201
|
Farrokhpour H, Gerami M. Interaction of M@Au12 nanocluster (M = Au, Ag, Pd, and Pt) with different forms of cysteine (uncharged, cationic, anionic, and zwitterion) via the Au-S bond. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
202
|
Swierczewski M, Maroni P, Chenneviere A, Dadras MM, Lee LT, Bürgi T. Deposition of Extended Ordered Ultrathin Films of Au 38 (SC 2 H 4 Ph) 24 Nanocluster using Langmuir-Blodgett Technique. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005954. [PMID: 33559304 DOI: 10.1002/smll.202005954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Langmuir-Blodgett technique is utilized to deposit ultrathin films of Au38 (SC2 H4 Ph)24 nanocluster onto solid surfaces such as mica and silicon. The morphologies of the films transferred at various surface pressures within the mono/bi/trilayer regime are studied by atomic force microscopy (AFM). The time spent on the water surface before the deposition has a decisive effect on the final ordering of nanoclusters within the network and is studied by fast AFM, X-ray reflectivity, and grazing-incidence wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Michal Swierczewski
- Department of Physical Chemistry, University of Geneva, Geneva, 30 Quai Ernest-Ansermet, Geneva 4, CH-1211, Switzerland
| | - Plinio Maroni
- Department of Physical Chemistry, University of Geneva, Geneva, 30 Quai Ernest-Ansermet, Geneva 4, CH-1211, Switzerland
| | - Alexis Chenneviere
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Mohammad M Dadras
- CSEM Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, 2002, Switzerland
| | - Lay-Theng Lee
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, Geneva, 30 Quai Ernest-Ansermet, Geneva 4, CH-1211, Switzerland
| |
Collapse
|
203
|
Matus MF, Häkkinen H. Atomically Precise Gold Nanoclusters: Towards an Optimal Biocompatible System from a Theoretical-Experimental Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005499. [PMID: 33533179 DOI: 10.1002/smll.202005499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Potential biomedical applications of gold nanoparticles have increasingly been reported with great promise for diagnosis and therapy of several diseases. However, for such a versatile nanomaterial, the advantages and potential health risks need to be addressed carefully, as the available information about their toxicity is limited and inconsistent. Atomically precise gold nanoclusters (AuNCs) have emerged to overcome this challenge due to their unique features, such as superior stability, excellent biocompatibility, and efficient renal clearance. Remarkably, the elucidation of their structural and physicochemical properties provided by theory-experiment investigations offers exciting opportunities for site-specific biofunctionalization of the nanoparticle surface, which remains a significant concern for most of the materials in the biomedical field. This concept highlights the advantages conferred by atomically precise AuNCs for biomedical applications and the powerful strategy combining computational and experimental studies towards finding an optimal biocompatible AuNCs-based nanosystem.
Collapse
Affiliation(s)
- María Francisca Matus
- Department of Physics, Nanoscience Center (NSC), University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center (NSC), University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
204
|
Inayeh A, Groome RRK, Singh I, Veinot AJ, de Lima FC, Miwa RH, Crudden CM, McLean AB. Self-assembly of N-heterocyclic carbenes on Au(111). Nat Commun 2021; 12:4034. [PMID: 34188031 PMCID: PMC8241988 DOI: 10.1038/s41467-021-23940-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Although the self-assembly of organic ligands on gold has been dominated by sulfur-based ligands for decades, a new ligand class, N-heterocyclic carbenes (NHCs), has appeared as an interesting alternative. However, fundamental questions surrounding self-assembly of this new ligand remain unanswered. Herein, we describe the effect of NHC structure, surface coverage, and substrate temperature on mobility, thermal stability, NHC surface geometry, and self-assembly. Analysis of NHC adsorption and self-assembly by scanning tunneling microscopy and density functional theory have revealed the importance of NHC-surface interactions and attractive NHC-NHC interactions on NHC monolayer structures. A remarkable way these interactions manifest is the need for a threshold NHC surface coverage to produce upright, adatom-mediated adsorption motifs with low surface diffusion. NHC wingtip structure is also critical, with primary substituents leading to the formation of flat-lying NHC2Au complexes, which have high mobility when isolated, but self-assemble into stable ordered lattices at higher surface concentrations. These and other studies of NHC surface chemistry will be crucial for the success of these next-generation monolayers.
Collapse
Affiliation(s)
- Alex Inayeh
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada
| | - Ryan R K Groome
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada
| | - Ishwar Singh
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Alex J Veinot
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Felipe Crasto de Lima
- Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
- Brazilian Nanotechnology National, Laboratory, Campinas, SP, Brazil
| | - Roberto H Miwa
- Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, ON, Canada.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan.
| | - Alastair B McLean
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
205
|
Sonia, Komal, Kukreti S, Kaushik M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta 2021; 234:122623. [PMID: 34364432 DOI: 10.1016/j.talanta.2021.122623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Gold nanoclusters (Au NCs) with a core size below 2 nm form an exciting class of functional nano-materials with characteristic physical and chemical properties. The properties of Au NCs are more prominent and extremely different from their bulk counterparts. The synthesis of Au NCs is generally assisted by template or ligand, which impart excellent cluster stability and high quantum yield. The tunable and sensitive physicochemical properties of Au NCs open horizons for their advanced applications in various interdisciplinary fields. In this review, we briefly summarize the solution phase synthesis and origin of the characteristic properties of Au NCs. A vast review of recent research work introducing biosensors based on Au NCs has been presented along with their specifications and detection limits. This review also highlights recent progress in the use of Au NCs as bio-imaging probe, enzyme mimic, temperature sensing probe and catalysts. A speculation on present challenges and certain future prospects have also been provided to enlighten the path for advancement of multifaceted applications of Au NCs.
Collapse
Affiliation(s)
- Sonia
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Komal
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
206
|
An estimation on the mechanical stabilities of SAMs by low energy Ar + cluster ion collision. Sci Rep 2021; 11:12772. [PMID: 34140569 PMCID: PMC8211834 DOI: 10.1038/s41598-021-92077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/04/2021] [Indexed: 12/04/2022] Open
Abstract
The stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5′-bis(mercaptomethyl)-2,2′-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.
