with small molecule inhibitor PD 407824 in combination with cisplatin. Results showed that treatment of SKOV3 and OVCAR3 cells with CHK1 inhibitor PD 407824 led to sensitization of ovarian cancer cells to cisplatin. CONCLUSIONS Our data provides kinase targets that could be exploited to design better therapeutics for ovarian cancer patients. We also demonstrate the effectiveness of high-throughput RNAi screening as a tool for identifying sensitizing targets to known and established chemotherapeutic agents.
Collapse
Affiliation(s)
- Shilpi Arora
- Pharmaceutical Genomics Division, The Translational Genomics Research Institute, Scottsdale, AZ 85259, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Choudhury A, Derkow K, Daneshmanesh AH, Mikaelsson E, Kiaii S, Kokhaei P, Osterborg A, Mellstedt H. Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br J Haematol 2010; 151:327-35. [PMID: 20813009 DOI: 10.1111/j.1365-2141.2010.08362.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously demonstrated that ROR1 and FMOD (fibromodulin) are two genes upregulated in chronic lymphocytic leukaemia (CLL) cells compared to normal blood B cells. In this study, siRNAs were used to specifically silence ROR1 and FMOD expression in CLL cells, healthy B cells and human fibroblast cell lines. siRNA treatment induced a specific reduction (75-95%) in FMOD and ROR1 mRNA. Western blot analysis with specific antibodies for FMOD and ROR1 demonstrated that the proteins were significantly downregulated 48 h after siRNA treatment. Silencing of FMOD and ROR1 resulted in statistically significant (P ≤ 0·05-0·001) apoptosis of CLL cells but not of B cells from normal donors. Human fibroblast cell lines treated with FMOD and ROR1 siRNA did not undergo apoptosis. This is the first report demonstrating that ROR1 and FMOD may be involved in the survival of CLL cells. ROR1 in particular is further explored as potential target for therapy in CLL.
Collapse
|
237
|
Arora S, Gonzales IM, Hagelstrom RT, Beaudry C, Choudhary A, Sima C, Tibes R, Mousses S, Azorsa DO. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma. Mol Cancer 2010; 9:218. [PMID: 20718987 PMCID: PMC2933621 DOI: 10.1186/1476-4598-9-218] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/18/2010] [Indexed: 01/12/2023] Open
Abstract
Background Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Results Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. Conclusion In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.
Collapse
Affiliation(s)
- Shilpi Arora
- Pharmaceutical Genomic Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood 2010; 116:4532-41. [PMID: 20702778 DOI: 10.1182/blood-2010-05-283309] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Monoclonal antibodies and T cells modified to express chimeric antigen receptors specific for B-cell lineage surface molecules such as CD20 exert antitumor activity in B-cell malignancies, but deplete normal B cells. The receptor tyrosine kinase-like orphan receptor 1 (ROR1) was identified as a highly expressed gene in B-cell chronic lymphocytic leukemia (B-CLL), but not normal B cells, suggesting it may serve as a tumor-specific target for therapy. We analyzed ROR1-expression in normal nonhematopoietic and hematopoietic cells including B-cell precursors, and in hematopoietic malignancies. ROR1 has characteristics of an oncofetal gene and is expressed in undifferentiated embryonic stem cells, B-CLL and mantle cell lymphoma, but not in major adult tissues apart from low levels in adipose tissue and at an early stage of B-cell development. We constructed a ROR1-specific chimeric antigen receptor that when expressed in T cells from healthy donors or CLL patients conferred specific recognition of primary B-CLL and mantle cell lymphoma, including rare drug effluxing chemotherapy resistant tumor cells that have been implicated in maintaining the malignancy, but not mature normal B cells. T-cell therapies targeting ROR1 may be effective in B-CLL and other ROR1-positive tumors. However, the expression of ROR1 on some normal tissues suggests the potential for toxi-city to subsets of normal cells.
