201
|
Pardehkhorram R, Alshawawreh F, Gonçales VR, Lee NA, Tilley RD, Gooding JJ. Functionalized Gold Nanorod Probes: A Sophisticated Design of SERS Immunoassay for Biodetection in Complex Media. Anal Chem 2021; 93:12954-12965. [PMID: 34520166 DOI: 10.1021/acs.analchem.1c02557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface-enhanced Raman scattering (SERS) probes offer considerable opportunities in label-based biosensing and analysis. However, achieving specific and reproducible performance, where low detection limits are needed in complex media, remains a challenge. Herein, we present a general strategy employing gold nanorod SERS probes and rationally designed surface chemistry involving protein resistant layers and antibodies to allow for the selective detection of species in complex media. By utilizing the ability of gold nanorods for selective surface modification, Raman reporters (4-mercaptobenzoic acid) were attached to the tips. Importantly, the sides of the nanorods were modified using a mixed layer of two different length stabilizing ligands (carboxyl-terminated oligo ethylene glycols) to ensure colloidal stability, while antibodies were attached to the stabilizing ligands. The nanoparticle interfacial design improves the colloidal stability, unlocks the capability of the probes for targeting biomolecules in complex matrices, and gives the probes the high SERS efficiency. The utility of this probe is demonstrated herein via the detection of Salmonella bacteria at the single bacterium level in complex food matrices using an anti-Salmonella IgG antibody-conjugated probe. The modular nature of the surface chemistry enables the SERS probes to be employed with a molecularly diverse range of biorecognition species (e.g., antibodies and peptides) for many different analytes, thus opening up new opportunities for efficient biosensing applications.
Collapse
Affiliation(s)
- Raheleh Pardehkhorram
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fida'A Alshawawreh
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Vinicius R Gonçales
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - N Alice Lee
- ARC Training Centre for Advanced Technologies in Food Manufacture (ATFM), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
202
|
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G, Plutino MR. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021; 26:5823. [PMID: 34641367 PMCID: PMC8510367 DOI: 10.3390/molecules26195823] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Relevant properties of gold nanoparticles, such as stability and biocompatibility, together with their peculiar optical and electronic behavior, make them excellent candidates for medical and biological applications. This review describes the different approaches to the synthesis, surface modification, and characterization of gold nanoparticles (AuNPs) related to increasing their stability and available features useful for employment as drug delivery systems or in hyperthermia and photothermal therapy. The synthetic methods reported span from the well-known Turkevich synthesis, reduction with NaBH4 with or without citrate, seeding growth, ascorbic acid-based, green synthesis, and Brust-Schiffrin methods. Furthermore, the nanosized functionalization of the AuNP surface brought about the formation of self-assembled monolayers through the employment of polymer coatings as capping agents covalently bonded to the nanoparticles. The most common chemical-physical characterization techniques to determine the size, shape and surface coverage of AuNPs are described underlining the structure-activity correlation in the frame of their applications in the biomedical and biotechnology sectors.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Dario Drommi
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.); (D.D.)
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.); (A.C.)
| |
Collapse
|
203
|
Miura H, Hirata R, Tomoya T, Shishido T. Electrophilic C(sp
2
)−H Silylation by Supported Gold Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202101123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment Graduate School of Urban Environmental Sciences Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji, Tokyo 192-0397 Japan
- Research Center for Hydrogen Energy-based Society 1-1 Minami-Osawa Hachioji, Tokyo 192-0397 Japan
- Elements Strategy Initiative for Catalysts & Batteries Kyoto University 1-30 Goryo-Ohara Nishikyo-ku, Kyoto 615-8245 Japan
| | - Ryuji Hirata
- Department of Applied Chemistry for Environment Graduate School of Urban Environmental Sciences Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji, Tokyo 192-0397 Japan
| | - Toyomasu Tomoya
- Department of Applied Chemistry for Environment Graduate School of Urban Environmental Sciences Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji, Tokyo 192-0397 Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment Graduate School of Urban Environmental Sciences Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji, Tokyo 192-0397 Japan
- Research Center for Hydrogen Energy-based Society 1-1 Minami-Osawa Hachioji, Tokyo 192-0397 Japan
- Elements Strategy Initiative for Catalysts & Batteries Kyoto University 1-30 Goryo-Ohara Nishikyo-ku, Kyoto 615-8245 Japan
| |
Collapse
|
204
|
Sala L, Sedmidubská B, Vinklárek I, Fárník M, Schürmann R, Bald I, Med J, Slavíček P, Kočišek J. Electron attachment to microhydrated 4-nitro- and 4-bromo-thiophenol. Phys Chem Chem Phys 2021; 23:18173-18181. [PMID: 34612280 DOI: 10.1039/d1cp02019f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effect of microhydration on electron attachment to thiophenols with halogen (Br) and nitro (NO2) functional groups in the para position. We focus on the formation of anions upon the attachment of low-energy electrons with energies below 8 eV to heterogeneous clusters of the thiophenols with water. For nitro-thiophenol (NTP), the primary reaction channel observed is the associative electron attachment, irrespective of the microhydration. On the other hand, bromothiophenol (BTP) fragments significantly upon the electron attachment, producing Br- and (BTP-H)- anions. Microhydration suppresses fragmentation of both molecules, however in bromothiophenol, the Br- channel remains intense and Br(H2O)n- hydrated fragment clusters are observed. The results are supported by the reaction energetics obtained from ab initio calculations. Different dissociation dynamics of NTP and BTP can be related to different products of their plasmon induced reactions on Au nanoparticles. Computational modeling of the simplified BTP(H2O) system indicates that the electron attachment products reflect the structure of neutral precursor clusters - the anion dissociation dynamics is controlled by the hydration site.
Collapse
Affiliation(s)
- Leo Sala
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Zhang Y, He C, de La Harpe K, Goodwin PM, Petty JT, Kohler B. A single nucleobase tunes nonradiative decay in a DNA-bound silver cluster. J Chem Phys 2021; 155:094305. [PMID: 34496579 DOI: 10.1063/5.0056836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA strands are polymeric ligands that both protect and tune molecular-sized silver cluster chromophores. We studied single-stranded DNA C4AC4TC3XT4 with X = guanosine and inosine that form a green fluorescent Ag10 6+ cluster, but these two hosts are distinguished by their binding sites and the brightness of their Ag10 6+ adducts. The nucleobase subunits in these oligomers collectively coordinate this cluster, and fs time-resolved infrared spectra previously identified one point of contact between the C2-NH2 of the X = guanosine, an interaction that is precluded for inosine. Furthermore, this single nucleobase controls the cluster fluorescence as the X = guanosine complex is ∼2.5× dimmer. We discuss the electronic relaxation in these two complexes using transient absorption spectroscopy in the time window 200 fs-400 µs. Three prominent features emerged: a ground state bleach, an excited state absorption, and a stimulated emission. Stimulated emission at the earliest delay time (200 fs) suggests that the emissive state is populated promptly following photoexcitation. Concurrently, the excited state decays and the ground state recovers, and these changes are ∼2× faster for the X = guanosine compared to the X = inosine cluster, paralleling their brightness difference. In contrast to similar radiative decay rates, the nonradiative decay rate is 7× higher with the X = guanosine vs inosine strand. A minor decay channel via a dark state is discussed. The possible correlation between the nonradiative decay and selective coordination with the X = guanosine/inosine suggests that specific nucleobase subunits within a DNA strand can modulate cluster-ligand interactions and, in turn, cluster brightness.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Chen He
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Kimberly de La Harpe
- Department of Physics, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, USA
| | - Peter M Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545, USA
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
206
|
Bian R, Li C, Liu Q, Cao G, Fu Q, Meng P, Zhou J, Liu F, Liu Z. Recent progress in the synthesis of novel two-dimensional van der Waals materials. Natl Sci Rev 2021; 9:nwab164. [PMID: 35591919 PMCID: PMC9113016 DOI: 10.1093/nsr/nwab164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 08/15/2021] [Indexed: 11/15/2022] Open
Abstract
Abstract
The last decade has witnessed the significant progress of physical fundamental research and great success of practical application in two-dimensional (2D) van der Waals (vdW) materials since the discovery of graphene in 2004. To date, vdW materials is still a vibrant and fast-expanding field, where tremendous reports have been published covering topics from cutting-edge quantum technology to urgent green energy, and so on. Here, we briefly review the emerging hot physical topics and intriguing materials, such as 2D topological materials, piezoelectric materials, ferroelectric materials, magnetic materials and twistronic heterostructures. Then, various vdW material synthetic strategies are discussed in detail, concerning the growth mechanisms, preparation conditions and typical examples. Finally, prospects and further opportunities in the booming field of 2D materials are addressed.