Collapse
|
207
|
Riccardi L, Decherchi S, Rocchia W, Zanoni G, Cavalli A, Mancin F, De Vivo M. Molecular Recognition by Gold Nanoparticle-Based Receptors as Defined through Surface Morphology and Pockets Fingerprint. J Phys Chem Lett 2021; 12:5616-5622. [PMID: 34110174 PMCID: PMC8280747 DOI: 10.1021/acs.jpclett.1c01365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Ligand shell-protected gold nanoparticles can form nanoreceptors that recognize and bind to specific molecules in solution, with numerous potential innovative applications in science and industry. At this stage, the challenge is to rationally design such nanoreceptors to optimize their performance and boost their further development. Toward this aim, we have developed a new computational tool, Nanotron. This allows the analysis of molecular dynamics simulations of ligand shell-protected nanoparticles to define their exact surface morphology and pocket fingerprints of binding cavities in the coating monolayer. Importantly, from dissecting the well-characterized pairing formed by the guest salicylate molecule and specific host nanoreceptors, our work reveals that guest binding at such nanoreceptors occurs via preformed deep pockets in the host. Upon the interaction with the guest, such pockets undergo an induced-fit-like structural optimization for best host-guest fitting. Our findings and methodological advancement will accelerate the rational design of new-generation nanoreceptors.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory
of Molecular Modeling & Drug Discovery, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Decherchi
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
| | - Walter Rocchia
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
- CONCEPT
Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giordano Zanoni
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Cavalli
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
| | - Fabrizio Mancin
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory
of Molecular Modeling & Drug Discovery, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
208
|
Sun F, Tang Q. The ligand effect on the interface structures and electrocatalytic applications of atomically precise metal nanoclusters. NANOTECHNOLOGY 2021; 32:352001. [PMID: 34101616 DOI: 10.1088/1361-6528/ac027c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Metal nanoclusters, also known as ultra-small metal nanoparticles, occupy the gap between discrete atoms and plasmonic nanomaterials, and are an emerging class of atomically precise nanomaterials. Metal nanoclusters protected by different types of ligands, such as thiolates, alkynyls, hydrides, and N-heterocyclic carbenes, have been synthesized in recent years. Moreover, recent experiment and theoretical studies also indicated that the metal nanoclusters show great promise in many electrocatalytic reactions, such as hydrogen evolution, oxygen reduction, and CO2reduction. The atomically precise nature of their structures enables the elucidation of structure-property relationships and the reaction mechanisms, which is essential if nanoclusters with enhanced performances are to be rationally designed. Particularly, the ligands play an important role in affecting the interface bonding, stability and electrocatalytic activity/selectivity. In this review, we mainly focus on the ligand effect on the interface structure of metal nanoclusters and then discuss the recent advances in electrocatalytic applications. Furthermore, we point out our perspectives on future efforts in this field.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
209
|
Yu Z, Xu Y, Su J, Radjenovic PM, Wang Y, Zheng J, Teng B, Shao Y, Zhou X, Li J. Probing Interfacial Electronic Effects on Single‐Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Yu‐Xing Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| | - Jun‐Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Petar M. Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ya‐Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Ju‐Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Xiao‐Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
210
|
Santos A, Nicholson MIG, Feliciano GT, Bueno PR. Low-fouling properties in serum of carboxylic-oligo(ethylene glycol)-based interfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
211
|
Zhou X, Hao H, Zhang YJ, Zheng Q, Tan S, Zhao J, Chen HB, Chen JJ, Gu Y, Yu HQ, Liu XW. Patterning of transition metal dichalcogenides catalyzed by surface plasmons with atomic precision. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
212
|
Yu Z, Xu YX, Su JQ, Radjenovic PM, Wang YH, Zheng JF, Teng B, Shao Y, Zhou XS, Li JF. Probing Interfacial Electronic Effects on Single-Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angew Chem Int Ed Engl 2021; 60:15452-15458. [PMID: 33884737 DOI: 10.1002/anie.202102587] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/17/2021] [Indexed: 11/11/2022]
Abstract
Clarifying interfacial electronic effects on molecular adsorption is significant in many chemical and biochemical processes. Here, we used STM breaking junction and shell-isolated nanoparticle-enhanced Raman spectroscopy to probe electron transport and adsorption geometries of 4,4'-bipyridine (4,4'-BPY) at Au(111). Modifying the surface with 1-butyl-3-methylimidazolium cation-containing ionic liquids (ILs) decreases surface electron density and stabilizes a vertical orientation of pyridine through nitrogen atom σ-bond interactions, resulting in uniform adsorption configurations for forming molecular junctions. Modulation from vertical, tilted, to flat, is achieved on adding water to ILs, leading to a new peak ascribed to CC stretching of adsorbed pyridyl ring and 316 % modulation of single-molecule conductance. The dihedral angle between adsorbed pyridyl ring and surface decreases with increasing surface electronic density, enhancing electron donation from surface to pyridyl ring.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu-Xing Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.,Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun-Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
213
|
Advances in aptamer-based nanomaterials for separation and analysis of non-genetic biomarkers in biofluids. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
214
|
Gorenskaia E, Turner KL, Martín S, Cea P, Low PJ. Fabrication of metallic and non-metallic top electrodes for large-area molecular junctions. NANOSCALE 2021; 13:9055-9074. [PMID: 34042128 DOI: 10.1039/d1nr00917f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular junctions have proven invaluable tools through which to explore the electronic properties of molecules and molecular monolayers. In seeking to develop a viable molecular electronics based technology it becomes essential to be able to reliably create larger area molecular junctions by contacting molecular monolayers to both bottom and top electrodes. The assembly of monolayers onto a conducting substrate by self-assembly, Langmuir-Blodgett and other methods is well established. However, the deposition of top-contact electrodes without film penetration or damage from the growing electrode material has proven problematic. This Review highlights the challenges of this area, and presents a selective overview of methods that have been used to solve these issues.
Collapse
Affiliation(s)
- Elena Gorenskaia
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Kelly L Turner
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain and Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain and Laboratorio de Microscopias Avanzadas (LMA). Universidad de Zaragoza, Edificio I+D+i. 50018, Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain and Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain and Laboratorio de Microscopias Avanzadas (LMA). Universidad de Zaragoza, Edificio I+D+i. 50018, Zaragoza, Spain
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
215
|
Wetzel O, Hosseini S, Loza K, Heggen M, Prymak O, Bayer P, Beuck C, Schaller T, Niemeyer F, Weidenthaler C, Epple M. Metal-Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm). J Phys Chem B 2021; 125:5645-5659. [PMID: 34029093 DOI: 10.1021/acs.jpcb.1c02512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 μg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Shabnam Hosseini
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
216
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
217
|
Chiang CS, Kao YC, Webster TJ, Shyu WC, Cheng HW, Liu TY, Chen SY. Circulating tumor-cell-targeting Au-nanocage-mediated bimodal phototherapeutic properties enriched by magnetic nanocores. J Mater Chem B 2021; 8:5460-5471. [PMID: 32462165 DOI: 10.1039/d0tb00501k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metastasis resulting from circulating tumor cells (CTCs) is associated with 90% of all cancer mortality. To disrupt cancer dissemination, therapeutic targeting of CTCs by extracorporeal photodynamic therapy (PDT) has emerged; however, it still remains impractical due to its limited therapeutic window. Herein, we developed a photosensitive and magnetic targeted core-satellite nanomedicine (TCSN) to augment the light-induced damage to the targeted cells. The magnetic nanocore (MNC) with multiple iron oxide nanoparticles stabilized using thiolated polyvinyl alcohol can magnetize the CTCs to achieve magnetic enrichment under a magnetic field. Multiple gold nanocage (AuNC) satellites were conjugated on the MNC to facilitate bimodal photothermal therapy and PDT. Adjusting the thiol content in the MNC allows manipulating the AuNC density on TCSNs, which has been found to demonstrate a density-dependent bimodal phototherapeutic effect under laser irradiation at 808 and 940 nm. Moreover, with the immobilization of anti-epithelial cell adhesion molecule (anti-EpCAM), TCSN exhibited an enhanced affinity toward EpCAM-expressing 4T1 cells. We demonstrate that TCSN-labeled 4T1 cells can be isolated and photo-eradicated in a microfluidic channel with a dynamic flow. Our studies showed that TCSN with the complementary properties of MNC and AuNCs can largely augment the therapeutic window by magnetic enrichment and bimodal phototherapy, serving as an advanced extracorporeal strategy to remove CTCs.