Collapse
|
239
|
Kutuzov MA, Bennett N, Andreeva AV. Protein phosphatase with EF-hand domains 2 (PPEF2) is a potent negative regulator of apoptosis signal regulating kinase-1 (ASK1). Int J Biochem Cell Biol 2010; 42:1816-22. [PMID: 20674765 DOI: 10.1016/j.biocel.2010.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H(2)O(2), expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H(2)O(2)-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology (MC 868), University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
240
|
Li P, Harris D, Liu Z, Liu J, Keating M, Estrov Z. Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells. PLoS One 2010; 5:e11859. [PMID: 20686606 PMCID: PMC2912280 DOI: 10.1371/journal.pone.0011859] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/25/2010] [Indexed: 11/23/2022] Open
Abstract
Background The receptor tyrosine kinase like orphan receptor (ROR)-1 gene is overexpressed in chronic lymphocytic leukemia (CLL). Because Stat3 is constitutively activated in CLL and sequence analysis revealed that the ROR1 promoter harbors γ-interferon activation sequence-like elements typically activated by Stat3, we hypothesized that Stat3 activates ROR1. Methodology/Principal Findings Because IL-6 induced Stat3 phosphorylation and upregulated Ror1 protein levels in MM1 cells, we used these cells as a model. We transfected MM1 cells with truncated ROR1 promoter luciferase reporter constructs and found that IL-6 induced luciferase activity of ROR1-195 and upstream constructs. Co-transfection with Stat3 siRNA reduced the IL-6-induced luciferase activity, suggesting that IL-6 induced luciferase activity by activating Stat3. EMSA and the ChIP assay confirmed that Stat3 binds ROR1, and EMSA studies identified two Stat3 binding sites. In CLL cells, EMSA and ChIP studies determined that phosphorylated Stat3 bound to the ROR1 promoter at those two ROR1 promoter sites, and ChIP analysis showed that Stat3 co-immunoprecipitated DNA of STAT3, ROR1, and several Stat3-regulated genes. Finally, like STAT3-siRNA in MM1 cells, STAT3-shRNA downregulated STAT3, ROR1, and STAT3-regulated genes and Stat3 and Ror1 protein levels in CLL cells. Conclusion/Significance Our data suggest that constitutively activated Stat3 binds to the ROR1 promoter and activates ROR1 in CLL cells.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Genetic Vectors/genetics
- Humans
- Lentivirus/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- RNA, Small Interfering/physiology
- Receptor Tyrosine Kinase-like Orphan Receptors/genetics
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Ping Li
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - David Harris
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhiming Liu
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jie Liu
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael Keating
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Zeev Estrov
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
241
|
Duan Z, Ji D, Weinstein EJ, Liu X, Susa M, Choy E, Yang C, Mankin H, Hornicek FJ. Lentiviral shRNA screen of human kinases identifies PLK1 as a potential therapeutic target for osteosarcoma. Cancer Lett 2010; 293:220-9. [PMID: 20144850 DOI: 10.1016/j.canlet.2010.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 01/31/2023]
Abstract
We describe an optimized systematic screen of known kinases using osteosarcoma cell lines (KHOS and U-2OS) and a lentiviral-based short hairpin RNA (shRNA) human kinase library. CellTiter 96(R)AQueous One Solution Cell Proliferation Assay was used to measure cell growth and survival. We identified several kinases, including human polo-like kinase (PLK1), which inhibit cell growth and induce apoptosis in osteosarcoma cells when knocked down. cDNA rescue and synthetic siRNA assays confirm that the observed phenotypic changes result from the loss of PLK1 gene expression. Furthermore, a small molecule inhibitor to PLK1 inhibited osteosarcoma cell growth and induced apoptosis. Western blot analysis confirmed that PLK1 is highly expressed and activated in several osteosarcoma cell lines as well as in resected tumor samples. Immunohistochemistry analysis showed that patients with high PLK1 tumor expression levels correlated with significantly shorter survival than patients with lower levels of tumor PLK1 expression. These results demonstrate the capability and feasibility of a high-throughput screen with a large collection of lentiviral kinases and its effectiveness in identifying potential drug targets. The development of more potent inhibitors that target PLK1 may open doors to a new range of anti-cancer strategies in osteosarcoma.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Ivanov SV, Goparaju CMV, Lopez P, Zavadil J, Toren-Haritan G, Rosenwald S, Hoshen M, Chajut A, Cohen D, Pass HI. Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem 2010; 285:22809-17. [PMID: 20463022 PMCID: PMC2906272 DOI: 10.1074/jbc.m110.100354] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
The human genome encodes several hundred microRNA (miRNA) genes that produce small (21-23n) single strand regulatory RNA molecules. Although abnormal expression of miRNAs has been linked to cancer progression, the mechanisms of this dysregulation are poorly understood. Malignant mesothelioma (MM) of pleura is an aggressive and highly lethal cancer resistant to conventional therapies. We and others previously linked loss of the 9p21.3 chromosome in MM with short time to tumor recurrence. In this study, we report that MM cell lines derived from patients with more aggressive disease fail to express miR-31, a microRNA recently linked with suppression of breast cancer metastases. We further demonstrate that this loss is due to homozygous deletion of the miR-31-encoding gene that resides in 9p21.3. Functional assessment of miR-31 activity revealed its ability to inhibit proliferation, migration, invasion, and clonogenicity of MM cells. Re-introduction of miR-31 suppressed the cell cycle and inhibited expression of multiple factors involved in cooperative maintenance of DNA replication and cell cycle progression, including pro-survival phosphatase PPP6C, which was previously associated with chemotherapy and radiation therapy resistance, and maintenance of chromosomal stability. PPP6C, whose mRNA is distinguished with three miR-31-binding sites in its 3'-untranslated region, was consistently down-regulated by miR-31 introduction and up-regulated in clinical MM specimens as compared with matched normal tissues. Taken together, our data suggest that tumor-suppressive propensity of miR-31 can be used for development of new therapies against mesothelioma and other cancers that show loss of the 9p21.3 chromosome.