Collapse
Affiliation(s)
| | | | | | - Guiming Cao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qundong Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CNRS-International-NTU-Thales Research Alliance (CINTRA), Singapore 637553, Singapore
| | - Peng Meng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | | | | |
Collapse
|
207
|
Hang NTN, Si NT, Nguyen MT, Nhat PV. Adsorption/Desorption Behaviors and SERS Chemical Enhancement of 6-Mercaptopurine on a Nanostructured Gold Surface: The Au 20 Cluster Model. Molecules 2021; 26:5422. [PMID: 34500855 PMCID: PMC8434346 DOI: 10.3390/molecules26175422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/24/2023] Open
Abstract
Computational approaches are employed to elucidate the binding mechanism and the SERS phenomenon of 6-mercaptopurine (6MP) adsorbed on the tetrahedral Au20 cluster as a simple model for a nanostructured gold surface. Computations are carried out in both vacuum and aqueous environments using a continuum model. In the gaseous phase and neutral conditions, interaction of 6MP with the gold cluster is mostly dominated by a covalent Au-S bond and partially stabilized by the Au⋅⋅⋅H-N coupling. However, in acidic solution, the nonconventional Au⋅⋅⋅H-S hydrogen-bond becomes the most favorable binding mode. The 6MP affinity for gold clusters decreases in the order of vacuum > neutral solution > acidic medium. During the adsorption, the energy gap of Au20 substantially declines, leading to an increase in its electrical conductivity, which can be converted to an electrical noise. Moreover, such interaction is likely a reversible process and triggered by either the low pH in sick tissues or the presence of cysteine residues in protein matrices. While N-H bending and stretching vibrations play major roles in the SERS phenomenon of 6MP on gold surfaces in neutral solution, the strongest enhancement in acidic environment is mostly due to an Au⋅⋅⋅H-S coupling, rather than an aromatic ring-gold surface π overlap as previously proposed.
Collapse
Affiliation(s)
- Nguyen Thi Nhat Hang
- Faculty of Food Science and Technology, Thu Dau Mot University, Thu Dau Mot 590000, Vietnam
| | - Nguyen Thanh Si
- Department of Chemistry, Can Tho University, Can Tho 900000, Vietnam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST), Ho Chi Minh City 700000, Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University, Can Tho 900000, Vietnam
| |
Collapse
|
208
|
Yang Z, Zhang S, Zhao H, Li A, Luo L, Guo L. Subnano-FeO x Clusters Anchored in an Ultrathin Amorphous Al 2O 3 Nanosheet for Styrene Epoxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhao Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Shuo Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201204, China
| | - Hewei Zhao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Anran Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Long Luo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| |
Collapse
|
209
|
Dang MN, Hoover EC, Scully MA, Sterin EH, Day ES. Antibody Nanocarriers for Cancer Management. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 19:100295. [PMID: 34423177 PMCID: PMC8373047 DOI: 10.1016/j.cobme.2021.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibodies are extremely valuable tools in modern medicine due to their ability to target diseased cells through selective antigen binding and thereby regulate cellular signaling or inhibit cell-cell interactions with high specificity. However, the therapeutic utility of freely delivered antibodies is limited by high production costs, low efficacy, dose-limiting toxicities, and inability to cross the cellular membrane (which hinders antibodies against intracellular targets). To overcome these limitations, researchers have begun to develop nanocarriers that can improve antibodies' delivery efficiency, safety profile, and clinical potential. This review summarizes recent advances in the design and implementation of nanocarriers for extracellular or intracellular antibody delivery, emphasizing important design considerations, and points to future directions for the field.
Collapse
Affiliation(s)
- Megan N. Dang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Elise C. Hoover
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Mackenzie A. Scully
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Eric H. Sterin
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Emily S. Day
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, 19713, United States
| |
Collapse
|
210
|
The trisulfur radical ion S 3 •- controls platinum transport by hydrothermal fluids. Proc Natl Acad Sci U S A 2021; 118:2109768118. [PMID: 34417302 DOI: 10.1073/pnas.2109768118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platinum group elements (PGE) are considered to be very poorly soluble in aqueous fluids in most natural hydrothermal-magmatic contexts and industrial processes. Here, we combined in situ X-ray absorption spectroscopy and solubility experiments with atomistic and thermodynamic simulations to demonstrate that the trisulfur radical ion S3 •- forms very stable and soluble complexes with both PtII and PtIV in sulfur-bearing aqueous solution at elevated temperatures (∼300 °C). These Pt-bearing species enable (re)mobilization, transfer, and focused precipitation of platinum up to 10,000 times more efficiently than any other common inorganic ligand, such as hydroxide, chloride, sulfate, or sulfide. Our results imply a far more important contribution of sulfur-bearing hydrothermal fluids to PGE transfer and accumulation in the Earth's crust than believed previously. This discovery challenges traditional models of PGE economic concentration from silicate and sulfide melts and provides new possibilities for resource prospecting in hydrothermal shallow crust settings. The exceptionally high capacity of the S3 •- ion to bind platinum may also offer new routes for PGE selective extraction from ore and hydrothermal synthesis of noble metal nanomaterials.
Collapse
|
211
|
Yin X, Tang CS, Zheng Y, Gao J, Wu J, Zhang H, Chhowalla M, Chen W, Wee ATS. Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chem Soc Rev 2021; 50:10087-10115. [PMID: 34396377 DOI: 10.1039/d1cs00236h] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The advent of two-dimensional transition metal dichalcogenides (2D-TMDs) has led to an extensive amount of interest amongst scientists and engineers alike and an intensive amount of research has brought about major breakthroughs in the electronic and optical properties of 2D materials. This in turn has generated considerable interest in novel device applications. With the polymorphic structural features of 2D-TMDs, this class of materials can exhibit both semiconducting and metallic (quasi-metallic) properties in their respective phases. This polymorphic property further increases the interest in 2D-TMDs both in fundamental research and for their potential utilization in novel high-performance device applications. In this review, we highlight the unique structural properties of few-layer and monolayer TMDs in the metallic 1T- and quasi-metallic 1T'-phases, and how these phases dictate their electronic and optical properties. An overview of the semiconducting-to-(quasi)-metallic phase transition of 2D-TMD systems will be covered along with a discussion on the phase transition mechanisms. The current development in the applications of (quasi)-metallic 2D-TMDs will be presented ranging from high-performance electronic and optoelectronic devices to energy storage, catalysis, piezoelectric and thermoelectric devices, and topological insulator and neuromorphic computing applications. We conclude our review by highlighting the challenges confronting the utilization of TMD-based systems and projecting the future developmental trends with an outlook of the progress needed to propel this exciting field forward.
Collapse
Affiliation(s)
- Xinmao Yin
- Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, China
| | - Chi Sin Tang
- Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore and Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.
| | - Yue Zheng
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.
| | - Jing Gao
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.
| | - Jing Wu
- Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China and Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China and Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Manish Chhowalla
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, CB30FS, UK
| | - Wei Chen
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore. and Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Andrew T S Wee
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.
| |
Collapse
|
212
|
Rodríguez-Kessler PL, Rojas-Poblete M, Muñoz-Castro A. Evaluation of ultrasmall coinage metal M 13(dppe) 6 M = Cu, Ag, and Au clusters. Bonding, structural and optical properties from relativistic DFT calculations. Phys Chem Chem Phys 2021; 23:18035-18043. [PMID: 34386809 DOI: 10.1039/d1cp02451e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrasmall ligand-protected clusters are prototypical species for evaluating the variation at the bottom of the nanoscale range. Here we explored the ultrasmall gold-phosphine M13(dppe)6 cluster, as a prototypical framework to gain insights into the fundamental similarities and differences between Au, Ag, and Cu, in the 1-3 nm size range, via relativistic DFT calculations. Different charge states involving 8- and 10-cluster electron (ce) species with a 1S21P6 and 1S21P61D2 configuration, leading to structural modification in the Au species between Au13(dppm)65+ and Au13(dppm)63+, respectively. Furthermore, this structural distortion of the M13 core is found to occur to a lower degree for the calculated Ag and Cu counterparts. Interestingly, optical properties exhibit similar main patterns along with the series, inducing a blue-shift for silver and copper, in comparison to the gold parent cluster. For 10-ce species, the main features of 8-ce are retained with the appearance of several weak transitions in the range. The ligand-core interaction is enhanced for gold counterparts and decreased for lighter counterparts resulting in the Au > Cu > Ag trend for the interaction stabilization. Hence, the Ag and Cu counterparts of the Au13(dppm)6 cluster appear as useful alternatives, which can be further explored towards different cluster alternatives for building blocks for nanostructured materials.