Collapse
Affiliation(s)
- Chih-Sheng Chiang
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
| | - Yu-Che Kao
- Materials Engineering/School of Materials, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40440, Taiwan.
| | - Hung-Wei Cheng
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming University, Taipei City 112, Taiwan.
| | - San-Yuan Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40440, Taiwan. and Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan. and Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan and School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
218
|
Barbero F, Mayall C, Drobne D, Saiz-Poseu J, Bastús NG, Puntes V. Formation and evolution of the nanoparticle environmental corona: The case of Au and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144792. [PMID: 33736322 DOI: 10.1016/j.scitotenv.2020.144792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Studying the behaviour of nanomaterials after their release into natural water is essential to understand the risk associated to their environmental exposure. In particular, the interaction and adsorption of dissolved organic matter onto nanoparticles strongly influence the behaviour and fate of nanomaterials in natural water systems. We herein study the interaction of Au and Ag nanoparticles and humic acids, the principal component of natural dissolved organic matter. Physicochemical characterization results showed the formation of an organic matter corona, consisting of two layers: a "hard" one, firmly bound to the nanoparticle surface, and a "soft" one, in dynamic equilibrium and, consequently, highly dependent on the media organic matter concentration. The extent of the electro-steric stabilization of the so called environmental corona depends on the size of the supramolecular association of humic acid (which depends on its hydrophilic and lipophilic moieties), the nanoparticle size, the total concentration of organic matter in the media, and the ratio between them. Interestingly, environmental coronas can eventually prevent Ca2+ and Mg2+ induced aggregation at concentrations range present in most of the freshwater bodies. The humic coating formed on top of the Au or control Ag nanoparticles presented a similar profile, but the corrodibility of Ag led to a more natural detachment of the corona. These results were further confirmed by exposing the nanoparticles to a model of natural water and standard mud (LUFA 2.2 dispersion). In the latter case, after several days, nanoparticle sedimentation was observed, which was attributed to interactions with macro organic and inorganic matter (fraction larger than particulate matter).
Collapse
Affiliation(s)
- Francesco Barbero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 111, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 111, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Javier Saiz-Poseu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Neus G Bastús
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Victor Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193, Bellaterra, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), P. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
219
|
Liu P, Han W, Zheng M, Li W, Xu WW. Unraveling the Atomic Structures of 10-Electron (10e) Thiolate-Protected Gold Nanoclusters: Three Au 32(SR) 22 Isomers, One Au 28(SR) 18, and One Au 33(SR) 23. ACS OMEGA 2021; 6:10497-10503. [PMID: 34056202 PMCID: PMC8153794 DOI: 10.1021/acsomega.1c01345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The atomic structures of 10-electron (10e) thiolate-protected gold nanoclusters have not received extensive attention both experimentally and theoretically. In this paper, five new atomic structures of 10e thiolate-protected gold nanoclusters, including three Au32(SR)22 isomers, one Au28(SR)18, and one Au33(SR)23, are theoretically predicted. Based on grand unified model (GUM), four Au17 cores with different morphologies can be obtained via three different packing modes of five tetrahedral Au4 units. Then, five complete structures of three Au32(SR)22 isomers, one Au28(SR)18, and one Au33(SR)23 isomers can be formed by adding the thiolate ligands to three Au17 cores based on the interfacial interaction between thiolate ligands and gold core in known gold nanoclusters. Density functional theory calculations show that the relative energies of three newly predicted Au32(SR)22 isomers are quite close to two previously reported isomers. In addition, five new 10e gold nanoclusters have large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and all-positive harmonic vibration frequencies, indicating their high stabilities.
Collapse
Affiliation(s)
- Pengye Liu
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhua Han
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Mengke Zheng
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenliang Li
- College
of Energy Engineering, Xinjiang Institute
of Engineering, Urumqi 830023, China
| | - Wen Wu Xu
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
220
|
Wei X, Shen H, Xu C, Li H, Jin S, Kang X, Zhu M. Ag 48 and Ag 50 Nanoclusters: Toward Active-Site Tailoring of Nanocluster Surface Structures. Inorg Chem 2021; 60:5931-5936. [PMID: 33826306 DOI: 10.1021/acs.inorgchem.1c00355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The determination of active sites in metal nanoclusters is of great significance for the in-depth understanding of the structural evolution and the mechanism of physicochemical properties. In this work, the surface active Ag2(SR)3 units of the Ag48Cl14(S-Adm)30 nanocluster are determined, and the active-site tailoring of this nanocluster gives rise to two derivative nanoclusters, i.e., the structure-maintained Ag48Cl14(S-Adm)26(S-c-C6H11)4 and the structure-growth Ag50Cl16(S-Adm)28(DPPP)2. Both Ag48 and Ag50 nanoclusters exhibit almost the same cluster framework, but the Ag2(S-Adm)3 active units are regulated to Ag3(S-Adm)2(DPPP)1Cl1 with the transformation from Ag48 to Ag50. The surface active sites on Ag48 are rationalized by analyzing its crystal structure and the ligand-exchange-induced cluster transformation. This study provides some inspiration toward the active-site tailoring of nanocluster surface structures, which is significant for the preparation of new cluster-based nanomaterials with customized structures and enhanced performance.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Chao Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
221
|
Wang Q, Dong SL, Tao DD, Li Z, Jiang YB. Ag(I)-thiolate coordination polymers: Synthesis, structures and applications as emerging sensory ensembles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
222
|
Han W, Liu P, Zheng M, Zeng XC, Xu WW. Ring Model for Understanding How Interfacial Interaction Dictates the Structures of Protection Motifs and Gold Cores in Thiolate-Protected Gold Nanoclusters. J Phys Chem Lett 2021; 12:3006-3013. [PMID: 33733772 DOI: 10.1021/acs.jpclett.1c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the effect of interfacial interactions between the protection motifs and gold cores on the stabilities of thiolate-protected gold nanoclusters is still a challenging task. Based on analyses of 95 experimentally crystallized and theoretically predicted thiolate-protected gold nanoclusters, we present a ring model to offer a deeper insight into the interfacial interactions for this class of nanoclusters. In the ring model, all the gold nanoclusters can be generically viewed as a fusion or interlocking of several [Aum(SR)n] (m = 4-8, 10, and 12 and 0 ≤ n ≤ m) rings. Guided by the ring model and the grand unified model, a new Au42(SR)26 isomer is predicted, whose total energy is lower than those of two previously crystallized isomers. The ring model offers a mechanistic understanding of the interactions between the protection ligands and gold cores and practical guidance on predicting new gold nanoclusters for future experimental synthesis and confirmation.