Collapse
Affiliation(s)
- Sergey V Ivanov
- Department of Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Peterson D, Lee J, Lei XC, Forrest WF, Davis DP, Jackson PK, Belmont LD. A chemosensitization screen identifies TP53RK, a kinase that restrains apoptosis after mitotic stress. Cancer Res 2010; 70:6325-35. [PMID: 20647325 DOI: 10.1158/0008-5472.can-10-0015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Taxanes are very effective at causing mitotic arrest; however, there is variability among cancer cells in the apoptotic response to mitotic arrest. The variability in clinical efficacy of taxane-based therapy is likely a reflection of this variability in apoptotic response, thus elucidation of the molecular mechanism of the apoptotic response to mitotic stress could lead to improved clinical strategies. To identify genes whose expression influences the rate and extent of apoptosis after mitotic arrest, we screened a kinase-enriched small interfering RNA library for effects on caspase activation in response to maximally effective doses of paclitaxel, a PLK1 inhibitor, or cisplatin. Small interfering RNA oligonucleotides directed against an atypical protein kinase, TP53RK, caused the greatest increase in caspase-3/7 activation in response to antimitotic agents. Time-lapse microscopy revealed that cells entered mitosis with normal kinetics, but died after entry into mitosis in the presence of paclitaxel more rapidly when TP53RK was depleted. Because expression levels of TP53RK vary in cancers, TP53RK levels could provide a molecular marker to predict response to antimitotic agents. TP53RK inhibition may also sensitize cancers to taxanes.
Collapse
Affiliation(s)
- David Peterson
- Research Oncology, Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
244
|
Erster O, Seger R, Liscovitch M. Ligand interaction scan (LIScan) in the study of ERK8. Biochem Biophys Res Commun 2010; 399:37-41. [PMID: 20638370 DOI: 10.1016/j.bbrc.2010.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 02/02/2023]
Abstract
ERK8 is the most recent addition for the MAPK family, and its mechanism of activation and function are not yet known, mainly due to the lack of any known physiological stimulator. In this report, we describe the preparation of reagents for the use of a novel method, the ligand interaction scan (LIScan), to study the function of this protein kinase. We generated a set of mutants of ERK8, and identified inhibited as well as stimulated forms. By specifically inhibiting or stimulating the mutants of ERK8, we show that the ERK8-induced inhibition of proliferation is altered. Moreover, we used the developed mutants to show for the first time that ERK8 translocates to the nucleus upon activation. The use of methods such as the ligand interaction scan may thus promote the analyses of the functions of uncharacterized proteins such as ERK8, and possibly help in controlling the activity of target proteins in various experimental systems and applications.
Collapse
Affiliation(s)
- Oran Erster
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
245
|
Farhan H, Wendeler MW, Mitrovic S, Fava E, Silberberg Y, Sharan R, Zerial M, Hauri HP. MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. ACTA ACUST UNITED AC 2010; 189:997-1011. [PMID: 20548102 PMCID: PMC2886346 DOI: 10.1083/jcb.200912082] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To what extent the secretory pathway is regulated by cellular signaling is unknown. In this study, we used RNA interference to explore the function of human kinases and phosphatases in controlling the organization of and trafficking within the secretory pathway. We identified 122 kinases/phosphatases that affect endoplasmic reticulum (ER) export, ER exit sites (ERESs), and/or the Golgi apparatus. Numerous kinases/phosphatases regulate the number of ERESs and ER to Golgi protein trafficking. Among the pathways identified, the Raf-MEK (MAPK/ERK [extracellular signal-regulated kinase] kinase)-ERK cascade, including its regulatory proteins CNK1 (connector enhancer of the kinase suppressor of Ras-1) and neurofibromin, controls the number of ERESs via ERK2, which targets Sec16, a key regulator of ERESs and COPII (coat protein II) vesicle biogenesis. Our analysis reveals an unanticipated complexity of kinase/phosphatase-mediated regulation of the secretory pathway, uncovering a link between growth factor signaling and ER export.