Collapse
Affiliation(s)
- Peter L Rodríguez-Kessler
- Laboratorio de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.
| | | | | |
Collapse
|
213
|
Sato Y, Yao H. Mixed-diphosphine-protected chiral undecagold clusters Au 11( S, S-DIOP) 4( rac-/ R-/ S-BINAP): effect of the handedness of BINAP on their chiroptical responses. Phys Chem Chem Phys 2021; 23:16847-16854. [PMID: 34328157 DOI: 10.1039/d1cp02106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we report a preference of homochiral-type ligation of BINAP that produces SS-type ligand assembly onto the Au11 clusters protected by diphosphine S,S-DIOP. The Au11 clusters synthesized and isolated are Au11(S,S-DIOP)4(rac-/R-/S-BINAP), and their optical/chiroptical responses are characterized. Absorption spectra of these Au11 clusters are almost identical to each other, but their CD profiles are dependent on the handedness of BINAP. In Au11(S,S-DIOP)4(rac-BINAP), the yield of S-BINAP or R-BINAP coordination is roughly comparable, but we found a small but distinctive preference in the S-BINAP ligation; that is, homochiral-type (SS-type) ligand assembly formation. Quantum chemical calculations for simplified model clusters suggest equal contributions of S- and R-form BINAP coordination. The experimentally-observed preference of homochiral-type ligation can then be due to that of the whole ligand structures and assemblies involving interligand interactions. Chiral sorting and amplification processes through the assembly control of homochirality or heterochirality are of primary importance for the development of enantioselective reactions, so we anticipate this finding will contribute to further understanding of such processes based on various metal clusters with chiral ligands.
Collapse
Affiliation(s)
- Yasuhiko Sato
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan.
| | | |
Collapse
|
214
|
Chen S, Li M, Yu S, Louisia S, Chuang W, Gao M, Chen C, Jin J, Salmeron MB, Yang P. Ligand removal of Au 25 nanoclusters by thermal and electrochemical treatments for selective CO 2 electroreduction to CO. J Chem Phys 2021; 155:051101. [PMID: 34364344 DOI: 10.1063/5.0059363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Undercoordinated metal nanoclusters have shown great promise for various catalytic applications. However, their activity is often limited by the covalently bonded ligands, which could block the active surface sites. Here, we investigate the ligand removal process for Au25 nanoclusters using both thermal and electrochemical treatments, as well as its impact on the electroreduction of CO2 to CO. The Au25 nanoclusters are synthesized with 2-phenylethanethiol as the capping agent and anchored on sulfur-doped graphene. The thiolate ligands can be readily removed under either thermal annealing at ≥180°C or electrochemical biasing at ≤-0.5 V vs reversible hydrogen electrode, as evidenced by the Cu underpotential deposition surface area measurement, x-ray photoelectron spectroscopy, and extended x-ray absorption fine structure spectroscopy. However, these ligand-removing treatments also trigger the structural evolution of Au25 nanoclusters concomitantly. The thermally and electrochemically treated Au25 nanoclusters show enhanced activity and selectivity for the electrochemical CO2-to-CO conversion than their pristine counterpart, which is attributed to the exposure of undercoordinated Au sites on the surface after ligand removal. This work provides facile strategies to strip away the staple ligands from metal nanoclusters and highlights its importance in promoting the catalytic performances.
Collapse
Affiliation(s)
- Shouping Chen
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Mufan Li
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sunmoon Yu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Sheena Louisia
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Wesley Chuang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mengyu Gao
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Chubai Chen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Miquel B Salmeron
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
215
|
Matsuyama T, Kikkawa S, Fujiki Y, Tsukada M, Takaya H, Yasuda N, Nitta K, Nakatani N, Negishi Y, Yamazoe S. Thermal stability of crown-motif [Au 9(PPh 3) 8] 3+ and [MAu 8(PPh 3) 8] 2+ (M = Pd, Pt) clusters: Effects of gas composition, single-atom doping, and counter anions. J Chem Phys 2021; 155:044307. [PMID: 34340395 DOI: 10.1063/5.0059690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The thermal behaviors of ligand-protected metal clusters, [Au9(PPh3)8]3+ and [MAu8(PPh3)8]2+ (M = Pd, Pt) with a crown-motif structure, were investigated to determine the effects of the gas composition, single-atom doping, and counter anions on the thermal stability of these clusters. We successfully synthesized crown-motif [PdAu8(PPh3)8][HPMo12O40] (PdAu8-PMo12) and [PtAu8(PPh3)8][HPMo12O40] (PtAu8-PMo12) salts with a cesium-chloride-type structure, which is the same as the [Au9(PPh3)8][PMo12O40] (Au9-PMo12) structure. Thermogravimetry-differential thermal analysis/mass spectrometry analysis revealed that the crown-motif structure of Au9-PMo12 was decomposed at ∼475 K without weight loss to form Au nanoparticles. After structural decomposition, the ligands were desorbed from the sample. The ligand desorption temperature of Au9-PMo12 increased under 20% O2 conditions because of the formation of Au nanoparticles and stronger interaction of the formed O=PPh3 than PPh3. The Pd and Pt single-atom doping improved the thermal stability of the clusters. This improvement was due to the formation of a large bonding index of M-Au and a change in Au-PPh3 bonding energy by heteroatom doping. Moreover, we found that the ligand desorption temperatures were also affected by the type of counter anions, whose charge and size influence the localized Coulomb interaction and cluster packing between the cationic ligand-protected metal clusters and counter anions.
Collapse
Affiliation(s)
- Tomoki Matsuyama
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yu Fujiki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Mio Tsukada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hikaru Takaya
- Institute for Chemical Research, Kyoto University, Gokasho, Uji-city, Kyoto 611-0011, Japan
| | - Nobuhiro Yasuda
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kiyofumi Nitta
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
216
|
Liu T, Jiang DE. Understanding the interaction between carboxylates and coinage metals from first principles. J Chem Phys 2021; 155:034301. [PMID: 34293880 DOI: 10.1063/5.0053045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Carboxylate groups have recently been explored as a new type of ligand to protect superatomic copper and silver nanoclusters, but little is known of the interfacial structure and bonding. Here, we employ density functional theory to investigate the interfaces of a model carboxylate group, CH3COO, on the coinage metal surfaces and clusters. We found that μ2-CH3COO is the most preferred binding mode on the three M(111) surfaces (M = Cu, Ag, and Au), while μ3-CH3COO is also stable on Cu(111) and Ag(111). The saturation coverage was found to be about seven CH3COO groups per nm2 for all surfaces. CH3COO has the strongest binding on Cu and weakest on Au. Moving from the flat surfaces to the icosahedral M13 clusters, we found that the eight-electron superatomic [M13(CH3COO)6]- nanoclusters also prefer the μ2-CH3COO mode on the surface. The icosahedral kernel in [Cu13(CH3COO)6]- and [Ag13(CH3COO)6]- was well maintained after geometry optimization, but a larger deformation was found in [Au13(CH3COO)6]-. Given the broad availability and variety of carboxylic acids including amino acids, our work suggests that carboxylate groups could be the next-generation ligands to further expand the universe of atomically precise metal clusters, especially for Cu and Ag.