Collapse
Affiliation(s)
- Wenhua Han
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Pengye Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Mengke Zheng
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
223
|
Chew AK, Dallin BC, Van Lehn RC. The Interplay of Ligand Properties and Core Size Dictates the Hydrophobicity of Monolayer-Protected Gold Nanoparticles. ACS NANO 2021; 15:4534-4545. [PMID: 33621066 DOI: 10.1021/acsnano.0c08623] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hydrophobicity of monolayer-protected gold nanoparticles is a crucial design parameter that influences self-assembly, preferential binding to proteins and membranes, and other nano-bio interactions. Predicting the effects of monolayer components on nanoparticle hydrophobicity is challenging due to the nonadditive, cooperative perturbations to interfacial water structure that dictate hydrophobicity at the nanoscale. In this work, we quantify nanoparticle hydrophobicity by using atomistic molecular dynamics simulations to calculate local hydration free energies at the nanoparticle-water interface. The simulations reveal that the hydrophobicity of large gold nanoparticles is determined primarily by ligand end group chemistry, as expected. However, for small gold nanoparticles, long alkanethiol ligands interact to form anisotropic bundles that lead to substantial spatial variations in hydrophobicity even for homogeneous monolayer compositions. We further show that nanoparticle hydrophobicity is modulated by changing the ligand structure, ligand chemistry, and gold core size, emphasizing that single-ligand properties alone are insufficient to characterize hydrophobicity. Finally, we illustrate that hydration free energy measurements correlate with the preferential binding of propane as a representative hydrophobic probe molecule. Together, these results show that both physical and chemical properties influence the hydrophobicity of small nanoparticles and must be considered together when predicting gold nanoparticle interactions with biomolecules.
Collapse
Affiliation(s)
- Alex K Chew
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Bradley C Dallin
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
224
|
Cruz SS, Tanygin V, Lear BJ. Asymmetries in the Electronic Properties of Spheroidal Metallic Nanoparticles, Revealed by Conduction Electron Spin Resonance and Surface Plasmon Resonance. ACS NANO 2021; 15:4490-4503. [PMID: 33646754 DOI: 10.1021/acsnano.0c08515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using electron spin resonance spectroscopy, we demonstrate that the morphological asymmetries present in small spheroidal metallic nanoparticles give rise to asymmetries in the behavior of electrons held in states near the metal's Fermi energy. We find that the effects of morphological asymmetries for these spheroidal systems are more important than the effects of size distributions when explaining the asymmetry in electronic behavior. This is found to be true for all the particles examined, which were made from Cu, Ag, Pd, Ir, Pt, and Au, bearing dodecanethiolate ligands. In the case of the Ag particles, we also demonstrate that the same model used to account for morphological effects in the electron spin resonance spectra can be used to account for small asymmetries present in the plasmon spectrum. This result demonstrates that the electronic properties of even small particles are tunable via morphological changes.
Collapse
Affiliation(s)
- Santina S Cruz
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vadim Tanygin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
225
|
A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. J Nanobiotechnology 2021; 19:77. [PMID: 33741008 PMCID: PMC7976706 DOI: 10.1186/s12951-021-00824-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although many treatments for breast cancer are available, poor tumour targeting limits the effectiveness of most approaches. Consequently, it is difficult to achieve satisfactory results with monotherapies. The lack of accurate diagnostic and monitoring methods also limit the benefits of cancer treatment. The aim of this study was to design a nanocarrier comprising porous gold nanoshells (PGNSs) co-decorated with methoxy polyethylene glycol (mPEG) and trastuzumab (Herceptin®, HER), a therapeutic monoclonal antibody that binds specifically to human epidermal receptor-2 (HER2)-overexpressing breast cancer cells. Furthermore, a derivative of the microtubule-targeting drug maytansine (DM1) was incorporated in the PGNSs. Methods Prepared PGNSs were coated with mPEG, DM1 and HER via electrostatic interactions and Au–S bonds to yield DM1-mPEG/HER-PGNSs. SK-BR-3 (high HER2 expression) and MCF-7 (low HER2) breast cancer cells were treated with DM1-mPEG/HER-PGNSs, and cytotoxicity was evaluated in terms of cell viability and apoptosis. The selective uptake of the coated PGNSs by cancer cells and subsequent intracellular accumulation were studied in vitro and in vivo using inductively coupled plasma mass spectrometry and fluorescence imaging. The multimodal imaging feasibility and synergistic chemo-photothermal therapeutic efficacy of the DM1-mPEG/HER-PGNSs were investigated in breast cancer tumour-bearing mice. The molecular mechanisms associated with the anti-tumour therapeutic use of the nanoparticles were also elucidated. Result The prepared DM1-mPEG/HER-PGNSs had a size of 78.6 nm and displayed excellent colloidal stability, photothermal conversion ability and redox-sensitive drug release. These DM1-mPEG/HER-PGNSs were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. Moreover, the DM1-mPEG/HER-PGNSs enhanced the performance of multimodal computed tomography (CT), photoacoustic (PA) and photothermal (PT) imaging and enabled chemo-thermal combination therapy. The therapeutic mechanism involved the induction of tumour cell apoptosis via the activation of tubulin, caspase-3 and the heat shock protein 70 pathway. M2 macrophage suppression and anti-metastatic functions were also observed. Conclusion The prepared DM1-mPEG/HER-PGNSs enabled nanodart-like tumour targeting, visibility by CT, PA and PT imaging in vivo and powerful tumour inhibition mediated by chemo-thermal combination therapy in vivo. In summary, these unique gold nanocarriers appear to have good potential as theranostic nanoagents that can serve both as a probe for enhanced multimodal imaging and as a novel targeted anti-tumour drug delivery system to achieve precision nanomedicine for cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00824-5.