Collapse
Affiliation(s)
- Hesso Farhan
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Mendrysa SM, Akagi K, Roayaei J, Lien WH, Copeland NG, Jenkins NA, Eisenman RN. An Integrated Genetic-Genomic Approach for the Identification of Novel Cancer Loci in Mice Sensitized to c-Myc-Induced Apoptosis. Genes Cancer 2010; 1:465-479. [PMID: 20927200 DOI: 10.1177/1947601910374875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Deregulated c-Myc is associated with a wide range of human cancers. In many cell types, overexpression of c-Myc potently promotes cell growth and proliferation concomitant with the induction of apoptosis. Secondary genetic events that shift this balance either by increasing growth and proliferation or limiting apoptosis are likely to cooperate with c-Myc in tumorigenesis. Here, the authors have performed large-scale insertional mutagenesis in Eμ-c-myc mice that, through mdm2 loss of function mutations, are sensitized to apoptosis. The authors chose to use this genetic background based on the hypothesis that the high level of apoptosis induced by c-Myc overexpression in MDM2-deficient mice would act as a rate-limiting barrier for lymphoma development. As a result, it was predicted that the spectrum of retroviral insertions would be shifted toward loci that harbor antiapoptotic genes. Nine novel common insertion sites (CISs) specific to mice with this sensitized genetic background were identified, suggesting the presence of novel antiapoptotic cancer genes. Moreover, cross-comparing the data to the Retroviral Tagged Cancer Gene Database, the authors identified an additional 23 novel CISs. Here, evidence is presented that 2 genes, ppp1r16b and hdac6, identified at CISs, are bona fide cellular oncogenes. This study highlights the power of combining unique sensitized genetic backgrounds with large-scale mutagenesis as an approach for identifying novel cancer genes.
Collapse
Affiliation(s)
- Susan M Mendrysa
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
247
|
Bauer JA, Ye F, Marshall CB, Lehmann BD, Pendleton CS, Shyr Y, Arteaga CL, Pietenpol JA. RNA interference (RNAi) screening approach identifies agents that enhance paclitaxel activity in breast cancer cells. Breast Cancer Res 2010; 12:R41. [PMID: 20576088 PMCID: PMC2917036 DOI: 10.1186/bcr2595] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/04/2010] [Accepted: 06/24/2010] [Indexed: 12/31/2022] Open
Abstract
Introduction Paclitaxel is a widely used drug in the treatment of patients with locally advanced and metastatic breast cancer. However, only a small portion of patients have a complete response to paclitaxel-based chemotherapy, and many patients are resistant. Strategies that increase sensitivity and limit resistance to paclitaxel would be of clinical use, especially for patients with triple-negative breast cancer (TNBC). Methods We generated a gene set from overlay of the druggable genome and a collection of genomically deregulated gene transcripts in breast cancer. We used loss-of-function RNA interference (RNAi) to identify gene products in this set that, when targeted, increase paclitaxel sensitivity. Pharmacological agents that targeted the top scoring hits/genes from our RNAi screens were used in combination with paclitaxel, and the effects on the growth of various breast cancer cell lines were determined. Results RNAi screens performed herein were validated by identification of genes in pathways that, when previously targeted, enhanced paclitaxel sensitivity in the pre-clinical and clinical settings. When chemical inhibitors, CCT007093 and mithramycin, against two top hits in our screen, PPMID and SP1, respectively, were used in combination with paclitaxel, we observed synergistic growth inhibition in both 2D and 3D breast cancer cell cultures. The transforming growth factor beta (TGFβ) receptor inhibitor, LY2109761, that targets the signaling pathway of another top scoring hit, TGFβ1, was synergistic with paclitaxel when used in combination on select breast cancer cell lines grown in 3D culture. We also determined the relative paclitaxel sensitivity of 22 TNBC cell lines and identified 18 drug-sensitive and four drug-resistant cell lines. Of significance, we found that both CCT007093 and mithramycin, when used in combination with paclitaxel, resulted in synergistic inhibition of the four paclitaxel-resistant TNBC cell lines. Conclusions RNAi screening can identify druggable targets and novel drug combinations that can sensitize breast cancer cells to paclitaxel. This genomic-based approach can be applied to a multitude of tumor-derived cell lines and drug treatments to generate requisite pre-clinical data for new drug combination therapies to pursue in clinical investigations.