Collapse
Affiliation(s)
- Tongyu Liu
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California 92521, USA
| |
Collapse
|
217
|
Sindram J, Krüsmann M, Otten M, Pauly T, Nagel-Steger L, Karg M. Versatile Route toward Hydrophobically Polymer-Grafted Gold Nanoparticles from Aqueous Dispersions. J Phys Chem B 2021; 125:8225-8237. [PMID: 34260239 DOI: 10.1021/acs.jpcb.1c03772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stabilization of gold nanoparticles in organic solvents is a key challenge in making them available for a wider range of material applications. Polymers are often used as stabilizing ligands because they also allow for the introduction of new properties and functionalities. Many of the established synthesis protocols for gold nanoparticles are water-based. However, the insolubility of many synthetic polymers in water renders the direct functionalization of aqueous particle dispersions with these ligands difficult. Here, we report on an approach for the functionalization of gold nanoparticles, which were prepared by aqueous synthesis, with hydrophobic polymer ligands and their characterization in nonpolar, organic dispersions. Our method employs an auxiliary ligand to first transfer gold nanoparticles from an aqueous to an organic medium. In the organic phase, the auxiliary ligand is then displaced by thiolated polystyrene ligands to form a dense polymer brush on the particle surface. We characterize the structure of the ligand shell using electron microscopy, scattering techniques, and ultracentrifugation and analyze the influence of the molecular weight of the polystyrene ligands on the structure of the polymer brush. We further investigate the colloidal stability of polystyrene-functionalized gold nanoparticles in various organic solvents. Finally, we extend the use of our protocol from small, spherical gold nanoparticles to larger gold nanorods and nanocubes.
Collapse
Affiliation(s)
- Julian Sindram
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Marcel Krüsmann
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Marius Otten
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Thomas Pauly
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,IBI-7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, 52425 Jülich, Germany
| | - Luitgard Nagel-Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,IBI-7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, 52425 Jülich, Germany
| | - Matthias Karg
- Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
218
|
Shubin N, Emelianov A, Uspenskii Y, Gorbatsevich A. Interacting resonances and antiresonances in conjugated hydrocarbons: exceptional points and bound states in the continuum. Phys Chem Chem Phys 2021; 23:20854-20866. [PMID: 34254613 DOI: 10.1039/d1cp02504j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Quantum interference dramatically modulates electron transport that provides exciting prospects for molecular electronics. We develop a holistic picture of quantum interference phenomena in molecular conductors based on conjugated hydrocarbons taking into account the interaction of resonances and antiresonances (AR). This interaction can result in the coalescence of resonances and ARs accompanied by a significant quantum transparency change. As such a change results from a small variation of the system parameters, it is essential for reducing power consumption in electronics. We establish that the coalescence of ARs is intimately connected with the exceptional point of an underlying non-Hermitian Hamiltonian. The coalescence of ARs cannot be explained considering only the LUMO and HOMO without orbitals beyond them. Cyclobutadiene is discussed as an example. We show that the interaction of resonances and ARs can also result in the formation of a bound state in the continuum (BIC). Our formalism accounting for separate descriptions of resonances and ARs is especially suitable for describing BICs, which can be considered as either a resonance or an AR with zero width. In particular, we show that benzene in the para-configuration possesses BICs, which can be revealed as narrow Fano resonances (FRs) in the transmission spectrum by perturbing the molecule symmetry. Any BIC can be turned into an FR by a proper change of the system parameters, but the reverse is not true. We demonstrate that BICs are related to such chemical concepts as non-bonding orbitals, radicals, and diradicals. Our analytical results within the Hückel formalism are closely reproduced by ab initio simulations. Therefore, experimentally revealing these phenomena looks quite probable.
Collapse
Affiliation(s)
- Nikolay Shubin
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia.
| | - Aleksei Emelianov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia. and National Research University of Electronic Technology, Zelenograd, 124498, Moscow, Russia
| | - Yuriy Uspenskii
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia.
| | - Alexander Gorbatsevich
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
219
|
Cheng Y, Chen J, Hu B, Pi F, Yu H, Guo Y, Xie Y, Yao W, Qian H. Spectroscopic investigations of the changes in ligand conformation during the synthesis of soy protein-templated fluorescent gold nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119725. [PMID: 33813151 DOI: 10.1016/j.saa.2021.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
In this paper, the potential relationship between fluorescence and changes in the ligand conformation observed during the synthesis of soy protein-templated fluorescent gold nanoclusters (SP-AuNCs) was studied using a series of spectroscopic techniques. The results show that the determinants of the fluorescence effect in SP-AuNCs changed with the reaction time during the synthesis process. In the early stage of the reaction (within 60 min), the fluorescence intensity was dominated by the Au nucleus, followed by the combination of the Au nucleus and protein ligand. The structure of the protein ligand also underwent a transition from ordered to disordered to ordered. At the same time, its role in the reaction also changed from providing the reducing power to protecting the Au nucleus and contributing to the transition of the fluorescence effect in the AuNCs via ligand-to-metal charge transfer (LMCT). Using two-dimensional (2D) photon spectra correlation analysis, the formation and growth of the Au nuclei and the LMCT effect observed during the synthesis of the SP-AuNCs were found to be the major causes for the changes in the conformation of the protein ligand. Our results are an important discovery and can be used to explain the mechanism of protein ligands in the synthesis of gold nanoclusters.
Collapse
Affiliation(s)
- Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China.
| | - Jiannan Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Bin Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Jiangsu 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu 214122, China.
| |
Collapse
|
220
|
Wang E, Xu WW, Zhu B, Gao Y. Understanding the Chemical Insights of Staple Motifs of Thiolate-Protected Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001836. [PMID: 32761984 DOI: 10.1002/smll.202001836] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Improving the fundamental understanding of the basic structures of ligand-protected gold nanoclusters is essential to their bottom-up synthesis as well as their further application explorations. The thiolate ligands that cover the central metal core in staple motifs are vital for the stability of the gold clusters. However, the knowledge about the geometrical and bonding characters of the thiolate ligands has not been fully uncovered yet. In this work, density functional theory calculations and molecular orbital analysis are applied to show that the Au atoms in the thiolate ligands are hypervalent. The chemical insights of the linear SAuS configuration as well as the lengthened AuS bond by combining the 3-center 4-electron (3c-4e) model and the well-recognized valence shell electron pair repulsion theory are revealed. Valence bond formulations of the motifs are given to provide more chemical insights, for example, the resonant structures, to show how the thiolate motif forms one covalent bond and one dative covalent bond with the Au core. This work provides a thorough understanding of the structure and bonding pattern of thiolate ligands of Au nanoclusters, which is important for the rational design of ligands-protected Au nanoclusters.
Collapse
Affiliation(s)
- Endong Wang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Beien Zhu
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yi Gao
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| |
Collapse
|
221
|
Farrokhpour H, Gerami M. Interaction of M@Au12 nanocluster (M = Au, Ag, Pd, and Pt) with different forms of cysteine (uncharged, cationic, anionic, and zwitterion) via the Au-S bond. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
222
|
Swierczewski M, Maroni P, Chenneviere A, Dadras MM, Lee LT, Bürgi T. Deposition of Extended Ordered Ultrathin Films of Au 38 (SC 2 H 4 Ph) 24 Nanocluster using Langmuir-Blodgett Technique. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005954. [PMID: 33559304 DOI: 10.1002/smll.202005954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Langmuir-Blodgett technique is utilized to deposit ultrathin films of Au38 (SC2 H4 Ph)24 nanocluster onto solid surfaces such as mica and silicon. The morphologies of the films transferred at various surface pressures within the mono/bi/trilayer regime are studied by atomic force microscopy (AFM). The time spent on the water surface before the deposition has a decisive effect on the final ordering of nanoclusters within the network and is studied by fast AFM, X-ray reflectivity, and grazing-incidence wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Michal Swierczewski
- Department of Physical Chemistry, University of Geneva, Geneva, 30 Quai Ernest-Ansermet, Geneva 4, CH-1211, Switzerland
| | - Plinio Maroni
- Department of Physical Chemistry, University of Geneva, Geneva, 30 Quai Ernest-Ansermet, Geneva 4, CH-1211, Switzerland
| | - Alexis Chenneviere
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Mohammad M Dadras
- CSEM Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, 2002, Switzerland
| | - Lay-Theng Lee
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette Cedex, 91191, France
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, Geneva, 30 Quai Ernest-Ansermet, Geneva 4, CH-1211, Switzerland
| |
Collapse
|
223
|
Matus MF, Häkkinen H. Atomically Precise Gold Nanoclusters: Towards an Optimal Biocompatible System from a Theoretical-Experimental Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005499. [PMID: 33533179 DOI: 10.1002/smll.202005499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Potential biomedical applications of gold nanoparticles have increasingly been reported with great promise for diagnosis and therapy of several diseases. However, for such a versatile nanomaterial, the advantages and potential health risks need to be addressed carefully, as the available information about their toxicity is limited and inconsistent. Atomically precise gold nanoclusters (AuNCs) have emerged to overcome this challenge due to their unique features, such as superior stability, excellent biocompatibility, and efficient renal clearance. Remarkably, the elucidation of their structural and physicochemical properties provided by theory-experiment investigations offers exciting opportunities for site-specific biofunctionalization of the nanoparticle surface, which remains a significant concern for most of the materials in the biomedical field. This concept highlights the advantages conferred by atomically precise AuNCs for biomedical applications and the powerful strategy combining computational and experimental studies towards finding an optimal biocompatible AuNCs-based nanosystem.