Collapse
|
226
|
Cheng HW, Wang S, Porter MD, Zhong CJ. Molecularly-tunable nanoelectrode arrays created by harnessing intermolecular interactions. Chem Sci 2021; 12:6081-6090. [PMID: 33996004 PMCID: PMC8098684 DOI: 10.1039/d0sc06955h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intermolecular interactions play a critical role in the binding strength of molecular assemblies on surfaces. The ability to harness them enables molecularly-tunable interfacial structures and properties. Herein we report the tuning of the intermolecular interactions in monolayer assemblies derived from organothiols of different structures for the creation of nanoelectrode arrays or ensembles with effective mass transport by a molecular-level perforation strategy. The homo- and hetero-intermolecular interactions can be fully controlled, which is demonstrated not only by thermodynamic analysis of the fractional coverage but also by surface infrared reflection absorption and X-ray photoelectron spectroscopic characterizations. This understanding enables controllable electrochemical perforation for the creation of ensembles or arrays of channels across the monolayer thickness with molecular and nanoscale dimensions. Redox reactions on the nanoelectrode array display molecular tunability with a radial diffusion characteristic in good agreement with theoretical simulation results. These findings have implications for designing membrane-type ion-gating, electrochemical sensing, and electrochemical energy storage devices with molecular level tunability. Intermolecular interactions in monolayer assembly are harnessed for creating molecularly-tunable nanoelectrode arrays or ensembles.![]()
Collapse
Affiliation(s)
- Han-Wen Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China .,Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| | - Marc D Porter
- Department of Chemistry and Chemical Engineering, University of Utah Salt Lake City Utah 84112 USA
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| |
Collapse
|
227
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
228
|
Abdul-Moqueet MM, Tovias L, Lopez P, Mayer KM. Synthesis and bioconjugation of alkanethiol-stabilized gold bipyramid nanoparticles. NANOTECHNOLOGY 2021; 32:10.1088/1361-6528/abe823. [PMID: 33607639 PMCID: PMC8374007 DOI: 10.1088/1361-6528/abe823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
Gold bipyramid (GBP) nanoparticles are promising for a range of biomedical applications, including biosensing and surface-enhanced Raman spectroscopy, due to their favorable optical properties and ease of chemical functionalization. Here we report improved synthesis methods, including preparation of gold seed particles with an increased shelf life of ∼1 month, and preparation of GBPs with significantly shortened synthesis time (< 1 h). We also report methods for the functionalization and bioconjugation of the GBPs, including functionalization with alkanethiol self-assembled monolayers (SAMs) and bioconjugation with proteins via carbodiimide cross-linking. Binding of specific antibodies to the nanoparticle-bound proteins was subsequently observed via localized surface plasmon resonance sensing. Rabbit IgG and goat anti-Rabbit IgG antibodies were used as a model system for antibody-antigen interactions. As-synthesized, SAM-functionalized, and bioconjugated bipyramids were characterized using scanning electron microscopy, UV-vis spectroscopy, zeta potential, and dynamic light scattering.
Collapse
Affiliation(s)
- Mohammad M Abdul-Moqueet
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Leeana Tovias
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Priscilla Lopez
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Kathryn M Mayer
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
229
|
Romeo MV, López-Martínez E, Berganza-Granda J, Goñi-de-Cerio F, Cortajarena AL. Biomarker sensing platforms based on fluorescent metal nanoclusters. NANOSCALE ADVANCES 2021; 3:1331-1341. [PMID: 36132872 PMCID: PMC9419537 DOI: 10.1039/d0na00796j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/10/2021] [Indexed: 05/07/2023]
Abstract
Metal nanoclusters (NCs) and their unique properties are increasing in importance and their applications are covering a wide range of areas. Their remarkable fluorescence properties and easy synthesis procedure and the possibility of functionalizing them for the detection of specific targets, such as biomarkers, make them a very interesting biosensing tool. Nowadays the detection of biomarkers related to different diseases is critical. In this context, NCs scaffolded within an appropriate molecule can be used to detect and quantify biomarkers through specific interactions and fluorescence properties of the NCs. These methods include analytical detection and biolocalization using imaging techniques. This review covers a selection of recent strategies to detect biomarkers related to diverse diseases (from infectious, inflammatory, or tumour origin) using fluorescent nanoclusters.
Collapse
Affiliation(s)
- María V Romeo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Elena López-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Jesús Berganza-Granda
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
230
|
Frauhammer T, Gerhard L, Edelmann K, Lindner M, Valášek M, Mayor M, Wulfhekel W. Addressing a lattice of rotatable molecular dipoles with the electric field of an STM tip. Phys Chem Chem Phys 2021; 23:4874-4881. [PMID: 33616122 DOI: 10.1039/d0cp06146h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional molecular groups mounted on specific foot structures are ideal model systems to study intermolecular interactions, due to the possibility to separate the functionality and the adsorption mechanism. Here, we report on the rotational switching of a thioacetate group mounted on a tripodal tetraphenylmethane (TPM) derivative adsorbed in ordered islands on a Au(111) surface. Using low temperature scanning tunnelling microscopy, individual freestanding molecular groups of the lattice can be switched between two bistable orientations. The functional dependence of this rotational switching on the sample bias and tip-sample distance allows us to model the energy landscape of this molecular group as an electric dipole in the electric field of the tunnelling junction. As expected for the interaction of two dipoles, we found states of neighbouring molecules to be correlated.
Collapse
Affiliation(s)
- Timo Frauhammer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Lukas Gerhard
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| | - Kevin Edelmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Marcin Lindner
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany.
| | - Michal Valášek
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany.
| | - Marcel Mayor
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland and Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), 510275 Guangzhou, China.
| | - Wulf Wulfhekel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| |
Collapse
|
231
|
Pem B, Toma M, Vrček V, Vinković Vrček I. Combined NMR and Computational Study of Cysteine Oxidation during Nucleation of Metallic Clusters in Biological Systems. Inorg Chem 2021; 60:4144-4161. [PMID: 33657797 DOI: 10.1021/acs.inorgchem.1c00321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread biomedical applications of silver and gold nanoparticles (AgNPs and AuNPs, respectively) prompt the need for mechanistic evaluation of their interaction with biomolecules. In biological media, metallic NPs are known to transform by various pathways, especially in the presence of thiols. The interplay between metallic NPs and thiols may lead to unpredictable consequences for the health status of an organism. This study explored the potential events occurring during biotransformation, dissolution, and reformation of NPs in the thiol-rich biological media. The study employed a model system evaluating the interaction of cysteine with small-sized AgNPs and AuNPs. The interplay of cysteine on transformation and reformation pathways of these NPs was experimentally investigated by nuclear magnetic resonance (NMR) spectroscopy and supported by light scattering techniques and transmission electron microscopy (TEM). As the main outcome, Ag- or Au-catalyzed oxidation of cysteine to cystine was found to occur through generation of reactive oxygen species (ROS). Computational simulations confirmed this mechanism and the role of ROS in the oxidative dimerization of biothiol during NPs reformation. The obtained results represent valuable mechanistic data about the complex events during the transport of metallic NPs in thiol-rich biological systems that should be considered for the future biomedical applications of metal-based nanomaterials.
Collapse
Affiliation(s)
- Barbara Pem
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Mateja Toma
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia
| |
Collapse
|
232
|
Kim H, Choi J. Interfacial and mechanical properties of liquid crystalline elastomer nanocomposites with grafted Au nanoparticles: A molecular dynamics study. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
233
|
Liu S, Wang S, Wang H, Lv C, Miao Y, Chen L, Yang S. Gold nanoparticles modified graphene foam with superhydrophobicity and superoleophilicity for oil-water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143660. [PMID: 33248768 DOI: 10.1016/j.scitotenv.2020.143660] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Leakage accidents often occur during the production, transportation, and use of petroleum products, which is a common and serious environmental issue. It is of great significance and challenge to develop efficient materials for oil-water separation. This article introduces a simple and feasible method to prepare high-performance 3D graphene foam (GF) oil-absorbing material. Gold nanoparticles (Au NPs) are loaded on the surface of graphene foam by ion sputtering and then modified with 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT). The prepared graphene sponge is porous with a large specific surface area and excellent water repellency (water contact angle exceeding 150°). The superhydrophobicity of the materials is due to the interaction between the rough structure of gold nanoparticles and the reduction of surface energy by PFDT. These outstanding properties make the functionalized graphene foam have excellent oil absorption capacity, which can even be as high as 25.8 g/g, and it can still maintain high separation performance after 10 cycles of recycling. It is worth noting that the preparation of the material is simple and reusable. Therefore, the prepared graphene foam has the potential as a promising absorbent for oil spill purification.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shanshan Wang
- College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hui Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongjiang Lv
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Miao
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| | - Sudong Yang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
234
|
Nanev C, Govada L, Chayen NE. Theoretical and experimental investigation of protein crystal nucleation in pores and crevices. IUCRJ 2021; 8:270-280. [PMID: 33708403 PMCID: PMC7924239 DOI: 10.1107/s2052252521000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The nucleation ability of pores is explained using the equilibration between the cohesive energy maintaining the integrity of a crystalline cluster and the destructive energy tending to tear it up. It is shown that to get 3D crystals it is vital to have 2D crystals nucleating in the pores first. By filling the pore orifice, the 2D crystal nuclei are more stable because their peripheries are protected from the destructive action of water molecules. Furthermore, the periphery of the 2D crystal is additionally stabilized as a result of its cohesion with the pore wall. The understanding provided by this study combining theory and experiment will facilitate the design of new nucleants.