Collapse
Affiliation(s)
- Joshua A Bauer
- Department of Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2200 Pierce Avenue, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Mahajan K, Mahajan NP. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J Cell Physiol 2010; 224:327-33. [PMID: 20432460 DOI: 10.1002/jcp.22162] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ack1 (also known as ACK, TNK2, or activated Cdc42 kinase) is a structurally unique non-receptor tyrosine kinase that is expressed in diverse cell types. It integrates signals from plethora of ligand-activated receptor tyrosine kinases (RTKs), for example, MERTK, EGFR, HER2, PDGFR and insulin receptor to initiate intracellular signaling cascades. Ack1 transduces extracellular signals to cytosolic and nuclear effectors such as the protein kinase AKT/PKB and androgen receptor (AR), to promote cell survival and growth. While tyrosine phosphorylation of AR at Tyr267 regulates androgen-independent recruitment of AR to the androgen-responsive enhancers and transcription of AR target genes to drive prostate cancer progression, phosphorylation of an evolutionarily conserved Tyrosine 176 in the kinase domain of AKT is essential for mitotic progression and positively correlates with breast cancer progression. In contrast to AR and AKT, Ack1-mediated phosphorylation of the tumor suppressor Wwox at Tyr287 lead to rapid Wwox polyubiquitination followed by degradation. Thus, by its ability to promote tumor growth by negatively regulating tumor suppressor such as Wwox and positively regulating pro-survival factors such as AKT and AR, Ack1 is emerging as a critical player in cancer biology. In this review, we discuss recent advances in understanding the physiological functions of Ack1 signaling in normal cells and the consequences of its hyperactivation in various cancers.
Collapse
Affiliation(s)
- Kiran Mahajan
- Drug Discovery Program, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | | |
Collapse
|
249
|
Abstract
Several signalling proteins involved in cell growth and
differentiation represent attractive candidate targets for cancer
diagnosis and/or therapy since they can act as oncogenes. Because
of their high specificity and low immunogeneicity, using
artificial small noncoding RNA (ncRNAs) as therapeutics has
recently become a highly promising and rapidly expanding field of
interest. Indeed, ncRNAs may either interfere with RNA
transcription, stability, translation or directly hamper the
function of the targets by binding to their surface. The recent
finding that the expression of several genes is under the control
of small single-stranded regulatory RNAs, including miRNAs, makes
these genes as appropriate targets for ncRNA gene silencing.
Furthermore, another class of small ncRNA, aptamers, act as
high-affinity ligands and potential antagonists of
disease-associated proteins. We will review here the recent and
innovative methods that have been developed and the possible
applications of ncRNAs as inhibitors or tracers in cancer
medicine.
Collapse
Affiliation(s)
- Laura Cerchia
- Istituto di Endocrinologia ed Oncologia Sperimentale
(IEOS) del CNR “G. Salvatore,” via S. Pansini 5, 80131 Naples, Italy
- *Laura Cerchia: ,
*Vittorio de Franciscis:
| | - Vittorio De Franciscis
- Istituto di Endocrinologia ed Oncologia Sperimentale
(IEOS) del CNR “G. Salvatore,” via S. Pansini 5, 80131 Naples, Italy
- *Laura Cerchia: ,
*Vittorio de Franciscis:
| |
Collapse
|
250
|
Ashworth A, Bernards R. Using functional genetics to understand breast cancer biology. Cold Spring Harb Perspect Biol 2010; 2:a003327. [PMID: 20519343 DOI: 10.1101/cshperspect.a003327] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Genetic screens were for long the prerogative of those that studied model organisms. The discovery in 2001 that gene silencing through RNA interference (RNAi) can also be brought about in mammalian cells paved the way for large scale loss-of-function genetic screens in higher organisms. In this article, we describe how functional genetic studies can help us understand the biology of breast cancer, how it can be used to identify novel targets for breast cancer therapy, and how it can help in the identification of those patients that are most likely to respond to a given therapy.
Collapse
Affiliation(s)
- Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, SW3 6JB, United Kingdom.
| | | |
Collapse
|