Collapse
Affiliation(s)
- María Francisca Matus
- Department of Physics, Nanoscience Center (NSC), University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center (NSC), University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
224
|
Inayeh A, Groome RRK, Singh I, Veinot AJ, de Lima FC, Miwa RH, Crudden CM, McLean AB. Self-assembly of N-heterocyclic carbenes on Au(111). Nat Commun 2021; 12:4034. [PMID: 34188031 PMCID: PMC8241988 DOI: 10.1038/s41467-021-23940-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Although the self-assembly of organic ligands on gold has been dominated by sulfur-based ligands for decades, a new ligand class, N-heterocyclic carbenes (NHCs), has appeared as an interesting alternative. However, fundamental questions surrounding self-assembly of this new ligand remain unanswered. Herein, we describe the effect of NHC structure, surface coverage, and substrate temperature on mobility, thermal stability, NHC surface geometry, and self-assembly. Analysis of NHC adsorption and self-assembly by scanning tunneling microscopy and density functional theory have revealed the importance of NHC-surface interactions and attractive NHC-NHC interactions on NHC monolayer structures. A remarkable way these interactions manifest is the need for a threshold NHC surface coverage to produce upright, adatom-mediated adsorption motifs with low surface diffusion. NHC wingtip structure is also critical, with primary substituents leading to the formation of flat-lying NHC2Au complexes, which have high mobility when isolated, but self-assemble into stable ordered lattices at higher surface concentrations. These and other studies of NHC surface chemistry will be crucial for the success of these next-generation monolayers.
Collapse
Affiliation(s)
- Alex Inayeh
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada
| | - Ryan R K Groome
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada
| | - Ishwar Singh
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Alex J Veinot
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Felipe Crasto de Lima
- Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
- Brazilian Nanotechnology National, Laboratory, Campinas, SP, Brazil
| | - Roberto H Miwa
- Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, ON, Canada.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan.
| | - Alastair B McLean
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
225
|
Sonia, Komal, Kukreti S, Kaushik M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta 2021; 234:122623. [PMID: 34364432 DOI: 10.1016/j.talanta.2021.122623] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Gold nanoclusters (Au NCs) with a core size below 2 nm form an exciting class of functional nano-materials with characteristic physical and chemical properties. The properties of Au NCs are more prominent and extremely different from their bulk counterparts. The synthesis of Au NCs is generally assisted by template or ligand, which impart excellent cluster stability and high quantum yield. The tunable and sensitive physicochemical properties of Au NCs open horizons for their advanced applications in various interdisciplinary fields. In this review, we briefly summarize the solution phase synthesis and origin of the characteristic properties of Au NCs. A vast review of recent research work introducing biosensors based on Au NCs has been presented along with their specifications and detection limits. This review also highlights recent progress in the use of Au NCs as bio-imaging probe, enzyme mimic, temperature sensing probe and catalysts. A speculation on present challenges and certain future prospects have also been provided to enlighten the path for advancement of multifaceted applications of Au NCs.
Collapse
Affiliation(s)
- Sonia
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Komal
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
226
|
An estimation on the mechanical stabilities of SAMs by low energy Ar + cluster ion collision. Sci Rep 2021; 11:12772. [PMID: 34140569 PMCID: PMC8211834 DOI: 10.1038/s41598-021-92077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/04/2021] [Indexed: 12/04/2022] Open
Abstract
The stability of the molecular self-assembled monolayers (SAMs) is of vital importance to the performance of the molecular electronics and their integration to the future electronics devices. Here we study the effect of electron irradiation-induced cross-linking on the stability of self-assembled monolayer of aromatic 5,5′-bis(mercaptomethyl)-2,2′-bipyridine [BPD; HS-CH2-(C5H3N)2-CH2-SH] on Au (111) single crystal surface. As a refence, we also study the properties of SAMs of electron saturated 1-dodecanethiol [C12; CH3-(CH2)11-SH] molecules. The stability of the considered SAMs before and after electron-irradiation is studied using low energy Ar+ cluster depth profiling monitored by recording the X-ray photoelectron spectroscopy (XPS) core level spectra and the UV-photoelectron spectroscopy (UPS) in the valance band range. The results indicate a stronger mechanical stability of BPD SAMs than the C12 SAMs. The stability of BPD SAMs enhances further after electron irradiation due to intermolecular cross-linking, whereas the electron irradiation results in deterioration of C12 molecules due to the saturated nature of the molecules. The depth profiling time of the cross-linked BPD SAM is more than 4 and 8 times longer than the profiling time obtained for pristine and BPD and C12 SAMs, respectively. The UPS results are supported by density functional theory calculations, which show qualitative agreement with the experiment and enable us to interpret the features in the XPS spectra during the etching process for structural characterization. The obtained results offer helpful options to estimate the structural stability of SAMs which is a key factor for the fabrication of molecular devices.
Collapse
|
227
|
Riccardi L, Decherchi S, Rocchia W, Zanoni G, Cavalli A, Mancin F, De Vivo M. Molecular Recognition by Gold Nanoparticle-Based Receptors as Defined through Surface Morphology and Pockets Fingerprint. J Phys Chem Lett 2021; 12:5616-5622. [PMID: 34110174 PMCID: PMC8280747 DOI: 10.1021/acs.jpclett.1c01365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Ligand shell-protected gold nanoparticles can form nanoreceptors that recognize and bind to specific molecules in solution, with numerous potential innovative applications in science and industry. At this stage, the challenge is to rationally design such nanoreceptors to optimize their performance and boost their further development. Toward this aim, we have developed a new computational tool, Nanotron. This allows the analysis of molecular dynamics simulations of ligand shell-protected nanoparticles to define their exact surface morphology and pocket fingerprints of binding cavities in the coating monolayer. Importantly, from dissecting the well-characterized pairing formed by the guest salicylate molecule and specific host nanoreceptors, our work reveals that guest binding at such nanoreceptors occurs via preformed deep pockets in the host. Upon the interaction with the guest, such pockets undergo an induced-fit-like structural optimization for best host-guest fitting. Our findings and methodological advancement will accelerate the rational design of new-generation nanoreceptors.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory
of Molecular Modeling & Drug Discovery, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Decherchi
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
| | - Walter Rocchia
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
- CONCEPT
Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giordano Zanoni
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Cavalli
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
| | - Fabrizio Mancin
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory
of Molecular Modeling & Drug Discovery, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
228
|
Sun F, Tang Q. The ligand effect on the interface structures and electrocatalytic applications of atomically precise metal nanoclusters. NANOTECHNOLOGY 2021; 32:352001. [PMID: 34101616 DOI: 10.1088/1361-6528/ac027c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Metal nanoclusters, also known as ultra-small metal nanoparticles, occupy the gap between discrete atoms and plasmonic nanomaterials, and are an emerging class of atomically precise nanomaterials. Metal nanoclusters protected by different types of ligands, such as thiolates, alkynyls, hydrides, and N-heterocyclic carbenes, have been synthesized in recent years. Moreover, recent experiment and theoretical studies also indicated that the metal nanoclusters show great promise in many electrocatalytic reactions, such as hydrogen evolution, oxygen reduction, and CO2reduction. The atomically precise nature of their structures enables the elucidation of structure-property relationships and the reaction mechanisms, which is essential if nanoclusters with enhanced performances are to be rationally designed. Particularly, the ligands play an important role in affecting the interface bonding, stability and electrocatalytic activity/selectivity. In this review, we mainly focus on the ligand effect on the interface structure of metal nanoclusters and then discuss the recent advances in electrocatalytic applications. Furthermore, we point out our perspectives on future efforts in this field.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
229
|
Yu Z, Xu Y, Su J, Radjenovic PM, Wang Y, Zheng J, Teng B, Shao Y, Zhou X, Li J. Probing Interfacial Electronic Effects on Single‐Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Yu‐Xing Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| | - Jun‐Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Petar M. Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ya‐Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Ju‐Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Xiao‐Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
230
|
Santos A, Nicholson MIG, Feliciano GT, Bueno PR. Low-fouling properties in serum of carboxylic-oligo(ethylene glycol)-based interfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
231
|
Zhou X, Hao H, Zhang YJ, Zheng Q, Tan S, Zhao J, Chen HB, Chen JJ, Gu Y, Yu HQ, Liu XW. Patterning of transition metal dichalcogenides catalyzed by surface plasmons with atomic precision. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