Collapse
Affiliation(s)
- Christo Nanev
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 11, Sofia 1113, Bulgaria
| | - Lata Govada
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| | - Naomi E. Chayen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
235
|
Dief EM, Darwish N. Ultrasonic Generation of Thiyl Radicals: A General Method of Rapidly Connecting Molecules to a Range of Electrodes for Electrochemical and Molecular Electronics Applications. ACS Sens 2021; 6:573-580. [PMID: 33355460 DOI: 10.1021/acssensors.0c02413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report ultrasonic generation of thiyl radicals as a general method for functionalizing a range of surfaces with organic molecules. The method is simple, rapid, can be utilized at ambient conditions and involves sonicating a solution of disulfide molecules, homolytically cleaving S-S bonds and generating thiyl radicals that react with the surfaces by forming covalently bound monolayers. Full molecular coverages on conducting oxides (ITO), semiconductors (Si-H), and carbon (GC) electrode surfaces can be achieved within a time scale of 15-90 min. The suitability of this method to connect the same molecule to different electrodes enabled comparing the conductivity of single molecules and the electrochemical electron transfer kinetics of redox active monolayers as a function of the molecule-electrode contact. We demonstrate, using STM break-junction technique, single-molecule heterojunction comprising Au-molecule-ITO and Au-molecule-carbon circuits. We found that despite using the same molecule, the single-molecule conductivity of Au-molecule-carbon circuits is about an order of magnitude higher than that of Au-molecule-ITO circuits. The same trend was observed for electron transfer kinetics, measured using electrochemical impedance spectroscopy for ferrocene-terminated monolayers on carbon and ITO. This suggests that the interfacial bond between different electrodes and the same molecule can be used to tune the conductivity of single-molecule devices and to control the rate of charge transport in redox active monolayers, opening prospects for relating various types of interfacial charge-transfer rate processes.
Collapse
Affiliation(s)
- Essam M. Dief
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
236
|
Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. ENERGIES 2021. [DOI: 10.3390/en14051278] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gold nanoparticles (Au NPs) play a significant role in science and technology because of their unique size, shape, properties and broad range of potential applications. This review focuses on the various approaches employed for the synthesis, modification and functionalization of nanostructured Au. The potential catalytic applications and their enhancement upon modification of Au nanostructures have also been discussed in detail. The present analysis also offers brief summaries of the major Au nanomaterials synthetic procedures, such as hydrothermal, solvothermal, sol-gel, direct oxidation, chemical vapor deposition, sonochemical deposition, electrochemical deposition, microwave and laser pyrolysis. Among the various strategies used for improving the catalytic performance of nanostructured Au, the modification and functionalization of nanostructured Au produced better results. Therefore, various synthesis, modification and functionalization methods employed for better catalytic outcomes of nanostructured Au have been summarized in this review.
Collapse
|
237
|
Sanchis-Gual R, Susic I, Torres-Cavanillas R, Arenas-Esteban D, Bals S, Mallah T, Coronado-Puchau M, Coronado E. The design of magneto-plasmonic nanostructures formed by magnetic Prussian Blue-type nanocrystals decorated with Au nanoparticles. Chem Commun (Camb) 2021; 57:1903-1906. [PMID: 33491696 DOI: 10.1039/d0cc08034a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed a general protocol for the preparation of hybrid nanostructures formed by nanoparticles (NPs) of molecule-based magnets based on Prussian Blue Analogues (PBAs) decorated with plasmonic Au NPs of different shapes. By adjusting the pH, Au NPs can be attached preferentially along the edges of the PBA or randomly on the surface. The protocol allows tuning the plasmonic properties of the hybrids in the whole visible spectrum.
Collapse
Affiliation(s)
- Roger Sanchis-Gual
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | - Isidora Susic
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | - Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | - Daniel Arenas-Esteban
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Talal Mallah
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay Cedex, France
| | - Marc Coronado-Puchau
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltran 2, 46980, Paterna, Spain.
| |
Collapse
|
238
|
Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS NANO 2021; 15:2005-2037. [PMID: 33566564 DOI: 10.1021/acsnano.0c06962] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Single-atom catalysts (SACs) featuring the complete atomic utilization of metal, high-efficient catalytic activity, superior selectivity, and excellent stability have been emerged as a frontier in the catalytic field. Recently, increasing interests have been drawn to apply SACs in biomedical fields for enzyme-mimic catalysis and disease therapy. To fulfill the demand of precision and personalized medicine, precisely engineering the structure and active site toward atomic levels is a trend for nanomedicines, promoting the evolution of metal-based biomedical nanomaterials, particularly biocatalytic nanomaterials, from nanoparticles to clusters and now to SACs. This review outlines the syntheses, characterizations, and catalytic mechanisms of metal clusters and SACs, with a focus on their biomedical applications including biosensing, antibacterial therapy, and cancer therapy, as well as an emphasis on their in vivo biological safeties. Challenges and future perspectives are ultimately prospected for SACs in diverse biomedical applications.
Collapse
Affiliation(s)
- Yu Fan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shange Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
239
|
Lim SH, Ryu YC, Hwang BH. Aptamer-immobilized Gold Nanoparticles Enable Facile and On-site Detection of Staphylococcus aureus. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0161-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
240
|
Fang L, Makkonen E, Todorović M, Rinke P, Chen X. Efficient Amino Acid Conformer Search with Bayesian Optimization. J Chem Theory Comput 2021; 17:1955-1966. [PMID: 33577313 PMCID: PMC8023666 DOI: 10.1021/acs.jctc.0c00648] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Finding low-energy molecular conformers
is challenging due to the
high dimensionality of the search space and the computational cost
of accurate quantum chemical methods for determining conformer structures
and energies. Here, we combine active-learning Bayesian optimization
(BO) algorithms with quantum chemistry methods to address this challenge.
Using cysteine as an example, we show that our procedure is both efficient
and accurate. After only 1000 single-point calculations and approximately
80 structure relaxations, which is less than 10% computational cost
of the current fastest method, we have found the low-energy conformers
in good agreement with experimental measurements and reference calculations.
To test the transferability of our method, we also repeated the conformer
search of serine, tryptophan, and aspartic acid. The results agree
well with previous conformer search studies.
Collapse
Affiliation(s)
- Lincan Fang
- Department of Applied Physics, Aalto University, AALTO 00076, Finland
| | - Esko Makkonen
- Department of Applied Physics, Aalto University, AALTO 00076, Finland
| | - Milica Todorović
- Department of Applied Physics, Aalto University, AALTO 00076, Finland
| | - Patrick Rinke
- Department of Applied Physics, Aalto University, AALTO 00076, Finland
| | - Xi Chen
- Department of Applied Physics, Aalto University, AALTO 00076, Finland
| |
Collapse
|
241
|
Surface-Initiated Ring-Opening Metathesis Polymerization (SI-ROMP): History, General Features, and Applications in Surface Engineering with Polymer Brushes. INT J POLYM SCI 2021. [DOI: 10.1155/2021/6677049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Surface-Initiated Ring-Opening Metathesis Polymerization (SI-ROMP) has attracted great attention in the past two decades because of its high efficiency in decorating material surfaces with functional polymer brushes. To fill the vacancy of review articles in SI-ROMP, this article is aimed at giving an overview of the history, the general features and procedures, and applications of SI-ROMP, guiding future researchers in this field. In general, SI-ROMP consists of three main steps: surface functionalization with olefin anchors, attachment of catalyst to the surface, and polymerization from the surface. Several metal-based catalysts for ROMP in solution have been developed, but most SI-ROMP reactions use the ruthenium-based Grubbs catalysts. SI-ROMP enables the rapid growth of polymer films on a large variety of substrates such as silica, gold, graphene oxides, carbon nanotubes, metal oxide nanowires, and composite polymer membranes. There are many methods to characterize these polymer brushes. In addition, some novel techniques have been developed to precisely control the surface polymer growth and lead to polymer films with unique structures and functions. Up to this day, SI-ROMP can be applied to the surface engineering of many novel materials, including ultrahydrophobic surfaces, microfluidic channels, electric devices, ion exchange media, and responsive surfaces.
Collapse
|
242
|
Farrag M, Das MK, Moody M, Samy El-Shall M. Ligand-Protected Ultrasmall Pd Nanoclusters Supported on Metal Oxide Surfaces for CO Oxidation: Does the Ligand Activate or Passivate the Pd Nanocatalyst? Chemphyschem 2021; 22:312-322. [PMID: 33277789 DOI: 10.1002/cphc.202000656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Indexed: 11/10/2022]
Abstract
Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L-cysteine [HOCOCH(NH2 )CH2 SH] ligands (Pdn (L-Cys)m ) and supported on the surfaces of CeO2 , TiO2 , Fe3 O4 , and ZnO nanoparticles for CO catalytic oxidation. The Pdn (L-Cys)m nanoclusters supported on the reducible metal oxides CeO2 , TiO2 and Fe3 O4 exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand-protected clusters Pdn (L-Cys)m is observed on the three reducible oxides where 100 % CO conversion occurs at 93-110 °C. The high activity is attributed to the ligand-protected Pd nanoclusters where the L-cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub-2-nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L-cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand-protected clusters. However, for the TiO2 and Fe3 O4 supports, complete removal of the ligands from the Pdn (L-Cys)m clusters leads to a slight decrease in activity where the T100% CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2 and Fe3 O4 supports appears to aid in efficient encapsulation of the bare Pdn nanoclusters within the mesoporous pores of the support.
Collapse
Affiliation(s)
- Mostafa Farrag
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA.,Nanoclusters and Photocatalysis Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, 71516, Assiut, Egypt
| | - Mrinmoy K Das
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - Michael Moody
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| |
Collapse
|
243
|
Ruks T, Loza K, Heggen M, Ottmann C, Bayer P, Beuck C, Epple M. Targeting the Surface of the Protein 14-3-3 by Ultrasmall (1.5 nm) Gold Nanoparticles Carrying the Specific Peptide CRaf. Chembiochem 2021; 22:1456-1463. [PMID: 33275809 PMCID: PMC8248332 DOI: 10.1002/cbic.202000761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The surface of ultrasmall gold nanoparticles with an average diameter of 1.55 nm was conjugated with a 14-3-3 protein-binding peptide derived from CRaf. Each particle carries 18 CRaf peptides, leading to an overall stoichiometry of Au(115)Craf(18). The binding to the protein 14-3-3 was probed by isothermal titration calorimetry (ITC) and fluorescence polarization spectroscopy (FP). The dissociation constant (KD ) was measured as 5.0 μM by ITC and 0.9 μM by FP, which was close to the affinity of dissolved CRaf to 14-3-3σ. In contrast to dissolved CRaf, which alone did not enter HeLa cells, CRAF-conjugated gold nanoparticles were well taken up by HeLa cells, opening the opportunity to target the protein inside a cell.
Collapse
Affiliation(s)
- Tatjana Ruks
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117, Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstrasse 5-7, 45117, Essen, Germany
| |
Collapse
|
244
|
McKay J, Cowan MJ, Morales-Rivera CA, Mpourmpakis G. Predicting ligand removal energetics in thiolate-protected nanoclusters from molecular complexes. NANOSCALE 2021; 13:2034-2043. [PMID: 33449990 DOI: 10.1039/d0nr07839e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiolate-protected metal nanoclusters (TPNCs) have attracted great interest in the last few decades due to their high stability, atomically precise structure, and compelling physicochemical properties. Among their various applications, TPNCs exhibit excellent catalytic activity for numerous reactions; however, recent work revealed that these systems must undergo partial ligand removal in order to generate active sites. Despite the importance of ligand removal in both catalysis and stability of TPNCs, the role of ligands and metal type in the process is not well understood. Herein, we utilize Density Functional Theory to understand the energetic interplay between metal-sulfur and sulfur-ligand bond dissociation in metal-thiolate systems. We first probe 66 metal-thiolate molecular complexes across combinations of M = Ag, Au, and Cu with twenty-two different ligands (R). Our results reveal that the energetics to break the metal-sulfur and sulfur-ligand bonds are strongly correlated and can be connected across all complexes through metal atomic ionization potentials. We then extend our work to the experimentally relevant [M25(SR)18]- TPNC, revealing the same correlations at the nanocluster level. Importantly, we unify our work by introducing a simple methodology to predict TPNC ligand removal energetics solely from calculations performed on metal-ligand molecular complexes. Finally, a computational mechanistic study was performed to investigate the hydrogenation pathways for SCH3-based complexes. The energy barriers for these systems revealed, in addition to thermodynamics, that kinetics favor the break of S-R over the M-S bond in the case of the Au complex. Our computational results rationalize several experimental observations pertinent to ligand effects on TPNCs. Overall, our introduced model provides an accelerated path to predict TPNC ligand removal energies, thus aiding towards targeted design of TPNC catalysts.