232
|
Yu Z, Xu YX, Su JQ, Radjenovic PM, Wang YH, Zheng JF, Teng B, Shao Y, Zhou XS, Li JF. Probing Interfacial Electronic Effects on Single-Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angew Chem Int Ed Engl 2021; 60:15452-15458. [PMID: 33884737 DOI: 10.1002/anie.202102587] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/17/2021] [Indexed: 11/11/2022]
Abstract
Clarifying interfacial electronic effects on molecular adsorption is significant in many chemical and biochemical processes. Here, we used STM breaking junction and shell-isolated nanoparticle-enhanced Raman spectroscopy to probe electron transport and adsorption geometries of 4,4'-bipyridine (4,4'-BPY) at Au(111). Modifying the surface with 1-butyl-3-methylimidazolium cation-containing ionic liquids (ILs) decreases surface electron density and stabilizes a vertical orientation of pyridine through nitrogen atom σ-bond interactions, resulting in uniform adsorption configurations for forming molecular junctions. Modulation from vertical, tilted, to flat, is achieved on adding water to ILs, leading to a new peak ascribed to CC stretching of adsorbed pyridyl ring and 316 % modulation of single-molecule conductance. The dihedral angle between adsorbed pyridyl ring and surface decreases with increasing surface electronic density, enhancing electron donation from surface to pyridyl ring.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu-Xing Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.,Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun-Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
233
|
Advances in aptamer-based nanomaterials for separation and analysis of non-genetic biomarkers in biofluids. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
234
|
Gorenskaia E, Turner KL, Martín S, Cea P, Low PJ. Fabrication of metallic and non-metallic top electrodes for large-area molecular junctions. NANOSCALE 2021; 13:9055-9074. [PMID: 34042128 DOI: 10.1039/d1nr00917f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular junctions have proven invaluable tools through which to explore the electronic properties of molecules and molecular monolayers. In seeking to develop a viable molecular electronics based technology it becomes essential to be able to reliably create larger area molecular junctions by contacting molecular monolayers to both bottom and top electrodes. The assembly of monolayers onto a conducting substrate by self-assembly, Langmuir-Blodgett and other methods is well established. However, the deposition of top-contact electrodes without film penetration or damage from the growing electrode material has proven problematic. This Review highlights the challenges of this area, and presents a selective overview of methods that have been used to solve these issues.
Collapse
Affiliation(s)
- Elena Gorenskaia
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Kelly L Turner
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Santiago Martín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain and Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain and Laboratorio de Microscopias Avanzadas (LMA). Universidad de Zaragoza, Edificio I+D+i. 50018, Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain and Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain and Laboratorio de Microscopias Avanzadas (LMA). Universidad de Zaragoza, Edificio I+D+i. 50018, Zaragoza, Spain
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
235
|
Wetzel O, Hosseini S, Loza K, Heggen M, Prymak O, Bayer P, Beuck C, Schaller T, Niemeyer F, Weidenthaler C, Epple M. Metal-Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm). J Phys Chem B 2021; 125:5645-5659. [PMID: 34029093 DOI: 10.1021/acs.jpcb.1c02512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 μg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Shabnam Hosseini
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
236
|
Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021; 26:3085. [PMID: 34064173 PMCID: PMC8196792 DOI: 10.3390/molecules26113085] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer theranostics is a new concept of medical approach that attempts to combine in a unique nanoplatform diagnosis, monitoring and therapy so as to provide eradication of a solid tumor in a non-invasive fashion. There are many available solutions to tackle cancer using theranostic agents such as photothermal therapy (PTT) and photodynamic therapy (PDT) under the guidance of imaging techniques (e.g., magnetic resonance-MRI, photoacoustic-PA or computed tomography-CT imaging). Additionally, there are several potential theranostic nanoplatforms able to combine diagnosis and therapy at once, such as gold nanoparticles (GNPs), graphene oxide (GO), superparamagnetic iron oxide nanoparticles (SPIONs) and carbon nanodots (CDs). Currently, surface functionalization of these nanoplatforms is an extremely useful protocol for effectively tuning their structures, interface features and physicochemical properties. This approach is much more reliable and amenable to fine adjustment, reaching both physicochemical and regulatory requirements as a function of the specific field of application. Here, we summarize and compare the most promising metal- and carbon-based theranostic tools reported as potential candidates in precision cancer theranostics. We focused our review on the latest developments in surface functionalization strategies for these nanosystems, or hybrid nanocomposites consisting of their combination, and discuss their main characteristics and potential applications in precision cancer medicine.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Paola Varvarà
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; (M.A.U.); (P.V.); (G.C.)
- Advanced Technologies Network Center, University of Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| |
Collapse
|
237
|
Chiang CS, Kao YC, Webster TJ, Shyu WC, Cheng HW, Liu TY, Chen SY. Circulating tumor-cell-targeting Au-nanocage-mediated bimodal phototherapeutic properties enriched by magnetic nanocores. J Mater Chem B 2021; 8:5460-5471. [PMID: 32462165 DOI: 10.1039/d0tb00501k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Metastasis resulting from circulating tumor cells (CTCs) is associated with 90% of all cancer mortality. To disrupt cancer dissemination, therapeutic targeting of CTCs by extracorporeal photodynamic therapy (PDT) has emerged; however, it still remains impractical due to its limited therapeutic window. Herein, we developed a photosensitive and magnetic targeted core-satellite nanomedicine (TCSN) to augment the light-induced damage to the targeted cells. The magnetic nanocore (MNC) with multiple iron oxide nanoparticles stabilized using thiolated polyvinyl alcohol can magnetize the CTCs to achieve magnetic enrichment under a magnetic field. Multiple gold nanocage (AuNC) satellites were conjugated on the MNC to facilitate bimodal photothermal therapy and PDT. Adjusting the thiol content in the MNC allows manipulating the AuNC density on TCSNs, which has been found to demonstrate a density-dependent bimodal phototherapeutic effect under laser irradiation at 808 and 940 nm. Moreover, with the immobilization of anti-epithelial cell adhesion molecule (anti-EpCAM), TCSN exhibited an enhanced affinity toward EpCAM-expressing 4T1 cells. We demonstrate that TCSN-labeled 4T1 cells can be isolated and photo-eradicated in a microfluidic channel with a dynamic flow. Our studies showed that TCSN with the complementary properties of MNC and AuNCs can largely augment the therapeutic window by magnetic enrichment and bimodal phototherapy, serving as an advanced extracorporeal strategy to remove CTCs.
Collapse
Affiliation(s)
- Chih-Sheng Chiang
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
| | - Yu-Che Kao
- Materials Engineering/School of Materials, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40440, Taiwan.
| | - Hung-Wei Cheng
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming University, Taipei City 112, Taiwan.
| | - San-Yuan Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40440, Taiwan. and Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan. and Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan and School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
238
|
Barbero F, Mayall C, Drobne D, Saiz-Poseu J, Bastús NG, Puntes V. Formation and evolution of the nanoparticle environmental corona: The case of Au and humic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144792. [PMID: 33736322 DOI: 10.1016/j.scitotenv.2020.144792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Studying the behaviour of nanomaterials after their release into natural water is essential to understand the risk associated to their environmental exposure. In particular, the interaction and adsorption of dissolved organic matter onto nanoparticles strongly influence the behaviour and fate of nanomaterials in natural water systems. We herein study the interaction of Au and Ag nanoparticles and humic acids, the principal component of natural dissolved organic matter. Physicochemical characterization results showed the formation of an organic matter corona, consisting of two layers: a "hard" one, firmly bound to the nanoparticle surface, and a "soft" one, in dynamic equilibrium and, consequently, highly dependent on the media organic matter concentration. The extent of the electro-steric stabilization of the so called environmental corona depends on the size of the supramolecular association of humic acid (which depends on its hydrophilic and lipophilic moieties), the nanoparticle size, the total concentration of organic matter in the media, and the ratio between them. Interestingly, environmental coronas can eventually prevent Ca2+ and Mg2+ induced aggregation at concentrations range present in most of the freshwater bodies. The humic coating formed on top of the Au or control Ag nanoparticles presented a similar profile, but the corrodibility of Ag led to a more natural detachment of the corona. These results were further confirmed by exposing the nanoparticles to a model of natural water and standard mud (LUFA 2.2 dispersion). In the latter case, after several days, nanoparticle sedimentation was observed, which was attributed to interactions with macro organic and inorganic matter (fraction larger than particulate matter).