Collapse
Affiliation(s)
- Julia McKay
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
245
|
Kalenius E, Malola S, Matus MF, Kazan R, Bürgi T, Häkkinen H. Experimental Confirmation of a Topological Isomer of the Ubiquitous Au 25(SR) 18 Cluster in the Gas Phase. J Am Chem Soc 2021; 143:1273-1277. [PMID: 33444006 PMCID: PMC8023650 DOI: 10.1021/jacs.0c11509] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
High-resolution electrospray ionization
ion mobility mass spectrometry
has revealed a gas-phase isomer of the ubiquitous, extremely well-studied
Au25(SR)18 cluster both in anionic and cationic
form. The relative abundance of the isomeric structures can be controlled
by in-source activation. The measured collision cross section of the
new isomer agrees extremely well with a recent theoretical prediction
(MatusM. F.; et al. 2020, 56, 8087) corresponding to a Au25(SR)18– isomer that is energetically close and topologically connected to
the known ground-state structure via a simple rotation of the gold
core without breaking any Au–S bonds. The results imply that
the structural dynamics leading to isomerization of thiolate-protected
gold clusters may play an important role in their gas-phase reactions
and that isomerization could be controlled by external stimuli.
Collapse
Affiliation(s)
- Elina Kalenius
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - María Francisca Matus
- Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Rania Kazan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Hannu Häkkinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland.,Department of Physics, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
246
|
Liu X, Liang Y, Liu J, Shi S, Wang Y, You S, Qi W, Su R, He Z. Mineralization and Self‐assembly of Gold Nanoparticles using Sulfur Amino Acid Modified Hierarchically Porous Metal‐Organic Frameworks. ChemistrySelect 2021. [DOI: 10.1002/slct.202004117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Yaoyu Liang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Jiayu Liu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| | - Se Shi
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University Haikou 570228 P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 P. R. China
| | - Shengping You
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin University Tianjin 300072 P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
247
|
Martin-Gómez H, Oliver-Cervelló L, Sánchez-Campillo I, Marchán V, Ginebra MP, Mas-Moruno C. A versatile click chemistry-based approach for functionalizing biomaterials of diverse nature with bioactive peptides. Chem Commun (Camb) 2021; 57:982-985. [PMID: 33438695 DOI: 10.1039/d0cc07463b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel and versatile toolkit approach for the functionalization of biomaterials of different nature is described. This methodology is based on the solid-phase conjugation of specific anchoring units onto a resin-bound azido-functionalized peptide by using click chemistry. A synergistic multifunctional peptidic scaffold with cell adhesive properties was used as a model compound to showcase the versatility of this new approach. Titanium, gold and polylactic acid surfaces were biofunctionalized by this method, as validated by physicochemical surface characterization with XPS. In vitro assays using mesenchymal stem cells showed enhanced cell adhesion on the functionalized samples, proving the capacity of this strategy to efficiently bioactivate different types of biomaterials.
Collapse
Affiliation(s)
- Helena Martin-Gómez
- Department of Materials Science and Engineering, Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Universitat Politècnica de Catalunya, Spain.
| | | | | | | | | | | |
Collapse
|
248
|
Xu P, Li X, Yu H. Thermodynamic Phase-like Transition Effect of Molecular Self-assembly. J Phys Chem Lett 2021; 12:126-131. [PMID: 33307700 DOI: 10.1021/acs.jpclett.0c03248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The technique of self-assembled monolayers (SAMs) is frequently applied for grafting functional groups or area-selective deposition of thin films on a material surface. The formation and quality of SAMs are fundamentally determined by thermodynamic data, which are difficult to measure with available experimental methods. This work quantitatively extracted thermodynamic parameters including ΔH°, ΔG°, and ΔS° during the SAMs construction process with an ultrasensitive resonant microcantilever as molecule-surface interactions real-time recording tool. By correlating the thermodynamic parameters with self-assembling temperatures, a new thermodynamic phase-like transition effect of molecular self-assembly has been first revealed. The sharp transition of the thermodynamic parameters defines the critical condition for SAMs formation. The thermodynamic data further provide optimized reaction conditions for constructing high-quality SAMs. The explored quantitative thermodynamic analysis method not only plays as criterion for SAM growth but also helps to fundamentally elucidate physicochemical mechanism of spontaneous self-assembly.
Collapse
Affiliation(s)
- Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Yu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
| |
Collapse
|
249
|
Retout M, Blond P, Jabin I, Bruylants G. Ultrastable PEGylated Calixarene-Coated Gold Nanoparticles with a Tunable Bioconjugation Density for Biosensing Applications. Bioconjug Chem 2021; 32:290-300. [PMID: 33439626 DOI: 10.1021/acs.bioconjchem.0c00669] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many in vivo and in vitro applications using gold nanoparticles (AuNPs) require (i) their PEGylation, as it increases their stability and prevents nonspecific protein adsorption, and (ii) their conjugation to biomolecules, that provides them with specific recognition properties. Currently, the functionalization of AuNPs is based on thiol chemistry that suffers from two major drawbacks: (i) the Au-S bond is labile and confers limited chemical robustness to the organic layer, and (ii) control over the bioconjugation density is highly challenging. We report here a novel functionalization strategy based on calix[4]arene-tetradiazonium platforms for the coating of AuNPs with a robust PEG layer and their controlled bioconjugation. AuNPs were first modified with a functional calix[4]arene-diazonium salt bearing three PEG chains ended by a methoxy group and one by a carboxyl group. The resulting particles showed excellent chemical and colloidal stabilities, compared to similar systems obtained via a classical thiol chemistry, and could even be dispersed in human serum without degrading or aggregating. In addition to that, the carboxyl groups protruding from the PEG layer allowed their conjugation via amide bond formation with amine-containing biomolecules such as peptides. The control of the bioconjugation was obtained by grafting mixed layers of functional and nonfunctional PEGylated calix[4]arenes, that allowed varying the number of functional groups carried by the AuNPs and subsequently their bioconjugation capacity while preserving their dense protective PEG shell. Finally, we used these nanomaterials, modified with peptide aptamers, for the in vitro biosensing of a cancer biomarker, Mdm2.
Collapse
Affiliation(s)
- Maurice Retout
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Pascale Blond
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
250
|
α vβ 3-Specific Gold Nanoparticles for Fluorescence Imaging of Tumor Angiogenesis. NANOMATERIALS 2021; 11:nano11010138. [PMID: 33430079 PMCID: PMC7827626 DOI: 10.3390/nano11010138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022]
Abstract
This paper reports on the development of tumor-specific gold nanoparticles (AuNPs) as theranostic tools intended for target accumulation and the detection of tumor angiogenesis via optical imaging (OI) before therapy is performed, being initiated via an external X-ray irradiation source. The AuNPs were decorated with a near-infrared dye, and RGD peptides as the tumor targeting vector for αvβ3-integrin, which is overexpressed in tissue with high tumor angiogenesis. The AuNPs were evaluated in an optical imaging setting in vitro and in vivo exhibiting favorable diagnostic properties with regards to tumor cell accumulation, biodistribution, and clearance. Furthermore, the therapeutic properties of the AuNPs were evaluated in vitro on pUC19 DNA and on A431 cells concerning acute and long-term toxicity, indicating that these AuNPs could be useful as radiosensitizers in therapeutic concepts in the future.
Collapse
|