Collapse
Affiliation(s)
- Francesco Barbero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 111, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 111, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Javier Saiz-Poseu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Neus G Bastús
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Victor Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193, Bellaterra, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), P. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
239
|
Liu P, Han W, Zheng M, Li W, Xu WW. Unraveling the Atomic Structures of 10-Electron (10e) Thiolate-Protected Gold Nanoclusters: Three Au 32(SR) 22 Isomers, One Au 28(SR) 18, and One Au 33(SR) 23. ACS OMEGA 2021; 6:10497-10503. [PMID: 34056202 PMCID: PMC8153794 DOI: 10.1021/acsomega.1c01345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The atomic structures of 10-electron (10e) thiolate-protected gold nanoclusters have not received extensive attention both experimentally and theoretically. In this paper, five new atomic structures of 10e thiolate-protected gold nanoclusters, including three Au32(SR)22 isomers, one Au28(SR)18, and one Au33(SR)23, are theoretically predicted. Based on grand unified model (GUM), four Au17 cores with different morphologies can be obtained via three different packing modes of five tetrahedral Au4 units. Then, five complete structures of three Au32(SR)22 isomers, one Au28(SR)18, and one Au33(SR)23 isomers can be formed by adding the thiolate ligands to three Au17 cores based on the interfacial interaction between thiolate ligands and gold core in known gold nanoclusters. Density functional theory calculations show that the relative energies of three newly predicted Au32(SR)22 isomers are quite close to two previously reported isomers. In addition, five new 10e gold nanoclusters have large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps and all-positive harmonic vibration frequencies, indicating their high stabilities.
Collapse
Affiliation(s)
- Pengye Liu
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhua Han
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Mengke Zheng
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenliang Li
- College
of Energy Engineering, Xinjiang Institute
of Engineering, Urumqi 830023, China
| | - Wen Wu Xu
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
240
|
Wei X, Shen H, Xu C, Li H, Jin S, Kang X, Zhu M. Ag 48 and Ag 50 Nanoclusters: Toward Active-Site Tailoring of Nanocluster Surface Structures. Inorg Chem 2021; 60:5931-5936. [PMID: 33826306 DOI: 10.1021/acs.inorgchem.1c00355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The determination of active sites in metal nanoclusters is of great significance for the in-depth understanding of the structural evolution and the mechanism of physicochemical properties. In this work, the surface active Ag2(SR)3 units of the Ag48Cl14(S-Adm)30 nanocluster are determined, and the active-site tailoring of this nanocluster gives rise to two derivative nanoclusters, i.e., the structure-maintained Ag48Cl14(S-Adm)26(S-c-C6H11)4 and the structure-growth Ag50Cl16(S-Adm)28(DPPP)2. Both Ag48 and Ag50 nanoclusters exhibit almost the same cluster framework, but the Ag2(S-Adm)3 active units are regulated to Ag3(S-Adm)2(DPPP)1Cl1 with the transformation from Ag48 to Ag50. The surface active sites on Ag48 are rationalized by analyzing its crystal structure and the ligand-exchange-induced cluster transformation. This study provides some inspiration toward the active-site tailoring of nanocluster surface structures, which is significant for the preparation of new cluster-based nanomaterials with customized structures and enhanced performance.
Collapse
Affiliation(s)
- Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Honglei Shen
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Chao Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
241
|
Wang Q, Dong SL, Tao DD, Li Z, Jiang YB. Ag(I)-thiolate coordination polymers: Synthesis, structures and applications as emerging sensory ensembles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
242
|
Han W, Liu P, Zheng M, Zeng XC, Xu WW. Ring Model for Understanding How Interfacial Interaction Dictates the Structures of Protection Motifs and Gold Cores in Thiolate-Protected Gold Nanoclusters. J Phys Chem Lett 2021; 12:3006-3013. [PMID: 33733772 DOI: 10.1021/acs.jpclett.1c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the effect of interfacial interactions between the protection motifs and gold cores on the stabilities of thiolate-protected gold nanoclusters is still a challenging task. Based on analyses of 95 experimentally crystallized and theoretically predicted thiolate-protected gold nanoclusters, we present a ring model to offer a deeper insight into the interfacial interactions for this class of nanoclusters. In the ring model, all the gold nanoclusters can be generically viewed as a fusion or interlocking of several [Aum(SR)n] (m = 4-8, 10, and 12 and 0 ≤ n ≤ m) rings. Guided by the ring model and the grand unified model, a new Au42(SR)26 isomer is predicted, whose total energy is lower than those of two previously crystallized isomers. The ring model offers a mechanistic understanding of the interactions between the protection ligands and gold cores and practical guidance on predicting new gold nanoclusters for future experimental synthesis and confirmation.
Collapse
Affiliation(s)
- Wenhua Han
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Pengye Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Mengke Zheng
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
243
|
Chew AK, Dallin BC, Van Lehn RC. The Interplay of Ligand Properties and Core Size Dictates the Hydrophobicity of Monolayer-Protected Gold Nanoparticles. ACS NANO 2021; 15:4534-4545. [PMID: 33621066 DOI: 10.1021/acsnano.0c08623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The hydrophobicity of monolayer-protected gold nanoparticles is a crucial design parameter that influences self-assembly, preferential binding to proteins and membranes, and other nano-bio interactions. Predicting the effects of monolayer components on nanoparticle hydrophobicity is challenging due to the nonadditive, cooperative perturbations to interfacial water structure that dictate hydrophobicity at the nanoscale. In this work, we quantify nanoparticle hydrophobicity by using atomistic molecular dynamics simulations to calculate local hydration free energies at the nanoparticle-water interface. The simulations reveal that the hydrophobicity of large gold nanoparticles is determined primarily by ligand end group chemistry, as expected. However, for small gold nanoparticles, long alkanethiol ligands interact to form anisotropic bundles that lead to substantial spatial variations in hydrophobicity even for homogeneous monolayer compositions. We further show that nanoparticle hydrophobicity is modulated by changing the ligand structure, ligand chemistry, and gold core size, emphasizing that single-ligand properties alone are insufficient to characterize hydrophobicity. Finally, we illustrate that hydration free energy measurements correlate with the preferential binding of propane as a representative hydrophobic probe molecule. Together, these results show that both physical and chemical properties influence the hydrophobicity of small nanoparticles and must be considered together when predicting gold nanoparticle interactions with biomolecules.
Collapse
Affiliation(s)
- Alex K Chew
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Bradley C Dallin
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
244
|
Cruz SS, Tanygin V, Lear BJ. Asymmetries in the Electronic Properties of Spheroidal Metallic Nanoparticles, Revealed by Conduction Electron Spin Resonance and Surface Plasmon Resonance. ACS NANO 2021; 15:4490-4503. [PMID: 33646754 DOI: 10.1021/acsnano.0c08515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using electron spin resonance spectroscopy, we demonstrate that the morphological asymmetries present in small spheroidal metallic nanoparticles give rise to asymmetries in the behavior of electrons held in states near the metal's Fermi energy. We find that the effects of morphological asymmetries for these spheroidal systems are more important than the effects of size distributions when explaining the asymmetry in electronic behavior. This is found to be true for all the particles examined, which were made from Cu, Ag, Pd, Ir, Pt, and Au, bearing dodecanethiolate ligands. In the case of the Ag particles, we also demonstrate that the same model used to account for morphological effects in the electron spin resonance spectra can be used to account for small asymmetries present in the plasmon spectrum. This result demonstrates that the electronic properties of even small particles are tunable via morphological changes.
Collapse
Affiliation(s)
- Santina S Cruz
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vadim Tanygin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
245
|
A DM1-doped porous gold nanoshell system for NIR accelerated redox-responsive release and triple modal imaging guided photothermal synergistic chemotherapy. J Nanobiotechnology 2021; 19:77. [PMID: 33741008 PMCID: PMC7976706 DOI: 10.1186/s12951-021-00824-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although many treatments for breast cancer are available, poor tumour targeting limits the effectiveness of most approaches. Consequently, it is difficult to achieve satisfactory results with monotherapies. The lack of accurate diagnostic and monitoring methods also limit the benefits of cancer treatment. The aim of this study was to design a nanocarrier comprising porous gold nanoshells (PGNSs) co-decorated with methoxy polyethylene glycol (mPEG) and trastuzumab (Herceptin®, HER), a therapeutic monoclonal antibody that binds specifically to human epidermal receptor-2 (HER2)-overexpressing breast cancer cells. Furthermore, a derivative of the microtubule-targeting drug maytansine (DM1) was incorporated in the PGNSs. Methods Prepared PGNSs were coated with mPEG, DM1 and HER via electrostatic interactions and Au–S bonds to yield DM1-mPEG/HER-PGNSs. SK-BR-3 (high HER2 expression) and MCF-7 (low HER2) breast cancer cells were treated with DM1-mPEG/HER-PGNSs, and cytotoxicity was evaluated in terms of cell viability and apoptosis. The selective uptake of the coated PGNSs by cancer cells and subsequent intracellular accumulation were studied in vitro and in vivo using inductively coupled plasma mass spectrometry and fluorescence imaging. The multimodal imaging feasibility and synergistic chemo-photothermal therapeutic efficacy of the DM1-mPEG/HER-PGNSs were investigated in breast cancer tumour-bearing mice. The molecular mechanisms associated with the anti-tumour therapeutic use of the nanoparticles were also elucidated. Result The prepared DM1-mPEG/HER-PGNSs had a size of 78.6 nm and displayed excellent colloidal stability, photothermal conversion ability and redox-sensitive drug release. These DM1-mPEG/HER-PGNSs were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. Moreover, the DM1-mPEG/HER-PGNSs enhanced the performance of multimodal computed tomography (CT), photoacoustic (PA) and photothermal (PT) imaging and enabled chemo-thermal combination therapy. The therapeutic mechanism involved the induction of tumour cell apoptosis via the activation of tubulin, caspase-3 and the heat shock protein 70 pathway. M2 macrophage suppression and anti-metastatic functions were also observed. Conclusion The prepared DM1-mPEG/HER-PGNSs enabled nanodart-like tumour targeting, visibility by CT, PA and PT imaging in vivo and powerful tumour inhibition mediated by chemo-thermal combination therapy in vivo. In summary, these unique gold nanocarriers appear to have good potential as theranostic nanoagents that can serve both as a probe for enhanced multimodal imaging and as a novel targeted anti-tumour drug delivery system to achieve precision nanomedicine for cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00824-5.
Collapse
|
246
|
Cheng HW, Wang S, Porter MD, Zhong CJ. Molecularly-tunable nanoelectrode arrays created by harnessing intermolecular interactions. Chem Sci 2021; 12:6081-6090. [PMID: 33996004 PMCID: PMC8098684 DOI: 10.1039/d0sc06955h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intermolecular interactions play a critical role in the binding strength of molecular assemblies on surfaces. The ability to harness them enables molecularly-tunable interfacial structures and properties. Herein we report the tuning of the intermolecular interactions in monolayer assemblies derived from organothiols of different structures for the creation of nanoelectrode arrays or ensembles with effective mass transport by a molecular-level perforation strategy. The homo- and hetero-intermolecular interactions can be fully controlled, which is demonstrated not only by thermodynamic analysis of the fractional coverage but also by surface infrared reflection absorption and X-ray photoelectron spectroscopic characterizations. This understanding enables controllable electrochemical perforation for the creation of ensembles or arrays of channels across the monolayer thickness with molecular and nanoscale dimensions. Redox reactions on the nanoelectrode array display molecular tunability with a radial diffusion characteristic in good agreement with theoretical simulation results. These findings have implications for designing membrane-type ion-gating, electrochemical sensing, and electrochemical energy storage devices with molecular level tunability. Intermolecular interactions in monolayer assembly are harnessed for creating molecularly-tunable nanoelectrode arrays or ensembles.![]()
Collapse
Affiliation(s)
- Han-Wen Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai 201418 China .,Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| | - Shan Wang
- Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| | - Marc D Porter
- Department of Chemistry and Chemical Engineering, University of Utah Salt Lake City Utah 84112 USA
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton Binghamton New York 13902 USA
| |
Collapse
|
247
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
248
|
Abdul-Moqueet MM, Tovias L, Lopez P, Mayer KM. Synthesis and bioconjugation of alkanethiol-stabilized gold bipyramid nanoparticles. NANOTECHNOLOGY 2021; 32:10.1088/1361-6528/abe823. [PMID: 33607639 PMCID: PMC8374007 DOI: 10.1088/1361-6528/abe823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
Gold bipyramid (GBP) nanoparticles are promising for a range of biomedical applications, including biosensing and surface-enhanced Raman spectroscopy, due to their favorable optical properties and ease of chemical functionalization. Here we report improved synthesis methods, including preparation of gold seed particles with an increased shelf life of ∼1 month, and preparation of GBPs with significantly shortened synthesis time (< 1 h). We also report methods for the functionalization and bioconjugation of the GBPs, including functionalization with alkanethiol self-assembled monolayers (SAMs) and bioconjugation with proteins via carbodiimide cross-linking. Binding of specific antibodies to the nanoparticle-bound proteins was subsequently observed via localized surface plasmon resonance sensing. Rabbit IgG and goat anti-Rabbit IgG antibodies were used as a model system for antibody-antigen interactions. As-synthesized, SAM-functionalized, and bioconjugated bipyramids were characterized using scanning electron microscopy, UV-vis spectroscopy, zeta potential, and dynamic light scattering.
Collapse
Affiliation(s)
- Mohammad M Abdul-Moqueet
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Leeana Tovias
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Priscilla Lopez
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Kathryn M Mayer
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States of America
| |
Collapse
|
249
|
Romeo MV, López-Martínez E, Berganza-Granda J, Goñi-de-Cerio F, Cortajarena AL. Biomarker sensing platforms based on fluorescent metal nanoclusters. NANOSCALE ADVANCES 2021; 3:1331-1341. [PMID: 36132872 PMCID: PMC9419537 DOI: 10.1039/d0na00796j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/10/2021] [Indexed: 05/07/2023]
Abstract
Metal nanoclusters (NCs) and their unique properties are increasing in importance and their applications are covering a wide range of areas. Their remarkable fluorescence properties and easy synthesis procedure and the possibility of functionalizing them for the detection of specific targets, such as biomarkers, make them a very interesting biosensing tool. Nowadays the detection of biomarkers related to different diseases is critical. In this context, NCs scaffolded within an appropriate molecule can be used to detect and quantify biomarkers through specific interactions and fluorescence properties of the NCs. These methods include analytical detection and biolocalization using imaging techniques. This review covers a selection of recent strategies to detect biomarkers related to diverse diseases (from infectious, inflammatory, or tumour origin) using fluorescent nanoclusters.
Collapse
Affiliation(s)
- María V Romeo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Elena López-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Jesús Berganza-Granda
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
250
|
Frauhammer T, Gerhard L, Edelmann K, Lindner M, Valášek M, Mayor M, Wulfhekel W. Addressing a lattice of rotatable molecular dipoles with the electric field of an STM tip. Phys Chem Chem Phys 2021; 23:4874-4881. [PMID: 33616122 DOI: 10.1039/d0cp06146h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional molecular groups mounted on specific foot structures are ideal model systems to study intermolecular interactions, due to the possibility to separate the functionality and the adsorption mechanism. Here, we report on the rotational switching of a thioacetate group mounted on a tripodal tetraphenylmethane (TPM) derivative adsorbed in ordered islands on a Au(111) surface. Using low temperature scanning tunnelling microscopy, individual freestanding molecular groups of the lattice can be switched between two bistable orientations. The functional dependence of this rotational switching on the sample bias and tip-sample distance allows us to model the energy landscape of this molecular group as an electric dipole in the electric field of the tunnelling junction. As expected for the interaction of two dipoles, we found states of neighbouring molecules to be correlated.
Collapse
Affiliation(s)
- Timo Frauhammer
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Lukas Gerhard
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| | - Kevin Edelmann
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Marcin Lindner
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany.
| | - Michal Valášek
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany.
| | - Marcel Mayor
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland and Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), 510275 Guangzhou, China.
| | - Wulf Wulfhekel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany. and Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology (KIT), D-76021 Karlsruhe, Germany
| |
Collapse
|